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CrossMark
Abstract
This review describes a link between Lax operators, embedded surfaces and
thermodynamic Bethe ansatz equations for integrable quantum field theories.
This surprising connection between classical and quantum models is undoubt-
edly one of the most striking discoveries that emerged from the off-critical
generalisation of the ODE/IM correspondence, which initially involved only
conformal invariant quantum field theories. We will mainly focus of the KdV
and sinh-Gordon models. However, various aspects of other interesting systems,
such as affine Toda field theories and non-linear sigma models, will be men-
tioned. We also discuss the implications of these ideas in the AdS/CFT context,
involving minimal surfaces and Wilson loops. This work is a follow-up of the
ODE/IM review published more than ten years ago by J. Phys. A: Math. Theor.,
before the discovery of its off-critical generalisation and the corresponding
geometrical interpretation.

Keywords: AdS/CFT, ODE/IM correspondence, minimal surfaces, integrable
systems
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1. Introduction

There is a deep connection between integrable equations in two dimensions and the embedding
of surfaces in higher-dimensional manifolds. The simplest instance of this relation appeared in
the works of 19th-century geometers [1, 2] on the description of pseudo-spherical and mini-
mal surfaces sitting in 3-dimensional Euclidean space R3. The structural equations describing
their embedding, the Gauss—Mainardi—Codazzi (GMC) system, are today known as the sine-
Gordon and Liouville equations, respectively. More recently, in the works of Lund, Regge,
Pohlmeyer and Getmanov [3-5], a general correspondence has been suggested and subse-
quently formalised by Sym [6—10]. These results showed that any integrable field theory, with
associated linear problem based on a semi-simple Lie algebra g, could be put in the form of a
GMC system for a surface embedded in a dim(g)-dimensional space.

The connection between embedded surfaces and integrable models has proven especially
fruitful in the context of the AdS/CFT correspondence. In this framework, the semiclassical
limit of a string worldsheet theory in an AdS,y; space can be exploited to compute certain
observables of conformal field theory (CFT) living on the boundary of that space. The canonical
example of this correspondence deals with AdSs x Ss. In this case, semiclassical worldsheet
solutions are used to describe, in the dual CFT, states with large quantum numbers [11], expec-
tation values of Wilson loop operators [12, 13] and universal properties of maximally helicity
violating (MHV) gluon scattering amplitudes [14, 15]. The connection with integrable models
allows these quantities to be related to certain known universal structures of integrability, such
as the Y-system or the corresponding set of thermodynamic Bethe ansatz (TBA) equations
[16, 17].

Generally speaking, the ODE/IM correspondence, discovered in [18], is instead a link
between quantum Integrable Models, studied within the formalism of [19, 20] where analytic
properties and functional relations are the main ingredients, and the theory of ordinary differen-
tial equations in the complex domain [21, 22]. The relationship is far more general than initially
thought, with concrete ramifications in string theory, AdS/CFT, and aspects of the recently-
discovered correspondences between supersymmetric gauge theories and integrable models
[23-31]. The ODE/IM correspondence relies on an exact equivalence between spectral deter-
minants associated with certain generalised Sturm-Liouville problems, and the Baxter T and
Q functions emerging within the Bethe ansatz framework. Currently, the link mainly involves
the finite volume/temperature Bethe ansatz equations associated with 2D integrable quantum
field theories. However, there are mild hopes that it can be generalised to accommodate also
integrable lattice models [32].

The primary purpose of this review is to describe the deep connection existing between
the ODE/IM correspondence and the theory of embedded surfaces in higher-dimensional
manifolds.

The rest of the article is organised as follows. A brief review on the KdV theory and associ-
ated integrals of motion, at both the classical and quantum level, is contained in sections 2.1 and
2.2. Section 3 contains a preliminary discussion of the ODE/IM correspondence for the quan-
tum KdV (mKdV/sinh-Gordon) hierarchy, the relevant Schrodinger equation is introduced,
and some general facts about the correspondence are described. Section 3.1 is devoted to a
schematic derivation of the Baxter TQ relation from the Schrodinger equation (more details
can be found in the original works [18, 33, 34] and in the review [35]). Section 3.2 describes
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how the local integrals of motion emerge from the semiclassical quantisation. A short dis-
cussion of generalisations to excited states and to models related to higher-rank algebras is
contained in section 3.3.

The problem associated with the off-critical variant of the ODE/IM correspondence, the
connection with the sinh-Gordon model (shG) and surfaces embedded in AdS spaces is dis-
cussed in section 4. In particular, section 4.1 contains a general introduction to embedded
surfaces in AdS,+;, while in section 4.2 the specific case of minimal surfaces in AdS; is
discussed in more detail, together with their relation with Lax equations and the modified
sinh-Gordon model (mshG). In section 4.3, the generalised potential appearing in the modified
sinh-Gordon model is interpreted within a Wilson loop type setup while in sections 4.4—4.6
the associated linear problem is linked, also with the help of a WKB analysis, to the T- and
Y-systems. Starting from the Y-system and the WKB asymptotics, the corresponding Ther-
modynamic Bethe Ansatz equations are derived in section 4.7 and the interpretation of the
surface area in terms of the free energy is given in section 4.8. Finally, section 5 contains our
conclusions.

2. Classical and quantum KdV, the light-cone shG model, and local integrals
of motion

The starting point of the work [19] by Bazhanov, Lukyanov and Zamolodchikov (BLZ) is the
Korteweg—de Vries equation’

w(x, ) + 12 u . (x, Hu(x, t) + 2t o (x, 1) = 0, )

on a segment of length L = 27 with periodic boundary conditions u(x + 2, t) = u(x, t). In
the following we will often omit the time dependence of u, since we will mainly work within
the Hamiltonian formalism. It is well-known (see, for example, [36]) that from the point of
view of integrability, the KdV equation is also deeply connected with the light-cone classical
sinh-Gordon model

¢ x(x, 1) + sinh (¢(x, 1)) = 0, 3)

since they formally share the same set of local integrals of motion. Note that we have used
different font styles for the KdV time parameter t in equation (2) and the sinh-Gordon time ¢ in
equation (3). As will become apparent from later considerations, this is to underline the fact that
the corresponding Hamiltonians, when considered as part of the same hierarchy of conserved
charges for one of the two models, evolve field configurations along different ‘generalised time
directions’.

2.1. Lax pair and classical conserved charges

The purpose of this section is to derive the expression of the classical integrals of motion for
the KdV model through the introduction of a pair of Lax operators which depend on a spectral
parameter. We will essentially sketch the derivation presented in the book [37], to which the
interested reader is addressed for further details.

5 In the following, we will denote partial derivatives with subscripts after a comma:

o 0

Fog. X1,X0,...) = 5—5—
g (X1, %2, 000 Ox, 0ms

P, x,00) = 05 Oy o F (X1, X2,.00). (1
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First of all, notice that the KdV equation (2) can be written as a zero curvature condition
(ZCO)

At,x - Ax,t - [Ax»At] — 0» (4)

for the sl (2) connection® A = A, dx + A dt, with components

(0 1 B —u 4N +2u
Ar = <)\2—u O)’ Av=—2 (4)\42)\21414,”2142 Uy >’
(5)

where A is the spectral parameter. In turn, equation (4) coincides with the compatibility
condition of the following pair of linear systems of (first-order) differential equations:

v LG
(10, — Ax) <X> =0, (10 —Ay <X> =0. (6)

The first equation in (6) gives x = WV, together with the Schrédinger-type equation

L-X)T=0, L=0+u (7)
The second relation in (6) leads instead to the time-evolution equation

O —MT =0, M= -2(0+3ud, +3u,). (8)
The compatibility between equations (7) and (8) gives

L—[ML]=0, )

a constraint which is also equivalent to the original KdV equation (2).

A direct consequence of the zero-curvature condition (4), which involves the arbitrary
parameter ), is the existence of an infinite tower of independent conserved charges. The
generator of these quantities is the trace

T = (M), (10)
of the so-called monodromy matrix

2
0

M) = &p (/ dx A.(x, t, >\)> = lim (14 8 Ay (o £ 1) - (14 Ox A, £ V).

(1)
In (11), the symbol gp denotes the path-ordered exponential and x; =0 < x; < ...

< x, =2m.
Since A, and A belong to the s/(2) algebra we can introduce the matrices

10 0 1 00
w0 5) =(00) == 0) @

6 That is, an sl (2)-valued one-form.
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with [HLE;] = +2E;, [E;,E_]=H and, expand the connection A, over the basis
{H,E_,E}as

A, =AH+A_E_+ALE,. (13)
Notice that 7 (), defined in (10), is invariant under (periodic) gauge transformations of A,
A=A =g 'Avg—g g (14)

Therefore, we can gauge transform (13) such that SA_ = 8A4 = 0. We first perform the gauge
transformation g; = exp(f_E_), which leads to

SA = A +ALfOH — (fu +2A0 f- +AL 2 —A)E_+ALE.. (15)

Setting
1 1
fr=—w-A, A=A,— -0, InAL, (16)
AL 2

the vanishing of the coefficient A_ of E_ in (15) becomes equivalent to the solution of the
following Riccati equation:

v+ P =V, V=A,+ A+ A A, 17

that, with the standard replacement v(x) = 0, In y(x), can be recast into the Schrodinger-type
form

(97 = V(x, V) y(x) = 0. (18)

Since the potential in (18) is periodic, V(x 4 2w, \) = V(x, ), we can introduce a pair of
independent Bloch solutions {y;,y_} such that the corresponding Wronskian W[y;,y_]1=1
and

y(x 4 2m, A) = exp(£P(N)y+(x, V), (19)
where P is the quasi-momentum:

y+Q2m, A))
y+(0,0)

However, in (15), the coefficient A is still unfixed and A, may still depend on the coordinate
x. Following [37], we can perform two further independent gauge transformations, g, and g3,

2
PA) =1In ( = / dxv(x, \). (20)
0

without spoiling the A_ = 0 constraint. In fact, the combined transformation g = g;g>g3 with
g2 =exp(f+ E4), g3 =exp(hH), (2D
and
1 ’ X
fo=Aryiye. h= (A exp(-2P005)). (22)
leads to
1
2
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giving
T\ = tr(M(N)) = 2 cosh (P(N)). (24)
For the KdV model under consideration, we have (cf (5), (12) and (13))
Apy=0, A_=XN—u, A, =1, (25)
while the Riccati and the Schrédinger equations are
v+ =X —u, (L-X\)y=0. (26)

To find the local conserved charges, we expand v as series in the spectral parameter around
N = oo

i 1%
= A —1)y2 27
v=X\+ ;( ' @7
and therefore
21 00 (_1)n 27
P\ = / dxv(x) =2\ + > = / dx vu(x). (28)
0 —0 0

Finally, plugging (28) into (26) we find the recursion relation

1 - 1
Vn+l = 5 ]/’x + Z I/I,Vn,[, N vy = 0, v = EM. (29)
p=0
The first few coefficients are

1 1 B 1( 2, ) 1 n 1

vy = 2’/[, V) = 4u,m V3 = 8 u U xx)s V4 = 2V3,x Suu,m
1 1 2 1 J B

i A U x s XX S u, 30

Vs = ¥aat g )T qaute t qou (30)

which correspond, when normalised as in [19] and up to total derivatives, to the following
integrals of motion:

27 27
dx \' dx
cl KdV cl Kd
1(1 ) _ I{ 1 _ / u(_x): I_g, ) Ig 1 _ / MZ(X),

2m
dx 1
b _ JIKav] _ / dx (5 o 1, ' 31
s s | on u’(x) zu,x(X) (€2))

The relation between the KdV and the modified KAV (mKdV) equations emerges through
the Miura transformation

u(x, t) = —v*(x,t) — v(x, t), (32)
which implies

e+ 2Uex + 1201, = =20+ 9,) (Ve + 2000 — 1207 v,) =0. (33)
Hence a solution v(x, t) of the mKdV equation

6
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V(6 1) + 20 0 (X, ©) — 1202 (0, D) v (x, 1) = 0, (34)

can be mapped into a KdV solution through the Miura transformation (32). A straightforward
consequence of this fact is that the quantities IV coincide with the integrals of motion /ImKdV1
of the mKdV theory

KAV = IRV 2 (35)

that is

2m dx 21 dx
I[mKdV] _ / 2 , I[mKdV] _ _/ 4 . 2 o
1 . on vi(x), L | an (v () + (v (0))?)
(36)

Furthermore, the sinh-Gordon model (3) also possesses the same set of local charges, provided
the formal identification v(x, t) = ¢ ,(x, t)/2 is made at fixed times t and r:

1
[GI[ ] — [mKaVI |~ | 37
U] = KN o = 2o, (37)
In fact, the sinh-Gordon Lagrangian in light-cone coordinates is
(shG) _ 1
L1561 — 5 (¢.4(x, 1) @4 (x, t) — cosh(e(x, £) + 1), (38)

and the conjugated momentum and Hamiltonian are

2r

w(x, t) = %gb,x(x, t), H'ShGI = / % (cosh ¢(x,t) —1). (39)
0

Then {¢(x, 1), 7(x’, 1)} = §(x — x’), and the sinh-Gordon equations of motion can be written
as

Dt ) = 2v4(x, £, £) = 2 {v(x, t, t), HINCNY, (40)

Notice that in (40), ¢ denotes the sinh-Gordon time, which differs from the KdV (mKdV) time t
appearing in (2) and (34).”

In addition, imposing periodic boundary conditions ¢(x + 27, ) = ¢(x,t) and using the
equation of motion, it is not difficult to prove that

1
{I;fﬁrl {” = EQX] vH[ShG]} =0, (VneZs). 41)

For example:

21 21
{1@ {v = %qﬁ} ,Hlsh(“} = / j—;gs,x Gt = — / j—;ax cosh(¢(x, ) = 0. (42)
0 0

7 At least formally, relation (40) can be regarded as a particular instance of the KdV/mKdV hierarchy of equations
[38]:

KdV
Utypy ({tl}) = {Igcn—l J’ ’U({t,})} )
where {t;}, with i € 27 + 1, is the set of generalised time directions with the identifications t; = x, t; = t and also

t =t ie MY = HIG] (see, for example [39, 40)).
7
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Therefore, and as mentioned in the previous section, the KdV conserved charges {I'} are
also integrals of motion for the sinh-Gordon model (38). We will see later that the off-critical
field theory generalisation of the ODE/IM correspondence described in this review is naturally
based on the sinh-Gordon perspective of this connection.

2.2. Quantisation of the local conserved charges

It is well known (see [37]) that the KAV model admits two equivalent Hamiltonian structures.
The first Hamiltonian is

2
d
H =1 — / ), 43)
0 27T
with Poisson bracket

1
ﬁ{M(X), u()} = 2@u(x) + u()0(x — ) + 6 xxx(x — ¥). (44)

The second possibility is instead

2T d 1
H =1 = /0 ﬁ (w’(x)— E(u,x(xnz), (45)

with Poisson bracket

1
Z_{M(X)’ u()} =20.(x —y). (46)
T
Both options lead to the KdV equation:
Ow={H,u} = {H ,u} = —12uu, — 2u . (47)

Furthermore, through the change of variables u(x) = f(gb,x(x))z — ¢.x(x), the first Poisson
bracket (44) reduces to

1 1
2—{¢(x), P} = Fex =), (48)
T

with e(x) = nfor2mn < x < 2m(n+ 1)andn € Z. Thisis the standard Poisson bracket involv-
ing a single bosonic field ¢(x, f) with periodic boundary conditions and conjugated momenta
w(x,1) as in (39).

The quantisation of (44) is then achieved by performing the following replacements [41]:

1 ic 6
%{, } — @[, 1, ulx)— —;T(x)- (49)
Expanding
_ i - inx
T() = 57 + n;w L_e"™, (50)

we see, from (44), that the operators L, satisfy the Virasoro algebra

[Lm Lm] - (l’l - m)Ln+m + %(”3 - n)(sn-l—m,()- (51)

8
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Alternatively, performing first a quantum Miura transformation

2

—BT) = (0 (1 = B + g (52)
and expanding the fundamental quantum field é(x) in plane-wave modes as
S0 = 1Q+1Px+ 3 At (53)
n
n#0

we obtain the Heisenberg algebra

[Q.P] = %52, [a,,8,] = g525n+,n,o. (54)

The relation between the central charge ¢ appearing in the Virasoro algebra (51) and the
parameter /3 in equation (54) is

1—c¢ 25 —¢
B\/24 \/ 2% (55

The highest weight (vacuum) vector |p) over the Heisenberg algebra is defined by

Plp) =plp), axlp) =0, (vn>0). (56)
In terms of the Virasoro representation, the states |p) are highest weights with conformal
dimensions
) -1
A== —_, 57
(3) + = o7
Lolp) = Alp), Lup) =0, (Vn>0). (58)

The quantum charges were first determined in [36] under the replacement of classical fields
with the corresponding operators (¢ — ¢), and by following the scheme

@ L, =1, (n=1,3);
®) L =143 (B*: 1P, (n=5,7,...);
(c) The quantum corrections : /¥ : do not contain any of the : IV : as a part (see [36] for more
details.);
(d) [L,0,] =0, Vn,me2Zs +1).
The first three non-vanishing local integrals of motion, written in terms of the generators of
the Virasoro algebra (52), are:

. c o , c+2 c(5¢+22)
h=Lo—p b= 2; Lol +L = 5 Lo+ g0
. [c+11 c 3 e
Is = Z Ly, Ly,Ly, —|—Z ( 7 n?—1- 4_1) L_,L, + EZ Li-2,Loy
ny+ny+n3=0 n=0 n=0
L4 @4DBeH20)  cBet 14)Tc+68)
g 576 0 290304

(59)
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In equation (59), the normal ordering : : means that the operators L, with larger n; are
placed to the right. The corresponding expectation values I* = (p|L,|p) on the vacuum states
are

vac __ _i vac __ 2_C+2 C(5C+22)

+4 (c+2)3c+20), cBc+ 14)(Tc+68)
I = A - TN A . (60
’ 8 576 200304 (60)

where ¢ and A are related to p and S through equations (55) and (57). An alternative, but more
sophisticated, method leading to the same result (59) is described in [19].

3. The ODE/IM correspondence for the quantum KdV-shG hierarchy

The simplest instance of the ODE/IM correspondence involves, on the ODE side, the second
order differential equation [18, 42]

(=02 + P(x)) x(x) =0 (61)

with
P(x) = PV, E, I, M) = (xZM + w — E) . (62)
X

The generalised potential P and wavefunction y depend, therefore, on three extra parameters:
the energy or spectral parameter E, the ‘angular-momentum’ /, and the exponent M. For sim-
plicity, throughout this review, M and [ will be kept real with M > 0. However, there are no
serious limitations forbidding the extension of both M and / to the complex domain. The range
—1 < M < 0is essentially equivalent, by a simple change of variables, to the M > 0 regime
[34,42].83 We will see that forM > —1 equation (61) is related, through the ODE/IM correspon-
dence, to the conformal field theory with central charge ¢ < 1 associated to the quantisation of
the KdV-shG theory®.

The ODE/IM correspondence is based on the observation that the CFT version of Baxter’s
TQ equation [44] for the six-vertex model, and the quantum Wronskians introduced in the
works by BLZ [19], exactly match the Stokes relations and Wronskians between independent
solutions of (61). BLZ introduced a continuum analogue of the lattice transfer matrix T for the
quantum KdV equation, an operator-valued function T(A, p), together with the Baxter Q_(\, p)
operators with Q(A\, p) = Q. (A, p) = Q_(\, —p), where p is the quasi-momentum [19]. Both
the Q and T operators are entire in the spectral parameter A with

[TA, p), Qe (A, p)] = 0. (63)

All the descendent CFT states in the Verma module associated to the highest-weight vector
|p) are characterised by the real parameter p. Since T and Q.. commute, we can work directly
with their eigenvalues

TOup) = (PITAPp).  0:(\p) = PAPPQ .\ p)lp) (64)

81n fact, with the identification ﬁ’z =M+ 1, the equivalence (—1 <M < 0) <> (M > 0) coincides with the
(3* — 372, duality in the integrals of motion in the quantum KdV model (see, for example, [20]).
° The regime M < —1 is also interesting, since it is related to the Liouville field theory [43].

10
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which satisfy the TQ relation [20]

T\, )0\, p) = 720 (¢ '\, p) + e Q. (g\, p) (65)

with ¢ = exp(ir3?).

It turns out that equation (65) exactly matches a Stokes relation, i.e. a connection formula,
for particular solutions of the ODE (61). The precise correspondence between the parameters
in (65) and those in (61) is:

20+ 1
AM + 4

ﬂfZ:M+1’ pP=

M -2
A=QM +2)y"M/M+hp( = ) g
2M +2) M+l

(66)

Supplemented with the analytic requirement that both 7 and Q are entire in \ (65), leads to
the Bethe Ansatz equations. At a zero A = \; of Q(\, p) = O+ (A, p), the RHS of (65) vanishes
since T'(\;, p) is finite, and hence

,1>\' .
Og i»P) — _ol4mp (67)
(g A, p)
As a result, the link between (61) and the Baxter relation (65) for the quantum KdV model
is more than formal: the resulting T and Q functions emerging from these two—apparently
disconnected—setups are exactly the same.

3.1. Derivation of Baxter’s TQ relation from the ODE

Consider the ODE (61), where we will henceforth allow x to be complex, living on a suitable
cover C of the punctured complex plane C* = C\{0} so as to render the equation and its
solutions single-valued. A straightforward WKB analysis shows that for large x close to the
positive real axis a generic solution has a growing leading asymptotic of the form

x(x) ~ ey P(x)"* exp ( / ' dx’' \/P(x’)) . (Re[x] = 400). (68)

Even at fixed normalisation c, this asymptotic does not uniquely characterise the solution,
since an exponentially decreasing contribution can always be added to x(x) without spoil-
ing the large-x behaviour (68). The exponentially small term can explicitly emerge from the
asymptotics only if the nontrivial solution to (61) is carefully chosen such that the coefficient
of the exponentially growing term vanishes. In this special situation

x(x) ~ c_ P(x)"* exp (— / ' dx’' \/P(x’)) . (Re[x] = 400). (69)

Apart for the arbitrariness of the overall normalisation factor c_, the asymptotic (69) now
uniquely specifies the solution of (61). This was formalised by Sibuya and collaborators in the
following statement, which holds not only on the real axis but also in an M-dependent wedge
of the complex plane: the ODE (61) has a basic solution y(x, E, /) with the following properties,
which fix it uniquely:

(a) y(x,E,I) is an entire function of E, and a holomorphic function of x € C, where C is a
suitable cover of the punctured complex plane C* = C\{0};

1
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(b) the asympotic behaviour of y(x, E, I) for |x| — oo with |arg(x)| < 37/(2M + 2) is

1 XM+ | Y xM+1
~ — [ ~N ————— Y2 -
MRV ex"( M+1>’ Yo T exP( M+1)’
(70)

S

though there are small modifications in the asymptotics (70) for M < 1 (see, for example,
[34]).

To proceed with our analysis, it is necessary to continue x even further into the complex
plane, beyond the wedge where Sibuya’s initial result applies. We define general rays in the
complex plane by setting x = pe™ with g and 9 real. Substituting into the WKB formulas (68)
and (69), we detect two possible asymptotic behaviours

1 .
Yo~ P V% exp (iM—+ 1e"’<‘+M>gl+M) . (71)

For most values of ¢, one of these solutions will be exponentially growing, or dominant, and
the other exponentially decaying, or subdominant. However, for

Re [ ] =0 (72)
both solutions oscillate, and neither dominates the other. The values

T 37 S

9=+ + +
2M +2° T 2M 427 T 2M 420

(73)

where this happens, and the two solutions (71) exchange roles, are called anti-Stokes lines'.
The Stokes lines are instead the lines along which x either grows or shrinks the fastest, and
in the current case they lie right in the middle, between adjacent anti-Stokes lines, and are
characterised by

Im [""H] = 0. (74)

The wedges between adjacent anti-Stokes lines are called Stokes sectors, and we will label
them as

Sk{xE(C:

27k T
_ . 7
arg(x) 2M+2‘<2M+2} 5

In this notation the region of validity of the asymptotic (70) is the union of wedges
Swks = S_1USUS) (76)

where S, is the closure of Sp.

Finding the large |x| behaviour of the particular solution y(x, E, [) outside the region (76) is
anon-trivial task: the continuation of a limit is not in general the same as the limit of a continu-
ation, and so (70) no longer holds once Syg is left. This issue is related to the so-called Stokes
phenomenon, wherein the quantities of principal interest are the Stokes multipliers, encoding
the switching-on of small (subdominant) exponential terms as Stokes lines are crossed [45]
(figure 1).

10We are following here the convention used, for example, in [45]. Unfortunately, the lines characterised by the
condition (72) are sometimes called instead Stokes lines.
12
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Figure 1. Stokes, WKB sectors and convention for the branch cut when 2M ¢ Z.

Thus far we have discussed the behaviour of solutions to (61) when |x| is large. Consider

requirement

now the region x >~ 0. For M > —1, the origin corresponds to a regular singularity, and the
tion of x'*! and x~! as x — 0. This allows a special solution v(x, E, I) to be specified by the

associated indicial equation shows that a generic solution to (61) behaves as a linear combina-

YO, E D) ~ X O,

(77)
This boundary condition defines ¢ (x, E, [) uniquely provided Re[/] > —3/2. A second solution
can be obtained from ¢ (x, E, [) by noting that, since the differential equation (61) is invariant

under the analytic continuation/ — —1 — [, ¥ (x, E, —1 — [) is also a solution. Near the origin,
P, E,—1 —1) ~ x4+ O(x”“), therefore for generic values of the angular momentum / the
two solutions

¢+(x: E) = ’l/J(.X,E, l)» 1/1—(X»E) = w(x7 E7 —1- l):

(78)
are linearly independent, i.e. the Wronskian W[4, _] is non-vanishing. Some subtleties
arise at the isolated points

[+ 7= £+ WM+ Dmy), (my,my € L),

(79)
where {1, _} fails to be a basis of solutions [34]. For 2M € Z, this is just the standard

resonant phenomenon in the Frobenius method, which predicts that one of the two independent
solutions may acquire a logarithmic component, when the two roots of the indicial equation

13
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differ by an integer. For the remainder of this review we will steer clear of such points, but see
[34] for some further discussion of the issue.

A natural eigenproblem for a Schrodinger equation, the so-called radial or central problem,
is to look for values of E at which there exists a solution that vanishes as x — 400, and behaves
as x'*! at origin. For Re[/] > —1/2, this boundary condition is equivalent to demanding the
square integrability of the solution on the half line, and for Re[/] > 0 to the requirement that
the divergent x~/~! term is absent. For Re[/] < —1/2, the problem can be defined by analytic
continuation.

Addressing the reader to [34, 35] for more details, we proceed by adopting a trick due to
Sibuya [21]. Starting from the uniquely-defined solution y(x, E, [), subdominant in the Stokes
sector Sy, we generate a set of functions

Ve, E, 1) = w2y kx, WHE, 1), w=eB, (k€ 7), (80)

all of which solve (61). Notice that the asymptotic expansion

\/fo/z Mt
JE\ D) ~ £Vi , 81
y+1(x, E, D) [ NG exp (MJr 1) (81)

is valid in the Stokes sector Sy containing the real line. Hence, we can compute the Wronskians
W [y, y+1] using the expansions (70) and (81), finding that they are non-zero: W [y, y1+,] = £1.
As a consequence {y,y,;} are bases of the two-dimensional space of solutions to the ODE
(61). More generally, a similar consideration shows that W [yk, ka} = 1 and hence any pair
{k» Yk+1} constitutes a basis. In particular, y_; can be written as a linear combination of the
basis elements y = yp and y; asy_; = Cy + é‘yl, or equivalently

CE,D)y(x,E,l)=y_(x,E,I) — C(E, )y (x, E, D), (82)

where the connection coefficients C and C are the Stokes multipliers. For the right-hand side
of (82) to match the exponentially decreasing behaviour on the left, we must set C = —1
(cf equation (81)) and so

CE, Dyo(x, E\ ) = y_1(x, E, D) + y1(x, E, ]), (83)

where the sole non-trivial Stokes multiplier C(E, [) takes, in the chosen normalisations (70) and
(80) for y(x) and yi(x), the simple form:

CE, D)= Wly_1,y1]/Wlyo,y11 = Wly_1,y1]. (84)

We now project y(x, E, [) onto another solution, defined by its asymptotics as x — 0. Taking
the Wronskian of both sides of (83) with (x, E, [) results in the x-independent equation

C(E, DWlyo, VI(E, ) = Wy_1, p)(E, D) + Wlyr, Y1(E, D). (85)

To relate the objects on the right-hand side of this equation back to W[y, '], we first define
another set of ‘rotated’ solutions, by analogy with (80):

i(x, E D) = WP x, w*E D), (k € Z). (86)
The functions (86) also solve (61) and a consideration of their behaviour as x — 0 shows that

e(x, E, 1) = w™ HV2R(x, EL ). (87)

14
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In addition,
Wy, YV(E, D) = w* Wyw *x, w™E, 1), P(w *x,w™E, D] = Wy, p1(w*E, ). (88)

Combining these results,

Wiy YI(E, ) = w2 WLy, 1™ E, D), (89)
and setting

D(E, 1) = Wiy, Y)(E, D), (90)
the projected Stokes relation (85) becomes

C(E,)D(E, ) = w "PD(w2E, ) + w2 D(WE, D). 91)

Therefore, as anticipated at the end of section 3, with the identifications 7 = C and Q = D and
(66), the Stokes equation (91) exactly matches the Baxter TQ relation (65) for the quantum
KdV theory described in [42]. Finally, the constraint W [y, yx+1] = 1, becomes

2041 1 2041
w A D (W 'E) w#D_(WE)

det 2t1 . 241
w4 Dy(w 'E) w * Di(wE)

) = QI+ 1), 92)

with D_(E) = D(E, ) and D (E) = D(E, —1 — 1). Equation (92) is known in the literature as
quantum Wronskian [19], and is a special case of the QQ-systems of [46]. In turn, the QQ-
systems are x-independent versions of the 1-systems of [47].

3.2. All orders semiclassical expansion and the quantum integrals of motion

We first note that with a simple change of variables [48], the Schrodinger equation (61) can be
recast into the form

(=20, + Z(w)) y(w) = 0, (93)

where

1 - 5 R
Z(w) = m wl/l—Z(wM/l -, =1+ e = E~M+D/2M (94)

1
2 9
A key feature of equations (93) and (94) is that the E-dependence, contained in ¢, has been

factored out of the transformed potential Z(w). Suppose now that (93) has a solution of the
form

1 o0
y(w) = exp <€Z EnSn(w)> . (95)
n=0

For equation (93) to be fulfilled order-by-order in €, the derivatives S, ,,(w) must obey the
following recursion relation:

n—1
SO,w(w) Y Z(w) 5 2SO,w Sn,w + Z Sj,'w Snfj,w + Snfl,ww - O, (}’l 2 1)
=1

(96)
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The first few terms of the solution are

Zw o 1 Z,'ww Z,w
Sl,w = - 47 5 S2,w == 7& <Z3/2 + Saw <W)> s
Zww 5z “’)2 5z w)z Z
S w = — 7 - = Ouw - - = 5 97
> 162> ' 6473 6473 1622 ©7)

and further terms are very easily obtained using, for example, Mathematica. Keeping only
the first two contributions, Sy and S;, corresponds to the standard physical optics or WKB
approximation. Near the turning points Z = 0 the approximation breaks down, and further
work is needed to find the connection formulae for the continuation of WKB-like solutions
of given order from one region of non-vanishing Z to another (see, for example, section 10.7
of [49]).

In cases where Z(w) is an entire function of the coordinate w, with just a pair of well-
separated simple zeros on the real axis, Dunham [50] found a remarkably simple formulation
of the final quantisation condition, valid to all orders in ¢:

% 7{ dw (2_% e”ls,,,“,(w)> =21k, (keZs). (98)

v

In (98), the contour y encloses the two turning points; it closes because for such a Z all of the
functions S, ,, derived from (96) are either entire or else have a pair of square root branch points
which can be connected by a branch cut along the real axis. Notice that the contour « can be
taken to lie far from the two turning points where the WKB series breaks down and so there
is no need to worry about connection formulae. All of the terms S5, 1,4, # 2> 1, turn out to be
total derivatives and can, therefore, be discarded, while the contribution of %S lw = — éZ,“, /Z
is a simple factor 7 /2, when integrated round the two zeros of Z. Dunham’s condition then
becomes

1 o0
H ]{ dw <Z 52"152,1,10(@0)) =Q2k+ m, (ke Zs). (99)

y n=0

In the current situation, we are interested in the radial connection problem, where the
integration contour runs initially on the segment w € (0, 1):

1
j{dw Sonw(w) = 2/ dw S (w). (100)
0

5

However, for generic values of [, M and n the integrand in (100) is divergent at w = 0 and/or
at w = 1. We need, therefore, a consistent regularisation prescription. To this end we replace
the integration on the segment w € (0, 1) with an integral over the Pochhammer contour vp,
represented in figure 2, around the branch points at w = 0 and w = 1. To proceed, we first

perform a change of variable z = w™/ I

; o2 ! 21 ! P\ 7
12n71(M71) - T/ dw SZn,w(w) = T_/ dZSZn,w (ZZ/M) Zl/Mil. (101)
I.Jo iM 0

Setting
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branch cut
Figure 2. The Pochhammer contour 7p.
R 21 I/m\ i/M—1
San@) = T San (1) M1, (102)
i M
the monodromies around z = 0 and z = 1 are:
Son(ze™) = €H8,,(2), Soul(z — DT + 1) = —5(2). (103)

Therefore, we can replace the integral over the interval (0, 1) with an integral over ~yp, pro-
vided the extra contribution introduced by integrating over the Pochhammer contour is properly
balanced by a normalisation factor. The result is

. ~ 1 -
B aO1.1) = —— o f a5, (104)
el

which is now well defined for generic values of M and A\ and can always be written as a finite
sum of Euler Beta functions. The explicit outcome is:

Vval (1—&20) @M + 4y
F(%—nf%) 2n—1)n!

Ly (M, 1) = (—1)" Ly (M, 1), (105)

where I_; = 1, while the coefficients I, (M, ] ), with n > 0, coincide with the local KdV
conserved charges for the vacuum states (60), provided the following identifications are
made:

e’ QI+ 1) —4M?
M+1 o 16(M + 1)

c=1 (106)

The exact link between the all-order WKB coefficients and the integrals of motion (60) is
another striking result of the ODE/IM correspondence.

3.3. Simple generalisations

First of all, the link between the ODE (61) and the vacuum states of the quantum KdV model
in finite volume L = 27 can be generalized to accommodate the whole tower of excited states
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[33] (see also [51]). The basic replacement is to send Pj-*"! — PEIVI in (62) with

€xc

K
PRI E M, {z)) = (xW + l(l%l) — 207 <Z In(x*M+2 — Zk)> - E)

k=1
(107)
where the constants {z; } satisfy the auxiliary Bethe ansatz type equations:
ZK: (@ + M +3)CM + Dz + MM+ 1) Mz, CA—0
p (z — 75)° 4M+ 1) o
j#k
(108)

Generalisations of the ODE/IM correspondence for both the vacuum and the excited states
involving families of higher-order differential operators were studied in [47, 52-58].

In the following, instead of describing the setup of [33] or [47, 52-59] we shall focus on
an off-critical variant, which is related to the classical problem of embedded surfaces in AdSs
and also to polygonal Wilson loops [14, 24]. As a preliminary remark, we notice that a natural
generalisation of the Sturm-Liouville problem associated with (61) and (62) corresponds to
polynomial potentials of the form

2N
PP, {nh) = [[(x = %0, N € Z.), (109)

k=1
where x; can be set to zero by shifting x, while the remaining constants x; (i = 2,...,2N)

are free parameters. It was argued in [60] that the choice (109), is connected to the Homo-
geneous sine-Gordon model (hsG) in its CFT limit or equivalently to the SU(2N),/U(1)*¥~!
parafermions [61—63]. The specific choices of the set x; which lead to

PV (e, m,m'y = X" 2" — ), (110)

correspond to the Virasoro minimal models M, /. As described in [60], the generalised poten-
tial (110) is related to the original instance of the ODE/IM correspondence, discussed in the
previous sections, by a simple change of variables.

We shall see in the remaining part of this review that the polynomial potentials (109) appear
naturally in the description of Wilson loops in AdSs with polygonal boundaries.

4. Classical integrable equations and embedded surfaces

In this section we wish to recall the general properties of minimal and constant mean curvature
(CMC) surfaces embedded in AdS,+; and explain how a linear differential system arises as
a structural constraint on the functions describing the embedding of these surfaces. We will
then focus on the simplest non-trivial case of minimal surfaces embedded in AdSs;. Here a
single field ¢ is present, parametrizing the conformal factor of the metric. This field satisfies
the modified sinh-Gordon equation [24, 64—66], with (anti)-holomorphic potentials A and A,

11 Ag shown in section 4.1, these functions intuitively measure how ‘curved’ the surface is, and enter in the definition
of the Gauss curvature.
18
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whose singularity structure has profound effects on the shape of the embedded surface. In
particular, the presence of an irregular singularity (e.g. when A is a polynomial) corresponds
to the presence of a Stokes phenomenon in the linear differential system which then translates
into the existence of light-like edges of the surface at the conformal boundary of AdSs. For A
and A polynomials of order 2N € Z-., the embedded surface will sit on a light-like 4(N 4+ 1)-
gon on the conformal boundary. Finally, we will explain how to encode the full information
of this embedding into a set of finite difference equations, the T-system and the Baxter TQ
equation, which can then be converted into non-linear integral equation form.

4.1. Surfaces embedded in AdS, 1

The (n+ 1)-dimensional anti de-Sitter space AdS,;; can be described by a pseudo-
spherical restriction of the pseudo-Riemannian flat space R>*". More precisely, consider

= T . . )
Y= (Y"1Y%...,Y") €R>, where the superscript T denotes the operation of matrix
transposition; then the condition

V-7=-(r) - () +> (1) = - (aeR), (111)
k=1

represents an immersion of AdS,,| with radius « inside R?”. Here and below we use the dot
to denote the scalar product of vectors in R?":

Y-V =Y Y®, mup=diag | —1,—-1,1,...,1|. (112)
N—_——

Concerning the indices we will adopt the convention

A,B,C,...=-1,0,1,...,n, p,v,...=0,1, (113a)
Jkil...=1,2,...,n, a,b,...=1,2. (113b)
The AdS, ;- space can be parametrised by global coordinates (p, 7,6y, ...,60,1) as

Y~! = & cosh(p) cos(t), Y° =« cosh(p) sin(r),

n—j
Y/ = a sinh(p) cos(@, 4 )] [ sin(Be), 6, = 0. (114)
k=1

From the last equations we can read the standard AdS metric
ds* = o (—cosh’(p)dr* + dp® + sinh*(p) d€2;,_,) . (115)

where dQ2? | is the metric of the unit (n — 1)-dimensional sphere. The conformal boundary of
AdS, 1 can be reached by taking the limit p — oo jointly with a rescaling of the arc-length
ds — ds/sinh(p). The resulting metric is that of a cylinder in R :

dsj = o’ (—dr* +dQ;_,) . (116)
Let us mention another useful parametrization of the space AdS,+: the Poincaré coordi-
nates {r,t,X}
o2 o+ X2 - Q- [P+t

Yy l=— r—————, Y =——r—
2r + 202 2r + 202
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r . r .
Y=— v=—x, 1<j<n (117)
Q Q

In these coordinates the metric reads
2 2 2
T N S B AT

from which we see that r — oo approaches the boundary OAdS,,+. The singularity r = 0 is an
apparent one, called Poincaré-Killing horizon and shows that the Poincaré coordinates are not
global.

Now that we have defined our embedding space, AdS,; |, we move on to the construction
of the embedded surface >.. Here we have a choice to make: we need to decide whether the
time-like direction of AdS,y; lies in the tangent space 72, in which case we will have what is
known as a time-like surface, or is orthogonal to it which will yield a space-like surface. This
choice will dictate the type of reality conditions we need to impose on the parametrisation of
>. For time-like surfaces we will need to describe the surface with Minkowski coordinates
&" or, equivalently, with light-cone coordinates ({7 = ¢+ ¢!, ¢~ =¢° — ¢') € R% On the
contrary, space-like surfaces will be parametrised by Euclidean coordinates x“ or, which is
the same, complex coordinates (z = x' +ix?,z = x! —ix?) € C. In the following we will
concentrate on the latter type of surfaces. The same type of analysis can be carried over with
some modifications for time-like surfaces. As is usual when dealing with the Euclidean plane,
we will let the coordinates (z, 7) take values in the full two dimensional complex space C? while
keeping the real slice condition z* = 7 in the back of our minds, imposing it only when we see
fit. Furthermore, we will continue to denote partial derivatives with subscripts after a comma,
ie.

0 d _
f:(z2) = a—f(z,i) =0f@z2, [f:2)= }f(z,z) =0f(@z2. (119
Z Z

Finally, whenever it is not necessary, we will drop the explicit dependence on the coordinates.

The description of the embedding of ¥ in AdS,;; is carried by the embedding function
Y : C? — R?", such that ¥ (z,2) - ¥ (z,7) = —a?. From it we can immediately construct the
tangent space 7,3 at any point p € 3 as the span of the two vectors 17,1 and 17,5, and compute
the metric tensor, also known as first fundamental f orm:

~LL

Y, Y.
[=ds’ = gzz(dz)z +2gz dzdz + gZZ(dZ)za 8= Ty 3 NE (120
Yz Yz Y:

It is an established fact [67—70] that, at least locally, one can choose isothermal coordinates
(,7) such that

ds* =2gl. d7' dz'. (121)

In the following we will fix these coordinates and drop the primes. The requirements Y Z" Y L=
Y:-Y:=0 are known as Virasoro constraints and we see that these immediately imply that
the (real) vectors Y| =Y.+ Y:and Y, = —iY . + iY ; satisfy the following identities

Y- Y, =Y,-Y,, Y,;-Y,=0. (122)

As a consequence, since we already have one independent time-like vector Y and in R?" there
can be at most 2, we conclude that

Y1 - Y, >0, Y- V2>0 = VY..Y.>0. (123)

20



J. Phys. A: Math. Theor. 53 (2020) 223001 Topical Review

Due to the AdS constraint ¥ - ¥ = —a?, we see that the triple (17, )7,1, 172) spans, at any

point of X, a three-dimensional subspace of AdS, . In order to understand the structure of
the embedding, we now need to augment the above triple to a full basis of R*>" and we can do
this by introducing the following set of orthonormal real vectors,'?

S, yn—1 . . .
{N_,-}jzl, Ni-Nj=ny ;= diag(—1,1,...,1), (124)

spanning, together with Y, the normal space (T,,E)L at any pointp € X

Ni-Y=N;-Y.,=N;-Y:=0. (125)

(126)

Note that while in principle we should also have a fundamental form associated to the normal
direction Y,!3 this turns out to be trivial:

- ¥ 2 27

e? = 17,1 - )75, H; = e"f’?,zz . ]V_,-, (128a)
Y A;

=Y. N; (128b)

The field ¢ € R is sometimes called the Pohlmeyer field. From the first and the second
fundamental forms one can construct the shape operators

o1 _( Hj 637¢Aj
]g - (egij H] ) (129)

whose invariants compute the total Gauss curvature K and the components H; of the mean
curvature vector H

Hj= %tr (w;) = ; ;Vf = H, (130a)
n—1

K=" det(w;) =" (HH;—e ?AA,). (130b)
: =

12T have a basis of R?" we need 2 time-like vectors. One, % , we already have, the other has to be one of these normals.
We choose it to be N;.
13 We will identify this direction with the index 0.
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Now we have, at any point p € ¥, a complete set of orthogonal vectors in R>" which we
collect as the rows of a matrix o

—

N Na)' (131)

~i

g = (?7 ?,17 Z
This object is known as the frame field or moving frame and is anchored on the surface X.
Consequently, its motion along the surface has to satisfy certain constraints and, since o pro-
vides a basis everywhere on ., these take the form of a set of linear equations, called the
Gauss—Weingarten (GW) system:

o.=Uo, o.=Uo. (132)

Finally, this system immediately implies a consistency condition which, in the geometry
literature, is known as the Gauss—Codazzi—Mainardi (GMC) equation

U: — U+ [UU] =0. (133)

The above equation represents a set of structural conditions for the surface, imposing non-
linear constraints on the functions defining the shape and properties of X. Its functional form
is completely general and appears as a condition for every surface embedded in any space, the
details of the particular problem at hand being contained in the form of the matrices &/ and
U. Tn a more geometrical language, U/ and I/ are the components of a connection one-form
U dz + Udz and the GMC equation above is a vanishing condition on the curvature two-form
associated to said connection, completely analogous to the ZCC (4) which appeared in the
case of the KdV equation. In our case, for a generic surface embedded in AdS,+1, U/ and U are
(n+2) x (n + 2) matrices, which depend on

o the real Pohlmeyer field ©,

e the n — 1 real mean curvatures H;,

e the n — 1 complex functions A;,

o the %n (n — 1) complex functions B;; = —Bj;, describing the rotation of the normal space
(TE)L under motion along the surface:

Bij=Ni.-Nj=—N; Nj.. (134)

The curvatures H; and the functions A; are usually treated as inputs, identifying the type of
surface one is dealing with. An interpretation of the functions A; for the case n = 2 is presented
in section 4.3. On the other hand, the Pohlmeyer field ¢ and the functions B;; are to be treated
as proper dynamical variables.

We will not give the explicit expressions, in the general case, for the matrices ¢/ and ¢/ nor
for the GMC equation, as the case of interest of this review, presented below, is n = 2. The
reader can easily extract them by derivation from the various constraints amongst the vectors
in o. We wish however to note that for general n the matrices 2/ and U entering the GW
system (132) can be seen to belong to the affine untwisted Kac—Moody algebra of type B or C.
By appropriately redefining the quantities listed above, one can connect this system with the
corresponding Toda field theory. Off-critical generalisations of the ODE/IM correspondence
associated to higher-rank algebras have been discussed in [71-78], although without specific
analysis of the connection with surface embedding. The case we focus on here, that is n = 2,

is particularly simple as the associated algebra turns out to be B{" = so{" = A" = sul.
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4.2. Minimal surfaces in AdS3

While in section 4.1 the description of embedded surfaces in AdS,;; was reviewed, here we
concentrate on the simple case of minimal surfaces embedded in AdSs;.'* The number of func-
tions we have to deal with collapses now to two: the real Pohlmeyer field ¢ and the complex
function A; = A. The former will be our unknown function, while we will consider A as a
given.

As mentioned in section 4.1, the structural data of an embedded surface > C AdS; is con-
tained in a pair of 4 x 4 matrices I and U satisfying the Gauss—Codazzi—Mainardi equation

s—U.+ [UU] =0. (135)

These matrices depend on the complex variables (z, 7) through the Pohlmeyer field ¢, its deriva-
tives and the function A. In the case of a minimal surface in AdS; they take the following
explicit form

0 1 0 0 0 0 1 0
e 0 AL e 0 0 0
U 1 5 0 0 , U= « ~ _ 1>
?e B 0 O o Pz —A
0 0 —e A O 0 —-e A 0 O
(136)
and the GMC equation reduces to the non-linear partial differential equation
| R - s _
Pz= 5" —Ade ¥, A;=A.=0. (137)
e}
This can be further simplified by introducing the quantities
1 = 1 -
p=¢—In2a%), PR =5-AR, P@=-5-AQ), (138)
2l 2l
in terms of which the matrices ¢/ and I/ read
0 1 0 0 0 0 1 0
0 ¢, 0 —2iaP - 2e¥ 0 0 0
U=12 0 0 0 , U=10 0 0z 2iaP |,
e ¥ e ¥ _
o 0 —-i—P 0 0 ETP 0 0
(139)

and the GMC equation takes the form of the so-called modified sinh-Gordon equation

1 _
Egﬁ’zz =e¥ — PPe %, (140)

This equation can be written in the form (3) by a shift of the field ¢ together with a redefinition
of the variables z, Z

0(@7) = pw@.TE@)+ %m (PQPG). (141a)

141n three dimensions, a minimal surface is defined by the vanishing of the mean curvature H = H, = 0.
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wwzﬁvmw&,w@=#mew (141b)

We wish to remark that the above transformation, making (140) into (3), does alter the geometry
on which the equation is considered. Moreover, equation (140) is defined on the space C?, on
which we impose the real slice condition z = z*; on the other hand, equation (3) is defined on
R2. Hence the two equations are not to be considered equivalent.

Although it is not immediately evident, the above pair (139) can be gauge rotated to a tensor
product form'>:

U=U2T,+1,0Ur, U =U.®1,+1,® Ug, (142)
where
U=1ur -r-'r., U =1"'Ur-1'r-. (143)

The explicit expressions for the 2 x 2Ug, Uy, Uy and Uy matrices are as follows:

1
5Pz 1 _ Pe—¥
U = | 2 | , UL<(39 pe > (144a)
e 0
P ESO,Z
1 o ; -
_— - TSy
= 277, . UR:< 0 ife ) (144b)
P . —ie 0
5P
while the rotation matrix is
0 i o O
0 0 0 2w
I= 2000 0 O (145)
0 -1 —-i 0
One can further rotate both left and right pairs as
Logd o 1,3 Lood a —1og3 3 1 0
L = e+ Upe 4¥7 —ed4¥7 Qe 4¥7, o’ = 0 —1)° (146)
and similarly for the other three matrices, obtaining the more symmetric form
1 1 .
1. e? _ T¥z Pe?
L= 4" | |. L=[4" | | (1472)
P —p, T =
e 1% e i

15t is an easy exercise to verify that the GMC equations (and thus the structural data of 33) is invariant under the gauge
rotation

u.ud)y — (r'ur-r-'r, r'ur-1'r;),

where I' is some 4 x 4 matrix depending on (z,2).
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1 . 1 s @
——p,. ez B —pz —iPe 2

Le=| 4 , Lk=| 40 | . (147b)
ﬁ})677 1%0”7 7537 71(,0’2

.. 1, ) —
As a consequence of the above decomposition, the rotated frame o’ = (eZ*"’ ® ex¥’ ) I'le

is also decomposed as
0'/ = ‘I’Mo, v = ‘I’L X ‘I’R, (148)

where M) is a constant 4 x 4 matrix, while W1 and Wy are solutions to their respective linear
problems

U, =LY, V=LV, (149a)
Up. = LgWPr, Wg:=LgPr. (149b)

Recapitulating, given two solutions of the above systems (149a) and (149b), one can
reconstruct the corresponding embedding function Y for the minimal surface in AdSs as

~i
Il

é’lTa:é'lTF(e’%*"’S®e’%‘*"’3)(lIIL®lIIR)MO, &r=(1, 0, 0, 0). (150

Let us also mention that the matrix My is not completely general. In fact its form can be
almost entirely fixed by considering the orthogonality and normalisation conditions on the
scalar products of the basis vectors, which in terms of o can be written as

-1 0 0 0 Y-y Y.Y. Y.Y. Y-N
s 0 1 00| & Y.-Y. Y.Y, Y. Y. Y.-N
0 0 1 0 | Y.¥ Y..Y. Y.:-Y: Y:-N
0 0 01 N-Y N-Y. N-Y: N-N
—a> 0 0 0
0 0 e 0
10 e 0 0 (5
0O 0 0 -1
One then has
0 0 0 1
(WL © T My (07 © 1) M 0 wT = - [0 0 =1 01 g5
0 210 =1 0o o)
1 0 0 O
or, equivalently,
0 0 0 1
i/2 0 0 -1 0
M, (¢? 1 MT:# 153
0 ()M = g @ [0 —1 0 o (153)
1 0 0 0

It is a matter of straightforward computation to verify that the following matrix
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0 b Wb 0
1 1
1 — 0 0 -
M% ec — C < . 154
wee = S et Wy) det( W) | fe 0 0 ic (154)
11
0 - —— 0
b b

represents a particular solution to the equation (153). In order to derive the general solution,
we can reason as follows. Let M be a solution to (153) and R € GL(4) a generic non-singular
matrix. Then we can write M = RMj,... Due to both matrices solving the same equation, the
matrix R has to satisfy the following relation

Rc®¢oR' =(®q), cz(ol (1)) (155)

Expanding this relation in 2 x 2 blocks, we obtain the following three equations

t ¢
RiisR), = —(RiisR) . RasRy = —(RaisRy,) . RisRy, + (R21§R§2)t =S
(156)

where, evidently, R;; are the 2 x 2 blocks of the matrix R. The first two relations are solved by

!
Ry Ry =deo(RY) '¢'= —% R,
12 s =ds(Ry,) ¢ det (Ryy) N2

(157)

-1y a

R, = as(R} = —
n=asRe) = Gaw
where a and @' are some undetermined constants. Plugging the above solutions into the third
equation of (156), we have
-1
as[(RiRy)'|  — dRuRys =, (158)

or, equivalently,

det (R22) , 1
_— = RipRS =15, 159
(adet(Rlz) a 1289, 2 ( )
from which we deduce
a/
R22 = a”ng, aa” - =1. (160)
a

From these manipulations we conclude that

a
det (R
R— z(; 12) @ Ry, (161)
cdet(Ryy)
We have found that we can write the general solution to (153) as follows
My = ML ® MR) Myix, (162)
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where M; and My are SL(2) matrices that rotate, respectively, the solutions Wy and Wy, while
M,,ix takes the following form

0 i i 0
M ! _é 00 % (163)
mix — a 0 0 a .
2\/det () det () "g o0 "g
b b

with \Ilfd = W M| and similarly for the right one. We thus see that a generic constant matrix
M) in (150) is determined by 10 complex parameters, 4 for each SL(2) rotation My and an
additional pair for the matrix Mp,;,. Note that 10 is the real dimension of the isometry group
of the space R?2, in which AdS5 is immersed. A further condition on the constant matrix M
comes from the reality properties of the basis vectors

1 0 0O
« |0 0 1 0
o' = 010 0 o, (164)
0 0 0 1
which implies
00 0 1
angs |0 0 1 0
(‘I’L®‘I/R) MOZI] 01 0 0 (‘I’L®‘I’R)Mo. (165)
1 0 0 O

and reduces the 10 complex parameter determining M to 10 real ones. Hence our embedded
surface determined by (150) is uniquely determined up to isometries of R*?.

Finally, let us also mention that minimal surfaces are naturally related to string theory. The
very fact of being minimal implies the possibility of obtaining their defining relations by means
of the minimisation of some quantity which, as it turns out, is nothing but the action of a
non-linear sigma model

~i

%NLSM:/dZdZ(?,z'?,Z“FA(
2

-?+aﬁ), (166)

where the Lagrange multiplier A imposes the constraint (111), forcing the target space to be
AdS;. The equations of motion

Yi=0, (167)

,,,,, »Z

I I S
o= L (y’v : y) v, V..7.=7V

are rather easily connected with (137) [79-81]. The area A of the worldsheet is then computed
thanks to the metric g as follows

A= /dde\/—det(g): /dde (Y,Z : ?z) = /dzdieﬁ. (168)
b b 5

Note that, due to the modified sinh-Gordon equation (140), one has
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,,,,,

A= 2a2/ dzdz (pz + PPe™%) = 2a2/ dzdz PPe ¥ + total derivatives,
s 5
(169)

where the total derivative term is a constant independent of the kinematics. This area is diver-
gent and needs to be regularized. As will be explained below, the asymptotic behaviour as
|z] — oo of the modified sinh-Gordon field is ¢ ~ In|P| and one can define a regularized area

Apeg = 207 / dzdz (Ppe’*’ — (PP) %) ) (170)
)

4.3. A boundary interpretation of the function P and the Wilson loop

Let us recall that the function P—equivalently A (138)—is related to the Gauss curvature
through equation (130b). In the current case we have

. 1 -
K = —e ?PAA = ——e *’PP. (171)
o
Thus, since we wish the surface Y to be everywhere regular, we must demand for solutions to
(137) to compensate for divergences of P. More concretely, we impose that

Iim —=0 — ~ In|P|. (172)
(z2)~eze) | P P etz 1P
Note that this asymptotic behaviour at the singularities of P is consistent with equation (137).
From now on we will assume that the function P is a polynomial of order 2N, then the only
singular point is |z| — oco. The Gaussian curvature is, therefore, asymptotically a constant

1
Ky =lim K=——, (173)

|z]—00 a?
and in this limit the matrices of the linear system (149) become

0 /22 - 0 N2
LL ~ <Z3N/2ZN/2 0 P LL ~ ZN/ZZN/Z 0 s (1743)

0 EZN/2ZN/2 _ 0 7EZ7N/223N/2
Lr ~ (az3N/2zN/2 0 ) Lr ~ (—EZN/ZZN/Z 0 ) ‘

(174b)

In order to study what happens to the boundary of AdS; we need to jump ahead of ourselves
and consider the first order in the WKB expansion of the solutions ¥ and ¥g. A more detailed
analysis of the WKB solutions and the Stokes phenomenon will be given in section 4.5; here
we will just present some facts which will be useful in deriving the boundary of the minimal
surface. A simple WKB analysis (cf section 3.1) yields

N+1 +1
o KT oSN+ 1)) N9 o~ % cos(N+1)0)

P x 2 N1 2 N+ > (175a)

+ +
eﬁNﬂeW cos((N+1)9) e N cos((N+1)19)

—€
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Relz]

— - - - right Stokes lines

— left Stokes lines

Figure 3. Representation of the Stokes sectors and lines in the complex (z, z) plane, for
the linear system (149), with P ~ z?¥ and N = 3.

T SN Vi 2B sV D)
PR Lo N 2 N (175b)
7enNﬂe N SIn((N+D)?) e NI sin((N+1)19)
with z = ge'” and z = pe"’. We see that the linear problem displays a Stokes phenomenon at

o0 — 00, meaning that we can pin down the asymptotic of a specific solution only in certain
sectors of the complex plane (see figure 3). These sectors, which we denote by S](j) and SV,
are bounded by the anti-Stokes lines which are given by cos (N + 1)) = Re [ZN “} = 0 for
the left solution and by sin (N + 1)¥) = Im [zV!] = 0 for the right one.

Now, we choose a solution \Ilg) ® \Ilg) having the above asymptotic behaviour in a definite
sector of the complex plane, which happens to be the overlap of SS) with Sf{). Suppose that we
rotate our solution in the complex plane and, at some point, we cross a left anti-Stokes line.
Then the asymptotic of our solution will change, since the diverging solution might obscure
the presence of a smaller decaying solution. In mathematical terms,

. . : . : 0 —1
(@) ) _ (i+1) (i) (@) _
v e w = (w8 (1)) @ w, S(’y)<1 7). (176)

A similar jump will happen for the right solution at the right anti-Stokes lines, meaning we
LN 2N
have 4(N + 1) parameters {’y{’), 71({)} , one for each anti-Stokes line.
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Now let us consider what happens to the surface embedding function Y for |z| = co0. We
will see things more clearly by working in Poincaré coordinates (117):

r=Y  ,+Y, x‘=x+tt=_-—-""", (177)

where we have introduced the light-cone Poincaré coordinates X*. Some simple but tedious
computation shows that these coordinates have the following expression'® for our embedding
(150)

M M e M M M g M e M M
C‘I’L,zz‘I’R,u + 07, PRy v D PRy H I PRy

\/det () det (TY) ’ U TR+ LT,

r =i

M M Ry
R S0P STk ST 4 )

_ , 178
ibe W, oY + 10, U, ()

where we used (162) and (163) while lIlff ;jand 11111‘{ ; are the components of the rotated solutions
W My, and WrMp, respectively.

Let us suppose we are in a Stokes sector, away from Stokes lines; in the next few expres-
sions, in order to lighten the notation, we will omit the superscript (i) specifying the Stokes
sector. Then, as |z| — oo, the components \Iﬂ]‘fl.j and \Il{‘{i]- will be naturally expressed by a
superposition of a growing and a decaying solution:

M large ,large small, / small
‘I’L,ij*CL,j Li TCL; YLi - (179)

where the functions wf;;‘fi and wi‘}‘g”l are the components of two arbitrary vector solutions to

the linear system (149) respectively diverging and decaying!” as |z| — oo in our chosen Stokes
sector. We easily verify that

ol g dor [T U0
det ol g et i e
large L2j L2 small __ L2j L2 80
L = s Cy, i . (1 )
& large small large small
L1 L1 L1 L.l
det large small det large small
L2 L2 L2 L2
- - 1 o . .
Equivalent expressions hold for the constants ci{l;ge)/ Gmall) Finally plugging (179) into (178),

we see that in the limit |z| — oo, the Poincaré radius diverges'® r — co—signalling that we are
indeed approaching the boundary OAdS;—while the light cone coordinates take the following

16Note that we have not implemented the reality condition (165) in the above expression. When doing so, these
embedding functions will be, clearly, real.

17 In section 4.5 we will define more precisely solutions to the linear problem according to their asymptotic behaviour.
There we will refer to them as dominant and subdominant. For the moment, however, we content ourselves with
this intuitive definition as it will be sufficient to gain a qualitative understanding of the asymptotic behaviour of the
embedded surface. For this same reason we follow the example of [82] and denote them as large and small.

18 Indeed, the numerator of  in (178) is dominated by @bt’fge and @ZJE‘,-‘“”, while the denominator is a constant.
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N

o

0 7 n = 2n

(a) (b)

Figure 4. Minimal surface for the case P =P =1, a = 1 and ¢ = 0in AdS; and its
Wilson loop. (a) is a representation with tanh(p) as a radius, 7 as a vertical direction and
0 as an angle where (p, 7, ) are AdSs global coordinates (114). The shaded cylinder is
the conformal boundary and the red line is the Wilson loop. (b) is a plot of the Wilson
loop on the plane (¢, 7) corresponding to the boundary tanh p = 1.

simple form

lIIM small ‘I’M small
det L.11 L.1 det R.12 R.1

€ M small € M small

xt = é ‘I’L,zl L2 X~ — L ‘I’R,zz R.2 (181)
- M small\ ° o M small\ *

c Wy, Y ibc Py R.1

det | i stnall det { small
L.22 L2 R.21 R2

Note that, while the expressions (180) depend on the choice of normalization for the functions
wia;;‘f . and wi‘}‘ﬁu,», the boundary light-cone coordinates above are independent of it.
Given these results, we can easily see what happens when a Stokes line, say a left one, is

crossed. Let us reinstate the explicit index for the sector: X(J{) and X are given by the above

. . 1
expressions, where each of the components of the solutions oM M zbimall, nge are defined

in the overlap of the ith Stokes sectors SS) N S}({). Looking back at (176), we notice that crossing
a left Stokes line, only the light-cone coordinate X(J{) is influenced, while X is the same on
both sides of the left Stokes line. In other words, in SI(_i) N Sl({) we have light-cone boundary
coordinates (X('B, X(’i)), while in SSH) N Sl({) they are (X("{H), X(’i)). The same exact reasoning
repeats for the crossing of a right Stokes line. Hence we conclude that points on the boundary
determined by solutions lying in neighboring Stokes sectors are light-like separated.

Recapitulating, we have seen that the order 2N polynomial P defines 4(N + 1) distinct
Stokes sectors on the (z,z) plane and, consequently, 4(N + 1) points on the boundary of AdS;.
These are connected by 4(N + 1) light-like lines, forming a light-like 4(N + 1)-gon on the
boundary of AdSs. In figure 4 we plotted the minimal surface, along with its Wilson loop,
for the simplest possible case P = P =1, a = 1 and ¢ = 0. The polygon on the boundary
has the interpretation, in the CFT living on 0AdSs, as a light-like Wilson loop and, according
to the proposal of [12, 13], we can measure its expectation value by computing the area of the
minimal surface > in AdS; having the Wilson loop as its boundary. Moreover, as explained
in [14, 16], this same area can be used to compute the gluon scattering amplitude, at leading
order in strong coupling, in the boundary theory.
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We will now turn to a more in-depth analysis of the solutions to the linear problem (149). As
we will see, the presence of the Stokes phenomenon, instead of being a hindrance, will allow
us to derive a closed set of functional equations for a collection of functions Y;.!* These can
then be exploited to reconstruct the solutions ¥, and W and compute the area (170) of the
minimal surface.

4.4. The associated linear problem, the spectral parameter and the WKB solutions

The left and right pair of matrices (147) are, essentially, the Lax operators for the modified
sinh-Gordon model appearing in [64]:

1

_lso )\e% 180, _Pefﬁc

coo=| 40 L= A (182)
APe™ I —p, 2t -
4 AS 497

The only missing element in the pairs (147) is the spectral parameter A\. However we
immediately notice that by specialising the value of A one has

L=LO\=1), L=LO\=1), (183a)
Ir=LON=1, Lg=LON\=1). (183b)

The analysis of the Lax pair (182) has been carried out in [64] for the particular case of the
function P (z) = z°M — s*"_ There it was shown that the generalised monodromy data for the
linear problem

., =LP, &.=L7, (184)

is connected with the integrable structures of the quantum sine-Gordon (for M > 0) or sinh-
Gordon (for M < —1) models. As mentioned above, in what follows we will think of P (z) as a
polynomial function of order 2N.?° For further simplicity, we will concentrate on polynomials
having only real roots; hence, from now on we will set

2N—1 2N
PRy ="+ P =[] Gc-2). @ PER). (185)
k=0 k=1

The first thing we notice about the linear problem (184) is that it possesses a Z, symmetry
(£(z.2N), L (z.2]N)) = (L (2.2 = A) 0, 0°L (z.2] = A) o), (186)

which implies that, given a solution ® (z, Z|)\), then o ® (z, Z|eﬁ”)\) is also a solution. This
fact will be useful momentarily, when we discuss the Stokes phenomenon associated with our

19 These functional equations form a closed set only if P(z) lives on a finite cover of C. This can be understood
intuitively from the fact that there exists a function Y} for each generator of the first homology group H; (Rwkgs, Z) of
the Riemann surface Rwg associated to v/P. If we allow non-rational powers in P, then the first homology group of
this Riemann surface will not be finitely generated and we will have to deal with an infinite set of functions Y;. From
a physical point of view, in this case on the boundary of AdS; there will be an infinity of light-like lines, never closing
themselves into a polygon.

20 We might think of considering more general multi-valued potentials, e.g. P (z) = z2¥ — s*" where N ¢ 17 but we
still ask that N € Q. The presence of non-integer powers in the function P (z) would force us to consider the linear
problem on an appropriate finite covering of the complex plane. Since the substance of our analysis would not change,
we will avoid this complication.
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linear problem. A simple way to study the linear problem (184) is to gauge rotate it by the

matrix exp (§©0o?), so that one obtains
. =LD B.=LD, d=c i @, (187)
where
1
~ ——p, A
Loetor et o tery(eber) = [ 270 7] (188)
)\P ESOZ
and
|
= 1.3~ 1.3 I, 3~ 1,3 0 ~Pe™”
L=e 4%7 Led?” —e 497 0es?” = [ . (189)
Xe‘*’ 0

With this form of the linear problem, it is easier to obtain the WKB expansion.

We start from the following ansatz
1 1 \
S+ M) ce M7, (190)

! 0 - 1n(85)) <
4 2A

oL
(P

where S is a function of the variables (z, z) and of the square of the spectral parameter )\, with

asymptotic expansion as A*> — oo
(191)

S=S(22N) =D A *85:2).

k=0
The solution @ is normalized in such a way that
det(®) = -2 — det(®) = —2. (192)
The linear system (187) then reduces to a pair of equations for the function S,
LT i 2 T R 3<S'ZZ>2, (193a)
2N 422 S 2\S:
(193b)

P
L evg. —
Sz ¢ S.=0,
which, as one can easily check, are mutually compatible. Exploiting the series representation
(191) we turn this pair of equations into an infinite triangular system for the coefficients Sy,

which we then solve by iteration, the first few equations being
Soz =0, (194a)

=e “VPP,  (194b)

S =
1 (P. 5/P.\*
Si=—= | = -2 22 . Siz=
1.z 8\/ﬁ<P 4<P> + ¢ @,zz) 1z
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We thus have expressed the solution to the linear problem (184) as an expansion around
A — o0 as follows:

oo o Mo—1In PH58+0(A?) M- 41 P18 +0(A2)
d —e o MSotgIn PH3 (si+55-5n )02 )\SO+41nP——(S1+2\F L) o0
(195)
with
dz (P 5(P.\’
= [dzvP, S =[—"F4[2Z2 _2 (L 2 2. 196
Jot s [l (B3 (%) vae). o
T Zx

and z, some arbitrarily-chosen base point.
A similar analysis for the linear system (184), gauge rotated with the matrix exp (75@03) ,
yields the small-A behaviour

13 1
o — o lor e,1s0+ 1nP+/\( zf 4P3/2>+0()\2) _exSo-i-Zl s1+2f 4P3/2)+O(/\2) |
1850— 4 nP+AS;+0(A?) e x50 § InP=AS;+O(M\?)
(197)
with
dZ P?? 5 P; 2
zvVP, S =-2| 3 120 ). (198
/Z b /8\/I_J<P 4<P) M %v) (198)

Tx Tx

4.5. WKB geometry, Stokes sectors and subdominant solutions

Now, let us think more carefully about the geometry of what we are doing. By recasting (184)
into the system (194) we have moved from an equation defined on C? to a system living on
the Riemann surface Rwgp defined by the algebraic equation (> =P(2). The quantities Sk
appearing in the expansion (191) are line integrals along curves on Rwkg:

(2.2) _ (2.2)
Sk (z,2) =/ Sks Sk =/ Sk (199)
Tx Tx
with s; and 5; being one-forms on Rwkg, €.2.
dz (P.. 5(P.\°
SO:\/ﬁdzv S1 = 8\/— (i _Z(?Z) +SD,2;’_290,ZZ> s Tt . (200)

Figure 5 depicts the first sheet of the Riemann surface in the case of a polynomial P (z) having
real roots. In order to define the WKB solutions (195) and (197) correctly, on the one hand
it is necessary to be careful in the choice of the base point z, and the integration contour. On
the other hand, however, it is possible to pin down the specific solution correctly only in a
certain sector of the complex plane; this is an example of the Stokes phenomenon and is a
direct consequence of the presence of an irregular singularity at (z,7) — oo.
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' Im[z]

branch cuts

2i4+2 2i 2i-2

Figure 5. An example of the (first sheet of the) Riemann surface Rwgg for a polynomial
P (2) having real roots, and a basis {+;} of cycles on that surface.

To be more precise, consider the solution (195) at large distances both from the origin and
from any critical values of P (z). Then P(z) behaves as P (z) ~ z2¥ and we can compute the
leading behaviour of the coefficients Sy and S :

N+1

: — ! NN+2
SoN/dZZN:Z Z, +

DA S ~ —— T (NS NSy 00
|z]—o0 N + 1 ’ l\z\%oo 8N +1 (Z e ) ( )

Lk

Similar expressions hold for So and S;. More generally, as shown in (172), solutions to the
modified sinh-Gordon equation (140) behave at leading order in |z| — oo as ¢ ~ 2N In|z|; the
only remaining terms in S and S are then, respectively, Sp and Sy. Hence one finds

ZN/4 1 1 AN LN+
P ~ NJE ZN/2 ZN/2 e NFI 7. (202)
|z[—00 Z N2 TR

Let us denote by @@ and ®© the two column vectors comprising the matrix &

® = (2099). (203)
so that for large |z| and [J| < 37 these vectors behave as

4%19 2 N+1

DY~ € . _Zo .

jel->o <e”7”> exp( N1 s DI =) ), (204a)
—ifv N+1
@ . [e'f 20 .
P e ( e‘W) o0 <N+1 cos(N+ 1o =) | (204b)

where z = pe'’,z = pe ™ and A = e¢". Much as before, we will call ®® the subdominant solu-
tion and ®9 the dominant solution. It is clear from the above expressions that if we analytically

continue from (g, ) to (g, 9+ NLH) the two asymptotics seem to swap roles. However, while

we can precisely pin down the asymptotic of ®®, since no other term can be added to it without
spoiling its asymptotic behaviour, the behaviour (204b) might be hiding a contribution coming
from a decaying exponential, with a coefficient which in general will change as the Stokes line
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in the middle of this sector is crossed. Hence when we perform the analytic continuation, we
will obtain the following asymptotics, valid for [J| < 37 and I =9 +

T .
N+1 °

Ny 2 N +!
Y (0, 9M) ~ (eeﬁ;@ exp( O Cos((N+ 1)) — au)) = dominant,  (205a)

|z]—00 N+1
@ [, 9 e i 2 Mt
0] ~ . —1 .
(0,9 )lzlaocCJr \) it | exp (N T cos (N+ Do nv)) (205b)

Therefore, for « in the sector [J] < 7, the continued solution @ (o, 9} is in general
dominant but, exceptionally, it will be subdominant at zeros of the coefficient ¢4 (\). The story
is similar to that of section 3.1, and the preliminary discussion reported there will be formalised
in the following sections.

Summarising, we see that the function P (z) partitions the Riemann surface Rwkp into
Stokes sectors S;, bounded by anti-Stokes lines, defined by Re [ASy] = 0. In each of these sec-

tors we can define a matrix solution ®; composed of a dominant and a subdominant solution

;= (@)0). (206)

The decay (or growth) of this solution is largest whenever the solution lies on a Stokes line,
defined by Im [ASy] = 0. Figure 6 depicts an example of the Stokes and anti-Stokes lines for a
particular choice of P (z), while figure 7 is a view of the same picture from very large |z|. The
definition of Stokes and anti-Stokes lines depends on the phase of the spectral parameter A and,
as displayed in figure 8, a counter-clockwise rotation of A rotates the sectors in a clockwise
direction. When arg (\) = m, one returns to the same situation as for arg () = 0, but with the
sectors exchanged in a clockwise fashion. Consequently, exploiting the Z, symmetry (186),
we can define the solutions ®; as

&, (22A) = (07)'® (z.ze™m)), (207)

where @, our starting solution, is defined in what we choose to be the Oth sector &y. In what

follows we will label the sectors according to the index k of the 9§ = 7TNL+1 solution of the

Stokes line equation Im [ZN “} for large |z|. Hence the sector Sy will be for A € R the one
containing the positive real line at large enough |z|. See figure 7 for an example.

4.6. The connection matrices, the T-system and the Hirota equation
We can now make the relations (205b) more precise as follows?!:
s — d _
Y (z.2[A) = 2 (z,2])) (2082)
d — K — i d —
Y (2.2A) = =Y (z.2|A) + T (7 A) @ (z.2]A) (208b)
or, in matrix notation

B, 1 (7A) = B, (2.20) T (FN). T(A):(‘f T&)). (209)

2 The —1 sign in the second equality is necessary to have det(®;_;) = det(P;) = 2.
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—— anti-Stokes lines

Figure 6. Stokes and anti-Stokes lines for the function P (z) = z (z* — 1) (z* — 4), with
A € R. Although not shown here, there are branch cuts connecting —2 with —1, 0 with
+1 and +2 with oco.

Im(z]

_ Stokes lines

’
S ,/ anti—Stokes lines
7/
1 7/
7/
,
,
7/
,
7’
,
,
7/
’
7
7/
/
7/
/
7
N
N
N
N
N
\
N

Re[z]

-2

Figure 7. Figure 6 looked at from very large |z|. The fine details of the function P (z)
disappear and we only see the lines defined by Re [z7/ 2} = 0 and Im [z7/ 2] =0, that is
035 = w2 and 9 = % with k = —3,-2,-1,0,1,2, 3. The Stokes sectors Sy are
labelled by the index  of the angles ;.

It is immediate to see that

1 1
T = (et OFHdY — det (8) g (5) 21
N = Goqdy 9t (2025)) = — det (8572%). (210)
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Figure 8. Plots of Stokes and anti-Stokes lines for the polynomial function P (z) =
z (12 — l) (z2 — 4) and various phases of the spectral parameter . One sees that a
counter-clockwise rotation of A corresponds to a clockwise rotation of the sectors. For
arg (\) = m, the picture looks the same as figure 6, but the sectors have been exchanged
in a clockwise fashion.

where we have used (192) and the fact that @54) = <I>(}fi)1. We can generalize this construction,

introducing the lateral connection matrices Ty (\) which, as the name suggests, relate solutions
living in (next)*-neighbouring Stokes sectors:

P (2,7A) = @54 (2.2|A) Tx </\e(“k*?l)‘”> . (211)

The form of these matrices is constrained by noticing that they need to satisfy the following
consistency relation

T\ =Ty ; (e%ﬁu) T (e%kﬁu) : 212)
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which implies that we can parametrise the lateral connection matrices as follows

T2 (N —Tia (ef%h)\)

T (N = T (e%ﬁ”/\) T

(213)

Each function Ty (\), which we call a Stokes multiplier or lateral connection coefficient,
can be computed as a determinant of subdominant solutions defined in distinct Stokes sectors:

1

Ty (V) = 3 det (@Y, o)), (214a)
1

Ty (Ned™) = S det (8%, ). (214b)

One must clearly have T () = 1, implying that
ToN=-1, T.;(M)=0, Tho(H)=1, (215)

which agree with the determinant expressions (214).
The relation (212) can be used to extract a series of additional constraints on the functions
Ty (M. First of all one has the unimodularity condition

det(T, (V) = 1, (216)

to which we will return momentarily. Another obvious relation is the following
To (e’%ﬁﬁ/\) “1=T_;NT;N) = T N=-Ti (V. @17

We also require that a rotation of 2 (N + 1) Stokes sectors brings us back to the same solution
(modulo a £1 factor), from which we deduce that

Tionsa (A = £T; (VTN = Ty (V) =0. (218)

Finally, we obtain a recursive definition for 7} (\) by looking at the components of (212)

(219)

which is called the T-system. An equivalent, more elegant, form is obtained by the simple
unimodularity requirement mentioned above

det (Tep (V) =1 = T (e%ﬁu) T, (e*%ﬁu)zwml MNT (V). (220)

This equation needs to be supported by the boundary conditions found above, 7y () = 1 and
Try4+1 (A) = 0, and is known in the literature as Hirota bilinear equation [61, 83, 84]. One can
check that the T-system is obtained by iteration from the Hirota equation.

There are various manipulations one can perform on the Hirota equation. For example,
one can formally solve it by parametrizing the functions 7} (\) by a pair of Q functions
{04 (M)} ,—1 5 as follows

e FHim) 0, e Ty
; kt1: 221)
Q2 CTWA Q2 ef—Z—HTrA
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Then it is easy to see that the Hirota equation is equivalent to the following one

01 (e™A) 01 (e
det N N =1, (222)
Q2 ezIHTA Q2 elem)\

which, in the literature, is known as a quantum Wronskian [19, 64]. The relation (222) is the
off-critical version of the constraint (92), obtained within the quantum KdV context. From
(221) and (222) we obtain Baxter’s TQ equation

Ti (M) Qa(N) = Qu (e7A) + Qu (e ™N), (a=1,2), (223)
by simply expanding the trivial identity
01 (€™N) Q1 (N) Q1 (e ™))

det | @2 (€"N) Q2N Qa(e™A) | =0, (a=12). (224)
oy (ew>\) 0. (N O (eim/\)

The matrix

_ (21 (€™ o (A))
QW) = <Q2 () 00 (225)

has a geometrical interpretation: it is the central connection matrix of the central problem for
our linear system. In other words, it relates the solutions @; to another fundamental solution

E, defined via local analysis at a point where no Stokes phenomenon is present®?. Then Z is
insensitive to the rotation of A by integer multiple of im and one has the relation

®; (2,z]\) == (z,2]A) Q (/). (226)
Playing with this relation and (212), we obtain the following identity

Q) = Q (M \) Ty (ek?ﬁu) , (227)

from which it is possible to derive both the Baxter TQ equation (223) (by simply setting k = 1)
and the parametrization (221) of the functions 7y (by Cramer’s rule). The QQ-system (222)
corresponds to the unimodularity requirement det(Q(\)) = 1.

Although Q-functions are interesting objects, we find it more convenient to introduce a new
set of functions: the Y-functions. These are defined as follows

YN =T 1N T (N, (k=1,...,2N - 1), (228)
or, in a more invariant form, and using the fact that det ((I)f) q),(f}rl) = —det P,
det (@9 @) det (&9 , o
oy = SO BU) L[, B 299
det ((I)fkfl (I)fk72) det ((I)k (I)k—l)

221n the first incarnations of the ODE/IM correspondence [18, 42] this point was the origin z = 0, which represents a
regular singularity of the differential equation. Consequently the solution obtained by local analysis around z = 0 does
not exhibit any Stokes phenomena. The term ‘central’ also descends from these first examples, in which the eigenvalue
problem associated to the central connection matrix concerned functions with behaviour defined at z = 0 and |z| — oo.
In our case the linear system possesses no singularity at finite z, however we can still define an eigenvalue problem
for functions with given behaviour as |z| — oo and at an arbitrary point z which, being regular, will not give rise to a
Stokes phenomenon. We stick to the tradition and call such an eigenvalue problem ‘central’.
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et (89, 0,) det(a%) 40

1
Vair (A7) = - : Sk (229b)
det (), @Y} ,) det (‘I)l(cJ)rl o))
In term of the functions Y, the Hirota equation (220) becomes
Ve (2e¥7) v (AeH7) = (14 Y O0) (1 + Yo ). (230)

This set of equations is known in the literature as a Y-system; see for example [61, 85-87].

4.7 Properties of the Y-functions and the TBA equation

Although the rewriting (230) of the Hirota equation does not seem to change the situation
much, it actually allows us to derive an integral equation for the logarithm of the Y functions.
Let us briefly review how this is done.

Using the definition (190) of the WKB solution, we easily see that

Yor (\) = exp —)\%S s Y2k+1 ()\e%ﬁ”) = exp - f N (231)

Y2k V2k+1

where s = Z;O:O A", and the one-forms s, were introduced in (199). The i are closed
contours, elements of a basis of the first homology group H; (Rwks, Z). Since our branch cuts
can all be taken to lie on the real axis (remember, we chose the polynomial P (z) to only have
real roots), we can arrange them as shown in figure 5. It is evident that the Y, (\) functions are
analytic in A with essential singularities sitting at A\ = O and A = oo. In particular, a perturbative
analysis of the WKB solutions tells us that

lnYQkifA%dZ\/ﬁﬂ’O()\il), 1nY2k+1:ﬁA% dZ\/F+O(A71)
Y2k V2k+41

(232)

A similar result holds for the expansion around A = 0, with v/Pdz replaced by V/Pdz. Hence
we find that the ¥ functions have the following asymptotic for large |v|, with v = In A,

mzk=2j{dzx/ﬁ=27{af\/ljJ

Y2k Y2k

InY, (v) ~ — my cosh(v) . (233)
ot —— :427{ dzVP = —i2 ]{ dzVP

V2k+1 V2k+1

Note that this behaviour is valid for Im[v] € (—, ), since beyond this range, the WKB
approximation we have used may no longer be reliable?®. The quantities 7 can be shown
to be real when all the zeroes of P (z) are real?*.

23 Actually the WKB approximation can be shown to be valid in the range Im [v] € (—%71’, %7r)
24 Consider a polynomial with 2N roots

P@=@E—-z2)z—2) - (@Z—2n),
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Now, from the properties just mentioned, we deduce that the auxiliary function
i) = In (Y (v) e <) (234)

is analytic in the strip S, = [Im [v]| < 7 and decays at large |Re [v] | therein. Moreover it
obeys the logarithmic form of (230)

Vi (U + %ﬁw) + v (U - %ﬁﬂ) =1In (14 Y1 ) +In(1 + Yy (v)).

(235)

This form is very useful, because the operator effecting the shift in the right-hand side above

is inverse to the convolution kernel C (v) = ﬁ%h(z) In mathematical terms
1 1 do’ yi (v’ + lﬁﬂ') + Vi (v’ - lﬁﬂ')
K ~i K e e I B 2 2
[KC * yi] <v + 2I]7T) + [ * yi] <v 2|17r> / o cosh (v — 1)
R

fm/'”W)n@, (236)

27 sinh (v — V')
asv

where S, is the boundary of the strip S, = | Im [v] | < 5 and we used, in turn, that y; decays
in S, for Re [u] — +o0, and that it has no singularities in S,. Thus we have arrived at the
following integral TBA-like equation [88]

do’ In (1 + 675"*1('”/)) +In (1 + e*€k+1(7«'/))

27 cosh (v — ") ’

ex (V) = my, cosh(v) — /
R
(237)

where we introduced the pseudo-energies (borrowing the language of the TBA)
Y () = e W, (238)

If we were to choose a polynomial P (z) with complex roots, then everything that has been
said and shown above will essentially remain the same, with the exception of the assertion

and suppose that z;,z, € R. We wish to compute the integral
I= 7{ dz/P(2),
M2

where 7, is a cycle encircling in a counter-clockwise sense the cut running from z; to z,. Moreover, without loss of
generality, suppose z; = 0,2, > 0and z; ¢ [0,z], Vj=3,..., 2N. Then our integral becomes

1:4/”2 dzv/2(G —22) (2 — 2aw).
0

since the integrals on infinitesimal circles around z = 1 and z = z, vanish. The integral 7 is explicitely a real number,
aslongasz; € R, Vj=3,...,2N.
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my. € R. What will now happen is that the ‘masses’ n;, will be complex numbers and the TBA
equation (237) will need to be adjusted to the following, more general, form

my ., mz —v dUI In (1 + eigkil(vl)) + In (1 * eisk+l(v,))
()= —e"+ e’ — [ — .

2 2 2w cosh (v — v')

R
(239)

Note that as long as |arg (my) — arg (mkH) ‘ < m/2, Vk, the above equation is perfectly well
defined. However, as soon as we go beyond this regime, it is necessary to pick out the appro-
priate pole contribution from the kernel.?> Although the integral equation changes form, the
functions Y turn out to be continuous; this phenomenon is known as wall-crossing and has been
discussed in [23, 89].

We have arrived at an integral equation whose only inputs are the ‘masses’ my, i.e. the
integrals of the WKB one-form s, along the basis cycles of H; (Rwks, Z), and whose outputs
are some functions ¢; of the spectral parameter \. As we will now explain, the knowledge of
these functions will allow us to compute the regularized area (170) of the minimal surface in
AdS3, the boundary of which is a polygonal light-like Wilson loop determined by the function
P (z), as explained in section 4.3.

4.8. The area as the free energy

Now we wish to show that the regularized area is really the Free Energy associated to the TBA
equation (237)—or, more generally, (239). In order to do so we will take a route which might
appear to be slightly convoluted, so bear with us. First of all, consider the expression (170) for
the regularized area

Areg = 207 / dzdz (PPe"” - \/PP) . (240)
>

We notice that it is possible to write this in terms of the one-forms sy and 5y (200) and a
one-form u

so = VPdz, 50=VPdz, u=u,dz+udz, (241)
as
Areg = 207 / (so A u—s9N3Sp), (242)
RwKB

where, in order to reproduce (240), we are forced to fix the anti-holomorphic part of u as
u: = VPPe™%. (243)

It is evident that both sy and 5 are exact, since their components are, respectively, holo-
morphic and anti-holomorphic. In general the form u is not exact, but it can be made so by

25 1In fact, the equation (239) can be rewritten in the form (237), by shifting v — v — arg (). These equations will
involve kernels 1/ cosh (v — v — T arg (my) + 1 arg (my- 1)), which present singularities on the real v'-line whenever
|arg (my) — arg (m 1) | = @n+ D 7/2, n € Zs.
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precisely choosing the z component u,, which does not contribute to the integral (242). One
easily verifies that the following choice

u( = +f(z)> dz + v/PPe vz, (244)

where f (z) is an arbitrary function of z, fits the bill since

e¥ 0 _ 1 )
du=——=— (PPe ™+ —p-e ?)dzAdz =0, 245
u 2\/1_3(%( e +2g0 ,,,,, e )z Z (245)

due to the modified sinh-Gordon equation (140). We still have the freedom to choose the
function f(z) at will, and in the following we take

1 (P. 5/P.\°
f(Z):S\/ﬁ<P_4(P) ), (246)

so that we can express the form u in terms of s; (200) as
u=s; +VPPe ?dz. (247)

We are then able to rewrite the regularized area as an integral (242) over the Riemann surface
Rwxs of the external product of two exact one-forms: sp and u — 5. Why would we want to do
this? The answer comes from the following neat property of integration on Riemann surfaces:

Theorem. [90] Consider a Riemann surface X4 of genus g and let {a;, b;};_, be a stan-
dard basis of cycles, i.e. a standard basis of H, (Zg, Z). Take two exact one-forms w and w'

and define
Q= %w’ /Bi - %w7 Oé: = %w/’ ﬂl/ = %w/'
bi

a; bi a;
Then the integral of the two-form w A W' over the Riemann surface can be decomposed as

8
/ wAW = Z (il — Bicl) . (248)

%, i=1

Thanks to this result we can write the expression (242) for the area as

Areg = 207wy ]{ S0 j{sl—io , (249)

hJ i ¥j
where

o = VPPe vz — 50 = VP (VPPe ? — 1) dz, (250)

{i} is a basis of H; (Rwks, Z) and w;; are the intersection numbers of these cycles%.

26 The cycles +; depicted in figure 5 do form a basis but not a normalized one. Hence the need to insert the intersection
numbers.
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Now we need to identify the contour integrals in (249). To this end, let us introduce the
functions £, defined as

£ (V) = e V), Gt (V) = ez (V1T ). (251)

We can describe their large A behaviour in two equivalent ways:

e using the expression (231) in terms of WKB integrals
. 1 2
=\ 0+ 3 s14+0 (A7), (252)
Ve W

o using the TBA equation (239)

R 1 B 1 /> o . iy B
Ek:)\jésoﬁLX %Sog/wdv'e‘;wk’lln(lee 5/(«)) +(9(/\ 2),
Vi Yk .

(253)

where we have used the definition (233) of the dimensionless mass parameters n;, and
their complex conjugates my.

In the case in which the parameters my, satisfy |arg (my) — arg (mk+1) | < /2, wk has
the simple expression w/* = ¢ ¢ &~k and if 2N € 2Z> + 1 it is invertible with
inverse given by the cycle intersection number w;; introduced above.

Since the above two large-\ expansions must agree term by term, we find the exact
expression for the integral of the 1-form s; on the contours 7;:

1 R / . 2 /
= b5 — [ de’Y whi (1 *gf(ﬂ)). 254
jésl ?{so 7T/ﬂ(3 ve jw n(l+e (254)
Yk Yk

The expression for the area (249) then takes the following form:

042 00
Areg = ZFZ’U},]Z, /
L]

dv'e” S w In (1 n esk(“’))> , (255a)
J

Zi = 7%5‘0. (255b)

i
The exact same reasoning as above can be repeated for the small A limit; this yields

i,j N

o0 J
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Finally, as these two expressions must give the same result?’, we can take their mean value to
find

o? :
Awg = =5 |mi| [ dv cosh(v) In (1 + e =i aetm) 257
o 2 | |/ v cosh(v) n( e ) (257)
! R

which coincides with the free energy expression for the TBA equation (239). Note that we
made the implicit assumptions that ) Jwi, jw?* = ¥, which is true only if 2N € 2Z> + 1, and
|arg (my) — arg (mk+ 1) | < /2. If instead we have N € Z~ with the constraint on the phases
of the masses still in place, the area keeps the form (257), though acquiring an extra term as
studied in detail in [82]. On the other hand, if this constraint is relaxed and we cross a wall,
new cycles enter the game and one needs to track their contributions with care. However by
adapting the derivation we followed it is possible to show that an expression of the form (257)
continues to hold. See [16], appendix B, for more details.

4.9. The IM side of ODE/IM correspondence and the conformal limit

We conclude this excursion in the realm of minimal surfaces by briefly making contact with the
IM side of the ODE/IM correspondence. In fact what we have done so far in this section per-
tains to the ODE part of the correspondence: we investigated the classical linear problem (184)
and showed how its monodromy data can be used to compute the area of a minimal surface in
AdS; sitting on a light-like polygonal loop on the boundary AdSs;. Through some non-trivial
manipulations of the monodromy data, we arrived at the expression (257) in terms of a set of
auxiliary functions &, (v) which satisfy the system of non-linear integral equation (237). As
mentioned above, these equations have the flavour of TBA equations for quantum integrable
field theories and, as a matter of fact, have appeared earlier in the literature as the equations
describing the finite-size ground state spectrum of the SU(2N),/U(1)**~! homogeneous sine-
Gordon model®® [62, 63,91, 93-96]. Hence we conclude that the linear system (184) works as a
bridge, connecting the geometry of minimal surfaces in AdS;—and, consequently, the proper-
ties of light-like Wilson loops in 9AdS;—to the properties of the quantum SU(2N), /U(1)*" !
HsG model in finite-size geometry.

It is known [62, 63] that the CFT limit of the G;/U(1)"¢, with G a compact simple Lie
group, r¢ the rank of the group G and k its level, is described by the parafermionic G/ U(1)"¢
coset CFT with central charge

k—1

c= —kJrhGrG hg, (258)

where hg is the Coxeter number of the group G. In the case considered in this section, that is
G = SU(2N), one has rg = 2N — 1 and hg = 2N and choosing k = 2 one obtains the central
charge

2N — 1

—N .
cTNNT

(259)

27 This statement is equivalent to the requirement that the total momentum of the TBA vanishes identically, or, in other
words, that the pseudo-energies ¢, are even functions of v.
28 Actually, the equation (237) are associated to a particular instance of the SU(2N),/ U(1)*~! HsG model, in which
the so-called resonance parameters are chosen to vanish, see [91, 92].
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As mentioned in section 3.3, the integrable structure of these CFTs is conjectured to be
described by a Sturm-Liouville problem for (61) with the particular choice (109) of the poten-
tial P (x). In order to verify this fact, we need to perform the conformal limit on the linear
system (184). We thus first pick a generic point (z9,Zp), such that P(z9) = py # 0,00 and
P(z) = Dpo # 0, 00. Without loss of generality we will suppose that (zg,Z0) = (0,0). As the
point (0, 0) need to be generic, we require the Gauss curvature (171) to be a finite constant at
that point

“2%pp ~ O(0,7° 260
¢ (22)-(0,0) (.2 (260)

which means that the sinh-Gordon field ¢ will have the following simple, regular behaviour

©(z,2)

N P 261
(z,z)»(o,O)z PoPo +; o2 +<sz 261)

The coefficients ¢ and ¢y are fixed by inserting the above ansatz into the modified sinh-Gordon
equation (140); their explicit form is of no relevance, but we list here the first few

Py P, P Py PP, P
=25 = — 5, == - S 262
T opy 2T apy AP T ap, T 2P T 6P (2622)
P, Pj+2PP; PiP, P}
=55 — -, 262b
= 2P, 4p? 2P] ~ 8P3 (262b)
with
2N 2N
PR =P+ P =]]Gc-w. (263)
k=1 k=1

Similar expressions hold for ¢, and p(z). We see that when taking the light-cone limit 7 — 0,
the field assumes the following form

_ 1 - =
#(2.2) ~ 5 In (PoPo) + ; oz (264)

Let us look back at the linear system (184)

b, =LD, &=L, (265)
with
Lo et i Lo, Lpes
cevy=| 47 | coo=(4T A : (266)
APe™ 2 — 1.g !
490,z Xe _ZSO,Z

We now consider the unknown ® as a vector, i.e. an arbitrary column of a generic matrix
solution of (184), which we can parametrise in the two following ways

() e
)\
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One then easily checks that the linear problem reduces to the following pair of second order
differential equations

1
Xz (2,2) + (2v (z,2) — AZP(Z)) X (z,2) =0, (268)
_ B | | O N
22+ EU(Z’ 2)— VP(Z) X (2 =0, (269)
where
= = 1 N2 = _ 1 2
v(2,2) = 9 (2,2) — E@,z(z, )7, (2 =vz:(2,2) — Eso,z(z, 2%, (270)
are the Miura transforms of the field .
Now we will consider the conformal limit in the form of a double limit: we first take the
light cone limit Z — 0, which will ‘freeze’ the anti-holomorphic dependence, and subsequently

consider the regime z ~ 0. In order to consistently perform this last limit, we first rescale all
the quantities in play by the appropriate power of A as follows

1= AWy, 7= AFFIX, 271)

and scale the zeroes z; of the potential P (z) as z — 0 so that

2N N 2N W
PO=]]Gc-2)=ATT]] 0= x)=\TTP), (272)
k=1 k=1

then consider the limit A — oco. Let us first concentrate on what happens to equation (268)
when we send 7 — 0. The Miura transform v becomes

0@ =0 (&) = Avo (A v ), (273)
while the differential equation itself now reads
X @60 = (0 (A1) 4 P) x (x, 1) = 0. 274)

Then we take the limit A — co while keeping the scaling variables x and x; finite, so that we
arrive at the following equation

Xoax (X) = P (x) x (%) (275)

which is clearly holomorphic in form and the reason why we dropped the X dependence of ¢.
What is the fate of the equation (269)? Let us look at what happens to the potential P in the
light-cone limit

2N 2N o 2N o
P =]] - zk),~0| [z =27 ][ = A 701Xy (276)
o
k=1 k=1 k=1

On the other hand, in the light-cone limit we have v — 0. Consequently the equation (269)
reduces to
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X (6, 3) — AT Xy (5, %) = 0, 277)
which in the limit A — oo becomes
Xoax (6,X) = 0. (278)

We easily check that this equation is consistent with the relation imposed by the two
parametrizations (267) of the vector ®, since considering the identity

X = %e"*’é (e%i) : (279)

and taking a derivative with respect to z, we obtain

e 7 [ _ | D
Xz= (X (z,2) + Ev(z, 2) X (z, z)> — 0. (280)

A
This proves that in the double scaling limit, the function ¢ is indeed holomorphic. Hence, as
expected, we have recovered the ODE (61) with a potential

2N
Po=]]c-x), @NeZ.) (281)
k=1
of the same form as (109).

5. Conclusions

The discovery of a connection between the theory of ordinary differential equations and 2D
quantum field theories was a completely unexpected surprise for the integrable model commu-
nity. It has allowed the investigation of problems in pure mathematics, in statistical mechanics
and condensed matter physics, strings and supersymmetric gauge theories. However, most of
the mathematical structures and connections that have emerged over the past 20 years in the
ODE/IM context have only been superficially explored. Among the many mysterious facts con-
cerning the ODE /IM correspondence, perhaps one of the most fascinating is that it provides a
compelling alternative way to quantise classical integrable systems. In this respect, it will be
essential to put more effort toward the implementation of this novel quantisation scheme in the
context of non-linear sigma models, as initiated in [97].

The ODE/IM correspondence might also provide a way to extend fundamental concepts
related to the renormalisation group to the Hamiltonian picture [98] and to implement the
quantisation of effective quantum field theories.

Concerning the last topic, the so-called TT-perturbation, where TT is the composite oper-
ator defined as the determinant of the stress-energy tensor [99], is known to be integrable at
both classical and quantum level [100—104]. On the classical side, deformed EoMs and Lax
operators coincide with the undeformed quantities up to a field-dependent local change of the
space-time coordinates [100, 105, 106]. The effect of this deformation on the finite-size quan-
tum TBA spectrum is also well understood; however, what is still missing are the ODE/IM
steps connecting the classical to the quantum TBA answer. For instance, it would interesting to
know the fate of the polygonal Wilson loops, in particular of the area/ free-energy equivalence
described in this review, under the TT perturbation or the Lorentz-breaking generalisations
studied in [107-109].
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