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Abstract

This review describes a link between Lax operators, embedded surfaces and

thermodynamic Bethe ansatz equations for integrable quantum �eld theories.

This surprising connection between classical and quantum models is undoubt-

edly one of the most striking discoveries that emerged from the off-critical

generalisation of the ODE/IM correspondence, which initially involved only

conformal invariant quantum �eld theories. We will mainly focus of the KdV

and sinh-Gordonmodels. However, various aspects of other interesting systems,

such as af�ne Toda �eld theories and non-linear sigma models, will be men-

tioned.We also discuss the implications of these ideas in the AdS/CFT context,

involving minimal surfaces and Wilson loops. This work is a follow-up of the

ODE/IM review publishedmore than ten years ago by J. Phys. A: Math. Theor.,
before the discovery of its off-critical generalisation and the corresponding

geometrical interpretation.

Keywords: AdS/CFT, ODE/IM correspondence, minimal surfaces, integrable
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(Some �gures may appear in colour only in the online journal)

1. Introduction

There is a deep connection between integrable equations in two dimensions and the embedding

of surfaces in higher-dimensionalmanifolds. The simplest instance of this relation appeared in

the works of 19th-century geometers [1, 2] on the description of pseudo-spherical and mini-

mal surfaces sitting in 3-dimensional Euclidean space R3. The structural equations describing

their embedding, the Gauss–Mainardi–Codazzi (GMC) system, are today known as the sine-

Gordon and Liouville equations, respectively. More recently, in the works of Lund, Regge,

Pohlmeyer and Getmanov [3–5], a general correspondence has been suggested and subse-

quently formalised by Sym [6–10]. These results showed that any integrable �eld theory, with

associated linear problem based on a semi-simple Lie algebra g, could be put in the form of a

GMC system for a surface embedded in a dim(g)-dimensional space.

The connection between embedded surfaces and integrable models has proven especially

fruitful in the context of the AdS/CFT correspondence. In this framework, the semiclassical

limit of a string worldsheet theory in an AdSn+1 space can be exploited to compute certain

observables of conformal�eld theory (CFT) living on the boundaryof that space. The canonical

example of this correspondence deals with AdS5 × S5. In this case, semiclassical worldsheet

solutions are used to describe, in the dual CFT, states with large quantum numbers [11], expec-

tation values of Wilson loop operators [12, 13] and universal properties of maximally helicity

violating (MHV) gluon scattering amplitudes [14, 15]. The connection with integrable models

allows these quantities to be related to certain known universal structures of integrability, such

as the Y-system or the corresponding set of thermodynamic Bethe ansatz (TBA) equations

[16, 17].

Generally speaking, the ODE/IM correspondence, discovered in [18], is instead a link

between quantum Integrable Models, studied within the formalism of [19, 20] where analytic

properties and functional relations are themain ingredients, and the theory of ordinary differen-

tial equations in the complex domain [21, 22]. The relationship is far more general than initially

thought, with concrete rami�cations in string theory, AdS/CFT, and aspects of the recently-

discovered correspondences between supersymmetric gauge theories and integrable models

[23–31]. The ODE/IM correspondence relies on an exact equivalence between spectral deter-

minants associated with certain generalised Sturm–Liouville problems, and the Baxter T and

Q functions emerging within the Bethe ansatz framework. Currently, the link mainly involves

the �nite volume/temperature Bethe ansatz equations associated with 2D integrable quantum

�eld theories. However, there are mild hopes that it can be generalised to accommodate also

integrable lattice models [32].

The primary purpose of this review is to describe the deep connection existing between

the ODE/IM correspondence and the theory of embedded surfaces in higher-dimensional

manifolds.

The rest of the article is organised as follows. A brief review on the KdV theory and associ-

ated integrals ofmotion, at both the classical and quantum level, is contained in sections 2.1 and

2.2. Section 3 contains a preliminary discussion of the ODE/IM correspondence for the quan-

tum KdV (mKdV/sinh-Gordon) hierarchy, the relevant Schrödinger equation is introduced,

and some general facts about the correspondence are described. Section 3.1 is devoted to a

schematic derivation of the Baxter TQ relation from the Schrödinger equation (more details

can be found in the original works [18, 33, 34] and in the review [35]). Section 3.2 describes
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how the local integrals of motion emerge from the semiclassical quantisation. A short dis-

cussion of generalisations to excited states and to models related to higher-rank algebras is

contained in section 3.3.

The problem associated with the off-critical variant of the ODE/IM correspondence, the

connection with the sinh-Gordon model (shG) and surfaces embedded in AdS spaces is dis-

cussed in section 4. In particular, section 4.1 contains a general introduction to embedded

surfaces in AdSn+1, while in section 4.2 the speci�c case of minimal surfaces in AdS3 is

discussed in more detail, together with their relation with Lax equations and the modi�ed

sinh-Gordonmodel (mshG). In section 4.3, the generalised potential appearing in the modi�ed

sinh-Gordon model is interpreted within a Wilson loop type setup while in sections 4.4–4.6

the associated linear problem is linked, also with the help of a WKB analysis, to the T- and

Y-systems. Starting from the Y-system and the WKB asymptotics, the corresponding Ther-

modynamic Bethe Ansatz equations are derived in section 4.7 and the interpretation of the

surface area in terms of the free energy is given in section 4.8. Finally, section 5 contains our

conclusions.

2. Classical and quantum KdV, the light-cone shG model, and local integrals

of motion

The starting point of the work [19] by Bazhanov, Lukyanov and Zamolodchikov (BLZ) is the

Korteweg–de Vries equation5

u,t(x, t)+ 12 u,x(x, t)u(x, t)+ 2 u,xxx(x, t) = 0, (2)

on a segment of length L = 2π with periodic boundary conditions u(x + 2π, t) = u(x, t). In
the following we will often omit the time dependence of u, since we will mainly work within

the Hamiltonian formalism. It is well-known (see, for example, [36]) that from the point of

view of integrability, the KdV equation is also deeply connected with the light-cone classical

sinh-Gordon model

φ,xt(x, t)+ sinh (φ(x, t)) = 0, (3)

since they formally share the same set of local integrals of motion. Note that we have used

different font styles for the KdV time parameter t in equation (2) and the sinh-Gordon time t in
equation (3). Aswill become apparent from later considerations, this is to underline the fact that

the corresponding Hamiltonians, when considered as part of the same hierarchy of conserved

charges for one of the two models, evolve �eld con�gurations along different ‘generalised time

directions’.

2.1. Lax pair and classical conserved charges

The purpose of this section is to derive the expression of the classical integrals of motion for

the KdV model through the introduction of a pair of Lax operators which depend on a spectral

parameter. We will essentially sketch the derivation presented in the book [37], to which the

interested reader is addressed for further details.

5 In the following, we will denote partial derivatives with subscripts after a comma:

F,x1 x2 ,... (x1, x2, . . . ) =
∂

∂x1

∂

∂x2
. . .F (x1, x2, . . . ) = ∂x1∂x2 . . .F (x1, x2, . . . ) . (1)

3
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First of all, notice that the KdV equation (2) can be written as a zero curvature condition

(ZCC)

At,x − Ax,t − [Ax,At] = 0, (4)

for the sl (2) connection6 A = Ax dx + At dt, with components

Ax =

(
0 1

λ2 − u 0

)

, At = −2
(

−u,x 4λ2 + 2 u
4λ4 − 2λ2 u− u,xx − 2 u2 u,x

)

,

(5)

where λ is the spectral parameter. In turn, equation (4) coincides with the compatibility

condition of the following pair of linear systems of (�rst-order) differential equations:

(1∂x − Ax)
(
Ψ

χ

)

= 0, (1∂t − At)

(
Ψ

χ

)

= 0. (6)

The �rst equation in (6) gives χ = Ψ,x , together with the Schrödinger-type equation

(
L− λ2

)
Ψ = 0, L = ∂2x + u. (7)

The second relation in (6) leads instead to the time-evolution equation

(∂t −M)Ψ = 0, M = −2(∂3x + 3 u ∂x + 3 u,x). (8)

The compatibility between equations (7) and (8) gives

L,t − [M,L] = 0, (9)

a constraint which is also equivalent to the original KdV equation (2).

A direct consequence of the zero-curvature condition (4), which involves the arbitrary

parameter λ, is the existence of an in�nite tower of independent conserved charges. The

generator of these quantities is the trace

T (λ) = tr(M(λ)), (10)

of the so-called monodromymatrix

M(λ) =←−exp
(∫ 2π

0

dx Ax(x, t,λ)

)

= lim
δx→0

(1+ δx Ax(xn, t,λ)) . . . (1+ δx Ax(x1, t,λ)).

(11)

In (11), the symbol ←−exp denotes the path-ordered exponential and x1 = 0 < x2 < . . .
< xn = 2π.

Since Ax and At belong to the sl(2) algebra we can introduce the matrices

H =

(
1 0

0 −1

)

, E+ =

(
0 1

0 0

)

, E− =

(
0 0

1 0

)

, (12)

6That is, an sl (2)-valued one-form.
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with [H,E±] = ±2E±, [E+,E−] = H and, expand the connection Ax over the basis

{H,E−,E+} as

Ax = AhH+ A− E− + A+ E+. (13)

Notice that T (λ), de�ned in (10), is invariant under (periodic) gauge transformations of Ax

Ax →g Ax = g−1 Ax g− g−1 g,x. (14)

Therefore, we can gauge transform (13) such that gA− = gA+ = 0.We �rst perform the gauge

transformation g1 = exp( f−E−), which leads to

g1Ax = (Ah + A+ f−)H− ( f−,x + 2Ah f− + A+ f 2− − A−)E− + A+ E+. (15)

Setting

f− =
1

A+

(ν −A) , A = Ah −
1

2
∂x lnA+, (16)

the vanishing of the coef�cient A− of E− in (15) becomes equivalent to the solution of the

following Riccati equation:

ν,x + ν2 = V , V = A,x +A2
+ A−A+, (17)

that, with the standard replacement ν(x) = ∂x ln y(x), can be recast into the Schrödinger-type

form

(
∂2x − V(x,λ)

)
y(x) = 0. (18)

Since the potential in (18) is periodic, V(x + 2π,λ) = V(x,λ), we can introduce a pair of

independent Bloch solutions {y+, y−} such that the correspondingWronskianW [y+, y−] = 1

and

y±(x + 2π,λ) = exp(±P(λ))y±(x,λ), (19)

where P is the quasi-momentum:

P(λ) = ln

(
y+(2π,λ)

y+(0,λ)

)

=

∫ 2π

0

dx ν(x,λ). (20)

However, in (15), the coef�cient A+ is still un�xed and Ah may still depend on the coordinate

x. Following [37], we can perform two further independent gauge transformations, g2 and g3,
without spoiling the A− = 0 constraint. In fact, the combined transformation g = g1g2g3 with

g2 = exp( f+ E+), g3 = exp(hH), (21)

and

f+ = A+ y+ y−, h =
1

2
ln
(

A+ y
2
+ exp

(

−2P(λ) x
2π

))

, (22)

leads to

gAx =
1

2π
P(λ)H, (23)

5
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giving

T (λ) = tr(M(λ)) = 2 cosh (P(λ)) . (24)

For the KdV model under consideration, we have (cf (5), (12) and (13))

Ah = 0, A− = λ2 − u, A+ = 1, (25)

while the Riccati and the Schrödinger equations are

ν,x + ν2 = λ2 − u, (L− λ2)y = 0. (26)

To �nd the local conserved charges, we expand ν as series in the spectral parameter around

λ2 =∞:

ν = λ+

∞∑

n=0

(−1)n νn
λn

, (27)

and therefore

P(λ) =
∫ 2π

0

dx ν(x) = 2πλ+

∞∑

n=0

(−1)n
λn

∫ 2π

0

dx νn(x). (28)

Finally, plugging (28) into (26) we �nd the recursion relation

νn+1 =
1

2



ν,x +

n∑

p=0

νpνn−p



 , ν0 = 0, ν1 =
1

2
u. (29)

The �rst few coef�cients are

ν1 =
1

2
u, ν2 =

1

4
u,x , ν3 =

1

8
(u2 + u,xx), ν4 =

1

2
ν3,x +

1

8
u u,x,

ν5 =
1

2
ν4,x +

1

32
(u,x)

2
+

1

16
u u,xx +

1

16
u3, (30)

which correspond, when normalised as in [19] and up to total derivatives, to the following

integrals of motion:

I(cl)1 = I[KdV]
1 =

∫ 2π

0

dx

2π
u(x), I(cl)3 = I[KdV]

3 =

∫ 2π

0

dx

2π
u2(x),

I(cl)5 = I[KdV]
5 =

∫ 2π

0

dx

2π

(

u3(x)− 1

2
u2,x(x)

)

. (31)

The relation between the KdV and the modi�ed KdV (mKdV) equations emerges through

the Miura transformation

u(x, t) = −v2(x, t)− v,x(x, t), (32)

which implies

u,t + 2 u,xxx + 12 uu,x = −(2 v + ∂x)
(
v,t + 2 v,xxx − 12 v2 v,x

)
= 0. (33)

Hence a solution v(x, t) of the mKdV equation

6
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v,t(x, t)+ 2 v,xxx(x, t)− 12 v2(x, t) v,x(x, t) = 0, (34)

can be mapped into a KdV solution through the Miura transformation (32). A straightforward

consequence of this fact is that the quantities I(cl)n coincide with the integrals of motion I[mKdV]
n

of the mKdV theory

I[mKdV]
n [v] = −I[KdV]

n [u = −v2 − v,x], (35)

that is

I[mKdV]
1 =

∫ 2π

0

dx

2π
v2(x), I[mKdV]

3 = −
∫ 2π

0

dx

2π

(
v4(x)+ (v,x(x))

2
)
, . . .

(36)

Furthermore, the sinh-Gordonmodel (3) also possesses the same set of local charges, provided

the formal identi�cation v(x, t) = φ,x(x, t)/2 is made at �xed times t and t:

I[shG]
n [φ] = I[mKdV]

n

[

v =
1

2
φ,x

]

. (37)

In fact, the sinh-Gordon Lagrangian in light-cone coordinates is

L[shG]
=

1

2π

(
φ,t(x, t)φ,x(x, t)− cosh(φ(x, t))+ 1

)
, (38)

and the conjugated momentum and Hamiltonian are

π(x, t) =
1

2π
φ,x(x, t), H[shG]

=

∫ 2π

0

dx

2π
(cosh φ(x, t)− 1) . (39)

Then {φ(x, t), π(x′, t)} = δ(x − x′), and the sinh-Gordon equations of motion can be written

as

φ,xt(x, t) = 2 v,t(x, t, t) = 2 {v(x, t, t),H[shG]}. (40)

Notice that in (40), t denotes the sinh-Gordon time, which differs from the KdV (mKdV) time t

appearing in (2) and (34).7

In addition, imposing periodic boundary conditions φ(x + 2π, t) = φ(x, t) and using the

equation of motion, it is not dif�cult to prove that

{

I(cl)2n+1

[

v =
1

2
φ,x

]

,H[shG]

}

= 0, (∀n ∈ Z>). (41)

For example:

{

I(cl)1

[

v =
1

2
φ,x

]

,H[shG]

}

=

∫ 2π

0

dx

4π
φ,x φ,xt = −

∫ 2π

0

dx

4π
∂x cosh(φ(x, t)) = 0. (42)

7At least formally, relation (40) can be regarded as a particular instance of the KdV/mKdV hierarchy of equations

[38]:

v,t2k−1 ({ti}) = {I
[mKdV]
2k−1 , v({ti})} ,

where {ti}, with i ∈ 2Z+ 1, is the set of generalised time directions with the identi�cations t1 = x, t3 = t and also

t−1 = t, i.e. I[mKdV]
−1 = H[shG] (see, for example [39, 40]).

7
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Therefore, and as mentioned in the previous section, the KdV conserved charges {I(cl)n } are
also integrals of motion for the sinh-Gordon model (38). We will see later that the off-critical

�eld theory generalisation of the ODE/IM correspondence described in this review is naturally

based on the sinh-Gordon perspective of this connection.

2.2. Quantisation of the local conserved charges

It is well known (see [37]) that the KdV model admits two equivalent Hamiltonian structures.

The �rst Hamiltonian is

H = I(cl)3 =

∫ 2π

0

dx

2π
u2(x), (43)

with Poisson bracket

1

2π
{u(x), u(y)} = 2(u(x)+ u(y))δ,x(x − y)+ δ,xxx(x − y). (44)

The second possibility is instead

H′ = I(cl)5 =

∫ 2π

0

dx

2π

(

u3(x)− 1

2
(u,x(x))

2

)

, (45)

with Poisson bracket

1

2π
{u(x), u(y)}′ = 2 δ,x(x − y). (46)

Both options lead to the KdV equation:

∂tu = {H, u} = {H′, u}′ = −12 u u,x − 2 u,xxx. (47)

Furthermore, through the change of variables u(x) = −(φ,x(x))2 − φ,xx(x), the �rst Poisson

bracket (44) reduces to

1

2π
{φ(x),φ(y)} = 1

2
ǫ(x − y), (48)

with ǫ(x) = n for 2πn < x < 2π(n+ 1) and n ∈ Z. This is the standard Poisson bracket involv-

ing a single bosonic �eld φ(x, t) with periodic boundary conditions and conjugated momenta

π(x, t) as in (39).
The quantisation of (44) is then achieved by performing the following replacements [41]:

1

2π
{, }→ ic

6π
[, ], u(x)→−6

c
T(x). (49)

Expanding

T(x) =
c

24
+

∞∑

n=−∞
L−ne

inx , (50)

we see, from (44), that the operators Ln satisfy the Virasoro algebra

[Ln,Lm] = (n− m)Ln+m +
c

12
(n3 − n)δn+m,0. (51)

8
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Alternatively, performing �rst a quantumMiura transformation

−β2T(x) = :φ̂,x(x)
2 :+(1− β2)φ̂,xx(x)+

β2

24
, (52)

and expanding the fundamental quantum �eld φ̂(x) in plane-wave modes as

φ̂(x) = iQ+ iP x +
∑

n 6=0

a−n
n

einx, (53)

we obtain the Heisenberg algebra

[Q,P] =
i

2
β2, [an, am] =

n

2
β2δn+m,0. (54)

The relation between the central charge c appearing in the Virasoro algebra (51) and the

parameter β in equation (54) is

β =

√

1− c
24
−
√

25− c
24

. (55)

The highest weight (vacuum) vector |p〉 over the Heisenberg algebra is de�ned by

P|p〉 = p|p〉, an|p〉 = 0, (∀n > 0). (56)

In terms of the Virasoro representation, the states |p〉 are highest weights with conformal

dimensions

∆ =

(
p

β

)2

+
c− 1

24
, (57)

L0|p〉 = ∆|p〉, Ln|p〉 = 0, (∀n > 0). (58)

The quantum charges were �rst determined in [36] under the replacement of classical �elds

with the corresponding operators (φ→ φ̂), and by following the scheme

(a) In =: I(cl)n :, (n = 1, 3);

(b) In =: I(cl)n :+
∑n

k=1 (β)
2k : I(k)n :, (n = 5, 7, . . . );

(c) The quantum corrections : I(k)n : do not contain any of the : I(cl)m : as a part (see [36] for more

details.);

(d) [In, Im] = 0, (∀ n,m ∈ 2Z> + 1).

The �rst three non-vanishing local integrals of motion, written in terms of the generators of

the Virasoro algebra (52), are:

I1 = L0 −
c

24
, I3 = 2

∞∑

n=1

L−nLn + L2
0 −

c+ 2

12
L0 +

c (5 c+ 22)

2880
,

I5 =
∑

n1+n2+n3=0

: Ln1Ln2Ln3 :+

∞∑

n=0

(
c+ 11

6
n2 − 1− c

4

)

L−nLn +
3

2

∞∑

n=0

L1−2nL2n−1

− c+ 4

8
L2
0 +

(c+ 2)(3 c+ 20)

576
L0 −

c (3 c+ 14)(7 c+ 68)

290 304
.

(59)

9
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In equation (59), the normal ordering : : means that the operators Lni with larger ni are
placed to the right. The corresponding expectation values Ivacn = 〈p|In|p〉 on the vacuum states

are

Ivac1 = ∆− c

24
, Ivac3 = ∆

2 − c+ 2

12
∆+

c (5 c+ 22)

2880
,

Ivac5 = ∆
3 − c+ 4

8
∆

2 − (c+ 2)(3 c+ 20)

576
∆− c (3 c+ 14)(7 c+ 68)

290 304
, (60)

where c and∆ are related to p and β through equations (55) and (57). An alternative, but more

sophisticated, method leading to the same result (59) is described in [19].

3. The ODE/IM correspondence for the quantum KdV-shG hierarchy

The simplest instance of the ODE/IM correspondence involves, on the ODE side, the second

order differential equation [18, 42]

(
−∂2x + P(x)

)
χ(x) = 0 (61)

with

P(x) = P[KdV]
0 (x,E, l,M) =

(

x2M +
l(l+ 1)

x2
− E

)

. (62)

The generalised potential P and wavefunction χ depend, therefore, on three extra parameters:

the energy or spectral parameter E, the ‘angular-momentum’ l, and the exponentM. For sim-

plicity, throughout this review, M and l will be kept real with M > 0. However, there are no

serious limitations forbidding the extension of bothM and l to the complex domain. The range

−1 6 M 6 0 is essentially equivalent, by a simple change of variables, to the M > 0 regime

[34, 42].8Wewill see that forM > −1 equation (61) is related, through theODE/IM correspon-

dence, to the conformal �eld theory with central charge c 6 1 associated to the quantisation of

the KdV-shG theory9.

The ODE/IM correspondence is based on the observation that the CFT version of Baxter’s

TQ equation [44] for the six-vertex model, and the quantum Wronskians introduced in the

works by BLZ [19], exactly match the Stokes relations and Wronskians between independent

solutions of (61). BLZ introduced a continuum analogue of the lattice transfer matrix T for the

quantumKdV equation, an operator-valued functionT(λ,p), togetherwith the BaxterQ±(λ,p)
operators with Q(λ,p) ≡ Q+(λ,p) = Q−(λ,−p), where p is the quasi-momentum [19]. Both

the Q and T operators are entire in the spectral parameter λ with

[T(λ,p),Q±(λ,p)] = 0. (63)

All the descendent CFT states in the Verma module associated to the highest-weight vector

|p〉 are characterised by the real parameter p. Since T andQ± commute, we can work directly

with their eigenvalues

T(λ,p) = 〈p|T(λ,p)|p〉, Q±(λ,p) = 〈p|λ∓p/β
2

Q±(λ,p)|p〉 (64)

8 In fact, with the identi�cation β−2 = M+ 1, the equivalence (−1 6 M 6 0)↔ (M > 0) coincides with the

β2→ β−2, duality in the integrals of motion in the quantum KdV model (see, for example, [20]).
9The regime M < −1 is also interesting, since it is related to the Liouville �eld theory [43].

10
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which satisfy the TQ relation [20]

T(λ,p)Q±(λ,p) = e∓i2πpQ±(q
−1λ,p)+ e±i2πpQ±(qλ,p) (65)

with q = exp(iπβ2).

It turns out that equation (65) exactly matches a Stokes relation, i.e. a connection formula,

for particular solutions of the ODE (61). The precise correspondence between the parameters

in (65) and those in (61) is:

β−2 = M + 1, p =
2l+ 1

4M + 4
, λ = (2M + 2)−2M/(M+1)

Γ

(
M

M + 1

)−2
E.

(66)

Supplemented with the analytic requirement that both T and Q are entire in λ (65), leads to

the Bethe Ansatz equations. At a zero λ = λi ofQ(λ,p) = Q+(λ,p), the RHS of (65) vanishes

since T(λi,p) is �nite, and hence

Q(q−1λi,p)

Q(qλi,p)
= −ei4πp. (67)

As a result, the link between (61) and the Baxter relation (65) for the quantum KdV model

is more than formal: the resulting T and Q functions emerging from these two—apparently

disconnected—setups are exactly the same.

3.1. Derivation of Baxter’s TQ relation from the ODE

Consider the ODE (61), where we will henceforth allow x to be complex, living on a suitable

cover C of the punctured complex plane C∗ = C\{0} so as to render the equation and its

solutions single-valued. A straightforward WKB analysis shows that for large x close to the

positive real axis a generic solution has a growing leading asymptotic of the form

χ(x) ∼ c+ P(x)
−1/4 exp

(∫ x

dx′
√

P(x′)

)

, (Re[x]→+∞). (68)

Even at �xed normalisation c+, this asymptotic does not uniquely characterise the solution,

since an exponentially decreasing contribution can always be added to χ(x) without spoil-
ing the large-x behaviour (68). The exponentially small term can explicitly emerge from the

asymptotics only if the nontrivial solution to (61) is carefully chosen such that the coef�cient

of the exponentially growing term vanishes. In this special situation

χ(x) ∼ c− P(x)
−1/4 exp

(

−
∫ x

dx′
√

P(x′)

)

, (Re[x]→+∞). (69)

Apart for the arbitrariness of the overall normalisation factor c−, the asymptotic (69) now

uniquely speci�es the solution of (61). This was formalised by Sibuya and collaborators in the

following statement, which holds not only on the real axis but also in an M-dependent wedge

of the complex plane: the ODE (61) has a basic solution y(x,E, l) with the following properties,
which �x it uniquely:

(a) y(x,E, l) is an entire function of E, and a holomorphic function of x ∈ C, where C is a

suitable cover of the punctured complex plane C∗ = C\{0} ;

11
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(b) the asympotic behaviour of y(x,E, l) for |x| →∞ with |arg(x)| < 3π/(2M+ 2) is

y ∼ 1√
2i
x−

M
2 exp

(

− xM+1

M + 1

)

, y,x ∼ −
1√
2i
x
M
2 exp

(

− xM+1

M + 1

)

,

(70)

though there are small modi�cations in the asymptotics (70) forM 6 1 (see, for example,

[34]).

To proceed with our analysis, it is necessary to continue x even further into the complex

plane, beyond the wedge where Sibuya’s initial result applies. We de�ne general rays in the

complex plane by setting x = ̺eiϑ with ̺ and ϑ real. Substituting into the WKB formulas (68)

and (69), we detect two possible asymptotic behaviours

χ± ∼ P−1/4 exp

(

± 1

M + 1
eiϑ(1+M)̺1+M

)

. (71)

For most values of ϑ, one of these solutions will be exponentially growing, or dominant, and
the other exponentially decaying, or subdominant. However, for

Re
[
eiϑ(1+M)

]
= 0 (72)

both solutions oscillate, and neither dominates the other. The values

ϑ = ± π

2M + 2
, ± 3π

2M + 2
, ± 5π

2M + 2
, . . . , (73)

where this happens, and the two solutions (71) exchange rôles, are called anti-Stokes lines10.
The Stokes lines are instead the lines along which χ either grows or shrinks the fastest, and

in the current case they lie right in the middle, between adjacent anti-Stokes lines, and are

characterised by

Im
[
eiϑ(1+M)

]
= 0. (74)

The wedges between adjacent anti-Stokes lines are called Stokes sectors, and we will label

them as

Sk =
{

x ∈ C :

∣
∣
∣
∣
arg(x)− 2πk

2M + 2

∣
∣
∣
∣
<

π

2M + 2

}

. (75)

In this notation the region of validity of the asymptotic (70) is the union of wedges

SWKB = S−1 ∪ S0 ∪ S1 (76)

where S0 is the closure of S0.
Finding the large |x| behaviour of the particular solution y(x,E, l) outside the region (76) is

a non-trivial task: the continuation of a limit is not in general the same as the limit of a continu-

ation, and so (70) no longer holds once SWKB is left. This issue is related to the so-called Stokes
phenomenon, wherein the quantities of principal interest are the Stokes multipliers, encoding
the switching-on of small (subdominant) exponential terms as Stokes lines are crossed [45]

(�gure 1).

10We are following here the convention used, for example, in [45]. Unfortunately, the lines characterised by the

condition (72) are sometimes called instead Stokes lines.
12
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Figure 1. Stokes, WKB sectors and convention for the branch cut when 2M /∈ Z>.

Thus far we have discussed the behaviour of solutions to (61) when |x| is large. Consider
now the region x ≃ 0. For M > −1, the origin corresponds to a regular singularity, and the

associated indicial equation shows that a generic solution to (61) behaves as a linear combina-

tion of xl+1 and x−l as x→ 0. This allows a special solution ψ(x,E, l) to be speci�ed by the

requirement

ψ(x,E, l) ∼ xl+1
+O(xl+3). (77)

This boundary condition de�nesψ(x,E, l) uniquely providedRe[l] > −3/2. A second solution

can be obtained from ψ(x,E, l) by noting that, since the differential equation (61) is invariant

under the analytic continuation l→−1− l, ψ(x,E,−1− l) is also a solution. Near the origin,
ψ(x,E,−1− l) ∼ x−l + O(x−l+2), therefore for generic values of the angular momentum l the
two solutions

ψ+(x,E) = ψ(x,E, l), ψ−(x,E) = ψ(x,E,−1− l), (78)

are linearly independent, i.e. the Wronskian W [ψ+,ψ−] is non-vanishing. Some subtleties

arise at the isolated points

l+
1

2
= ± (m1 + (M + 1)m2) , (m1,m2 ∈ Z>), (79)

where {ψ+,ψ−} fails to be a basis of solutions [34]. For 2M ∈ Z>, this is just the standard

resonant phenomenon in the Frobeniusmethod, which predicts that one of the two independent

solutions may acquire a logarithmic component, when the two roots of the indicial equation

13
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differ by an integer. For the remainder of this review we will steer clear of such points, but see

[34] for some further discussion of the issue.

A natural eigenproblem for a Schrödinger equation, the so-called radial or central problem,

is to look for values of E at which there exists a solution that vanishes as x→+∞, and behaves

as xl+1 at origin. For Re[l] > −1/2, this boundary condition is equivalent to demanding the

square integrability of the solution on the half line, and for Re[l] > 0 to the requirement that

the divergent x−l−1 term is absent. For Re[l] 6 −1/2, the problem can be de�ned by analytic

continuation.

Addressing the reader to [34, 35] for more details, we proceed by adopting a trick due to

Sibuya [21]. Starting from the uniquely-de�ned solution y(x,E, l), subdominant in the Stokes

sector S0, we generate a set of functions

yk(x,E, l) = ωk/2y(ω−kx, ω2kE, l), ω = e
2πi

2M+2 , (k ∈ Z), (80)

all of which solve (61). Notice that the asymptotic expansion

y±1(x,E, l) ∼ ±
√
i
x−M/2√

2
exp

(
xM+1

M + 1

)

, (81)

is valid in the Stokes sector S0 containing the real line. Hence, we can compute theWronskians

W [y, y±1] using the expansions (70) and (81), �nding that they are non-zero:W [y, y±1] = ±1.
As a consequence {y, y±1} are bases of the two-dimensional space of solutions to the ODE

(61). More generally, a similar consideration shows that W
[
yk, yk+1

]
= 1 and hence any pair

{yk, yk+1} constitutes a basis. In particular, y−1 can be written as a linear combination of the

basis elements y = y0 and y1 as y−1 = Cy+ C̃y1, or equivalently

C(E, l) y(x,E, l) = y−1(x,E, l)− C̃(E, l) y 1(x,E, l), (82)

where the connection coef�cients C̃ and C are the Stokes multipliers. For the right-hand side

of (82) to match the exponentially decreasing behaviour on the left, we must set C̃ = −1
(cf equation (81)) and so

C(E, l) y0(x,E, l) = y−1(x,E, l)+ y1(x,E, l), (83)

where the sole non-trivial StokesmultiplierC(E, l) takes, in the chosen normalisations (70) and

(80) for y(x) and yk(x), the simple form:

C(E, l) = W[ y−1, y1]/W[ y0, y1] = W[ y−1, y1]. (84)

We now project y(x,E, l) onto another solution, de�ned by its asymptotics as x→ 0. Taking

the Wronskian of both sides of (83) with ψ(x,E, l) results in the x-independent equation

C(E, l)W[y0,ψ](E, l) = W[y−1,ψ](E, l)+W[y1,ψ](E, l). (85)

To relate the objects on the right-hand side of this equation back to W [y0,ψ], we �rst de�ne
another set of ‘rotated’ solutions, by analogy with (80):

ψk(x,E, l) = ωk/2ψ(ω−kx, ω2kE, l), (k ∈ Z). (86)

The functions (86) also solve (61) and a consideration of their behaviour as x→ 0 shows that

ψk(x,E, l) = ω−(l+1/2)kψ(x,E, l). (87)

14
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In addition,

W[yk,ψk](E, l) = ωkW[y(ω−kx,ω2kE, l),ψ(ω−kx,ω2kE, l)] = W[y,ψ](ω2kE, l). (88)

Combining these results,

W[yk,ψ](E, l) = ω(l+1/2)kW[y,ψ](ω2kE, l), (89)

and setting

D(E, l) = W[y,ψ](E, l), (90)

the projected Stokes relation (85) becomes

C(E, l)D(E, l) = ω−(l+1/2)D(ω−2E, l)+ ω(l+1/2)D(ω2E, l). (91)

Therefore, as anticipated at the end of section 3, with the identi�cations T = C andQ = D and

(66), the Stokes equation (91) exactly matches the Baxter TQ relation (65) for the quantum

KdV theory described in [42]. Finally, the constraintW [yk, yk+1] = 1, becomes

det

(

ω−
2l+1
4 D−(ω

−1E) ω
2l+1
4 D−(ωE)

ω
2l+1
4 D+(ω

−1E) ω−
2l+1
4 D+(ωE)

)

= (2l+ 1), (92)

with D−(E) = D(E, l) and D+(E) = D(E,−l− 1). Equation (92) is known in the literature as

quantum Wronskian [19], and is a special case of the QQ-systems of [46]. In turn, the QQ-

systems are x-independent versions of the ψ-systems of [47].

3.2. All orders semiclassical expansion and the quantum integrals of motion

We �rst note that with a simple change of variables [48], the Schrödinger equation (61) can be

recast into the form

(
−ε2∂2w + Z(w)

)
y(w) = 0, (93)

where

Z(w) =
1

4l̂ 2
w1/l̂−2(wM/l̂ − 1), l̂ = l+

1

2
, ε = E−(M+1)/2M. (94)

A key feature of equations (93) and (94) is that the E-dependence, contained in ε, has been
factored out of the transformed potential Z(w). Suppose now that (93) has a solution of the

form

y(w) = exp

(

1

ε

∞∑

n=0

εnSn(w)

)

. (95)

For equation (93) to be ful�lled order-by-order in ε, the derivatives Sn,w(w) must obey the

following recursion relation:

S0,w(w) = −
√

Z(w) , 2 S0,w Sn,w +

n−1∑

j=1

S j,w Sn− j,w + Sn−1,ww = 0, (n > 1).

(96)
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The �rst few terms of the solution are

S1,w = − Z,w
4Z

, S2,w = − 1

48

(
Z,ww
Z3/2

+ 5 ∂w

(
Z,w
Z3/2

))

,

S3,w = − Z,ww
16Z2

+
5(Z,w)2

64Z3
= ∂w

(
5(Z,w)2

64Z3
− Z,ww

16Z2

)

, (97)

and further terms are very easily obtained using, for example, Mathematica. Keeping only

the �rst two contributions, S0 and S1, corresponds to the standard physical optics or WKB

approximation. Near the turning points Z = 0 the approximation breaks down, and further

work is needed to �nd the connection formulae for the continuation of WKB-like solutions

of given order from one region of non-vanishing Z to another (see, for example, section 10.7

of [49]).

In cases where Z(w) is an entire function of the coordinate w, with just a pair of well-

separated simple zeros on the real axis, Dunham [50] found a remarkably simple formulation

of the �nal quantisation condition, valid to all orders in ε:

1

i

∮

γ

dw

( ∞∑

n=0

εn−1Sn,w(w)

)

= 2π k, (k ∈ Z>). (98)

In (98), the contour γ encloses the two turning points; it closes because for such a Z all of the

functions Sn,w derived from (96) are either entire or else have a pair of square root branch points

which can be connected by a branch cut along the real axis. Notice that the contour γ can be

taken to lie far from the two turning points where the WKB series breaks down and so there

is no need to worry about connection formulae. All of the terms S2n+1,w, n > 1, turn out to be

total derivatives and can, therefore, be discarded, while the contribution of 1
2i
S1,w = − 1

8i
Z,w/Z

is a simple factor π/2, when integrated round the two zeros of Z. Dunham’s condition then

becomes

1

i

∮

γ

dw

( ∞∑

n=0

ε2n−1S2n,w(w)

)

= (2k+ 1)π, (k ∈ Z>). (99)

In the current situation, we are interested in the radial connection problem, where the

integration contour runs initially on the segment w ∈ (0, 1):

∮

γ

dw S2n,w(w)→ 2

∫ 1

0

dw S2n,w(w). (100)

However, for generic values of l̂ , M and n the integrand in (100) is divergent at w = 0 and/or

at w = 1. We need, therefore, a consistent regularisation prescription. To this end we replace

the integration on the segment w ∈ (0, 1) with an integral over the Pochhammer contour γP,
represented in �gure 2, around the branch points at w = 0 and w = 1. To proceed, we �rst

perform a change of variable z = wM/l̂ ,

Ǐ2n−1(M, l̂ ) =
2

i

∫ 1

0

dw S2n,w(w) =
2

i

l̂

M

∫ 1

0

dz S2n,w
(

zl̂ /M
)

zl̂ /M−1. (101)

Setting
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Figure 2. The Pochhammer contour γP.

S̃2n(z) =
2

i

l̂

M
S2n,w

(

zl̂ /M
)

zl̂ /M−1, (102)

the monodromies around z = 0 and z = 1 are:

S̃2n(ze
i2π)→ ei

π
M (1−2n)S̃2n(z), S̃2n((z− 1)ei2π + 1)→−S̃2n(z). (103)

Therefore, we can replace the integral over the interval (0, 1) with an integral over γP, pro-
vided the extra contribution introducedby integratingover the Pochhammer contour is properly

balanced by a normalisation factor. The result is

Ǐ2n−1(M, l̂ ) =
1

2
(

1− ei
π(1−2n)

M

)

∮

γP

dz S̃2n(z), (104)

which is now well de�ned for generic values of M and λ and can always be written as a �nite

sum of Euler Beta functions. The explicit outcome is:

Ǐ2n−1(M, l̂ ) = (−1)n
√
π Γ
(
1− (2n−1)

2M

)

Γ
(
3
2
− n− (2n−1)

2M

)
(4M + 4)n

(2n− 1) n!
I2n−1(M, l̂ ), (105)

where I−1 = 1, while the coef�cients I2n−1(M, l̂ ), with n > 0, coincide with the local KdV

conserved charges for the vacuum states (60), provided the following identi�cations are

made:

c = 1− 6M2

M + 1
, ∆ =

(2l+ 1)2 − 4M2

16(M + 1)
. (106)

The exact link between the all-order WKB coef�cients and the integrals of motion (60) is

another striking result of the ODE/IM correspondence.

3.3. Simple generalisations

First of all, the link between the ODE (61) and the vacuum states of the quantum KdV model

in �nite volume L = 2π can be generalized to accommodate the whole tower of excited states
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[33] (see also [51]). The basic replacement is to send P[KdV]
0 → P[KdV]

exc in (62) with

P[KdV]
exc (x,E, l,M, {zk}) =

(

x2M +
l(l+ 1)

x2
− 2∂2x

(
K∑

k=1

ln(x2M+2 − zk)
)

− E
)

,

(107)

where the constants {zk} satisfy the auxiliary Bethe ansatz type equations:

K∑

j=1
j6=k

zk(z2k + (M + 3)(2M + 1)zkz j +M(2M + 1)z2j)

(zk − z j)3
− Mzk

4(M + 1)
+∆ = 0.

(108)

Generalisations of the ODE/IM correspondence for both the vacuum and the excited states

involving families of higher-order differential operators were studied in [47, 52–58].

In the following, instead of describing the setup of [33] or [47, 52–59] we shall focus on

an off-critical variant, which is related to the classical problem of embedded surfaces in AdS3
and also to polygonalWilson loops [14, 24]. As a preliminary remark, we notice that a natural

generalisation of the Sturm-Liouville problem associated with (61) and (62) corresponds to

polynomial potentials of the form

P[HsG]
0 (x, {xk}) =

2N∏

k=1

(x − xk), (2N ∈ Z>), (109)

where x1 can be set to zero by shifting x, while the remaining constants xk (i = 2, . . . , 2N)
are free parameters. It was argued in [60] that the choice (109), is connected to the Homo-

geneous sine-Gordon model (hsG) in its CFT limit or equivalently to the SU(2N)2/U(1)2N−1

parafermions [61–63]. The speci�c choices of the set xk which lead to

P[Vir]
0 (x,m,m′) = xm−2(xm

′−m − Ẽ), (110)

correspond to the Virasoro minimal modelsMm,m′ . As described in [60], the generalised poten-

tial (110) is related to the original instance of the ODE/IM correspondence, discussed in the

previous sections, by a simple change of variables.

We shall see in the remaining part of this review that the polynomial potentials (109) appear

naturally in the description of Wilson loops in AdS3 with polygonal boundaries.

4. Classical integrable equations and embedded surfaces

In this section we wish to recall the general properties of minimal and constant mean curvature

(CMC) surfaces embedded in AdSn+1 and explain how a linear differential system arises as

a structural constraint on the functions describing the embedding of these surfaces. We will

then focus on the simplest non-trivial case of minimal surfaces embedded in AdS3. Here a

single �eld ϕ̃ is present, parametrizing the conformal factor of the metric. This �eld satis�es

the modi�ed sinh-Gordon equation [24, 64–66], with (anti)-holomorphic potentials A and Ā,11

11As shown in section 4.1, these functions intuitively measure how ‘curved’ the surface is, and enter in the de�nition

of the Gauss curvature.
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whose singularity structure has profound effects on the shape of the embedded surface. In

particular, the presence of an irregular singularity (e.g. when A is a polynomial) corresponds

to the presence of a Stokes phenomenon in the linear differential system which then translates

into the existence of light-like edges of the surface at the conformal boundary of AdS3. For A
and Ā polynomials of order 2N ∈ Z>, the embedded surface will sit on a light-like 4(N+ 1)-

gon on the conformal boundary. Finally, we will explain how to encode the full information

of this embedding into a set of �nite difference equations, the T-system and the Baxter TQ

equation, which can then be converted into non-linear integral equation form.

4.1. Surfaces embedded in AdSn+1

The (n+ 1)-dimensional anti de-Sitter space AdSn+1 can be described by a pseudo-

spherical restriction of the pseudo-Riemannian �at space R2,n. More precisely, consider
~Y =

(
Y−1, Y0, . . . , Yn

)T ∈ R2,n, where the superscript T denotes the operation of matrix

transposition; then the condition

~Y · ~Y ≡ −
(
Y−1
)2 −

(
Y0
)2

+

n∑

k=1

(
Yk
)2

= −α2, (α ∈ R), (111)

represents an immersion of AdSn+1 with radius α inside R2,n. Here and below we use the dot

to denote the scalar product of vectors in R2,n:

~Y · ~Y ′ = ηABY
AY ′B, ηAB = diag



−1,−1, 1, . . . , 1
︸ ︷︷ ︸

n



 . (112)

Concerning the indices we will adopt the convention

A,B,C, . . . = −1, 0, 1, . . . , n, µ, ν, . . . = 0, 1, (113a)

j, k, l, . . . = 1, 2, . . . , n, a, b, . . . = 1, 2. (113b)

The AdSn+1 space can be parametrised by global coordinates (ρ, τ , θ1, . . . , θn−1) as

Y−1 = α cosh(ρ) cos(τ ), Y0
= α cosh(ρ) sin(τ ),

Y j
= α sinh(ρ) cos(θn− j+1)

n− j
∏

k=1

sin(θk), θn = 0. (114)

From the last equations we can read the standard AdS metric

ds2 = α2
(
−cosh2(ρ) dτ 2 + dρ2 + sinh2(ρ) dΩ2

n−1
)
, (115)

where dΩ2
n−1 is the metric of the unit (n− 1)-dimensional sphere. The conformal boundary of

AdSn+1 can be reached by taking the limit ρ→∞ jointly with a rescaling of the arc-length

ds→ ds/sinh(ρ). The resulting metric is that of a cylinder in R1,n :

ds2∂ = α2
(
−dτ 2 + dΩ2

n−1
)
. (116)

Let us mention another useful parametrization of the space AdSn+1: the Poincaré coordi-
nates {r, t,~x}

Y−1 =
α2

2r
+ r

α2 + |~x|2 − t2

2α2
, Yn = −α

2

2r
+ r

α2 − |~x|2 + t2

2α2
,
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Y0
=

r

α
t, Y j

=
r

α
x j, 1 6 j < n. (117)

In these coordinates the metric reads

ds2 =
α2

r2
dr2 − r2

α2
dt2 +

r2

α2
|d~x|2, (118)

from which we see that r→∞ approaches the boundary ∂AdSn+1. The singularity r = 0 is an

apparent one, called Poincaré-Killing horizon and shows that the Poincaré coordinates are not
global.

Now that we have de�ned our embedding space, AdSn+1, we move on to the construction

of the embedded surface Σ. Here we have a choice to make: we need to decide whether the

time-like direction of AdSn+1 lies in the tangent space TΣ, in which case we will have what is
known as a time-like surface, or is orthogonal to it which will yield a space-like surface. This

choice will dictate the type of reality conditions we need to impose on the parametrisation of

Σ. For time-like surfaces we will need to describe the surface with Minkowski coordinates

ξµ or, equivalently, with light-cone coordinates
(
ξ+ = ξ0 + ξ1, ξ− = ξ0 − ξ1

)
∈ R2. On the

contrary, space-like surfaces will be parametrised by Euclidean coordinates xa or, which is

the same, complex coordinates
(
z = x1 + i x2, z̄ = x1 − i x2

)
∈ C. In the following we will

concentrate on the latter type of surfaces. The same type of analysis can be carried over with

some modi�cations for time-like surfaces. As is usual when dealing with the Euclidean plane,

we will let the coordinates (z, z̄) take values in the full two dimensional complex spaceC2 while

keeping the real slice condition z∗ = z̄ in the back of our minds, imposing it only when we see

�t. Furthermore, we will continue to denote partial derivatives with subscripts after a comma,

i.e.:

f,z (z, z̄) =
∂

∂z
f (z, z̄) = ∂ f (z, z̄) , f,̄z (z, z̄) =

∂

∂ z̄
f (z, z̄) = ∂̄ f (z, z̄) . (119)

Finally, whenever it is not necessary, we will drop the explicit dependence on the coordinates.

The description of the embedding of Σ in AdSn+1 is carried by the embedding function
~Y : C2 → R2,n, such that ~Y (z, z̄) · ~Y (z, z̄) = −α2. From it we can immediately construct the

tangent space TpΣ at any point p ∈ Σ as the span of the two vectors ~Y ,z and ~Y ,̄z, and compute

the metric tensor, also known as �rst f undamental f orm:

I = ds2 = gzz(dz)
2
+ 2 gz̄z dz dz̄+ gz̄ z̄(dz̄)

2, g =

(
~Y ,z · ~Y ,z ~Y ,z · ~Y ,̄z
~Y ,z · ~Y ,̄z ~Y ,̄z · ~Y ,̄z

)

. (120)

It is an established fact [67–70] that, at least locally, one can choose isothermal coordinates
(
z′, z̄′

)
such that

ds2 = 2 g′z′̄z′ dz
′ dz̄′. (121)

In the followingwe will �x these coordinates and drop the primes. The requirements~Y ,z · ~Y ,z =
~Y ,̄z · ~Y ,̄z = 0 are known as Virasoro constraints and we see that these immediately imply that

the (real) vectors ~Y ,1 = ~Y ,z + ~Y ,̄z and ~Y ,2 = −i~Y ,z + i~Y ,̄z satisfy the following identities

~Y ,1 · ~Y ,1 = ~Y ,2 · ~Y ,2, ~Y ,1 · ~Y ,2 = 0. (122)

As a consequence, since we already have one independent time-like vector ~Y and in R2,n there

can be at most 2, we conclude that

~Y ,1 · ~Y ,1 > 0, ~Y ,2 · ~Y ,2 > 0 =⇒ ~Y ,z · ~Y ,̄z > 0. (123)
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Due to the AdS constraint ~Y · ~Y = −α2, we see that the triple
(

~Y, ~Y ,z, ~Y ,̄z

)

spans, at any

point of Σ, a three-dimensional subspace of AdSn+1. In order to understand the structure of

the embedding, we now need to augment the above triple to a full basis of R2,n and we can do

this by introducing the following set of orthonormal real vectors,12

{

~N j

}n−1

j=1
, ~N i · ~N j = ηi j, ηi j = diag (−1, 1, . . . , 1) , (124)

spanning, together with ~Y , the normal space
(
TpΣ

)⊥
at any point p ∈ Σ :

~Ni · ~Y = ~Ni · ~Y ,z = ~Ni · ~Y ,̄z = 0. (125)

For each of these vectors there exists a second f undamental f orm IIj, de�ned as

II j =
(
d j
)

zz
(dz)2 + 2

(
d j
)

z̄z
dz dz̄+

(
d j
)

z̄ z̄
(dz̄)2, d j =

(
~Y ,zz · ~N j ~Y ,z̄z · ~N j
~Y ,z̄z · ~N j ~Y ,̄z z̄ · ~N j

)

.

(126)

Note that while in principle we should also have a fundamental form associated to the normal

direction ~Y,13 this turns out to be trivial:

d0 =

(
~Y ,zz · ~Y ~Y ,z̄z · ~Y
~Y ,z̄z · ~Y ~Y ,̄z z̄ · ~Y

)

=

(
−~Y ,z · ~Y ,z −~Y ,z · ~Y ,̄z

−~Y ,z · ~Y ,̄z −~Y ,̄z · ~Y ,̄z

)

= −g. (127)

It is now a good point to simplify the notation by introducing the following functions

eϕ̃ = ~Y ,z · ~Y z̄, H j = e−ϕ̃~Y ,z̄z · ~N j, (128a)

A j = ~Y ,zz · ~N j, Ā j = ~Y ,̄z z̄ · ~N j. (128b)

The �eld ϕ̃ ∈ R is sometimes called the Pohlmeyer �eld. From the �rst and the second

fundamental forms one can construct the shape operators

w j = d jg
−1

=

(
H j e−ϕ̃A j

e−ϕ̃Ā j H j

)

, (129)

whose invariants compute the total Gauss curvature K and the components Hj of the mean

curvature vector ~H

H j =
1

2
tr
(
w j

)
=
~Y ,z̄z · ~N j

~Y ,z · ~Y ,̄z
= H j, (130a)

K =

n−1∑

j=1

det
(
w j

)
=

n−1∑

j=1

(
H jH j − e−2ϕ̃A jĀ j

)
. (130b)

12To have a basis ofR2,n we need 2 time-like vectors. One, ~Y , we already have, the other has to be one of these normals.

We choose it to be ~N1.
13We will identify this direction with the index 0.
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Now we have, at any point p ∈ Σ, a complete set of orthogonal vectors in R2,n which we

collect as the rows of a matrix σ

σ =
(
~Y, ~Y ,z, ~Y ,̄z, ~N1, · · · , ~Nn−1

)T
. (131)

This object is known as the f rame �eld or moving f rame and is anchored on the surface Σ.

Consequently, its motion along the surface has to satisfy certain constraints and, since σ pro-

vides a basis everywhere on Σ, these take the form of a set of linear equations, called the

Gauss–Weingarten (GW) system:

σ,z = Uσ, σ ,̄z = Ūσ. (132)

Finally, this system immediately implies a consistency condition which, in the geometry

literature, is known as the Gauss–Codazzi–Mainardi (GMC) equation

U,̄z − Ū ,z +
[
U , Ū

]
= 0. (133)

The above equation represents a set of structural conditions for the surface, imposing non-

linear constraints on the functions de�ning the shape and properties of Σ. Its functional form

is completely general and appears as a condition for every surface embedded in any space, the

details of the particular problem at hand being contained in the form of the matrices U and

Ū . In a more geometrical language, U and Ū are the components of a connection one-form

U dz+ Ūdz̄ and the GMC equation above is a vanishing condition on the curvature two-form

associated to said connection, completely analogous to the ZCC (4) which appeared in the

case of the KdV equation. In our case, for a generic surface embedded in AdSn+1, U and Ū are

(n+ 2)× (n+ 2) matrices, which depend on

• the real Pohlmeyer �eld ϕ̃,

• the n− 1 real mean curvaturesHj,

• the n− 1 complex functions Aj,
• the 1

2
n (n− 1) complex functions Bij = −Bji, describing the rotation of the normal space

(TΣ)⊥ under motion along the surface:

Bi j = ~Ni,z · ~N j = −~Ni · ~N j,z. (134)

The curvatures Hj and the functions Aj are usually treated as inputs, identifying the type of

surface one is dealing with. An interpretation of the functionsAj for the case n = 2 is presented

in section 4.3. On the other hand, the Pohlmeyer �eld ϕ̃ and the functions Bij are to be treated
as proper dynamical variables.

We will not give the explicit expressions, in the general case, for the matrices U and Ū nor

for the GMC equation, as the case of interest of this review, presented below, is n = 2. The

reader can easily extract them by derivation from the various constraints amongst the vectors

in σ. We wish however to note that for general n the matrices U and Ū entering the GW

system (132) can be seen to belong to the af�ne untwisted Kač–Moody algebra of type B or C.
By appropriately rede�ning the quantities listed above, one can connect this system with the

corresponding Toda �eld theory. Off-critical generalisations of the ODE/IM correspondence

associated to higher-rank algebras have been discussed in [71–78], although without speci�c

analysis of the connection with surface embedding. The case we focus on here, that is n = 2,

is particularly simple as the associated algebra turns out to be B(1)
1 = so

(1)
3 ≡ A(1)

1 = su
(1)
2 .
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4.2. Minimal surfaces in AdS3

While in section 4.1 the description of embedded surfaces in AdSn+1 was reviewed, here we

concentrate on the simple case of minimal surfaces embedded in AdS3.
14 The number of func-

tions we have to deal with collapses now to two: the real Pohlmeyer �eld ϕ̃ and the complex

function A1 = A. The former will be our unknown function, while we will consider A as a

given.

As mentioned in section 4.1, the structural data of an embedded surface Σ ⊂ AdS3 is con-

tained in a pair of 4× 4 matrices U and Ū satisfying the Gauss–Codazzi–Mainardi equation

U,̄z − Ū ,z +
[
U , Ū

]
= 0. (135)

Thesematrices depend on the complex variables (z, z̄) through the Pohlmeyer �eld ϕ̃, its deriva-
tives and the function A. In the case of a minimal surface in AdS3 they take the following

explicit form

U =








0 1 0 0

0 ϕ̃,z 0 −A
1

α2
eϕ̃ 0 0 0

0 0 −e−ϕ̃ A 0








, Ū =








0 0 1 0
1

α2
eϕ̃ 0 0 0

0 0 ϕ̃,̄z −Ā
0 −e−ϕ̃Ā 0 0








,

(136)

and the GMC equation reduces to the non-linear partial differential equation

ϕ̃,z̄z =
1

α2
eϕ̃ − AĀe−ϕ̃, A,̄z = Ā,z = 0. (137)

This can be further simpli�ed by introducing the quantities

ϕ = ϕ̃− ln(2α2), P (z) =
1

2iα
A(z), P̄ (̄z) = − 1

2iα
Ā(̄z), (138)

in terms of which the matrices U and Ū read

U =








0 1 0 0

0 ϕ,z 0 −2iαP
2eϕ 0 0 0

0 0 −ie
−ϕ

α
P 0








, Ū =








0 0 1 0

2eϕ 0 0 0

0 0 ϕ,̄z 2iαP̄

0 i
e−ϕ

α
P̄ 0 0








,

(139)

and the GMC equation takes the form of the so-called modi�ed sinh-Gordon equation

1

2
ϕ,z̄z = eϕ − PP̄e−ϕ. (140)

This equation can be written in the form (3) by a shift of the �eld ϕ together with a rede�nition

of the variables z, z̄

ϕ (z, z̄) → ϕ (w (z) , w̄ (̄z))+
1

2
ln
(
P (z) P̄ (̄z)

)
, (141a)

14 In three dimensions, a minimal surface is de�ned by the vanishing of the mean curvature H ≡ H1 = 0.
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w (z) = 2

z∫
√

P (z′) dz′, w̄ (̄z) = 2

z̄∫
√

P̄ (̄z′)dz̄′. (141b)

Wewish to remark that the above transformation,making (140) into (3), does alter the geometry

on which the equation is considered. Moreover, equation (140) is de�ned on the space C2, on

which we impose the real slice condition z̄ = z∗; on the other hand, equation (3) is de�ned on
R2. Hence the two equations are not to be considered equivalent.

Although it is not immediately evident, the above pair (139) can be gauge rotated to a tensor

product form15:

U ′ = UL ⊗ 12 + 12 ⊗ UR, Ū ′ = ŪL ⊗ 12 + 12 ⊗ ŪR, (142)

where

U ′ = Γ
−1UΓ− Γ

−1
Γ,z, Ū ′ = Γ

−1UΓ− Γ
−1
Γ,̄z. (143)

The explicit expressions for the 2× 2UR, UL, ŪR and ŪL matrices are as follows:

UL =






−1

2
ϕ,z 1

P
1

2
ϕ,z




 , ŪL =

(
0 P̄e−ϕ

eϕ 0

)

, (144a)

UR =






−1

2
ϕ,z i

iP
1

2
ϕ,z




 , ŪR =

(
0 −iP̄e−ϕ
−ieϕ 0

)

, (144b)

while the rotation matrix is

Γ =







0 iα α 0

0 0 0 2iα
2αeϕ 0 0 0

0 −1 −i 0






. (145)

One can further rotate both left and right pairs as

LL = e
1
4
ϕσ3ULe

− 1
4
ϕσ3 − e

1
4
ϕσ3∂e−

1
4
ϕσ3 , σ3

=

(
1 0

0 −1

)

, (146)

and similarly for the other three matrices, obtaining the more symmetric form

LL =






−1

4
ϕ,z e

ϕ
2

Pe−
ϕ
2

1

4
ϕ,z




 , L̄L =






1

4
ϕ,̄z P̄e−

ϕ
2

e
ϕ
2 −1

4
ϕ,̄z




 , (147a)

15 It is an easy exercise to verify that the GMC equations (and thus the structural data ofΣ) is invariant under the gauge

rotation

(

U , Ū
)

−→
(

Γ
−1UΓ− Γ

−1
Γ,z,Γ

−1ŪΓ− Γ
−1
Γ,̄z

)

,

where Γ is some 4× 4 matrix depending on (z, z̄).
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LR =






−1

4
ϕ,z ie

ϕ
2

iPe−
ϕ
2

1

4
ϕ,z




 , L̄R =






1

4
ϕ,̄z −iP̄e− ϕ

2

−ie ϕ2 −1

4
ϕ,̄z




 . (147b)

As a consequence of the above decomposition, the rotated frame σ′ =
(

e
1
4ϕσ

3 ⊗ e
1
4ϕσ

3
)

Γ
−1
σ

is also decomposed as

σ
′
= ΨM0, Ψ = ΨL ⊗ΨR, (148)

whereM0 is a constant 4× 4 matrix, whileΨL andΨR are solutions to their respective linear

problems

ΨL,z = LLΨL, ΨL,̄z = L̄LΨL, (149a)

ΨR,z = LRΨR, ΨR,̄z = L̄RΨR. (149b)

Recapitulating, given two solutions of the above systems (149a) and (149b), one can

reconstruct the corresponding embedding function ~Y for the minimal surface in AdS3 as

~Y ≡ ~e T
1 σ = ~e T

1 Γ

(

e−
1
4ϕσ

3 ⊗ e−
1
4ϕσ

3
)

(ΨL ⊗ΨR)M0, ~e T
1 =

(
1, 0, 0, 0

)
. (150)

Let us also mention that the matrix M0 is not completely general. In fact its form can be

almost entirely �xed by considering the orthogonality and normalisation conditions on the

scalar products of the basis vectors, which in terms of σ can be written as

σ







−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1







σ
T
=







~Y · ~Y ~Y · ~Y ,z ~Y · ~Y ,̄z ~Y · ~N
~Y ,z · ~Y ,z ~Y · ~Y ,z ~Y ,z · ~Y ,̄z ~Y ,z · ~N
~Y ,̄z · ~Y ~Y ,̄z · ~Y ,z ~Y ,̄z · ~Y ,̄z ~Y ,̄z · ~N
~N · ~Y ~N · ~Y ,z ~N · ~Y ,̄z ~N · ~N







=







−α2 0 0 0

0 0 eϕ̃ 0

0 eϕ̃ 0 0

0 0 0 −1






. (151)

One then has

(ΨL ⊗ΨR)M0

(
σ3 ⊗ 12

)
MT

0 (ΨL ⊗ΨR)
T
=

i

2







0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0







, (152)

or, equivalently,

M0

(
σ3 ⊗ 12

)
MT

0 =
i/2

det(ΨL) det(ΨR)







0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0






. (153)

It is a matter of straightforward computation to verify that the following matrix
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Mspec =
1

2
√
det(ΨL) det(ΨR)









0 ib ib 0

−1

c
0 0

1

c
ic 0 0 ic

0
1

b
−1

b
0









, (154)

represents a particular solution to the equation (153). In order to derive the general solution,

we can reason as follows. Let M be a solution to (153) and R ∈ GL(4) a generic non-singular
matrix. Then we can write M = RMspec. Due to both matrices solving the same equation, the

matrix R has to satisfy the following relation

R (ς ⊗ ς)Rt
= (ς ⊗ ς) , ς =

(
0 1

−1 0

)

. (155)

Expanding this relation in 2× 2 blocks, we obtain the following three equations

R11ςR
t

12 = −
(
R11ςR

t

12

)
t

, R21ςR
t

22 = −
(
R21ςR

t

22

)
t

, R11ςR
t

22 +
(
R21ςR

t

12

)
t

= ς,

(156)

where, evidently,Rij are the 2× 2 blocks of the matrixR. The �rst two relations are solved by

R11 = aς
(
Rt

12

)−1
ς
−1

=
a

det (R12)
R12, R21 = a′ς

(
Rt

22

)−1
ς
−1

=
a′

det (R22)
R22,

(157)

where a and a′ are some undetermined constants. Plugging the above solutions into the third

equation of (156), we have

aς
[(
R12R

−1
22

)t
]−1
− a′R12R

−1
22 ς = ς , (158)

or, equivalently,

(

a
det (R22)

det (R12)
− a′

)

R12R
−1
22 = 12, (159)

from which we deduce

R22 = a′′R12, aa′′ − a′

a′′
= 1. (160)

From these manipulations we conclude that

R =







a

det (R12)
1

b

c det (R12)
c






⊗ R12. (161)

We have found that we can write the general solution to (153) as follows

M0 = (ML ⊗MR)Mmix, (162)
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whereML andMR are SL(2) matrices that rotate, respectively, the solutionsΨL and ΨR, while

Mmix takes the following form

Mmix =
1

2

√

det
(
Ψ

M
L

)
det
(
Ψ

M
R

)









0 ib ib 0

−1

c
0 0

1

c
ic 0 0 ic

0
1

b
−1

b
0









, (163)

with Ψ
M
L = ΨLML and similarly for the right one. We thus see that a generic constant matrix

M0 in (150) is determined by 10 complex parameters, 4 for each SL(2) rotation ML/R and an

additional pair for the matrix Mmix. Note that 10 is the real dimension of the isometry group

of the space R2,2, in which AdS3 is immersed. A further condition on the constant matrixM0

comes from the reality properties of the basis vectors

σ
∗
=







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







σ, (164)

which implies

(ΨL ⊗ΨR)
∗M∗0 = i







0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0







(ΨL ⊗ΨR)M0. (165)

and reduces the 10 complex parameter determiningM0 to 10 real ones. Hence our embedded

surface determined by (150) is uniquely determined up to isometries of R2,2.

Finally, let us also mention that minimal surfaces are naturally related to string theory. The

very fact of beingminimal implies the possibility of obtaining their de�ning relations bymeans

of the minimisation of some quantity which, as it turns out, is nothing but the action of a

non-linear sigma model

A NLSM =

∫

Σ

dz dz̄
(

~Y ,z · ~Y ,̄z + Λ

(

~Y · ~Y + α2
))

, (166)

where the Lagrange multiplier Λ imposes the constraint (111), forcing the target space to be

AdS3. The equations of motion

~Y ,z̄z =
1

α2

(

~Y ,z · ~Y ,̄z

)

~Y, ~Y ,z · ~Y ,z = ~Y ,̄z · ~Y ,̄z = 0, (167)

are rather easily connected with (137) [79–81]. The areaA of the worldsheet is then computed

thanks to the metric g as follows

A =

∫

Σ

dz dz̄
√

− det(g) =

∫

Σ

dz dz̄
(

~Y ,z · ~Y ,̄z

)

=

∫

Σ

dz dz̄ eϕ̃. (168)

Note that, due to the modi�ed sinh-Gordon equation (140), one has
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A = 2α2

∫

Σ

dz dz̄
(
ϕ,z̄z + PP̄e−ϕ

)
= 2α2

∫

Σ

dz dz̄ PP̄e−ϕ + total derivatives,

(169)

where the total derivative term is a constant independent of the kinematics. This area is diver-

gent and needs to be regularized. As will be explained below, the asymptotic behaviour as

|z| →∞ of the modi�ed sinh-Gordon �eld is ϕ ∼ ln|P| and one can de�ne a regularized area

Areg = 2α2

∫

Σ

dz dz̄
(

PP̄e−ϕ −
(
PP̄
) 1

2

)

. (170)

4.3. A boundary interpretation of the function P and the Wilson loop

Let us recall that the function P—equivalently A (138)—is related to the Gauss curvature

through equation (130b). In the current case we have

K = −e−2ϕ̃AĀ = − 1

α2
e−2ϕPP̄. (171)

Thus, since we wish the surface Σ to be everywhere regular, we must demand for solutions to

(137) to compensate for divergences of P. More concretely, we impose that

lim
(z,̄z)→(zc ,̄zc)

1

|P| = 0 =⇒ ϕ ∼
(z,̄z)→(zc ,̄zc)

ln |P| . (172)

Note that this asymptotic behaviour at the singularities of P is consistent with equation (137).

From now on we will assume that the function P is a polynomial of order 2N, then the only

singular point is |z| →∞. The Gaussian curvature is, therefore, asymptotically a constant

K∞ = lim
|z|→∞

K = − 1

α2
, (173)

and in this limit the matrices of the linear system (149) become

LL ∼
(

0 zN/2z̄N/2

z3N/2z̄−N/2 0

)

, L̄L ∼
(

0 z−N/2z̄3N/2

zN/2z̄N/2 0

)

, (174a)

LR ∼
(

0 izN/2 z̄N/2

iz3N/2z̄−N/2 0

)

, L̄R ∼
(

0 −iz−N/2z̄3N/2
−izN/2z̄N/2 0

)

.

(174b)

In order to study what happens to the boundary of AdS3 we need to jump ahead of ourselves

and consider the �rst order in theWKB expansion of the solutionsΨL andΨR. A more detailed

analysis of the WKB solutions and the Stokes phenomenon will be given in section 4.5; here

we will just present some facts which will be useful in deriving the boundary of the minimal

surface. A simple WKB analysis (cf section 3.1) yields

ΨL ∝




e
2 ̺N+1

N+1 cos((N+1)ϑ) −e−iNϑe− 2 ̺N+1

N+1 cos((N+1)ϑ)

eiNϑe
2 ̺N+1

N+1 cos((N+1)ϑ) e−
2 ̺N+1

N+1 cos((N+1)ϑ)



 , (175a)
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Figure 3. Representation of the Stokes sectors and lines in the complex (z, z̄) plane, for
the linear system (149), with P ∼ z2N and N = 3.

ΨR ∝




e
2 ̺N+1

N+1
sin((N+1)ϑ) e−iNϑe−

2 ̺N+1

N+1
sin((N+1)ϑ)

−eiNϑe 2 ̺N+1

N+1 sin((N+1)ϑ) e−
2 ̺N+1

N+1 sin((N+1)ϑ)



 , (175b)

with z = ̺eiϑ and z̄ = ̺e−iϑ. We see that the linear problem displays a Stokes phenomenon at

̺→∞, meaning that we can pin down the asymptotic of a speci�c solution only in certain

sectors of the complex plane (see �gure 3). These sectors, which we denote by S (i)L and S (i)R ,

are bounded by the anti-Stokes lines which are given by cos ((N + 1)ϑ) = Re
[
zN+1

]
= 0 for

the left solution and by sin ((N + 1)ϑ) = Im
[
zN+1

]
= 0 for the right one.

Now, we choose a solutionΨ
(i)
L ⊗Ψ

(i)
R having the above asymptotic behaviour in a de�nite

sector of the complex plane, which happens to be the overlap of S (i)L with S (i)R . Suppose that we

rotate our solution in the complex plane and, at some point, we cross a left anti-Stokes line.

Then the asymptotic of our solution will change, since the diverging solution might obscure

the presence of a smaller decaying solution. In mathematical terms,

Ψ
(i)
L ⊗Ψ

(i)
R =

(

Ψ
(i+1)
L S

(

γ(i)L

))

⊗Ψ
(i)
R , S (γ) =

(
0 −1
1 γ

)

. (176)

A similar jump will happen for the right solution at the right anti-Stokes lines, meaning we

have 4(N+ 1) parameters
{

γ(i)L , γ(i)R

}2(N+1)

i=1
, one for each anti-Stokes line.
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Now let us consider what happens to the surface embedding function ~Y for |z| →∞. We

will see things more clearly by working in Poincaré coordinates (117):

r = Y−1 + Y2, x± = x± t =
Y1 ± Y0
Y−1 + Y2

, (177)

where we have introduced the light-cone Poincaré coordinates x±. Some simple but tedious

computation shows that these coordinates have the following expression16 for our embedding

(150)

r = iαc
Ψ

M
L,22Ψ

M
R,11 + iΨM

L,12Ψ
M
R,21

√

det
(
Ψ

M
L

)
det
(
Ψ

M
R

) , x+ =
b

c

Ψ
M
L,21Ψ

M
R,11 + iΨM

L,11Ψ
M
R,21

Ψ
M
L,22Ψ

M
R,11 + iΨM

L,12Ψ
M
R,21

,

x− =
1

ib c

Ψ
M
L,22Ψ

M
R,12 + iΨM

L,12Ψ
M
R,22

Ψ
M
L,22Ψ

M
R,11 + iΨM

L,12Ψ
M
R,21

, (178)

wherewe used (162) and (163) whileΨM
L,i j andΨ

M
R,i j are the componentsof the rotated solutions

ΨLML andΨRMR, respectively.

Let us suppose we are in a Stokes sector, away from Stokes lines; in the next few expres-

sions, in order to lighten the notation, we will omit the superscript (i) specifying the Stokes

sector. Then, as |z| →∞, the components ΨM
L,i j and Ψ

M
R,i j will be naturally expressed by a

superposition of a growing and a decaying solution:

Ψ
M
L,i j = clargeL, j ψ

large
L,i + csmall

L, j ψ
small
L,i , (179)

where the functions ψlarge

L/R,i and ψ
small
L/R,i are the components of two arbitrary vector solutions to

the linear system (149) respectively diverging and decaying17 as |z| →∞ in our chosen Stokes

sector. We easily verify that

clargeL, j =

det

(
Ψ

M
L,1 j ψsmall

L,1

Ψ
M
L,2 j ψsmall

L,2

)

det

(

ψlarge
L,1 ψsmall

L,1

ψlarge
L,2 ψsmall

L,2

) , csmall
L, j = −

det

(

Ψ
M
L,1 j ψlarge

L,1

Ψ
M
L,2 j ψlarge

L,2

)

det

(

ψlarge
L,1 ψsmall

L,1

ψlarge
L,2 ψsmall

L,2

) . (180)

Equivalent expressions hold for the constants c(large)/(small)

R, j . Finally plugging (179) into (178),

we see that in the limit |z| →∞, the Poincaré radius diverges18 r→∞—signalling that we are

indeed approaching the boundary ∂AdS3—while the light cone coordinates take the following

16Note that we have not implemented the reality condition (165) in the above expression. When doing so, these

embedding functions will be, clearly, real.
17 In section 4.5 we will de�ne more precisely solutions to the linear problem according to their asymptotic behaviour.

There we will refer to them as dominant and subdominant. For the moment, however, we content ourselves with

this intuitive de�nition as it will be suf�cient to gain a qualitative understanding of the asymptotic behaviour of the

embedded surface. For this same reason we follow the example of [82] and denote them as large and small.
18 Indeed, the numerator of r in (178) is dominated by ψlarge

L,i and ψsmall
L,i , while the denominator is a constant.
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Figure 4. Minimal surface for the case P = P̄ = 1, α = 1 and ϕ = 0 in AdS3 and its
Wilson loop. (a) is a representation with tanh(ρ) as a radius, τ as a vertical direction and
θ as an angle where (ρ, τ , θ) are AdS3 global coordinates (114). The shaded cylinder is
the conformal boundary and the red line is the Wilson loop. (b) is a plot of the Wilson
loop on the plane (θ, τ ) corresponding to the boundary tanh ρ = 1.

simple form

x+ =
b

c

det

(
Ψ

M
L,11 ψsmall

L,1

Ψ
M
L,21 ψsmall

L,2

)

det

(
Ψ

M
L,12 ψsmall

L,1

Ψ
M
L,22 ψsmall

L,2

) , x− =
1

ibc

det

(
Ψ

M
R,12 ψsmall

R,1

Ψ
M
R,22 ψsmall

R,2

)

det

(
Ψ

M
R,11 ψsmall

R,1

Ψ
M
R,21 ψsmall

R,2

) . (181)

Note that, while the expressions (180) depend on the choice of normalization for the functions

ψlarge

L/R,i and ψ
small
L/R,i, the boundary light-cone coordinates above are independent of it.

Given these results, we can easily see what happens when a Stokes line, say a left one, is

crossed. Let us reinstate the explicit index for the sector: x+(i) and x−(i) are given by the above

expressions, where each of the components of the solutionsΨM
L ,Ψ

M
R , ψ

small
L , ψlarge

L are de�ned

in the overlap of the ith Stokes sectorsS (i)L ∩ S (i)R . Looking back at (176), we notice that crossing

a left Stokes line, only the light-cone coordinate x+(i) is in�uenced, while x−(i) is the same on

both sides of the left Stokes line. In other words, in S (i)L ∩ S (i)R we have light-cone boundary

coordinates
(
x+(i), x

−
(i)

)
, while in S (i+1)

L ∩ S (i)R they are
(
x+(i+1), x

−
(i)

)
. The same exact reasoning

repeats for the crossing of a right Stokes line. Hence we conclude that points on the boundary

determined by solutions lying in neighboring Stokes sectors are light-like separated.

Recapitulating, we have seen that the order 2N polynomial P de�nes 4(N+ 1) distinct

Stokes sectors on the (z, z̄) plane and, consequently, 4(N+ 1) points on the boundary of AdS3.

These are connected by 4(N+ 1) light-like lines, forming a light-like 4(N+ 1)-gon on the

boundary of AdS3. In �gure 4 we plotted the minimal surface, along with its Wilson loop,

for the simplest possible case P = P̄ = 1, α = 1 and ϕ = 0. The polygon on the boundary

has the interpretation, in the CFT living on ∂AdS3, as a light-like Wilson loop and, according

to the proposal of [12, 13], we can measure its expectation value by computing the area of the

minimal surface Σ in AdS3 having the Wilson loop as its boundary. Moreover, as explained

in [14, 16], this same area can be used to compute the gluon scattering amplitude, at leading

order in strong coupling, in the boundary theory.
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Wewill now turn to a more in-depth analysis of the solutions to the linear problem (149). As

we will see, the presence of the Stokes phenomenon, instead of being a hindrance, will allow

us to derive a closed set of functional equations for a collection of functions Yk.19 These can
then be exploited to reconstruct the solutions ΨL and ΨR and compute the area (170) of the

minimal surface.

4.4. The associated linear problem, the spectral parameter and the WKB solutions

The left and right pair of matrices (147) are, essentially, the Lax operators for the modi�ed

sinh-Gordon model appearing in [64]:

L (λ) =






−1

4
ϕ,z λe

ϕ
2

λPe−
ϕ
2

1

4
ϕ,z




 , L̄ (λ) =







1

4
ϕ,̄z

1

λ
P̄e−

ϕ
2

1

λ
e
ϕ
2 −1

4
ϕ,̄z






. (182)

The only missing element in the pairs (147) is the spectral parameter λ. However we

immediately notice that by specialising the value of λ one has

LL = L (λ = 1) , L̄L = L̄ (λ = 1) , (183a)

LR = L (λ = i) , L̄R = L̄ (λ = i) . (183b)

The analysis of the Lax pair (182) has been carried out in [64] for the particular case of the

function P (z) = z2M − s2M . There it was shown that the generalised monodromy data for the

linear problem

Φ,z = LΦ, Φ,̄z = L̄Φ, (184)

is connected with the integrable structures of the quantum sine-Gordon (for M > 0) or sinh-

Gordon (forM < −1) models. As mentioned above, in what follows we will think of P (z) as a
polynomial function of order 2N.20 For further simplicity, we will concentrate on polynomials

having only real roots; hence, from now on we will set

P (z) = z2N +

2N−1∑

k=0

Pk z
k
=

2N∏

k=1

(z− zk) , (zk,Pk ∈ R). (185)

The �rst thing we notice about the linear problem (184) is that it possesses a Z2 symmetry

(
L
(
z, z̄|λ

)
, L̄
(
z, z̄|λ

))
=
(
σ3L

(
z, z̄| − λ

)
σ3, σ3L̄

(
z, z̄| − λ

)
σ3
)
, (186)

which implies that, given a solution Φ
(
z, z̄|λ

)
, then σ3

Φ
(
z, z̄|eiπλ

)
is also a solution. This

fact will be useful momentarily, when we discuss the Stokes phenomenon associated with our

19These functional equations form a closed set only if P(z) lives on a �nite cover of C. This can be understood

intuitively from the fact that there exists a function Yk for each generator of the �rst homology group H1 (RWKB,Z) of

the Riemann surface RWKB associated to
√
P. If we allow non-rational powers in P, then the �rst homology group of

this Riemann surface will not be �nitely generated and we will have to deal with an in�nite set of functions Yk. From
a physical point of view, in this case on the boundary of AdS3 there will be an in�nity of light-like lines, never closing

themselves into a polygon.
20We might think of considering more general multi-valued potentials, e.g. P (z) = z2N − s2N where N /∈ 1

2
Z but we

still ask that N ∈ Q. The presence of non-integer powers in the function P (z) would force us to consider the linear

problem on an appropriate �nite covering of the complex plane. Since the substance of our analysis would not change,

we will avoid this complication.

32



J. Phys. A: Math. Theor. 53 (2020) 223001 Topical Review

linear problem. A simple way to study the linear problem (184) is to gauge rotate it by the

matrix exp
(
1
4
ϕσ3

)
, so that one obtains

Φ̃,z = L̃ Φ̃, Φ̃,̄z =
˜̄L Φ̃, Φ̃ = e−

1
4
ϕσ3

Φ, (187)

where

L̃ = e−
1
4
ϕσ3 L e 1

4
ϕσ3 − e−

1
4
ϕσ3∂

(

e
1
4
ϕσ3
)

=






−1

2
ϕ,z λ

λP
1

2
ϕ,z




 , (188)

and

˜̄L = e−
1
4ϕσ

3 L̄e 1
4ϕσ

3 − e−
1
4ϕσ

3

∂̄e
1
4ϕσ

3

=






0
1

λ
P̄e−ϕ

1

λ
eϕ 0




 . (189)

With this form of the linear problem, it is easier to obtain the WKB expansion.

We start from the following ansatz

Φ̃ =
1
√
S,z





1 1
(

S+
ϕ− ln(∂S)

2λ

)

,z

(

−S+ ϕ− ln(∂S)

2λ

)

,z



 · e−λSσ3 , (190)

where S is a function of the variables (z, z̄) and of the square of the spectral parameter λ, with
asymptotic expansion as λ2→∞

S = S
(
z, z̄|λ2

)
=

∞∑

k=0

λ−2kSk (z, z̄) . (191)

The solution Φ̃ is normalized in such a way that

det(Φ̃) = −2 =⇒ det(Φ) = −2. (192)

The linear system (187) then reduces to a pair of equations for the function S,

S2,z −
1

2λ2
{S, z} = ϕ2

,z − 2ϕ,zz

4λ2
+ P, {S, z} = S,zzz

S,z
− 3

2

(
S,zz
S,z

)2

, (193a)

S,̄z −
P̄

λ2
e−ϕS,z = 0, (193b)

which, as one can easily check, are mutually compatible. Exploiting the series representation

(191) we turn this pair of equations into an in�nite triangular system for the coef�cients Sk,
which we then solve by iteration, the �rst few equations being

S20,z = P, S0,̄z = 0, (194a)

S1,z =
1

8
√
P

(

P,zz

P
− 5

4

(
P,z

P

)2

+ ϕ2
,z − 2ϕ,zz

)

, S1,̄z = e−ϕ
√
PP̄, (194b)

· · · , · · · .
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We thus have expressed the solution to the linear problem (184) as an expansion around

λ→∞ as follows:

Φ = e
1
4ϕσ

3

(

e−λS0−
1
4
ln P+ 1

λ S1+O(λ−2) eλS0−
1
4
ln P− 1

λ S1+O(λ−2)

e
−λS0+ 1

4
ln P+ 1

λ

(

S1+
ϕ,z
2
√
P
− P,z

4P3/2

)

+O(λ−2) −eλS0+
1
4
ln P− 1

λ

(

S1+
ϕ,z
2
√
P
− P,z

4P3/2

)

+O(λ−2)

)

,

(195)

with

S0 =

∫

z∗

dz
√
P, S1 =

∫

z∗

dz

8
√
P

(

P,zz

P
− 5

4

(
P,z

P

)2

+ ϕ2
,z − 2ϕ,zz

)

, (196)

and z∗ some arbitrarily-chosen base point.

A similar analysis for the linear system (184), gauge rotated with the matrix exp
(
− 1

4
ϕσ3

)
,

yields the small-λ behaviour

Φ = e−
1
4
ϕσ3



e
− 1
λ S̄0+

1
4
ln P̄+λ

(

S̄1+
ϕ,̄z
2
√
P̄
− P̄,̄z

4P̄3/2

)

+O(λ2) −e
1
λ S̄0+

1
4
ln P̄−λ

(

S̄1+
ϕ,̄z
2
√
P̄
− P̄,̄z

4P̄3/2

)

+O(λ2)

e−
1
λ S̄0− 1

4 ln P̄+λS̄1+O(λ2) e
1
λ S̄0− 1

4 ln P̄−λS̄1+O(λ2)



 ,

(197)

with

S̄0 =

∫

z∗

dz̄
√
P̄, S̄1 =

∫

z∗

dz̄

8
√
P̄

(

P̄,̄z z̄

P̄
− 5

4

(
P̄,̄z

P̄

)2

+ ϕ2
,̄z − 2ϕ,̄z z̄

)

. (198)

4.5. WKB geometry,Stokes sectors and subdominant solutions

Now, let us think more carefully about the geometry of what we are doing. By recasting (184)

into the system (194) we have moved from an equation de�ned on C2 to a system living on

the Riemann surface RWKB de�ned by the algebraic equation ζ2 = P (z). The quantities Sk
appearing in the expansion (191) are line integrals along curves onRWKB:

Sk (z, z̄) =

∫ (z,̄z)

z∗
sk, S̄k =

∫ (z,̄z)

z∗
s̄k, (199)

with sk and s̄k being one-forms onRWKB, e.g.

s0 =
√
P dz, s1 =

dz

8
√
P

(

P,zz

P
− 5

4

(
P,z

P

)2

+ ϕ2
,z − 2ϕ,zz

)

, · · · . (200)

Figure 5 depicts the �rst sheet of the Riemann surface in the case of a polynomial P (z) having
real roots. In order to de�ne the WKB solutions (195) and (197) correctly, on the one hand

it is necessary to be careful in the choice of the base point z∗ and the integration contour. On

the other hand, however, it is possible to pin down the speci�c solution correctly only in a

certain sector of the complex plane; this is an example of the Stokes phenomenon and is a

direct consequence of the presence of an irregular singularity at (z, z̄)→∞.
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Figure 5. An example of the (�rst sheet of the) Riemann surfaceRWKB for a polynomial
P (z) having real roots, and a basis {γ i} of cycles on that surface.

To be more precise, consider the solution (195) at large distances both from the origin and

from any critical values of P (z). Then P(z) behaves as P (z) ∼ z2N and we can compute the

leading behaviour of the coef�cients S0 and S1 :

S0 ∼
|z|→∞

∫ z

z∗
dz zN =

zN+1 − zN+1
∗

N + 1
, S1 ∼

|z|→∞

N

8

N + 2

N + 1

(
z−N−1 − z−N−1∗

)
. (201)

Similar expressions hold for S̄0 and S̄1. More generally, as shown in (172), solutions to the

modi�ed sinh-Gordon equation (140) behave at leading order in |z| →∞ as ϕ ∼ 2N ln |z|; the
only remaining terms in S and S̄ are then, respectively, S0 and S̄0. Hence one �nds

Φ ∼
|z|→∞

z̄N/4

zN/4





1 1

zN/2

z̄N/2
− z

N/2

z̄N/2



 · e−
λzN+1+ 1

λ
z̄N+1

N+1 σ3 . (202)

Let us denote by Φ(d) and Φ(s) the two column vectors comprising the matrixΦ

Φ =
(
Φ

(s)
Φ

(d)
)
, (203)

so that for large |z| and |ϑ| < π
N+1

these vectors behave as

Φ
(s) ∼
|z|→∞

(

e−i
N
4 ϑ

−ei N4 ϑ

)

exp

(

−2 ̺N+1

N + 1
cos ((N + 1)ϑ− iυ)

)

, (204a)

Φ
(d) ∼
|z|→∞

(

e−i
N
4
ϑ

ei
N
4 ϑ

)

exp

(
2 ̺N+1

N + 1
cos ((N + 1)ϑ− iυ)

)

, (204b)

where z = ̺eiϑ, z̄ = ̺e−iϑ and λ = eυ. Much as before, we will callΦ(s) the subdominant solu-
tion andΦ(d) the dominant solution. It is clear from the above expressions that if we analytically

continue from (̺,ϑ) to
(

̺,ϑ+ π
N+1

)

the two asymptotics seem to swap rôles. However, while

we can precisely pin down the asymptotic ofΦ(s), since no other term can be added to it without

spoiling its asymptotic behaviour, the behaviour (204b) might be hiding a contribution coming

from a decaying exponential, with a coef�cient which in general will change as the Stokes line
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in the middle of this sector is crossed. Hence when we perform the analytic continuation, we

will obtain the following asymptotics, valid for |ϑ| < π
N+1

and ϑ(+) = ϑ+ π
N+1

:

Φ
(s)
(
̺,ϑ(+)

)
∼
|z|→∞

(

e−i
N
4 ϑ

(+)

−eiN4 ϑ(+)

)

exp

(
2 ̺N+1

N + 1
cos ((N + 1)ϑ− iυ)

)

= dominant, (205a)

Φ
(d)
(
̺,ϑ(+)

)
∼
|z|→∞

c+ (λ)

(

e−i
N
4 ϑ

(+)

−ei N4 ϑ(+)

)

exp

(
2 ̺N+1

N + 1
cos ((N + 1)ϑ− iυ)

)

. (205b)

Therefore, for ϑ in the sector |ϑ| < π
N+1

, the continued solution Φ
(d)
(
̺,ϑ(+)

)
is in general

dominant but, exceptionally, it will be subdominant at zeros of the coef�cient c+(λ). The story
is similar to that of section 3.1, and the preliminary discussion reported therewill be formalised

in the following sections.

Summarising, we see that the function P (z) partitions the Riemann surface RWKB into

Stokes sectors S j, bounded by anti-Stokes lines, de�ned by Re [λS0] = 0. In each of these sec-

tors we can de�ne a matrix solution Φj composed of a dominant and a subdominant solution

Φ j =

(

Φ
(s)
j Φ

(d)
j

)

. (206)

The decay (or growth) of this solution is largest whenever the solution lies on a Stokes line,
de�ned by Im [λS0] = 0. Figure 6 depicts an example of the Stokes and anti-Stokes lines for a

particular choice of P (z), while �gure 7 is a view of the same picture from very large |z|. The
de�nition of Stokes and anti-Stokes lines depends on the phase of the spectral parameterλ and,
as displayed in �gure 8, a counter-clockwise rotation of λ rotates the sectors in a clockwise

direction. When arg (λ) = π, one returns to the same situation as for arg (λ) = 0, but with the

sectors exchanged in a clockwise fashion. Consequently, exploiting the Z2 symmetry (186),

we can de�ne the solutionsΦj as

Φ j

(
z, z̄|λ

)
=
(
σ3
) j
Φ
(
z, z̄|e jiπλ

)
, (207)

where Φ, our starting solution, is de�ned in what we choose to be the 0th sector S0. In what

follows we will label the sectors according to the index k of the ϑSk = π k
N+1

solution of the

Stokes line equation Im
[
zN+1

]
for large |z|. Hence the sector S0 will be for λ ∈ R the one

containing the positive real line at large enough |z|. See �gure 7 for an example.

4.6. The connection matrices, the T-system and the Hirota equation

We can now make the relations (205b) more precise as follows21:

Φ
(s)
j−1
(
z, z̄|λ

)
= Φ

(d)
j

(
z, z̄|λ

)
(208a)

Φ
(d)
j−1
(
z, z̄|λ

)
= −Φ(s)

j

(
z, z̄|λ

)
+ T

(
e jiπλ

)
Φ

(d)
j

(
z, z̄|λ

)
, (208b)

or, in matrix notation

Φ j−1
(
z, z̄|λ

)
= Φ j

(
z, z̄|λ

)
T
(
e jiπλ

)
, T (λ) =

(
0 −1
1 T (λ)

)

. (209)

21The −1 sign in the second equality is necessary to have det(Φj−1) = det(Φj) = −2.
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Figure 6. Stokes and anti-Stokes lines for the function P (z) = z
(

z2 − 1
) (

z2 − 4
)

, with
λ ∈ R. Although not shown here, there are branch cuts connecting −2 with −1, 0 with
+1 and +2 with∞.

Figure 7. Figure 6 looked at from very large |z|. The �ne details of the function P (z)
disappear and we only see the lines de�ned by Re

[

z7/2
]

= 0 and Im
[

z7/2
]

= 0, that is

ϑaSk = π 2k+1
7

and ϑSk = π 2k
7
with k = −3,−2,−1, 0, 1, 2, 3. The Stokes sectors Sk are

labelled by the index k of the angles ϑSk .

It is immediate to see that

T (λ) =
1

det(Φ0)
det
(

Φ
(s)
0 Φ

(d)
−1
)
= −1

2
det
(

Φ
(s)
0 Φ

(s)
−2
)
, (210)
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Figure 8. Plots of Stokes and anti-Stokes lines for the polynomial function P (z) =
z
(

z2 − 1
) (

z2 − 4
)

and various phases of the spectral parameter λ. One sees that a
counter-clockwise rotation of λ corresponds to a clockwise rotation of the sectors. For
arg (λ) = π, the picture looks the same as �gure 6, but the sectors have been exchanged
in a clockwise fashion.

where we have used (192) and the fact that Φ
(d)
j = Φ

(s)
j−1. We can generalize this construction,

introducing the lateral connectionmatricesTk (λ) which, as the name suggests, relate solutions

living in (next)k-neighbouring Stokes sectors:

Φ j

(
z, z̄|λ

)
= Φ j+k

(
z, z̄|λ

)
Tk

(

λe

(

j+ k+1
2

)

iπ
)

. (211)

The form of these matrices is constrained by noticing that they need to satisfy the following

consistency relation

Tk (λ) = Tk− j
(

e
j
2
iπλ
)

T j

(

e
j−k
2

iπλ
)

, (212)
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which implies that we can parametrise the lateral connection matrices as follows

Tk (λ) =




−Tk−2 (λ) −Tk−1

(

e−
1
2 iπλ

)

Tk−1
(

e
1
2
iπλ
)

Tk (λ)



 . (213)

Each function Tk (λ), which we call a Stokes multiplier or lateral connection coef �cient,
can be computed as a determinant of subdominant solutions de�ned in distinct Stokes sectors:

T2k−1 (λ) =
1

2
det
(

Φ
(s)
−k−1 Φ

(s)
k−1
)
, (214a)

T2k
(

λe
1
2 iπ
)

=
1

2
det
(

Φ
(s)
−k−1 Φ

(s)
k

)
. (214b)

One must clearly have T0 (λ) = 1, implying that

T−2 (λ) = −1, T−1 (λ) = 0, T0 (λ) = 1, (215)

which agree with the determinant expressions (214).

The relation (212) can be used to extract a series of additional constraints on the functions

Tk (λ). First of all one has the unimodularity condition

det(Tk (λ)) = 1, (216)

to which we will return momentarily. Another obvious relation is the following

T0

(

e−
j
2 iπλ

)

= 1 = T− j (λ)T j (λ) =⇒ T−k−1 (λ) = −Tk−1 (λ) . (217)

We also require that a rotation of 2 (N + 1) Stokes sectors brings us back to the same solution

(modulo a ±1 factor), from which we deduce that

T j+2N+2 (λ) = ±T j

(
e(N+1)iπλ

)
=⇒ T2N+1 (λ) = 0. (218)

Finally, we obtain a recursive de�nition for Tk (λ) by looking at the components of (212)

Tk (λ) = T j
(

e
j−k
2 iπλ

)

Tk− j
(

e
j
2 iπλ

)

− T j−1
(

e
j−k−1

2 iπλ
)

Tk− j−1
(

e
j+1
2 iπλ

)

,

(219)

which is called the T-system. An equivalent, more elegant, form is obtained by the simple

unimodularity requirement mentioned above

det
(
Tk+1 (λ)

)
= 1 =⇒ Tk

(

e
1
2 iπλ

)

Tk
(

e−
1
2 iπλ

)

= 1+ Tk+1 (λ) Tk−1 (λ) . (220)

This equation needs to be supported by the boundary conditions found above, T0 (λ) = 1 and

T2N+1 (λ) = 0, and is known in the literature as Hirota bilinear equation [61, 83, 84]. One can
check that the T-system is obtained by iteration from the Hirota equation.

There are various manipulations one can perform on the Hirota equation. For example,

one can formally solve it by parametrizing the functions Tk (λ) by a pair of Q functions

{Qa (λ)}a=1,2 as follows

Tk (λ) = det




Q1

(

e
k+1
2 iπλ

)

Q1

(

e−
k+1
2 iπλ

)

Q2

(

e
k+1
2

iπλ
)

Q2

(

e−
k+1
2

iπλ
)



 . (221)
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Then it is easy to see that the Hirota equation is equivalent to the following one

det




Q1

(

e
1
2 iπλ

)

Q1

(

e−
1
2 iπλ

)

Q2

(

e
1
2 iπλ

)

Q2

(

e−
1
2 iπλ

)



 = 1, (222)

which, in the literature, is known as a quantum Wronskian [19, 64]. The relation (222) is the

off-critical version of the constraint (92), obtained within the quantum KdV context. From

(221) and (222) we obtain Baxter’s TQ equation

T1 (λ)Qa (λ) = Qa

(
eiπλ

)
+ Qa

(
e−iπλ

)
, (a = 1, 2), (223)

by simply expanding the trivial identity

det





Q1

(
eiπλ

)
Q1 (λ) Q1

(
e−iπλ

)

Q2

(
eiπλ

)
Q2 (λ) Q2

(
e−iπλ

)

Qa

(
eiπλ

)
Qa (λ) Qa

(
e−iπλ

)



 = 0, (a = 1, 2). (224)

The matrix

Q (λ) =

(
Q1

(
eiπλ

)
Q1 (λ)

Q2

(
eiπλ

)
Q2 (λ)

)

(225)

has a geometrical interpretation: it is the central connection matrix of the central problem for

our linear system. In other words, it relates the solutions Φj to another fundamental solution

Ξ, de�ned via local analysis at a point where no Stokes phenomenon is present22. Then Ξ is

insensitive to the rotation of λ by integer multiple of iπ and one has the relation

Φ j

(
z, z̄|λ

)
= Ξ

(
z, z̄|λ

)
Q
(
e jiπλ

)
. (226)

Playing with this relation and (212), we obtain the following identity

Q (λ) = Q
(
ekiπλ

)
Tk

(

e
k+1
2 iπλ

)

, (227)

fromwhich it is possible to derive both the Baxter TQ equation (223) (by simply setting k = 1)

and the parametrization (221) of the functions Tk (by Cramer’s rule). The QQ-system (222)

corresponds to the unimodularity requirement det(Q(λ)) = 1.

AlthoughQ-functions are interesting objects, we �nd it more convenient to introduce a new

set of functions: the Y-functions. These are de�ned as follows

Yk (λ) = Tk−1 (λ) Tk+1 (λ) , (k = 1, . . . , 2N − 1), (228)

or, in a more invariant form, and using the fact that det
(

Φ
(s)
k Φ

(s)
k+1

)
= − detΦ0,

Y2k (λ) =
det
(

Φ
(s)
−k−2 Φ

(s)
k

)
det
(

Φ
(s)
−k−1 Φ

(s)
k−1
)

det
(

Φ
(s)
−k−1 Φ

(s)
−k−2

)
det
(

Φ
(s)
k Φ

(s)
k−1
) , (229a)

22 In the �rst incarnations of the ODE/IM correspondence [18, 42] this point was the origin z = 0, which represents a

regular singularity of the differential equation. Consequently the solution obtained by local analysis around z = 0 does

not exhibit any Stokes phenomena. The term ‘central’ also descends from these �rst examples, in which the eigenvalue

problem associated to the central connection matrix concerned functions with behaviour de�ned at z = 0 and |z| →∞.

In our case the linear system possesses no singularity at �nite z, however we can still de�ne an eigenvalue problem

for functions with given behaviour as |z| →∞ and at an arbitrary point z which, being regular, will not give rise to a

Stokes phenomenon. We stick to the tradition and call such an eigenvalue problem ‘central’.
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Y2k+1

(

λe
1
2 iπ
)

=
det
(

Φ
(s)
−k−2 Φ

(s)
k+1

)
det
(

Φ
(s)
−k−1 Φ

(s)
k

)

det
(

Φ
(s)
−k−1 Φ

(s)
−k−2

)
det
(

Φ
(s)
k+1 Φ

(s)
k

) . (229b)

In term of the functions Y, the Hirota equation (220) becomes

Yk
(

λe
1
2 iπ
)

Yk
(

λe−
1
2 iπ
)

=
(
1+ Yk+1 (λ)

)
(1+ Yk−1 (λ)) . (230)

This set of equations is known in the literature as a Y-system; see for example [61, 85–87].

4.7. Properties of the Y-functions and the TBA equation

Although the rewriting (230) of the Hirota equation does not seem to change the situation

much, it actually allows us to derive an integral equation for the logarithm of the Y functions.

Let us brie�y review how this is done.

Using the de�nition (190) of the WKB solution, we easily see that

Y2k (λ) = exp



−λ
∮

γ2k

s



 , Y2k+1

(

λe
1
2
iπ
)

= exp




−λ

∮

γ2k+1

s




 , (231)

where s =
∑∞

k=0 λ
−2ksk and the one-forms sk were introduced in (199). The γk are closed

contours, elements of a basis of the �rst homology group H1 (RWKB,Z). Since our branch cuts

can all be taken to lie on the real axis (remember, we chose the polynomial P (z) to only have

real roots), we can arrange them as shown in �gure 5. It is evident that the Yk (λ) functions are
analytic inλwith essential singularities sitting atλ = 0 andλ =∞. In particular, a perturbative

analysis of the WKB solutions tells us that

lnY2k = −λ
∮

γ2k

dz
√
P+O

(
λ−1
)
, ln Y2k+1 = iλ

∮

γ2k+1

dz
√
P+O

(
λ−1
)
.

(232)

A similar result holds for the expansion around λ = 0, with
√
Pdz replaced by

√
P̄dz̄. Hence

we �nd that the Y functions have the following asymptotic for large |υ|, with υ = lnλ,

lnYk (υ) ∼
|υ|→∞

− mk cosh(υ)







m2k = 2

∮

γ2k

dz
√
P = 2

∮

γ2k

dz̄
√
P̄

m2k+1 = −i 2
∮

γ2k+1

dz
√
P = −i 2

∮

γ2k+1

dz̄
√
P̄
. (233)

Note that this behaviour is valid for Im [υ] ∈ (−π, π), since beyond this range, the WKB

approximation we have used may no longer be reliable23. The quantities mk can be shown

to be real when all the zeroes of P (z) are real24.

23Actually the WKB approximation can be shown to be valid in the range Im [υ] ∈
(

− 3
2
π, 3

2
π
)

.
24Consider a polynomial with 2N roots

P (z) = (z− z1) (z− z2) · · · (z− z2N) ,
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Now, from the properties just mentioned, we deduce that the auxiliary function

yk (υ) = ln
(
Yk (υ) e

mk cosh(υ)
)
, (234)

is analytic in the strip Sυ = | Im [υ] | < π
2
and decays at large |Re [υ] | therein. Moreover it

obeys the logarithmic form of (230)

yk

(

υ +
1

2
iπ

)

+ yk

(

υ − 1

2
iπ

)

= ln
(
1+ Yk+1 (υ)

)
+ ln (1+ Yk−1 (υ)) .

(235)

This form is very useful, because the operator effecting the shift in the right-hand side above

is inverse to the convolution kernelK (υ) = 1
2π cosh(υ)

. In mathematical terms

[K ∗ yk]
(

υ +
1

2
iπ

)

+ [K ∗ yk]
(

υ − 1

2
iπ

)

=

∫

R

dυ′

2π

yk
(
υ′ + 1

2
iπ
)
+ yk

(
υ′ − 1

2
iπ
)

cosh (υ − υ′)

=

∮

∂Sυ

dυ′

2πi

yk
(
υ′
)

sinh (υ − υ′) = yk (υ) , (236)

where ∂Sυ is the boundary of the strip Sυ = | Im [υ] | < π
2
and we used, in turn, that yk decays

in Sυ for Re [υ]→±∞, and that it has no singularities in Sυ. Thus we have arrived at the

following integral TBA-like equation [88]

εk (υ) = mk cosh(υ)−
∫

R

dυ′

2π

ln
(

1+ e−εk−1(υ
′)
)

+ ln
(

1+ e−εk+1(υ′)
)

cosh (υ − υ′) ,

(237)

where we introduced the pseudo-energies (borrowing the language of the TBA)

Yk (υ) = e−εk(υ). (238)

If we were to choose a polynomial P (z) with complex roots, then everything that has been

said and shown above will essentially remain the same, with the exception of the assertion

and suppose that z1, z2 ∈ R. We wish to compute the integral

I =
∮

γ1,2

dz
√

P (z),

where γ1,2 is a cycle encircling in a counter-clockwise sense the cut running from z1 to z2. Moreover, without loss of

generality, suppose z1 = 0, z2 > 0 and z j /∈ [0, z1] , ∀ j= 3, . . . , 2N. Then our integral becomes

I = −2
∫ z2

0

dz
√

z (z− z2) · · · (z− z2N ),

since the integrals on in�nitesimal circles around z = 1 and z = z2 vanish. The integral I is explicitely a real number,

as long as z j ∈ R, ∀ j = 3, . . . , 2N.
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mk ∈ R. What will now happen is that the ‘masses’ mk will be complex numbers and the TBA

equation (237) will need to be adjusted to the following, more general, form

εk (υ) =
mk

2
eυ +

m∗k
2
e−υ −

∫

R

dυ′

2π

ln
(

1+ e−εk−1(υ
′)
)

+ ln
(

1+ e−εk+1(υ′)
)

cosh (υ − υ′) .

(239)

Note that as long as
∣
∣arg (mk)− arg

(
mk+1

)∣
∣ < π/2, ∀k, the above equation is perfectly well

de�ned. However, as soon as we go beyond this regime, it is necessary to pick out the appro-

priate pole contribution from the kernel.25 Although the integral equation changes form, the

functionsY turn out to be continuous; this phenomenon is known as wall-crossing and has been

discussed in [23, 89].

We have arrived at an integral equation whose only inputs are the ‘masses’ mk, i.e. the

integrals of the WKB one-form s0 along the basis cycles of H1 (RWKB,Z), and whose outputs

are some functions εk of the spectral parameter λ. As we will now explain, the knowledge of

these functions will allow us to compute the regularized area (170) of the minimal surface in

AdS3, the boundary of which is a polygonal light-like Wilson loop determined by the function

P (z), as explained in section 4.3.

4.8. The area as the free energy

Nowwe wish to show that the regularized area is really the Free Energy associated to the TBA
equation (237)—or, more generally, (239). In order to do so we will take a route which might

appear to be slightly convoluted, so bear with us. First of all, consider the expression (170) for

the regularized area

Areg = 2α2

∫

Σ

dz dz̄
(

PP̄e−ϕ −
√
PP̄
)

. (240)

We notice that it is possible to write this in terms of the one-forms s0 and s̄0 (200) and a

one-form u

s0 =
√
Pdz, s̄0 =

√
P̄dz̄, u = uz dz+ uz̄dz̄, (241)

as

Areg = 2α2

∫

RWKB

(s0 ∧ u− s0 ∧ s̄0) , (242)

where, in order to reproduce (240), we are forced to �x the anti-holomorphic part of u as

uz̄ =
√
PP̄e−ϕ. (243)

It is evident that both s0 and s̄0 are exact, since their components are, respectively, holo-

morphic and anti-holomorphic. In general the form u is not exact, but it can be made so by

25 In fact, the equation (239) can be rewritten in the form (237), by shifting υ→ υ − arg (mk). These equations will

involve kernels 1/ cosh
(

υ − υ′ − i arg (mk)+ i arg (mk±1)
)

, which present singularities on the real υ′-line whenever
∣

∣arg (mk)− arg
(

mk+1

)∣

∣ = (2n+ 1) π/2, n ∈ Z>.
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precisely choosing the z component uz, which does not contribute to the integral (242). One

easily veri�es that the following choice

u =

(
ϕ2
,z − 2ϕ,zz

8
√
P

+ f (z)

)

dz+
√
PP̄e−ϕdz̄, (244)

where f (z) is an arbitrary function of z, �ts the bill since

du =
eϕ

2
√
P

∂

∂z

(

PP̄e−2ϕ +
1

2
ϕ,z̄ze

−ϕ
)

dz ∧ dz̄ = 0, (245)

due to the modi�ed sinh-Gordon equation (140). We still have the freedom to choose the

function f (z) at will, and in the following we take

f (z) =
1

8
√
P

(

P,zz

P
− 5

4

(
P,z

P

)2
)

, (246)

so that we can express the form u in terms of s1 (200) as

u = s1 +
√
PP̄e−ϕdz̄. (247)

We are then able to rewrite the regularized area as an integral (242) over the Riemann surface

RWKB of the external product of two exact one-forms: s0 and u− s̄0. Why would we want to do

this? The answer comes from the following neat property of integration on Riemann surfaces:

Theorem. [90] Consider a Riemann surf ace Σg of genus g and let {ai, bi}gi=1 be a stan-
dard basis of cycles, i.e. a standard basis of H1

(
Σg,Z

)
. Take two exact one-f orms ω and ω′

and de�ne

αi =

∮

ai

ω, βi =

∮

bi

ω, α′i =

∮

ai

ω′, β′i =

∮

bi

ω′.

Then the integral of the two-f orm ω ∧ ω′ over the Riemann surf ace can be decomposed as
∫

Σg

ω ∧ ω′ =
g
∑

i=1

(
αiβ

′
i − βiα′i

)
. (248)

Thanks to this result we can write the expression (242) for the area as

Areg = 2α2
∑

i, j

wi, j





∮

γi

s0










∮

γ j

s1 − ˆ̄s0




 , (249)

where

ˆ̄s0 =
√
PP̄e−ϕdz̄− s̄0 =

√
P̄
(√

PP̄e−ϕ − 1
)

dz̄, (250)

{γi} is a basis of H1 (RWKB,Z) and wi,j are the intersection numbers of these cycles26.

26The cycles γi depicted in �gure 5 do form a basis but not a normalized one. Hence the need to insert the intersection

numbers.
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Now we need to identify the contour integrals in (249). To this end, let us introduce the

functions ε̂k de�ned as

ε̂2k (υ) = ε2k (υ) , ε̂2k+1 (υ) = ε2k+1

(

υ + i
π

2

)

. (251)

We can describe their large λ behaviour in two equivalent ways:

• using the expression (231) in terms of WKB integrals

ε̂k = λ

∮

γk

s0 +
1

λ

∮

γk

s1 +O
(
λ−2
)
, (252)

• using the TBA equation (239)

ε̂k = λ

∮

γk

s0 +
1

λ





∮

γk

s̄0 −
1

π

∫ ∞

−∞
dυ′eυ

′∑

j

wk, j ln
(

1+ e−ε̂ j(υ
′)
)



+O
(
λ−2
)
,

(253)

where we have used the de�nition (233) of the dimensionless mass parameters mk and

their complex conjugatesm∗k .
In the case in which the parametersmk satisfy

∣
∣arg (mk)− arg

(
mk+1

)∣
∣ < π/2, wj,k has

the simple expression wj,k = δj+1,k
+ δj−1,k, and if 2N ∈ 2Z> + 1 it is invertible with

inverse given by the cycle intersection number wi,j introduced above.

Since the above two large-λ expansions must agree term by term, we �nd the exact
expression for the integral of the 1-form s1 on the contours γk:

∮

γk

s1 =

∮

γk

s̄0 −
1

π

∫ ∞

−∞
dυ′eυ

′∑

j

wk, j ln
(

1+ e−ε̂ j(υ
′)
)

. (254)

The expression for the area (249) then takes the following form:

Areg = 2
α2

π

∑

i, j

wi, jZi

(
∫ ∞

−∞
dυ′eυ

′∑

j

w j,k ln
(

1+ e−εk(υ
′)
)
)

, (255a)

Zi = −
∮

γi

s0. (255b)

The exact same reasoning as above can be repeated for the small λ limit; this yields

Areg = 2
α2

π

∑

i, j

wi, jZ̄i

(
∫ ∞

−∞
dυ′e−υ

′∑

j

w j,k ln
(

1+ e−εk(υ
′)
)
)

. (256)
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Finally, as these two expressions must give the same result27, we can take their mean value to

�nd

Areg =
α2

π

∑

i

|mi|
∫

R

dυ cosh(υ) ln
(
1+ e−εi(υ−i arg(mi))

)
, (257)

which coincides with the free energy expression for the TBA equation (239). Note that we

made the implicit assumptions that
∑

jwi, jw
j,k = δki , which is true only if 2N ∈ 2Z> + 1, and

∣
∣arg (mk)− arg

(
mk+1

)∣
∣ < π/2. If instead we have N ∈ Z> with the constraint on the phases

of the masses still in place, the area keeps the form (257), though acquiring an extra term as

studied in detail in [82]. On the other hand, if this constraint is relaxed and we cross a wall,

new cycles enter the game and one needs to track their contributions with care. However by

adapting the derivation we followed it is possible to show that an expression of the form (257)

continues to hold. See [16], appendix B, for more details.

4.9. The IM side of ODE/IM correspondence and the conformal limit

We conclude this excursion in the realm of minimal surfaces by brie�ymaking contact with the

IM side of the ODE/IM correspondence. In fact what we have done so far in this section per-

tains to the ODE part of the correspondence:we investigated the classical linear problem (184)

and showed how its monodromy data can be used to compute the area of a minimal surface in

AdS3 sitting on a light-like polygonal loop on the boundary ∂AdS3. Through some non-trivial

manipulations of the monodromy data, we arrived at the expression (257) in terms of a set of

auxiliary functions εk (υ) which satisfy the system of non-linear integral equation (237). As

mentioned above, these equations have the �avour of TBA equations for quantum integrable

�eld theories and, as a matter of fact, have appeared earlier in the literature as the equations

describing the �nite-size ground state spectrum of the SU(2N)2/U(1)
2N−1 homogeneous sine-

Gordonmodel28 [62, 63, 91, 93–96]. Hencewe conclude that the linear system (184)works as a

bridge, connecting the geometry of minimal surfaces in AdS3—and, consequently, the proper-

ties of light-likeWilson loops in ∂AdS3—to the properties of the quantum SU(2N)2/U(1)
2N−1

HsG model in �nite-size geometry.

It is known [62, 63] that the CFT limit of the Gk/U(1)
rG , with G a compact simple Lie

group, rG the rank of the group G and k its level, is described by the parafermionicGk/U(1)
rG

coset CFT with central charge

c =
k − 1

k+ hG
rG hG, (258)

where hG is the Coxeter number of the group G. In the case considered in this section, that is

G = SU (2N), one has rG = 2N− 1 and hG = 2N and choosing k = 2 one obtains the central

charge

c = N
2N − 1

N + 1
. (259)

27This statement is equivalent to the requirement that the total momentum of the TBA vanishes identically, or, in other

words, that the pseudo-energies εk are even functions of υ.
28Actually, the equation (237) are associated to a particular instance of the SU(2N)2/U(1)

2N−1 HsG model, in which

the so-called resonance parameters are chosen to vanish, see [91, 92].
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As mentioned in section 3.3, the integrable structure of these CFTs is conjectured to be

described by a Sturm-Liouville problem for (61) with the particular choice (109) of the poten-

tial P (x). In order to verify this fact, we need to perform the conf ormal limit on the linear

system (184). We thus �rst pick a generic point (z0, z̄0), such that P (z0) = p0 6= 0,∞ and

P̄ (z̄0) = p̄0 6= 0,∞. Without loss of generality we will suppose that (z0, z̄0) = (0, 0). As the

point (0, 0) need to be generic, we require the Gauss curvature (171) to be a �nite constant at

that point

e−2ϕPP̄ ∼
(z,̄z)→(0,0)

O
(
z0, z̄0

)
, (260)

which means that the sinh-Gordon �eld ϕ will have the following simple, regular behaviour

ϕ (z, z̄) ∼
(z,̄z)→(0,0)

1

2
ln
(
P0P̄0

)
+

∞∑

k=1

(
ϕkz

k
+ ϕ̄kz̄

k
)
. (261)

The coef�cientsϕk and ϕ̄k are �xed by inserting the above ansatz into themodi�ed sinh-Gordon

equation (140); their explicit form is of no relevance, but we list here the �rst few

ϕ1 =
P1

2P0

, ϕ2 =
P2

2P0

− P2
1

4P2
0

, ϕ3 =
P3

2P0

− P1P2

2P2
0

+
P3
1

6P3
0

, (262a)

ϕ4 =
P4

2P0

− P2
2 + 2P1P3

4P2
0

+
P2
1P2

2P3
0

− P4
1

8P4
0

, (262b)

with

P (z) = P0 +

2N∑

k=1

Pkz
k
=

2N∏

k=1

(z− zk) . (263)

Similar expressions hold for ϕ̄k and p̄ (̄z). We see that when taking the light-cone limit z̄→ 0,

the �eld assumes the following form

ϕ (z, z̄) ∼̄
z→0

1

2
ln
(
P0P̄0

)
+

∞∑

k=1

ϕkz
k. (264)

Let us look back at the linear system (184)

Φ,z = LΦ, Φ,̄z = L̄Φ, (265)

with

L (λ) =






−1

4
ϕ,z λe

ϕ
2

λPe−
ϕ
2

1

4
ϕ,z




 , L̄ (λ) =






1

4
ϕ,̄z

1

λ
P̄e−

ϕ
2

1

λ
e
ϕ
2 −1

4
ϕ,̄z




 . (266)

We now consider the unknown Φ as a vector, i.e. an arbitrary column of a generic matrix

solution of (184), which we can parametrise in the two following ways

Φ =

(

λe
ϕ
4 χ

e−3
ϕ
4 ∂
(

e
ϕ
2 χ
)

)

=




e−3

ϕ
4 ∂̄
(

e
ϕ
2 χ̄
)

1

λ
e
ϕ
4 χ̄



 . (267)
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One then easily checks that the linear problem reduces to the following pair of second order

differential equations

χ,zz (z, z̄)+

(
1

2
v (z, z̄)− λ2P (z)

)

χ (z, z̄) = 0, (268)

χ̄,̄z z̄ (z, z̄)+

(
1

2
v̄ (z, z̄)− 1

λ2
P̄ (̄z)

)

χ̄ (z, z̄) = 0, (269)

where

v (z, z̄) = ϕ,zz (z, z̄)−
1

2
ϕ,z(z, z̄)

2, v̄ (z, z̄) = ϕ,̄z z̄ (z, z̄)−
1

2
ϕ,̄z(z, z̄)

2, (270)

are theMiura transf orms of the �eld ϕ.
Now we will consider the conformal limit in the form of a double limit: we �rst take the

light cone limit z̄→ 0, which will ‘freeze’ the anti-holomorphic dependence, and subsequently

consider the regime z ∼ 0. In order to consistently perform this last limit, we �rst rescale all

the quantities in play by the appropriate power of λ as follows

z = λ−
1

N+1 x, z̄ = λ
1

N+1 x̄, (271)

and scale the zeroes zk of the potential P (z) as z→ 0 so that

P (z) =
2N∏

k=1

(z− zk) = λ−
2N
N+1

2N∏

k=1

(x − xk) = λ−
2N
N+1P (x) , (272)

then consider the limit λ→∞. Let us �rst concentrate on what happens to equation (268)

when we send z̄→ 0. The Miura transform v becomes

v (z, z̄) = O
(
z0
)
= λ

2
N+1O

(

λ−
2

N+1

)

, (273)

while the differential equation itself now reads

χ,xx (x, x̄)−
(

O
(

λ−
2N
N+1

)

+ P (x)
)

χ (x, x̄) = 0. (274)

Then we take the limit λ→∞ while keeping the scaling variables x and xk �nite, so that we

arrive at the following equation

χ,xx (x) = P (x)χ (x) (275)

which is clearly holomorphic in form and the reason why we dropped the x̄ dependence of φ.
What is the fate of the equation (269)? Let us look at what happens to the potential P̄ in the

light-cone limit

P̄ (̄z) =
2N∏

k=1

(̄z− zk) ∼̄
z→0

2N∏

k=1

zk = λ−
2N
N+1

2N∏

k=1

xk = λ−
2N
N+1XN . (276)

On the other hand, in the light-cone limit we have v̄→ 0. Consequently the equation (269)

reduces to
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χ̄,̄xx̄ (x, x̄)− λ−
4N
N+1XNχ̄ (x, x̄) = 0, (277)

which in the limit λ→∞ becomes

χ̄,̄xx̄ (x, x̄) = 0. (278)

We easily check that this equation is consistent with the relation imposed by the two

parametrizations (267) of the vector Φ, since considering the identity

χ =
1

λ
e−ϕ∂̄

(

e
ϕ
2 χ̄
)

, (279)

and taking a derivative with respect to z̄, we obtain

χ,̄z =
e−

ϕ
2

λ

(

χ̄,̄z z̄ (z, z̄)+
1

2
v̄ (z, z̄) χ̄ (z, z̄)

)

→ 0. (280)

This proves that in the double scaling limit, the function φ is indeed holomorphic. Hence, as

expected, we have recovered the ODE (61) with a potential

P (x) =
2N∏

k=1

(x − xk) , (2N ∈ Z>) (281)

of the same form as (109).

5. Conclusions

The discovery of a connection between the theory of ordinary differential equations and 2D

quantum �eld theories was a completely unexpected surprise for the integrable model commu-

nity. It has allowed the investigation of problems in pure mathematics, in statistical mechanics

and condensed matter physics, strings and supersymmetric gauge theories. However, most of

the mathematical structures and connections that have emerged over the past 20 years in the

ODE/IM context have only been super�cially explored.Among themanymysterious facts con-

cerning the ODE /IM correspondence, perhaps one of the most fascinating is that it provides a

compelling alternative way to quantise classical integrable systems. In this respect, it will be

essential to put more effort toward the implementation of this novel quantisation scheme in the

context of non-linear sigma models, as initiated in [97].

The ODE/IM correspondence might also provide a way to extend fundamental concepts

related to the renormalisation group to the Hamiltonian picture [98] and to implement the

quantisation of effective quantum �eld theories.

Concerning the last topic, the so-called TT̄-perturbation, where TT̄ is the composite oper-

ator de�ned as the determinant of the stress-energy tensor [99], is known to be integrable at

both classical and quantum level [100–104]. On the classical side, deformed EoMs and Lax

operators coincide with the undeformed quantities up to a �eld-dependent local change of the

space-time coordinates [100, 105, 106]. The effect of this deformation on the �nite-size quan-

tum TBA spectrum is also well understood; however, what is still missing are the ODE/IM

steps connecting the classical to the quantum TBA answer. For instance, it would interesting to

know the fate of the polygonalWilson loops, in particular of the area/ free-energy equivalence

described in this review, under the TT̄ perturbation or the Lorentz-breaking generalisations

studied in [107–109].
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