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1 Introduction

T-duality is the characteristic feature of the string theory which leads to a different picture

from the Einstein gravity drastically at the short distance. T-duality of string action is

made manifest by doubling the spacetime coordinates [1, 2]. Since physical string currents

are the D-dimensional left and right currents, the physical current in the doubled spacetime

is the 2D-dimensional chiral current which gives rise to the chiral boson problem [3]. A La-

grangian only with chiral currents does not allow the conformal gauge which is useful for the

quantum computation. The Weyl invariance and the Lorentz covariance of the worldsheet

are necessary especially for a superstring since the κ-symmetry involves the gauge transfor-

mation of the zweibein. Pasti, Sorokin and Tonin introduced a scalar to resolve the chiral

scalar problem [4, 5] which has a nonzero vacuum value leading to the spontaneous breaking

down of the worldsheet symmetry. It was applied to make manifest T-duality in [6].

Bandos proposed the superstring Lagrangian with manifestly T-duality where the PST

scalar field is used resulting double zweibeins [7]. The obtained superstring action has

two sets of κ-symmetries leading to simpler structure of the gauge invariance. In our

previous paper [8] doubling of the zweibein comes from the Lagrange multipliers of the

selfduality constraints for a bosonic string. In this paper we extend it to the supersymmetric

case. Our Lagrangian is similar to the one obtained by Bandos [7]. Differences of our
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treatment in this paper from [7] are the followings: (1) We use both the selfdual and

anti-selfdual currents which are extendable to non-abelian cases instead of the Hodge dual

of the selfdual current in [7]. (2) Lagrange multipliers of the selfduality constraints are

used for double zweibeins, instead of the PST scalar. (3) The Wess-Zumino terms are

written in bilinears of the currents as well as the kinetic term in our approach. We also

mention about our “chiral” treatment in the previous paper [9]. The main differrence

from [7] is the dimensional reduction constraint which is linear combination of the anti-

selfdual currents. Although we began by only the selfdual currents [10, 21], the dimensional

reduction constraints involve the anti-selfdual currents leading to the Weyl invariant and

Lorentz covariant worldsheet Lagrangian. As earlier studies many aspects of superstring

Lagrangians with T-duality are examined such as the NS/NS superstring [11], the doubled-

yet-gauged spacetime formulation [12–14] and the pure spinor [15].

The string background is described by the gravity with the T-duality symmetry. It was

shown that the classical gravity theory with manifest T-duality is the same with the low

energy 1-loop effective theory of the string [16–18] and the one for the chiral string in the

α′ order [19]. It is the gauge theory of gravity. For the Einstein gravity the gauge generator

and the gauge field are the momentum pM and the vielbein eA
M which make the covariant

derivative ∇A = eA
MpM. For the stringy gravity the momentum includes the winding

mode ⊲M (σ) = (pM, ∂σx
M) with the D-dimensional index M and the 2D-dimensional index

M . They satisfy the affine Lie algebra whose consistency requires the nondegenerate group

metric ηMN . This affine Lie algebra is realized by the 2D-dimensional canonical coordinates

PM and XM . The covariant derivative is extended to ∇A → ⊲A(σ) = EA
M
⊲M with the

vielbein EA
M (X). The gauge transformation of the vielbein under the general coordinate

transformation is given by δEA
M = dEA

M + LΛEA
M with the differential term dEA

M

and the “new” Lie derivative LΛEA
M . The “new” Lie derivative gives rise to the O(D,D)

transformation

δEA
M = EA

N (−∂NΛM + ∂MΛN ) , δEM
A = (∂MΛN − ∂NΛM )EN

A . (1.1)

Throughout this paper the 2D-dimensional index M is raised and lowered by the O(D,D)

invariant metric ηMN . The tangent vector is transformed as O(D,D)

∂

∂X ′M =
∂XN

∂X ′M
∂

∂XN
= (δNM + ∂MΛN )∂N ≈ (δNM + ∂MΛN − ∂NΛM )∂N (1.2)

where the section conditions on arbitrary functions ΨI(X) with I = 1, 2, · · · are used

ηMN∂M∂NΨI(X) = ηMN∂MΨI(X)∂NΨJ(X) = 0 . (1.3)

The cotangent vector should be also transformed as O(D,D)

dX ′M = dXN ∂X ′M

∂XN
= dXN (δMN − ∂NΛM ) ≈ dXN (δMN − ∂NΛM + ∂MΛN ) , (1.4)

so the Lagrangian version of the section conditions are necessary as shown in our previous

paper [8]

dXMηMNdXN = dX ′MηMNdX ′N = 0 = dXMηMN∂LΛ
N . (1.5)
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These conditions guarantee the consistency for the cotangent vector dXM and the tangent

vector ∂
∂XN as 〈dXM , ∂

∂XN 〉 = δMN . The Lagrangian version of the section conditions also

guarantee the coordinate invariance of the currents in curved backgrounds

Jm
A = ∂mXMEM

A , δJm
A = (∂mδXM )EM

A + ∂mXMδEM
A = 0 , (1.6)

where index m runs τ, σ for a string and τ for a particle. Then the Lagrangian is made to

be coordinate invariant.

The organization of the paper is the following: in the next section we present solutions

of the section conditions in Hamiltonian (1.3) and in Lagrangian (1.5) explicitly. In section

3, the worldsheet gauges are examined where the Lagrange multipliers of the Virasoro

constraints and the selfduality constraints in Hamiltonian become double zweibeins. In

section 4 the Virasoro constraints and the selfduality constraints in a non-abelian space are

obtained. We begin by the Hamiltonian formalism where the covariant derivative commutes

with the symmetry generator. The covariant derivative is the selfdual current while the

orthogonal transformed symmetry generator becomes the anti-selfdual current. The σ-

diffeomorphism Virasoro operator includes the anti-selfdual current, so the σ derivative

computed by the canonical commutator coincides with the one computed by the chain rule

differential. Including the anti-selfdual current is a similar formulation given in [20] where

the Lagrangian for selfdual 2n-form fields is written with the anti-seldfual form.

In section 5, the superstring Lagrangians with manifest T-duality are presented. For

two sets of nondegenerate superalgebras the selfdual and anti-selfdual currents are given

concretely. The Hamiltonian of the superstring includes the Virasoro constraints, the

selfduality constraints and the dimensional reduction constraints for unphysical fermions.

The Lagrangian with double zweibeins makes the type II κ-symmetry to be two sets of the

type I κ-symmetries leading to simpler computation. We also show how to reduce to the

Green-Schwarz superstring action by gauge fixing and sectioning.

2 Section conditions

2.1 Section conditions in Hamiltonian

The manifestly T-duality space is defined by the string current algebra, where the world-

sheet spatial diffeomorphism is suppressed consistently as the section conditions. The

Virasoro operators are 



Hτ = 1
2PMGMNPN

Hσ = 1
2PMηMNPN

(2.1)

where GMN is the O(D,D) gravitational background metric while ηMN is the O(D,D)

invariant metric. Hτ is the Hamiltonian in the conformal gauge. Hσ = 0 is realized on

arbitrary fields Ψi(X
M ) , i=1,2,··· as weak and strong section conditions

ηMN∂M∂NΨi(X) = ηMN∂MΨi(X)∂NΨj(X) = 0 for i, j = 1, 2, · · · . (2.2)
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The Fourier transformation introduces momenta Pi;M for each function as

Ψi(X
M ) =

∫
d2DPie

−iPi;MXM

Ψ̃i(Pi;M ) . (2.3)

The weak section condition gives

ηMN∂M∂NΨi(X) = 0 → ηMNPiMPi;N = 0 for i = 1, 2, · · · .

Let us divide the 2D directions of PM into two Euclidean D-dimensional directions of the

positive metric P̄M and the one of the negative metric PM

ηMNPi;MPi;N =
D∑

M=1

(P̄i;M )2 −
D∑

M=1

(P i;M )2 = 0 →
D∑

M=1

(P̄i;M )2 =
D∑

M=1

(P i;M )2 ≡ |Pi|2

(2.4)

The strong section condition gives

ηMN∂MΨi(X)∂NΨj(X) = 0 → ηMNPi;MPj;N = 0 for i 6= j = 1, 2, · · · (2.5)

which leads to

ηMNPi;MPj;N =
D∑

M=1

P̄i;M P̄j;M −
D∑

M=1

P i;MP j;M = |Pi||Pj |(cosθ̄ij − cosθij) = 0

⇒ θ̄ij = θij . (2.6)

In order to coincide all angles of infinite number of arbitrary vectors, θ̄ij = θij , the positive

and negative vectors P̄i;M and P i;M must be equal up to an O(D) rotation AM
N

P̄i;M = AM
NP i;N for i = 1, 2, · · · , AM

NAM
L = δNL , AM

NAL
N = δML . (2.7)

The infinite number of vectors P̄i;M and P i;M are recognized as infinite number of points in

the momentum coordinate space P̄M and PM . Therefore the reducibility (2.7) eliminates

a half space as

P̄M = AM
NPN → 0 =




1M
N −AM

N

0 0







P̄N

PN


 . (2.8)

Interchanging P̄D and PD of the positive and negative vectors and renaming them as

P0 and P0 make the Lorentz covariant left and right vectors. The interchanging matrix I
makes the left/right vectors PL/R = (PM , PM ) from the positive/negative vectors PP/N =

(P̄M , PM ). It also makes the O(D,D) invariant metric to be diagonal (ηMN ,−ηMN ) from

diagonal (1,−1)

I =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


 , PL/R = IPP/N , ηMN = I


 1 0

0 −1


 I =


 ηMN 0

0 −ηMN


 (2.9)
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Plugging (2.9) into the reducibility relation (2.8) the left/right momenta also satisfy the

reducibility condition with a new reducibility matrix denoted by the same matrix A as

PM = AM
NPN (2.10)

The matrix AM
N is an element of O(D−1,1) group with respect to ηMN and ηMN as

AηAT = η and AT ηA = η. By using AM
N we fix the left and right Lorentz symmetries,

SMN and SMN , as

Sphysical;MN = SMN −AM
LAN

KSLK , 0 = SMN +AM
LAN

KSLK (2.11)

It is denoted that the left and the right Lorentz generators satisfy the same Lorentz algebras

with the opposite signatures as [Sleft, Sleft] = Sleft and [Sright, Sright] = −Sright. Linear

combination of the left/right momenta brings to the conventional basis pM and pM as





pphysical;M = 1
2(PM +AM

LPL) = PM

pM = 1
2(PM −AM

LPL) = 0

(2.12)

The Fourier functions have the form of Ψ̃i(Pi;M ) = Ψ̃i(pi;M, pi
M = 0). The Fourier integra-

tion with respect to pi
M gives

∫
dDpi

Me−ipi
MyMΨ̃i(PM ) = δ(yM)Ψ̃i(pM), so the resultant

functions are

Ψi(X
M ) = Ψi(x

M, yM = 0) . (2.13)

The half of 2D coordinates are suppressed. Other solutions such as xM = 0, yM 6= 0, are

obtained by regular O(D,D) matrix transformations.

2.2 Section conditions in Lagrangian

The Lagrangian version of the section conditions are given in our previous paper [8]. We

also showed that the Virasoro operators (2.1) become the line element and the constraint

in Lagrangian formalism 



1
2dX

MGMNdXN = d2s

1
2dX

MηMNdXN = 0

(2.14)

The second line is the section condition suppressing the degrees of freedom generated by

the σ-diffeomorphism which corresponds to the weak section condition. Under an infinites-

imal coordinate transformation XM → X ′M = XM − ΛM (X) the additional condition is

required [8] corresponding to the strong section condition

dXMηMN∂LΛ
N = 0 (2.15)

The Lagrangian version of the section conditions are solved analogously in (2.10)

ηMNdXMdXN = ηMNdX ′MdX ′N = 0 , ηMNdXMdX ′N = 0 → dXM = dXN (A−1)N
M

(2.16)
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The left and right Lorentz symmetries are fixed analogously to (2.11). The conventional

coordinates are introduced as




xM = XM +XN (A−1)N
M

yM = XM −XN (A−1)N
M

(2.17)

A solution of the Lagrangian version of the weak section condition (2.16) is given by





dxM = dXM + dXN (A−1)N
M = 2dXM

dyM = dXM − dXN (A−1)N
M = 0

→ dXM = (dxM, dyM = 0) . (2.18)

This solution supplements the solution of yM = 0 in (2.13). The weak condition in (2.15)

is examined as dXMηMN∂LΛ
N = 0 = dxM ∂

∂xLΛM = 0 leading to ΛM =constant, where
∂

∂yM
Λ = 0 and dyM = 0 are used. So the transformed coordinate is still solution dy′M =

dyM − dΛM = 0. Other solutions are obtained by regular O(D,D) matrix transfomations.

3 Worldsheet gauges

The Lagrange multipliers of the Virasoro constraints in Hamiltonian are zweiben gauge

fields in Lagrangian. The choice of the zweibein gauge links the target space symmetry.

In order to focus on this relation we consider a bosonic string in a D-dimensional flat

space without the B-field. The D-dimensional target space coordinate and the canonical

conjugate are denoted by (xM, pM) with the usual Lorentz metric ηMN. The Hamiltonian

for a string in the D-dimensional flat space gives the Lagrangian in the Weyl-Lorentz gauge

of the zweibein

H0 = g−
1

4
(p+ ∂σx)M

2 + g+
1

4
(p− ∂σx)M

2

L0 = ∂τx
M pM −H0 =

1

e
(e+

m∂mxM) (e−n∂nx
N) ηMN





ea
m =


 e−τ e−σ

e+
τ e+

σ


 =


 1 −g−

1 g+




e = det ea
m = g+ + g−

(3.1)

In the manifestly T-duality formulation the D-dimensional left/right coordinates are

treated as independent 2D-dimensional coordinates; the coordinatesXM = (XM , XM ) and

the conjugate momenta PM = (PM , PM ) . On the other hand the 2D-dimensional left/right

moving currents, PM ± ∂σX
NηNM , include not only the D-dimensional left/right moving

currents PM + ∂σX
NηNM =

(
(P + ∂σX)M , (P − ∂σX)M

)
but also unphysical currents

PM −∂σX
NηNM =

(
(P − ∂σX)M , (P + ∂σX)M

)
. PM +∂σX

NηNM is the selfdual current

and PM − ∂σX
NηNM is the anti-selfdual currents.

We review our chiral approach [9]. The Hamiltonian includes only physical currents.

The selfduality constraint is imposed by the linear combination of the left/right anti-selfdual

– 6 –
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currents in such a way that the stringy anomaly is cancelled, (P−∂σX)M−(P+∂σX)M = 0.

The chiral Hamiltonian with the linear selfduality constraint is given by

Hchiral = g−
1

4
(P + ∂σX)M

2 + g+
1

4
(P − ∂σX)M

2

+µM
{
(P − ∂σX)M − (P + ∂σX)M

}

Lchiral = ∂τX
M PM −Hchiral

=
1

g−

{
(e−m∂mXM − µM)2 + g−∂σXM (e−m∂mXM )

}

+
1

g+

{
(e+

m∂mXM + µM)2 − g+∂σX
M (e+

m∂mXM )
}

(3.2)

where the zweibein ea
m is given in (3.1). After integrating out the Lagrangian multiplier

µM and rewriting in terms of the usual coordinates xM and yM in (2.17), the worldsheet

covariant Lagrangian is obtained

Lchiral =
1

e
(e+

m∂mxM) (e−n∂nx
N) ηMN − ǫmn∂mxM∂nyM . (3.3)

The first term is both D-dimensional and worldsheet covariant kinetic term. The second

term is total derivative in the bosonic case, but it contributes to the supersymmetric case.

Next let us include the anti-selfdual currents. The Hamiltonian for a string in the 2D-

dimensional flat space gives the Lagrangian in the Weyl-Lorentz gauge with two zweibeins:

H1 = g−
1

4
(P + ∂σX)M

2 + g+
1

4
(P − ∂σX)M

2

+(g+ + λ+)
1

4
(P − ∂σX)M

2 + (g− + λ−)
1

4
(P + ∂σX)M

2

L1 = ∂τX
M PM −H1

=
1

ē
(ē+

m∂mXM )(ē−n∂nX
N )ηMN +

1

e
(e+

m∂mXM )(e−
n∂nX

N )ηMN (3.4)





ēa
m =


 1 −g−

1 g+ + λ+




ē = e+ λ+

,





ea
m =


 1 −(g− + λ−)

1 g+




e = e+ λ−

Two zweibeins and two worldsheet coordinates allow two independent worldsheets, so L1

is sum of the left and the right sectors. It will be convenient to calculate the κ-symmetry

invariance as shown in the next section.

The Lagrangian L1 is rewritten in such a way that the kinetic term becomes 2D-

dimensional covariant,

L2 =
1

e
(e+

m∂mXM )(e−n∂nX
N )η̂MN

+

(
1

ē
− 1

e

)
(e−m∂mXM )2 +

(
1

e
− 1

e

)
(e+

m∂mXM )2 (3.5)

where the zweibein ea
m is the same one in (3.1). In the conformal gauge g± = 1 L2 becomes

L2 =
1

2

{
(∂+X

M )(∂−XN )η̂MN − λ+

2 + λ+
(∂−XM )2 − λ−

2 + λ−
(∂+X

M )2
}

(3.6)
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with ∂± = ∂τ ± ∂σ. The selfdual constraints obtained by varying λ± in terms of xM, yM

in (2.17) are squares of the usual selfduality condition ∂myM = ǫmn∂
nxM equivalently

∂m(Xη)M = ǫmn∂
nXM as





(
∂−XM

)2
= 1

4

(
(∂τx

M − ∂σyM) + (∂τyM − ∂σx
M)
)2

= 0
(
∂+X

M
)2

= 1
4

(
(∂τx

M − ∂σyM)− (∂τyM − ∂σx
M)
)2

= 0
(3.7)

The D-dimensional dual coordinate dyM is solved in terms of dxM, if the selfduality con-

straint is solved. But squares of the selfduality constraints are weaker, and it contributes

to make the worldsheet covariance manifest. The Lagrangian L2 is rewritten in terms of

xM, yM in (2.17) as

L2 =
1

e

{
(e+

m∂mxM)(e−n∂nx
N)ηMN + (e+

m∂myM)(e−n∂nyN)η
MN

+
λ+

e+ λ+
(∂τx

M − ∂σyM)(∂σx
M − ∂τyM)

}
(3.8)

in the gauge 1
ē +

1
e = 2

e which is λ− = eλ+

e+2λ+
.

The Lagrangian L1 is further rewritten in such a way that both the kinetic term and

the constraints become 2D-dimensional covariant:

L3 =
1

ê
(ê+

m∂mXM )(ê−n∂nX
N )η̂MN +

1

λ̂
(λ̂+

m∂mXM )(λ̂−n∂nX
N )ηMN (3.9)





êa
m =


 1 −ĝ−

1 ĝ+




ĝ+ = g+ + λ+e
ē+e

ĝ− = g− + λ
−
ē

ē+e

ê = 2(1ē +
1
e )

−1

,





λ̂a
m =


 1 −λ̂−

1 λ̂+




λ̂+ = g+ + (2ē−e)e
−ē+e

λ̂− = g− + eē
−ē+e

λ̂ = 2(1ē − 1
e )

−1

The conformal gauge in the first term is given by





λ+ = e
(

1
g+

− 1
)

λ− = e
(

1
g
−

− 1
) → êa

m =


 1 −1

1 1


 . (3.10)

In this gauge the second term does not allow the conformal gauge, λ̂± = 1, since they are

originally selfduality constraints,





λ̂+ =
2(g+ + g− − g+g−)

g+ − g−

λ̂− =
2g+g−
g+ − g−

↔





g+ =
2λ̂−

λ̂+ + λ̂− − 2

g− =
2λ̂−

λ̂+ + λ̂− + 2

. (3.11)
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This is in contrast to L2 in (3.5) where the conformal gauge in the zweibein ea
m is allowed

for both the kinetic term and the selfduality constraints. The solutions of the selfdual-

ity constraints and the section condition lead to the same physical degrees of freedom.

The second term should be imposed as the section condition which is the 2D-dimensional

covariant orthogonal condition,

(λ̂+
m∂mXM )(λ̂−n∂nX

N )ηMN = 0 . (3.12)

A solution of the section condition is given in (2.17).

4 Non-abelian space currents

4.1 Algebra and currents

A nondegenerate graded Lie algebra generated by GI has the nondegenerate group metric

ηIJ and the totally graded antisymmetric structure constant fIJK

[GI , GJ} = ifIJ
KGK , tr(GIGJ) = ηIJ =

1

2
η(IJ ] , fIJK ≡ fIJ

LηLK =
1

3!
f[IJK) (4.1)

with the graded bracket [A,B} = AB − (−)ABBA and the graded symmetrized and an-

tisymmetrized indices (A,B] = AB + (−)ABBA and [A,B) = AB − (−)ABBA. A group

element g(Z) with coordinates ZI gives two kinds of currents and derivatives: the left-

invariant current JI , the particle covariant derivative ∇I , the right-invariant current J̃I

and the particle symmetry generator ∇̃I are given by

Left-invariants : g−1dg = iJIGI = idZMRM
IGI , ∇I = (R−1)I

M 1
i

∂
∂ZM

Right-invariants : dgg−1 = iJ̃IGI = idZMLM
IGI , ∇̃I = (L−1)I

M 1
i

∂
∂ZM

(4.2)

They satisfy the following Maurer-Cartan equations and the algebras

Left-invariants : dJI = 1
2J

J ∧ JKfKJ
I , [∇I ,∇J} = −ifIJ

K∇K

Right-invariants : dJ̃I = −1
2 J̃

J ∧ J̃KfKJ
I , [∇̃I , ∇̃J} = ifIJ

K∇̃K

Mixed [∇I , ∇̃J} = 0

(4.3)

The left- and the right-invariant currents are related by the orthogonal matrix MI
J as [9]

J̃I = JJ(M−1)J
I , ∇̃I = MI

J∇J , MI
J = (L−1)I

MRM
J , ηIJ = MI

KMJ
LηKL . (4.4)

The affine extension of the algebras (4.3) is given by generalization ∇I → ⊲I(σ) and

∇̃I → ⊲̃I(σ) . The worldsheet indices of the currents are denoted as m = (τ, σ) = (0, 1)

for currents Jm
I and J̃m

I with dZM = dσm∂mZM . The affine covariant derivative and the

symmetry generator are given by

Covariant derivative
(Selfdual current)

: ⊲I = ∇I + JJ
1 NI

KηKJ = ∇I + JJ
1 (BJI + ηJI)

Symmetry generator : ⊲̃I = ∇̃I − J̃J
1 MJ

LMI
KNLK = MI

J
⊲̂J

Anti-selfdual current ⊲̂J ≡ ∇J + JK
1 (BKJ − ηKJ)

(4.5)
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We consider cases where BIJ is constant and determined by the dilatation operator as [9]

BIJ =
1

2
N[I|

KηK|J) =
1

2
(nJ − nI)ηIJ (4.6)

where the dilatation operator N̂ gives the canonical dimension of the generator GI with

the following normalization

[N̂ ,GI ] = iNI
JGJ = inIGI , (nI + nJ)ηIJ = 2ηIJ . (4.7)

They satisfy the following affine Lie algebra





[⊲I(1),⊲J(2)} = −ifIJ
K
⊲Kδ(2− 1)− 2iηIJ∂σδ(2− 1)

[⊲̃I(1), ⊲̃J(2)} = ifIJ
K
⊲̃Kδ(2− 1) + 2iηIJ∂σδ(2− 1)

[⊲I(1), ⊲̃J(2)} = 0

(4.8)

where the worldsheet σ coordinates σ1, σ2 are denoted as 1, 2 and ∂σδ(2−1) = ∂
∂σ2

δ(σ2−σ1).

In general the Hamiltonian is written as bilinears of the covariant derivatives ⊲I , while

the global symmetry charge is given by the integral of the symmetry generator ⊲̃I so that

the Hamiltonian is invariant under the global symmetry. The 2-dimensional operators ⊲I

and ⊲̂I , which is O(D,D) transformed ⊲̃I in (4.5), in manifestly T-duality formulation are

seldfual and anti-selfdual respectively. Some of the symmetry generators are set to be zero

as the dimensional reduction constraints.

4.2 Virasoro and selfduality constraints

We double the algebra (4.1) as the direct product of two copies of the algebra with the

opposite sign of the structure constant:

GI → GI = (GĪ , GI)

ZM → ZM = (ZM , ZM )

fIJ
K → fIJ

K = (fĪ J̄
K , fIJ

K = −fĪ J̄
K)

ηIJ → ηIJ = (ηĪ J̄ , ηIJ = −ηĪ J̄) , η̂IJ = (ηĪ J̄ , ηIJ = ηĪ J̄)

(4.9)

where two kinds of metrics are written in matrix notarion as

ηIJ =

(
ηĪ J̄ 0

0 −ηĪ J̄

)
, η̂IJ =

(
ηĪ J̄ 0

0 ηĪ J̄

)
. (4.10)
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The bilinears of currents (4.5) contracted with these metrics are the Virasoro generators





hσ = 1
4⊲Iη

IJ
⊲J = 1

4

(
(⊲Ī)

2 − (⊲I)
2
)

hτ = 1
4⊲I η̂

IJ
⊲J = 1

4

(
(⊲Ī)

2 + (⊲I)
2
)

h̃σ = 1
4⊲̃Iη

IJ
⊲̃J = 1

4

(
(⊲̃Ī)

2 − (⊲̃I)
2
)

= 1
4⊲̂Iη

IJ
⊲̂J = 1

4

(
(⊲̂Ī)

2 − (⊲̂I)
2
)

h̃τ = 1
4⊲̃I η̂

IJ
⊲̃J = 1

4

(
(⊲̃Ī)

2 + (⊲̃I)
2
)

(4.11)

where ⊲̃I = MI
J
⊲̂J in (4.5) is used in the fourth line. The Virasoro algebras are given by





[hσ(1), hσ(2)] = −i (hσ(1) + hσ(2)) ∂σδ(2− 1)

[hσ(1), hτ (2)] = −i (hτ (1) + hτ (2)) ∂σδ(2− 1)

[hτ (1), hτ (2)] = −i (hσ(1) + hσ(2)) ∂σδ(2− 1)

(4.12)





[h̃σ(1), h̃σ(2)] = i
(
h̃σ(1) + h̃σ(2)

)
∂σδ(2− 1)

[h̃σ(1), h̃τ (2)] = i
(
h̃τ (1) + h̃τ (2)

)
∂σδ(2− 1)

[h̃τ (1), h̃τ (2)] = i
(
h̃σ(1) + h̃σ(2)

)
∂σδ(2− 1)

(4.13)

{
[hm(1), h̃n(2)] = 0 , m, n = (τ, σ) (4.14)

Derivative operators act on fields Φ(Z) as ZM derivatives

[⊲I ,Φ] = [⊲̂I ,Φ] =
1

i
(R−1)I

M∂MΦ(Z) . (4.15)

The σ derivative is defined by the commutator with both selfdual and anti-selfdual Virasoro

operators, so that the σ derivative in canonical formalism coincides with the usual chain

rule derivative

∂σΦ(Z) = i[

∫
(hσ − h̃σ),Φ] =

1

2
(⊲I − ⊲̂I)η

IJ(R−1)I
M∂MΦ = ∂σZ

M∂MΦ (4.16)

Therefore we take a set of constraints for a string system in the doubled space; the Virasoro

constraints and the selfduality constraints as

Virasoro
constraints





Hσ = hσ − h̃σ = 0

Hτ = hτ + h̃τ = 0
,

Selfduality
constraints





h̃σ = 0

h̃τ = 0
(4.17)

Hσ and Hτ satisfy the same Virasoro algebra in (4.12).
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5 T-dual superstring Lagrangians

5.1 Superalgebras and currents

In the manifestly T-duality formulation a superstring in a flat space is governed by the

doubled nondegenerate superalgebra generated by GM. The doubled indices for the left

and right sectors are denoted by M = (M,M). The nondegenerate supergenerators are

denoted as GM = (dµ, PM , ωµ) = (dµ̄, PM , ωµ̄; dµ, PM , ωµ). The algebra is given by

Left : {dµ̄, dν̄} = 2PMγMµ̄ν̄ , [dµ̄, PM ] = 2(γMω)µ̄

Right : {dµ, dν} = −2PMγMµν , [dµ, PM ] = −2(γMω)µ

(5.1)

The nondegenerate metric ηMN and BMN are given as

ηMN =




ηMN 0

0 −ηMN


 , ηMN =

dµ̄

PM

ωµ̄




1

1

−1


 (5.2)

BMN =




BMN 0

0 −BMN


 , BMN =

dµ̄

PM

ωµ̄




1

2

0
1

2


 (5.3)

where blank spaces are zeros.

For a group element g the left-invariant and the right-invariant currents are denoted

by

1
i g

−1dg = JMGM = J µ̄dµ̄ + JMPM + Jµ̄ω
µ̄ + Jµdµ + JMPM + Jµω

µ

1
i dgg

−1 = J̃MGM = J̃ µ̄dµ̄ + J̃MPM + J̃µ̄ω
µ̄ + J̃µdµ + J̃MPM + J̃µω

µ
(5.4)

The Maurer-Cartan equations for the left/right one form currents are given as

Left-invariant currents

Left :





dJ µ̄ = 0

dJM = iJ µ̄ ∧ J ν̄γMν̄µ̄

dJµ̄ = −2iJ ν̄ ∧ JNγN ν̄µ̄

, Right :





dJµ = 0

dJM = −iJµ ∧ JνγMνµ̄

dJµ = 2iJν ∧ JNγNνµ

(5.5)

Right-invariant currents

Left :





dJ̃ µ̄ = 0

dJ̃M = −iJ̃ µ̄ ∧ J̃ ν̄γMν̄µ̄

dJ̃µ̄ = 2iJ̃ ν̄ ∧ J̃NγN ν̄µ̄

, Right :





dJ̃µ = 0

dJ̃M = iJ̃µ ∧ J̃νγMνµ̄

dJ̃µ = −2iJν ∧ J̃NγNνµ

(5.6)

A group element g(ZM) is parametrized with ZM = (θµ̄, XM , ϕµ̄; θµ, XX , ϕµ) by

g(ZM) = g(ZM)g(ZM)



g(ZM) = exp(iϕµ̄ω
µ̄)exp(iXMPM )exp(iθµ̄dµ̄)

g(ZM) = exp(iϕµω
µ)exp(iXMPM )exp(iθµdµ)

(5.7)
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The left/right-invariant currents are given as

Left-invariant currents

Left :





J µ̄ = dθµ̄

JM = dXM − iθγMdθ

Jµ̄ = dϕµ̄ − 2i(dXM − i
3θγ

Mdθ)(θγM )µ̄

Right :





Jµ = dθµ

JM = dXM + iθγMdθ

Jµ = dϕµ + 2i(dXM + i
3θγ

Mdθ)(θγM )µ

Right-invariant currents

Left :





J̃ µ̄ = dθµ̄

J̃M = dXM + i(θγMdθ)

J̃µ̄ = dϕµ̄ − 2i(dXM − i
3θγ

Mdθ)(θγM )µ̄

Right :





J̃µ = dθµ

J̃M = dXM + iθγMdθ

J̃µ = dϕµ + 2i(dXM + i
3θγ

Mdθ)(θγM )µ

(5.8)

The left/right-invariant derivatives are given as

Left-invariant currents

Left :





∇µ̄ = −i∂µ̄ + (θγM )µ̄∂M + i43(θγ
M )µ̄(θγM )ν̄∂

ν̄

∇M = −i∂M + 2(θγM )µ̄∂
ν̄

∇µ̄ = −i∂µ̄

(5.9)

Right :





∇µ = −i∂µ − (θγM )µ∂M + i43(θγ
M )µ(θγM )ν∂

ν

∇M = −i∂M − 2(θγM )ν∂
ν

∇µ = −i∂µ

(5.10)

Right-invariant currents

Left :





∇̃µ̄ = −i∂µ̄ − (θγM )µ̄∂M + 2XMγMµ̄ν̄∂
ν̄ − i23(θγ

M )µ̄(θγM )ν̄∂
ν̄

∇̃M = −i∂M

∇̃µ̄ = −i∂µ̄

(5.11)

Right :





∇̃µ = −i∂µ + (θγM )µ∂M − 2XMγMµν∂
ν − i23(θγ

M )µ(θγM )ν∂
ν

∇̃M = −i∂M

∇̃µ = −i∂µ

(5.12)

The covariant derivatives ⊲M and the anti-selfdual currents ⊲̂M which are proportional
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to the symmetry generators ⊲̃M = MMN
⊲̂N as in (4.3) and (4.4) are the followings:

Selfdual current, ⊲M = (Dµ, PM ,Ωµ)

Left :





Dµ̄ = ∇µ̄ − 1
2J1µ̄

PM = ∇M + J1M

Ωµ̄ = ∇µ̄ + 3
2J1

µ̄

, Right :





Dµ = ∇µ + 1
2J1µ

PM = ∇M − J1M

Ωµ = ∇µ − 3
2J1

µ

(5.13)

Anti-selfdual currents, ⊲̂M = (D̂µ, P̂M , Ω̂µ)

Left :





D̂µ̄ = ∇µ̄ + 3
2J1µ̄

P̂M = ∇M − J1M

Ω̂µ̄ = ∇µ̄ − 1
2J1

µ̄

, Right :





δ̂µ = ∇µ − 3
2J1µ

P̂M = ∇M + J1M

Ω̂µ = ∇µ + 1
2J1

µ

(5.14)

5.2 Superstring Lagrangians

We propose the superstring Lagrangian with manifestly T-duality in Hamilton form

L = ∂τZ
MPM −H

H = g− 1
4⊲MηMN

⊲N + g+
1
4⊲MηMN

⊲N

+(g+ + λ+)
1
4⊲̃MηMN

⊲̃N + (g− + λ−)14⊲̃MηMN
⊲̃N

+Λ̄Ω̃µ̄ + ΛΩ̃µ

(5.15)

where the set of first class constraints are the Virasoro constraints, the selfduality con-

straints and the dimensional reduction constraints of auxiliary fermions




Hτ = 1
4(⊲Mη̂MN

⊲N − ⊲̃Mη̂MN
⊲̃N ) = 0

= 1
4(⊲MηMN

⊲N +⊲MηMN
⊲N + ⊲̃MηMN

⊲̃N + ⊲̃MηMN
⊲̃N )

Hσ = 1
4(⊲M⊲N ηMN − ⊲̂MηMN

⊲̂N ) = 0

= 1
4(⊲MηMN

⊲N −⊲MηMN
⊲N − ⊲̂MηMN

⊲̂N + ⊲̂MηMN
⊲̂N )

χ̄ = ⊲̃MηMN
⊲̃N = 0

χ = ⊲̃MηMN
⊲̃N = 0

Ω̃µ̄ = Ω̂µ̄ = 0

Ω̃µ = Ω̂µ̄ = 0

(5.16)

In the last two lines Mµν = 0 = Mµ
N and Mµ

ν = δνµ of MMN = (L−1R)MN are used.

The Hamiltonian becomes

H = g−

(
1

4
PM

2+
1

2
Ωµ̄Dµ̄

)
+g+

(
1

4
PM

2+
1

2
ΩµDµ

)
+(g++λ+)

1

4
P̂M

2+(g−+λ−)
1

4
P̂M

2

+Λ̄Ω̃µ̄+ΛΩ̃µ (5.17)
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The Legendre tranfsormation brings to the following Lagrangian

L1 = L1:kin + L1:WZ



L1:kin = 1
ē (ē+

mJM
m )(ē−nJN

n )ηMN + 1
e (e+

mJm
M )(e−

nJn
N )ηMN

L1:WZ = k
2 (J[0

µ̄J1]µ̄ − J[0
µJ1]µ)

= k
2

[
1
ē (ē[+|mJm

µ̄)(ē|−]
nJnµ̄)− 1

e (e[+|
mJm

µ)(e|−]
nJnµ)

]
(5.18)

This is one of the main results, the superstring Lagrangian with manifest T-duality with

double zweibeins where ēa
m and ea

m are zweibeins in (3.4). The worldsheet contraction

ǫab = 1
eea

meb
nǫmn = 1

ē ēa
mēb

nǫmn = 1
eea

meb
nǫmn with ǫ01 = −ǫ10 = 1 is used. The

Hamiltonian (5.17) gives k = 1, and we generalize the constant k = ±1 as usual.

Doubling zweibein makes computation of the κ-symmetry transformation easier, since

each left and right sector Lagrangians are κ-symmetry invariant separately. The κ-

symmetry transformation δκg is denoted by ∆M and the vector components ∆M vanish

as

g−1δκg = i∆MGM , ∆M = (∆M , ∆M ) = 0 . (5.19)

Since the left and right sectors are completely independent, we just use ea
m as the zweibeins

instead of ēa
m and ea

m to perform the κ-invariance computation only in this paragraph.

The κ-symmetry transformation of zwiebein em
a is denoted as

δκ

(
1√
e
ea

m

) √
eem

b = ∆a
b (5.20)

which is traceless, ∆a
a = 0. The worldsheet currents with the zwiebein is denoted as

Ja
M = 1√

e
ea

mJm
M. Under the κ-symmetry transformation the currents are transformed

as

δκJm
M = ∂m∆M + Jm

L∆N fNLM , δκJa
M = ∆a

bJb
M + ∂a∆

M + Ja
L∆N fNLM (5.21)

with ∂a = 1√
e
ea

m∂m. It is convenient to write down the κ-symmetry transformation of the

left and right currents

Left :





δκJa
µ̄ = ∆a

bJb
µ̄ + ∂a∆

µ̄

δκJa
M = ∆a

bJb
M + 2i∆µ̄Ja

ν̄γMµ̄ν̄

δκJaµ̄ = ∆a
bJbµ̄ + ∂a∆µ̄ − 2i∆ν̄Ja

MγMµ̄ν̄

(5.22)

Right :





δκJa
µ = ∆a

bJb
µ + ∂a∆

µ

δκJa
M = ∆a

bJb
M − 2i∆µJa

νγMµν

δκJaµ̄ = ∆a
bJbµ + ∂a∆µ + 2i∆νJa

MγMµν

(5.23)

Under the κ-symmetry transformation the left sector Lagrangian, with J̄ and ∆̄ cor-

responding to ēa
m, becomes

δκL|Left = ∆̄++(J̄
M
− )2 + ∆̄−−(J̄M

+ )2 + 2i∆̄µ̄γMµ̄ν̄

(
(1 + k)J̄ ν̄

+J̄
M
− + (1− k)J̄ ν̄

−J̄
M
+

)
(5.24)
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up to total derivative terms. The Maurer-Cartan equation in (5.5) was used. Let us set

the κ-symmetry parameter for the left sector κ̄ as

∆̄µ̄ =
1

2
(1 + k)J̄M

− γM
µ̄ν̄ κ̄+;ν̄ +

1

2
(1− k)J̄M

+ γM
µ̄ν̄ κ̄−;ν̄ (5.25)

Then it becomes

δκL|Left =
(
∆̄++ + 2i(1 + k)κ̄+;µ̄J̄+

µ̄
)
(J̄M

− )2 +
(
∆̄−− + 2i(1− k)κ̄−;µ̄J̄−µ̄

)
(J̄M

+ )2 . (5.26)

Therefore the κ-symmetry invariance requires the transformation of the zweibein as

0 = ∆̄++ + 2i(1 + k)κ̄+;µ̄J̄+
µ̄ = ∆̄−− + 2i(1− k)κ̄−;µ̄J̄−µ̄ . (5.27)

Analogously the κ-symmetry transformations for the right sector with J , ∆ and κ are

given as

0 = ∆++ − 2i(1− k)κ+;µJ+
µ = ∆−− − 2i(1 + k)κ−;µJ−

µ . (5.28)

The Lagrangian L1 is rewritten in a 2D-dimensional covariant way as L2 in (3.5). Then

the manifestly T-duality covariant superstring Lagrangian is given by

L2 = L2:kin + L2:SD + L2:WZ



L2:kin = 1
e (e+

mJM
m )(e−nJN

n )η̂MN

L2:SD = (1ē − 1
e )(e−

nJM
n )2 + (1e − 1

e )(e+
nJ

M
n )2

L2:WZ = k
2

(
J[0

µ̄J1]µ̄)− J[0
µJ1]µ

)
(5.29)

The kinetic term has both the 2D-target space covariance and the worldsheet covariance.

Next let us examine how the Lagrangian reduces into the Green-Schwarz superstring

Lagrangian. The left and right Lorentz symmetries can be fixed in such a way that two

gamma matrices are identified to the D-dimensional gamma matrix as γMµ̄ν̄ = −γMµν =

γMµν . The left and right spinors θµ̄ and θµ can be chosen to be the opposite chirality

for the type IIA and the same chirality for the type IIB theories. In terms of xM, yM

coordinates in (2.17), the currents are written as





Jm
M = Jm

M + Jm
M = ∂mxM − i(θµ̄γMµν∂mθν̄ + θµγMµν∂mθν)

JmM = Jm
M − Jm

M = ∂myM − i(θµ̄γMµν∂mθν̄ − θµγMµν∂mθν)

Jm
µ̄ = ∂mθµ̄

Jm
µ = ∂mθµ

Jm;µ̄ = ∂mϕµ̄ − i
(
2∂m(x+ y)M − 2i

3 θ
ν̄γMν̄ρ̄∂mθρ̄

)
(θγM)µ̄

Jm;µ = ∂mϕµ − i
(
2∂m(x− y)M − 2i

3 θ
νγMνρ∂mθρ

)
(θγM)µ

(5.30)
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Then the Lagrangian L2 is rewritten as

L2 = L2:kin + L2:SD + L2:WZ



L2:kin = 1
2e

{
(e+

mJm
M)(e−nJn

N)ηMN + (e+
mJmM)(e−nJnN)η

MN
}

L2:SD = λ
4e

{
(e+

m + e−m)Jm
M − (e+

m − e−m)JmM

}

×
{
−(e+

m − e−m)Jm
M + (e+

m + e−m)JmM

}

L2:WZ = k
2

(
J[0

µ̄J1]µ̄)− J[0
µJ1]µ

)

(5.31)

with λ = λ+

e+λ+
. The selfduality constraint L2;SD in the conformal gauge g± = 1 is given by

L2:SD =
λ

2
(J0

M − J1M)(J1
M − J0M) (5.32)

where the selfduality condition for a superstring is

Jm
N η̂NM = ǫmnJn

NηNM . (5.33)

The zweibein squared is the worldsheet metric gmn = ea
meb

nρab with −ρ00 = 1 = ρ11 and

g = det gmn. Then kinetic term L2:kin is given as

L2:kin = −1

2

√
g
{
gmnJm

MJn
NηMN + gmnJmMJnNη

MN } . (5.34)

The Wess-Zumino term is given as

L2:WZ =
k

2
ǫmn

{
(∂mθµ̄∂nϕµ̄ − ∂mθµ∂nϕµ) (5.35)

−∂mxM i(θµ̄∂nθ
ν̄ − θµ∂nθ

ν)γMµν − ∂myM i(θµ̄∂nθ
ν̄ + θµ∂nθ

ν)γMµν

}

The Green-Schwarz superstring Lagrangian is obtained from (5.31) by the gauge λ = 0

and a section with JmM = 0;

L2 = L2:kin + L2:WZ



L2:kin = −1
2

√
ggmnJm

MJn
NηMN

L2:WZ = k
2 ǫ

mn
{
(∂mθµ̄∂nϕµ̄ − ∂mθµ∂nϕµ)

−i∂mxM(θµ̄∂nθ
ν̄ − θµ∂nθ

ν)γMµν + (θµ̄γMµν∂mθν̄)(θργMρλ∂nθ
λ)
}

(5.36)

The auxiliary fermions ϕµ’s appear only in the surface terms which are absent in the

usual Green-Schwarz superstring action, so ϕµ’s are gauged away. It is interesting that

the bosonic Wess-Zumino term ǫmnJm
MJnM does not show up contrasting to the chiral

approach [9].
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6 Conclusions

In this paper we have presented Lagrangians with manifest T-duality for the type II super-

string. The chiral scalar problem is solved by adding the anti-selfdual currents. While only

the selfdual currents are physical, the unphysical anti-selfdual currents are also included for

the worldsheet covariance of both the Weyl and Lorentz symmetries. The selfduality con-

straints are imposed to suppress the degrees of freedom of the anti-selfdual currents whose

Lagrange multipliers become the worldsheet zweibeins. Then the Lagrangian has double

zweibeins and so double worldsheets. Double zweibeins in the superstring Lagraigian make

the type II κ-symmetry splitting into two sets of the type I κ-symmetries leading to simpler

computation of κ-symmetry. Resulted superstring Lagrangian with manifest T-duality in-

cluding double zweibeins is (5.18), the one with single zweibein is (5.29) and the one in

terms of the usual xM, yM coordinates with single zweibein is (5.31). The superstring

Lagrangians are simple structure; all terms are given in bilinears of symmetry invariant

currents manifesting the global supersymmetry, the T-duality symmetry, coordinate invari-

ance and the κ-symmetry. We give the gauge condition and the section condition which

lead to the Green-Schwarz superstring Lagrangian.

Including the Ramond-Ramond field based on the central extended superalgebra [21]

and constructing D-brane Lagrangians are future problems. Superstrings and D-branes

with background fields will be also interesting.
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A Indices

Indices are summarized.

Integer : Nonabelian space · · · I, J, · · ·
Caligraphy : Superspace · · ·M,N , · · ·

Middle : doubled vector · · ·M,N, · · ·
greek : doubled spinors · · ·µ, ν, · · ·

UPPER CASE : spacetime · · ·M,N, · · ·
lower case : worldvolume · · ·m,n, · · ·

B̄arred : left-handed · · · M,N, · · ·
Underlined : right-handed · · · M,N, · · ·

Roman : D-dimensional vector · · ·M,N, · · ·
Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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