

1 The Beam Plasma Interactions Experiment: An Active Experiment 2 using Pulsed Electron Beams

3 Geoffrey Reeves¹, Gian Luca Delzanno¹, Phil Fernandez¹, Kateryna Yakymenko¹, Bruce
4 Carsten¹, John Lewellen¹, Michael Holloway¹, Dinh Nguyen¹, Robert Pfaff², Bill Farrell²,
5 Douglas Rowland², Marilia Samara², Ennio Sanchez³, Emma Spanswick⁴, Eric Donovan⁴,
6 Vadim Roytershteyn⁵

7 ¹Los Alamos National Laboratory, Los Alamos, New Mexico, USA

8 ²NASA, Goddard Spaceflight Center, Greenbelt MD, USA

9 ³SRI International, Menlo Park, CA, USA

10 ⁴The University of Calgary, Calgary Alberta, Canada

11 ⁵Space Science Institute, Boulder, CO, USA

12 *** Correspondence:**

13 Geoffrey Reeves

14 reeves@lanl.gov

15 **Keywords:** Active Experiments₁, Electron Beam₂, Wave-Particle Interactions₃, Energetic
16 Particles₄, Radiation Belts₅, Remediation₆, Space Physics₇.

17 **Abstract**

18 The 1970s and 1980s were heydays for using active electron beam experiments to probe some of the
19 fundamental physical processes that occur throughout the heliosphere and in astrophysical contexts.
20 Electron beam experiments were used to study spacecraft charging and spacecraft-plasma coupling;
21 beam-plasma interaction physics; magnetic bounce and drift physics; auroral physics; wave
22 generation; and military applications. While these experiments were enormously successful, they
23 were also limited by the technologies that were available at that time. New advances in space
24 instrumentation, data collection, and accelerator technologies enable a revolutionary new generation
25 of active experiments using electron beams in space. In this paper we discuss such an experiment, the
26 Beam Plasma Interactions Experiment (Beam PIE), a sounding rocket experiment designed to (a)
27 advance high-electron mobility transistor-based radio frequency (RF) linear accelerator electron
28 accelerator technology for space applications and (b) study the production of whistler and X-mode
29 waves by modulated electron beams.

30 **1 Introduction**

31 Active space experiments using electron beams started in the 1970s primarily to study spacecraft
32 charging effects [e.g. *Mullen et al.*, 1986; *Sasaki et al.*, 1986; 1988; *Banks et al.*, 1990]. In those
33 experiments electron beams could produce controlled amounts of “artificial” charging in order to
34 better understand the physical processes involved in spacecraft charging and neutralization and to
35 investigate the effects of severe charging on spacecraft systems. Later electron beams were used to
36 conduct a variety of innovative and successful active physics experiments involving beam-plasma

37 interactions [e.g. *Gendrin*, 1974; *Cambou et al.*, 1978; *Cambou et al.*, 1980], magnetic bounce and
 38 drift physics [e.g. *Hendrickson et al.*, 1975; *Winckler et al.*, 1975; *Hendrickson et al.*, 1976], and the
 39 generation of VLF wave emissions [*Monson et al.*, 1976; e.g. *Dechambre et al.*, 1980; *Obayashi et*
 40 *al.*, 1982; *Farrell et al.*, 1988; *Reeves et al.*, 1988b; *Reeves et al.*, 1990a; *Reeves et al.*, 1990b]. Los
 41 Alamos National Laboratory also tested a neutralized H⁺ particle beam in the BEAR (Beam
 42 Experiment Aboard a Rocket) program as part of the US Strategic Defense Initiative.

43 Studies of wave-generation and wave-particle interactions using electron beams were of particular
 44 interest in the early days of active experiments. The experiments of the 1980's were able to
 45 demonstrate the ability to produce propagating electromagnetic waves; to identify that they were
 46 whistler-mode and; to establish a general agreement with analytic theory [*Harker and Banks*, 1985;
 47 1987; *Reeves et al.*, 1990b].

48 Theoretical work on beam-plasma-wave generation began in the 1960s and was further developed
 49 specifically for the active experiments program [e.g. *Harker and Banks*, 1983; 1985; *Farrell et al.*,
 50 1989; *Harker et al.*, 1989]. As with a physical antenna each beam pulse acts as a current source. The
 51 plasma through which the beam propagates responds according to the resonance condition

$$52 \quad \omega - k_{\parallel} v_{\parallel} = s \frac{\omega_{ce}}{\gamma}$$

53 where ω is the frequency of the mode, k_{\parallel} is the wave vector along the background magnetic field (i.e.
 54 in the parallel direction), v_{\parallel} is the parallel beam velocity, γ is the beam relativistic factor, ω_{ce} is the
 55 electron cyclotron frequency and s is an integer number with $s=0$ corresponding to the Landau
 56 resonance and $s\neq0$ describing cyclotron resonance. The waves are emitted as Cherenkov radiation as
 57 described by e.g. *Farrell et al.*, [1989]. *Harker and Banks* [1985] calculated the whistler-mode wave
 58 power expected from a pulsed electron beam and *Reeves et al.*, [1990b] found that the Spacelab 2
 59 observations generally showed the predicted dependence on modulation frequency, duty cycle, and
 60 pitch angle. However, both the accelerator and receiver technologies available for the early electron
 61 beam experiments were quite limited. For example, the Spacelab 2 experiment could only operate at
 62 a single beam energy (1 keV) and current (100 mA). Only the modulation frequency and duty cycle
 63 could be varied. The wave receiver was a 1D analog audio recorder with a 10 kHz passband. No
 64 information on Poynting flux, wave normal angle, or polarization could be obtained.

65 Recently, Los Alamos National Laboratory and NASA's Goddard Spaceflight Center have been
 66 awarded a grant to conduct active experiments on beam-wave generation using state-of-the-art linear
 67 electron accelerators, wave receivers, and plasma instrumentation. The project is funded through
 68 NASA's Low Cost Access to Space (LCAS) sounding rocket program. The experiment is called the
 69 Beam Plasma Interactions Experiment, or Beam PIE, and is scheduled to launch in spring of 2021
 70 nominally from Poker Flat, AK. In the remainder of this paper we discuss the experimental setup,
 71 objectives, and expected results based on theory, modeling, and simulation.

72 2 Experimental Objectives

73 Waves and wave-particle interactions play a critical role in some of the most important dynamics in
 74 space and astrophysical plasmas by mediating the exchange of energy between fields and particles.
 75 The Earth's radiation belts are a good example of such a system. In addition to the ULF wave-
 76 particle interactions that drive radial diffusion (and betatron/Fermi acceleration), plasmas injected
 77 from the magnetotail into the inner magnetosphere form distributions that are energetically unstable.
 78 Depending on the nature of the plasma distributions and the ambient field and plasma conditions,
 79 those unstable distributions produce whistler-mode chorus, electromagnetic ion cyclotron (EMIC),
 80 magnetosonic, electron cyclotron harmonic, and other waves. Those waves, in turn, strongly affect
 81 the dynamics of the radiation belts. Whistler-mode chorus waves, for example, can strongly
 82 accelerate 100s keV "seed" electrons to MeV energies. These wave-particle interactions are

83 considered to be the dominant radiation belt electron acceleration mechanism for at least a subset of
84 events [Reeves *et al.*, 2013; Thorne *et al.*, 2013; Baker *et al.*, 2014]. EMIC waves can strongly pitch
85 angle scatter radiation belt electrons and are candidates for rapid radiation belt losses (for at least
86 some events and some energies) [e.g. Jordanova *et al.*, 2008; Ukhorskiy and Sitnov, 2012; Usanova
87 *et al.*, 2014]. Countless other examples can be found throughout the heliosphere: in the corona, solar
88 wind, planetary magnetospheres, ionospheres, heliopause, and essentially every plasma system where
89 we have wave and particle observations. Besides the scientific interest associated with the natural
90 environment, wave-particle interaction physics can have very important practical applications such as
91 radiation belt remediation [Carlsten *et al.*, 2019].

92 There are many sources of free energy for wave generation and much study has been devoted to
93 linear, quasi-linear, and nonlinear instabilities that occur, naturally, in space (see e.g. Gary [1993]).
94 An alternative approach is a more active experimental technique, namely using an artificial electron
95 beam to generate the waves. Accelerator-produced electron beams are “artificial” only in the sense
96 that we can precisely control the characteristics of the beam to produce waves with equally precise
97 and testable characteristics.

98 The objective of the Beam Plasma Interactions Experiment is to discover and characterize
99 fundamental wave-particle interactions by generating waves using a modulated energetic electron
100 beam, characterizing the wave properties to test theoretical and model predictions. As a secondary
101 objective we will determine if the beam-generated wave fields are strong enough to produce
102 measurable scattering of ambient ionospheric electron populations. The main specific objectives of
103 Beam-PIE are to:

- 104 • Demonstrate, for the first time, advanced RF linear electron accelerator instrumentation for
105 space experiments.
- 106 • Quantitatively test theories of how energetic electron beams couple to plasmas to stimulate
107 whistler-mode radiation.
- 108 • Discover and characterize how energetic electron beams couple to plasmas to stimulate
109 propagating R-X-mode radiation.

110 3 Beam PIE – the Beam Plasma Interactions Experiment

111 3.1 Experimental Concept of Operations

112 Beam-PIE will utilize a ‘mother-daughter’ rocket configuration in which one rocket segment, the
113 “accelerator” will house the electron beam and power systems and the other section, the “receiver”
114 will house the fields, waves, and particle detectors. The payload layout in launch configuration and
115 placement of the instruments on the two payloads are shown schematically in figure 1.

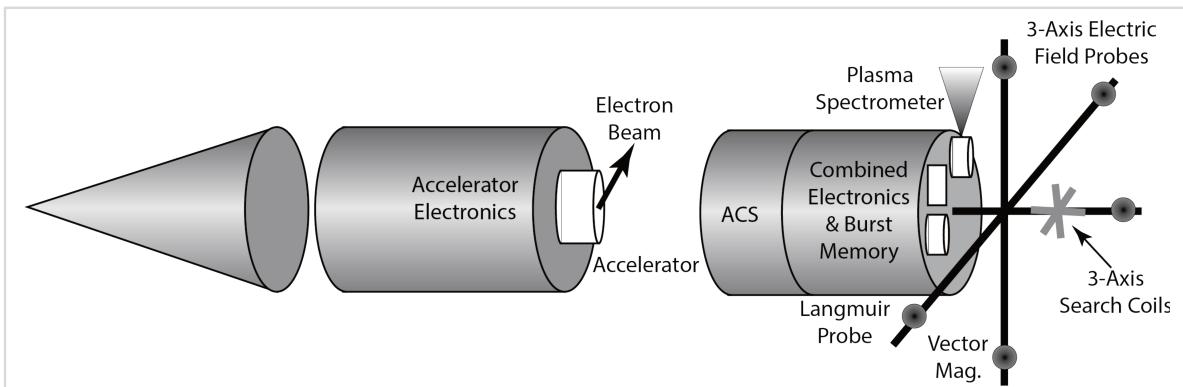


Figure 1. Schematic of the Beam-PIE payload and instrument locations. The Accelerator Payload contains only the accelerator and associated electronics. After payload separation it will be aligned along the magnetic field and boosted to a higher altitude. The Receiver Payload consists of 3-axis electric and magnetic field probes, a wave digitizer/receiver, a plasma spectrometer, a Langmuir probe, a vector magnetometer and associated electronics (see sections 3.3-3.8). An attitude control system (ACS) will be used to align the payloads parallel to the magnetic field and achieve a spin rate for the receiver payload of ~ 1 Hz.

116
 117 After achieving operational altitude and immediately after engine cutoff an attitude control system
 118 (ACS) will be used to orient the payload within $<2^\circ$ of the magnetic field and to provide spin-
 119 stabilization. The accelerator and receiver segments will be spring-separated to place the accelerator
 120 segment on a higher altitude trajectory (apogee ~ 500 km) and the receiver segment on a lower-
 121 altitude trajectory with ~ 1 km peak separation as achievable by the spring system (figure 2). With the
 122 rocket body oriented along B the separation creates a ΔV primarily in the B direction. Thus, the
 123 velocity of the two payloads perpendicular to B is minimal and the time the accelerator and receiver
 124 sections remain roughly field-aligned is maximized.
 125 The electron beam on the accelerator segment will be aligned with the rocket body and therefore also
 126 directed downward along the magnetic field line. The beam will be operated in a sequence of beam
 127 'firings'. The Beam-PIE linear accelerator is capable of producing beams with energies ranging from
 128 ~ 14 -54 keV. The accelerator electronics are capable of modulating the beam at frequencies from a
 129 few Hz up to 1 MHz. Modulation frequencies of ~ 2 -25 kHz optimize the generation of whistler-mode
 130 waves. Coherence effects maximize power at the beam modulation frequency and harmonics thereof
 131 [Harker and Banks, 1985]. In the R-X mode, waves are generated at frequencies between the plasma
 132 and upper hybrid frequency regardless of the beam modulation frequency but coherence effects favor
 133 very short beam pulses (see figures 10 & 11). Using frequencies of 1 MHz and duty cycles $<10\%$
 134 produces pulses of <100 ns which should concentrate nearly all the wave power in the R-X mode.
 135 Theory and modeling predict that the both the division of power between the whistler and R-X-mode
 136 waves, and the characteristics (power, frequency, wave vector, polarization, etc.) of each wave mode,
 137 should be a strong function of the beam parameters and thus a sensitive test of our understanding of
 138 beam-plasma-wave interactions. (Expected dependencies are discussed further in section 4.)
 139 The receiver payload includes a 3-axis electric field measurement, 3-axis search coil, fluxgate
 140 magnetometer, and a full waveform capture digital receiver that will exquisitely characterize the
 141 waves generated by the beam on the accelerator payload. The receiver payload will also measure the
 142 parameters needed to calculate the wave dispersion relation: the background magnetic field, electron
 143 temperature, and absolute density.

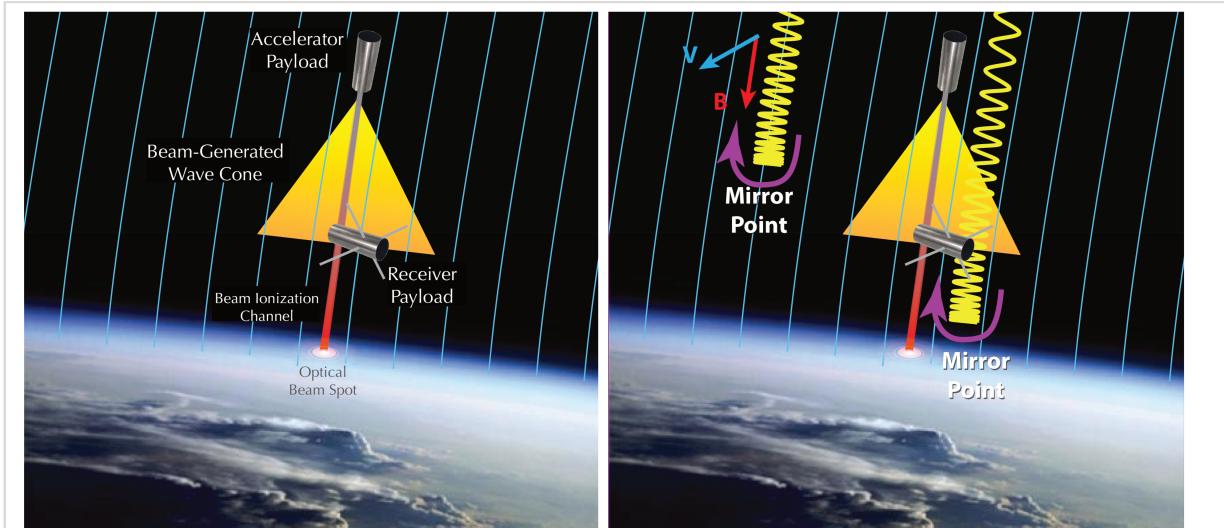


Figure 2. Schematic of the Beam-PIE concept of operations. The Accelerator Payload directs the electron beam down the magnetic field line. The beam-generated waves spread out in a cone of wave power. The waves are detected and characterized by the Receiver Payload flying at a somewhat lower altitude. In the region where waves are present, they resonantly pitch angle scatter ambient ionospheric electrons which lowers their magnetic mirror points and increases the flux of upward going electrons detected at the Receiver Payload.

144 It is not our objective to measure the electron beam itself on the receiver payload. Although the
 145 plasma instrument is capable of that measurement, the beam is guided by the magnetic field and the
 146 gyroradius of the beam is extremely small relative to the size of the receiver payload. Therefore only
 147 very precise (and fortuitous) magnetic conjunction would allow direct detection of the beam. Rather,
 148 the experiment is designed to measure beam-generated waves and scattering of ambient electrons –
 149 neither of which requires precise magnetic conjugacy.

150 The phase velocities of both whistler and R-X-mode waves that are generated by the electron beam
 151 are equal to the beam velocity. The group velocity of the whistler waves is in the same direction as
 152 the beam itself (i.e. downward). Those waves are fast and propagate mostly field aligned. On the
 153 other hand, the R-X-mode waves have a much smaller group velocity, oriented opposite to the beam
 154 over a wide range of angles that strongly depends on frequency. Thus, in order for the instruments in
 155 the “receiver payload” to detect the R-X mode waves generated by the beam injected from the
 156 “accelerator payload”, the receiver must be in or above the wave generation region. As is discussed
 157 above, the two payloads are spring-separated so that their distance increases with time, reaching a
 158 peak separation of about 1 km during the ~400s duration of the experiment. The minimum separation
 159 is on the order of ~100 m, since the beam firing sequence starts tens of seconds after the two
 160 payloads start to separate. The power of the waves emitted by the beam is maximized when the
 161 characteristic size of the beam pulse along the field is less or comparable to the wavelength of the
 162 mode to be excited. The expansion of the beam pulses imposes a constraint on the size of the
 163 emission region (see Section 4), which is stronger for R-X modes due to their smaller wavelength.
 164 Preliminary calculations indicate that the beam may continue to efficiently excite R-X modes waves
 165 over distance of several hundred meters [Delzanno and Roytershteyn, 2019], implying that the
 166 receiver payload will travel through the R-X wave generation region (which is created almost
 167 instantaneously since the beam pulses travel at a fraction of the speed of light) as its distance relative
 168 to the main payload increases. Furthermore, R-X mode waves created below the receiver payload
 169 will move upward and at least some of them will be captured by the receiver, possibly in the far-field

170 depending on the actual cross-field separation between the two payloads. Since whistlers have
 171 significantly larger wavelength, the size of the whistler-wave-generation region is significantly larger
 172 and the receiver will be comfortably inside it. Further, the receiver could also capture whistler waves
 173 generated above the receiver payload and moving downward. We note that, in general, the area of the
 174 beam itself is only a few gyro-radii but the area over which waves can be detected is much larger. For
 175 waves propagating $\pm 20^\circ$ with respect to B , a 1 km accelerator-receiver separation produces cone of
 176 wave power ~ 700 m in diameter. Larger propagation angles, of course, produce a larger area of
 177 radiated power. Therefore, while the accelerator and receiver should be roughly field-aligned,
 178 considerable cross-field separations are not at all problematic and can in fact allow measurements in
 179 the far-field.

180 It is well known that whistler mode waves pitch angle scatter electrons through Langmuir and gyro-
 181 resonant wave-particle interactions but the electron scattering by R-X-mode waves has not been
 182 tested in space. If the R-X-mode waves are sufficiently strong they would be expected to very
 183 efficiently pitch angle scatter ambient (background) ionospheric electrons and we will also check for
 184 this effect.

185
 186 Because of their polarization R-X-mode waves pitch angle scatter electrons that are traveling in the
 187 same direction as the wave phase velocity – in this case that means electrons moving down the field
 188 lines. The accelerator and receiver payloads will both operate at ~ 300 -500 km, well above the
 189 nominal atmospheric absorption altitude of ~ 100 km for 10s keV electrons. Therefore the pitch angle
 190 distribution will have a large atmospheric loss cone and very strong anisotropies when comparing the
 191 upward and downward directed hemispheres. When the beam-generated waves are off, few particles
 192 will mirror below the receiver payload and therefore few particles should be measured moving up the
 193 field. When the beam is on, we will look for pitch angle scattering of ambient ionospheric electrons
 194 by looking at a change in the flux of upward-going electrons. A change in upward-going electrons
 195 could indicate that the waves are scattering electrons to lower mirror altitudes or that these electrons
 196 could have been precipitated (figure 2b). To make this measurement we include two plasma
 197 spectrometers capable of measuring 0-30 keV electrons (see section 3.8). The receiver payload will
 198 be spinning and oriented with the spin axis aligned to the Earth’s magnetic field so one plasma
 199 spectrometer will be oriented at 90° to measure locally mirroring electrons and one will be mounted
 200 facing downward to measure upward going electrons that have mirrored below the receiver payload.
 201 (Whistler mode waves resonate with electrons propagating in the opposite direction as the waves and
 202 also resonate with much higher energy electrons so whistler mode scattering is not readily measured
 203 with this experimental set up.)

204 3.2 Beam PIE Instrumentation

205 As discussed above, Beam-PIE is a standard ‘mother-daughter’ rocket configuration consisting of a
 206 main payload and a subpayload. The main ‘receiver’ payload will house the fields, waves, and
 207 particle detectors and will be equipped with an ACS (attitude control system). The ‘daughter’, or
 208 ‘accelerator’ subpayload, located forward of the main payload, will house the electron beam
 209 accelerator and power system (figure 1).

210 3.2.1 Linear Electron Accelerator

211 The electron accelerator is shown schematically in figure 3. The electron beam is generated in a DC
 212 ~ 10 -keV “electron gun” and injected into a single 5-GHz RF cavity which can accelerate the beam an
 213 additional 40 keV for a total nominal energy range of ~ 10 -50 keV.

214 When operating at 10 keV, the electron gun
 215 will produce 20 mA of current. A bare
 216 accelerator system produces a beam with
 217 $\sim 100\% \Delta E/E$ which is too large for efficient
 218 wave generation. Therefore, we will use an
 219 chicane magnet at the beam aperture to reduce
 220 the beam $\Delta E/E$ to $\sim 10\%$. This also reduces the
 221 emitted beam current to ~ 2 mA which is
 222 sufficiently small that no significant spacecraft
 223 charging is produced.

224 The 10 keV electron gun is commercial off the
 225 shelf (COTS). The accelerator cavity uses a
 226 novel LANL design that adapts common
 227 laboratory RF linear accelerator (linac)
 228 components to be suitable to space
 229 applications. One novel feature of the design is
 230 the use of high-electron mobility transistors
 231 (HEMTs) to energize the RF cavity (figure 4).
 232 HEMTs greatly reduce power consumption
 233 and associated waste heat.

234 A notional electron beam pulse format is also
 235 shown in figure 3. Nominal operations consist
 236 of a sequence of $\frac{1}{2}$ second beam pulses
 237 separated by $\frac{1}{2}$ second when the beam is off
 238 and no waves are being generated. Each $\frac{1}{2}$ s of
 239 beam on time can utilize a different combination of beam energy, RF frequency, and beam duty
 240 cycle. Additionally, the range of rocket altitudes provides a range of background plasma and
 241 magnetic field conditions allowing a wide range of beam-plasma-wave interaction conditions to be
 242 investigated. The $\frac{1}{2}$ sec intervals when the beam (and waves) are off allows unambiguous separation
 243 of beam-generated waves from naturally occurring wave conditions.

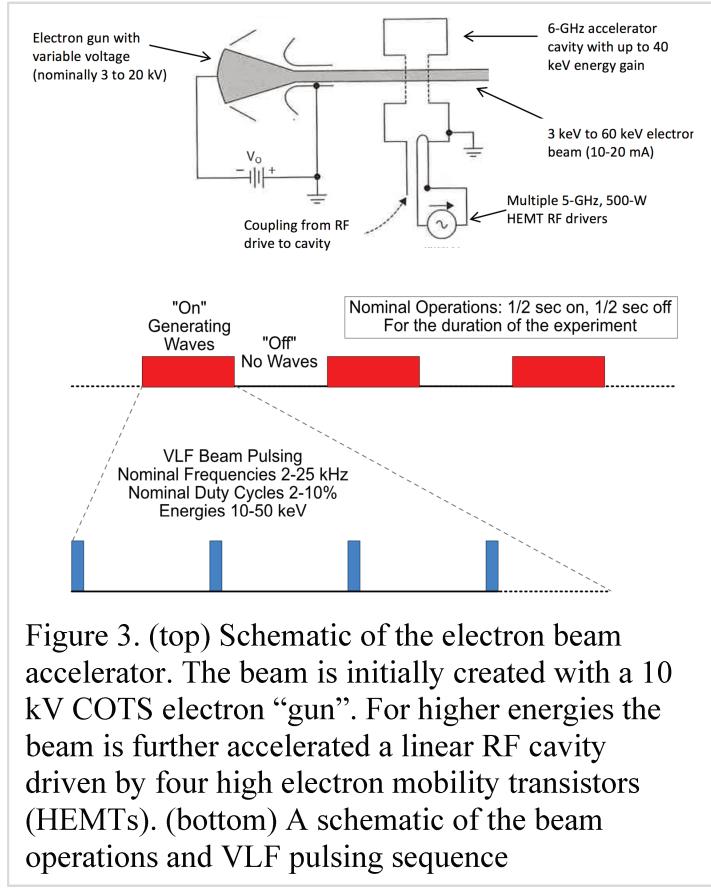


Figure 3. (top) Schematic of the electron beam accelerator. The beam is initially created with a 10 kV COTS electron “gun”. For higher energies the beam is further accelerated a linear RF cavity driven by four high electron mobility transistors (HEMTs). (bottom) A schematic of the beam operations and VLF pulsing sequence

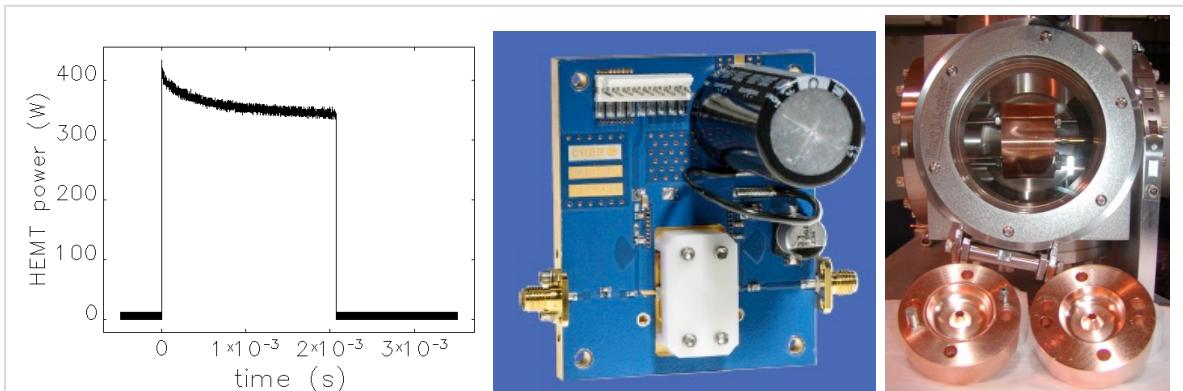


Figure 4. Left: Measured power at 5.6 GHz from a HEMT as a function of time. Middle: Power amplifier board (HEMT is the white square) which is used to drive the 5.1 GHz cavity. Right: 5.1-GHz RF cavity halves (in front) and assembled in a vacuum enclosure for testing with beam (background).

245

246 3.3 DC and Wave Electric Field Detectors

247 The Beam PIE wave receiver will gather measurements of both ambient waves and plasma structures
 248 as well as plasma waves excited by the electron beams. The DC and AC vector electric field will be
 249 measured using the standard double probe technique [e.g. Pfaff, 1996]. In this manner, spherical
 250 sensors with embedded pre-amps will be extended on three independent, tri-axial double probes. This
 251 configuration provides a full, three dimensional electric field measurement that will completely
 252 parameterize the vector electric field (DC to 5 MHz) including DC and wave electric fields parallel to
 253 the magnetic field direction (figure 5).

254 The double probes include inner spheres (situated 0.5m inboard of the outer spheres) to serve as
 255 multiple baseline electric field detectors or spaced receivers [Pfaff and Marionni, 1998]. These
 256 "double-double" probes are similar to ones flown
 257 successfully in the auroral E-region Rocket/Radar
 258 Instability Study (ERRRIS) (rockets 21.097 and 21.100)
 259 and Cusp Transient Features Campaign (rockets 36.152,
 260 36.153). Measureable phase shifts from these separated
 261 receivers not only establish the electrostatic nature of any
 262 ELF/VLF wave modes associated with the electron
 263 beams, but also provide a measure of their wavelength
 264 and phase velocity.

265 The wave receiver also includes an HF channel to observe
 266 the presence of any waves near the electron plasma
 267 frequency, such as HF Langmuir waves. The electronics
 268 will return continuous FFT power spectra of the ambient
 269 plasma environment. Furthermore, a burst memory will
 270 gather vector AC fields (three components) sampled at 10
 271 Msample/sec each synchronized with the electron beams
 272 with ample time prior and after the actual beam
 273 discharge. Importantly, the burst waveform capture
 274 capability and dedicated telemetry system allow the
 275 opportunity for discovery of phenomena outside of the
 276 primary experimental objectives including instabilities and potential nonlinear effects.

Figure 5. Electric field probes as deployed in sounding rocket 21.116.

277 **3.4 Langmuir Probe**

278 A fixed-biased Langmuir probe will be flown in order to observe the relative plasma number density
 279 and its fluctuations. The Langmuir probe will be oriented perpendicular to the spin axis and magnetic
 280 field direction to minimize spin effects. In addition to pre-launch calibration curves and theory, the
 281 Langmuir probe will be normalized using simultaneous ground-based Poker Flat Rocket Range
 282 ionosonde data, as well as plasma wave data where applicable.

283 **3.5 Vector Magnetometer**

284 The Goddard Space Flight Center will furnish a vector fluxgate magnetometer similar to that flown
 285 on numerous sounding rocket experiments to measure the currents associated with the aurora, the Sq
 286 current system, and the equatorial electrojet. This magnetometer is a commercially procured
 287 Bartington type (or equivalent) for which 18-bit A/D converters will be built at the Goddard Space
 288 Flight Center. The electronics are part of the electric field electronics. These instruments provide tri-
 289 axial measurements to a resolution better than $\pm 1\text{nT}$. This performance is sufficient to detect the
 290 field-aligned currents, as well as large scale magnetic fluctuations that may be associated with Alfvén
 291 waves or other perturbations.

292 **3.6 Search Coil**

293 The Search Coil unit is an AC magnetic field sensor capable of
 294 detecting the B-field vector of an electromagnetic plasma or radio
 295 wave. Each coil has many thousands of turns to convert a wave's
 296 dB/dt into an output sensor voltage between 10 Hz and 100 kHz.
 297 The analog output $V(t)$ from each sensor can then drive an ADC
 298 for inclusion in the data stream for return and subsequent spectral
 299 analysis. Figure 6 shows a set of flight units built by Goddard
 300 Space Flight Center for the Air Force's DSX mission [*Scherbarth*
 301 *et al.*, 2009].

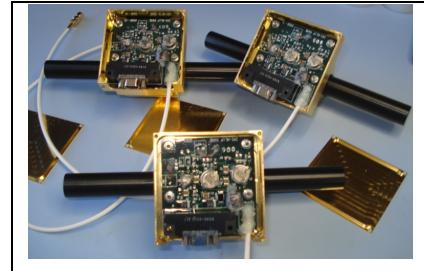


Figure 6. – Individual search coil units with per-amp covers removed.

302 **3.7 Combined electronics and burst memory**

303 The electronics for the combined DC/Wave electric field instrument and the fluxgate and search coil
 304 magnetic field instruments, as well as the Langmuir probe, will be integrated into a combined
 305 electronics assembly built by Goddard. Similar unites have been flown on numerous previous
 306 experiments. The Goddard group will also provide a burst memory for the payload that will be
 307 synchronized with the electron beams, as was successfully carried out as part of the fields experiment
 308 for the APEX high density beam releases [see *Pfaff* *et al.*, 2004]. The burst memory will gather
 309 precursor data prior to the beam activation, to ensure that the fastest particles and wave modes
 310 associated with the release itself will be captured. The burst memory will record HF and MF vector
 311 data gathered by the electric field detectors.

312 **3.8 Energetic Electron Spectrometer (APES)**

313 The preceding instruments, as described, are all required for the primary Beam PIE science
 314 objectives – generation of whistler and R-X-mode waves with a novel linear electron accelerator. We
 315 also note that the previously-discussed receiver payload instruments can operate in any orientation
 316 with respect to the magnetic field and can operate equally well on a non-spinning platform.
 317 The secondary objective of Beam PIE, however, is to study the effect of the waves on ambient
 318 electrons. Specifically we investigate pitch angle scattering by R-X mode waves.

319 The Beam PIE energetic electron spectrometer (known as APES) uses magnetic deflection to
 320 measure the locally-mirroring and upward-going electrons with high cadence over a 150 eV to >30
 321 keV energy range. One APES spectrometer is oriented at $\sim 90^\circ$ to the ambient magnetic field to
 322 measure locally-mirroring electron. The other is oriented downward (toward the ground) to measure
 323 upward going electrons that mirror below the rocket. An increase in the ratio of upward going
 324 electrons to locally-mirroring electrons indicates pitch angle scattering by the R-X mode waves.

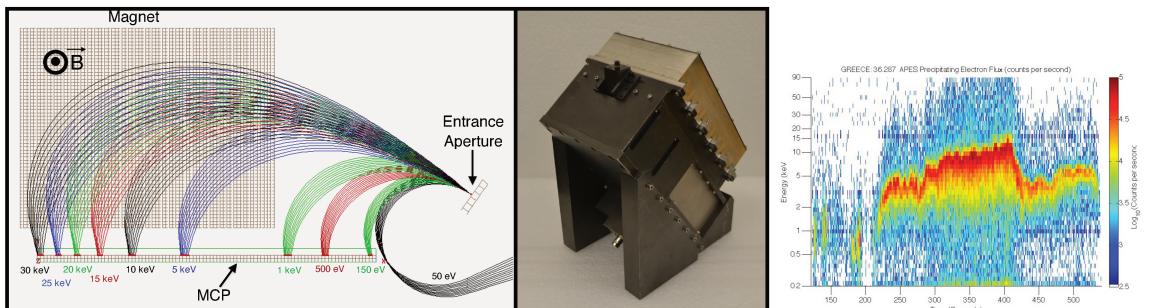


Figure 7 shows (a) ray tracing of the magnetic deflection system for APES, showing the paths of electrons of different energies, (b) a photograph of the APES that flew on the GREECE mission, and (c) field-aligned electron measurements from the GREECE mission.

325 APES (described in detail in Michell et al., [2016]) uses a micro-channel plate (MCP) detection
 326 system with 50 discrete anodes (energies). Ray tracing analysis of the magnetic deflection system to
 327 be used is presented in figure 7 next to a photograph of the APES instrument that flew on the
 328 GREECE mission.
 329

330 3.9 Ground-Based diagnostics

331 To the extent feasible, radar and optical ground-based instrumentation will be used to measure the
 332 properties of the ambient plasma before and during the beam injection and to remotely measure the
 333 ionospheric effects of the primary beam energy deposition and enhanced precipitation from wave-
 334 particle interactions. The effects that we will be looking for is the electron density (N_e) perturbation
 335 over background, measured with incoherent scatter radar and optical emissions using ground-based
 336 imagers.

337 The Poker Flat Incoherent Scatter Radar (PFISR) is operated by SRI International on behalf of the
 338 National Science Foundation and it will be operated during the rocket flight. PFISR is a modular,
 339 UHF phased-array capable of beam steering on a pulse-to-pulse basis [Nicolls et al., 2007]. PFISR
 340 operations will start at least two hours before and continue at least two hours after the rocket's launch
 341 window.

342 The radar's mode of operation for the Beam-PIE rocket flight will consist of multiple beams with
 343 orientations selected to measure the ambient N_e and convection along the foot-point of the rocket's
 344 trajectory and its vicinity, as well as the perturbation N_e caused by the energy deposition of the
 345 electron beam. Measurements of the electron density perturbations as a function of beam energy and
 346 current will provide diagnostics of beam propagation from the accelerator payload and energy
 347 deposition into the atmosphere. Detection of optical emissions from the interaction of the beam with
 348 the atmosphere provide opportunities for additional beam diagnostics. The optical emissions are
 349 similar to naturally-occurring aurora but, with this active experiment we have precise knowledge of
 350 beam energies, currents, and frequencies (e.g. Marshall et al. [2014]).

351 4 Expected Results from Theory, Modeling, and Simulation

352

4.1 Expected Results – Wave Generation

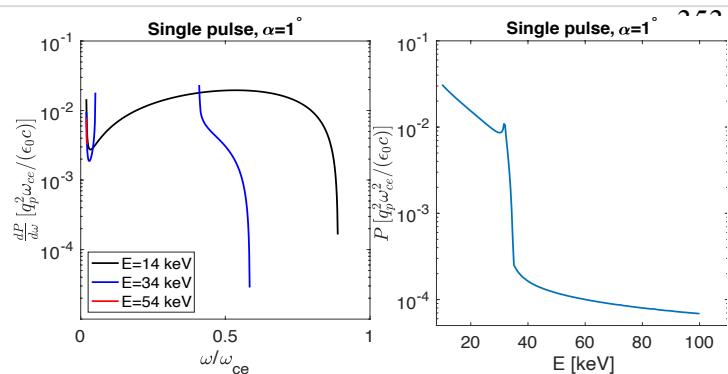


Figure 8. Power spectral density and integrated power for beam-generated whistler waves for different beam energies.

The primary objectives of the Beam Plasma Interactions Experiment are to test our understanding of wave generation through beam-plasma interactions. We will independently test the generation of whistler-mode and (for the first time in space) R-X-mode waves as well as the partitioning of energy between the modes. Wave diagnostics include wave spectral power density, polarization, ellipticity, and Poynting flux. While the space physics community has come to understand the power of such measurements, what makes Beam PIE unique is the ability to do active, controlled experiments with unprecedented flexibility in pulsed

369 electron beam parameters. We have the ability to independently vary beam energy, pulse frequency,
 370 and duty cycle. In addition, the trajectory of the rocket naturally samples different background
 371 plasma conditions (density, temperature and magnetic field strength) that determine the plasma wave
 372 dispersion relation.

373 For wave generation, the starting point is the theory of Harker and Banks [Harker and Banks, 1983
 374 labeled ‘HB’ in the following; 1985; 1987] which solves the cold plasma dispersion relation for the
 375 total radiated power for a sequence of beam pulses with finite length (labeled ‘ l_p ’) along the direction
 376 of motion, while the pulses are infinitesimal in the perpendicular direction. These pulses move with a
 377 constant velocity and pitch angle α relative to the background magnetic field and the response of the
 378 plasma to the beam pulses is calculated in the framework of cold-plasma linear theory. The HB
 379 theory was developed in the eighties, stemming from earlier work that calculated the radiated power
 380 from a point charge [McKenzie, 1963; Mansfield, 1967] and was used for the interpretation of
 381 ionospheric electron-beam experiments such as Spacelab 1 and 2 [Gurnett *et al.*, 1986; Bush *et al.*,
 382 1987; Farrell *et al.*, 1988; Reeves *et al.*, 1988a; Farrell *et al.*, 1989; Reeves *et al.*, 1990a; Reeves *et
 383 al.*, 1990b]. It is used here as a reference and, at the end of this section, we discuss its limitations and
 384 the physical effects that will need to be incorporated for more accurate predictions of waves
 385 generated by Beam PIE.

386 In order to obtain realistic parameters for Beam PIE, we have used the International Reference
 387 Ionosphere (IRI) model for the month of March 2009 at 0 Local time and for altitudes between 300
 388 and 500 km. The corresponding average density is $n = 3.8 \cdot 10^4 \text{ cm}^{-3}$. The average magnetic field for the
 389 same altitudes at the Poker Flat (Alaska) launch site is $B_0 = 4.7 \cdot 10^{-5} \text{ T}$. These parameters give the ratio
 390 of the electron plasma frequency (ω_{pe}) to the cyclotron frequency (ω_{ce}) equal to $\omega_{pe}/\omega_{ce} = 1.33$. In
 391 what follows, we assume hydrogen ions.

392 4.1.1 Generation of Whistler Waves

393 Figure 8 shows the power spectral density obtained from HB in the whistler regime ($\omega \leq \omega_{ce}$), for
 394 three beam energies equal to 14 keV, 34 keV and 54 keV. The former value corresponds to the
 395 maximum energy obtained from the DC electron gun, while the latter value is the maximum energy
 396 achievable after the RF accelerator cavity. The calculation is performed for a single beam pulse of
 397 length corresponding to the pulse period $t_p = 100 \text{ ns}$ and the power spectral density is in units of

398 $[\frac{q_p^2 \omega_{ce}}{\epsilon_0 c}]$ (where q_p is the pulse charge, ϵ_0 is the permittivity of vacuum and c is the speed of light). We
 399 have also used a beam pitch angle $\alpha = 1^\circ$ to account for inaccuracies in beam pointing relative to our
 400 target of injection aligned to the background magnetic field and only computed contributions due to
 401 the Landau resonance (as appropriate for a field-aligned beam). Note also that a finite pitch angle is
 402 necessary to obtain a finite total radiated power [McKenzie, 1963]. Figure 8 (left) shows that the
 403 whistler signal breaks into two distinct frequency bands for $E=34$ keV and shrinks considerably in
 404 frequency for $E=54$ keV. Consistently, the whistler radiated power drops by two orders of magnitude
 405 for energies above $E \sim 35$ keV.

406 4.1.2 Generation of R-X-mode Waves

407 The whistler branch is not the only regime where the beam can couple with a magnetized plasma.
 408 Figure 9 (left) shows the power spectral density versus frequency with the same format of Fig. 8,
 409 extending the frequency range from $\omega = \omega_{pe}$ to the upper hybrid frequency $\omega_{uh} = 1.64\omega_{ce}$.
 410 Comparing against Fig. 8 shows that the R-X-mode wave signal is quite similar for the beam
 411 energies considered and, most important, it can be orders of magnitude stronger than the whistler
 412 mode signal. The total radiated power in Fig. 9 (right) shows a decreasing trend with beam energy
 413 but is several orders of magnitudes higher than the power radiated in the whistler range for all cases
 414 considered. These results indicate that highest radiation and, hence, highest beam-plasma coupling
 415 may be achieved through the R-X-mode.

416
 417

418 4.1.3 Beam Operations for Wave Generation

419 While we have demonstrated that both whistler and R-X-modes can be excited by an electron beam, a
 420 primary objective of Beam-PIE is to use controlled experiments to quantitatively test our
 421 understanding of beam-plasma-wave interactions. The beam parameters that can be user-selected are
 422 beam energy (i.e. velocity), modulation frequency, and pulse duty cycle. We have designed nominal
 423 beam operation modes to test each of these parameters.

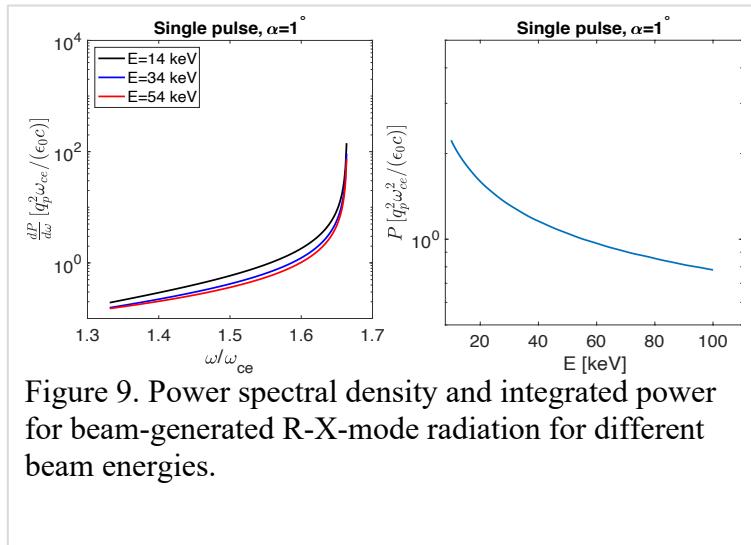


Figure 9. Power spectral density and integrated power for beam-generated R-X-mode radiation for different beam energies.

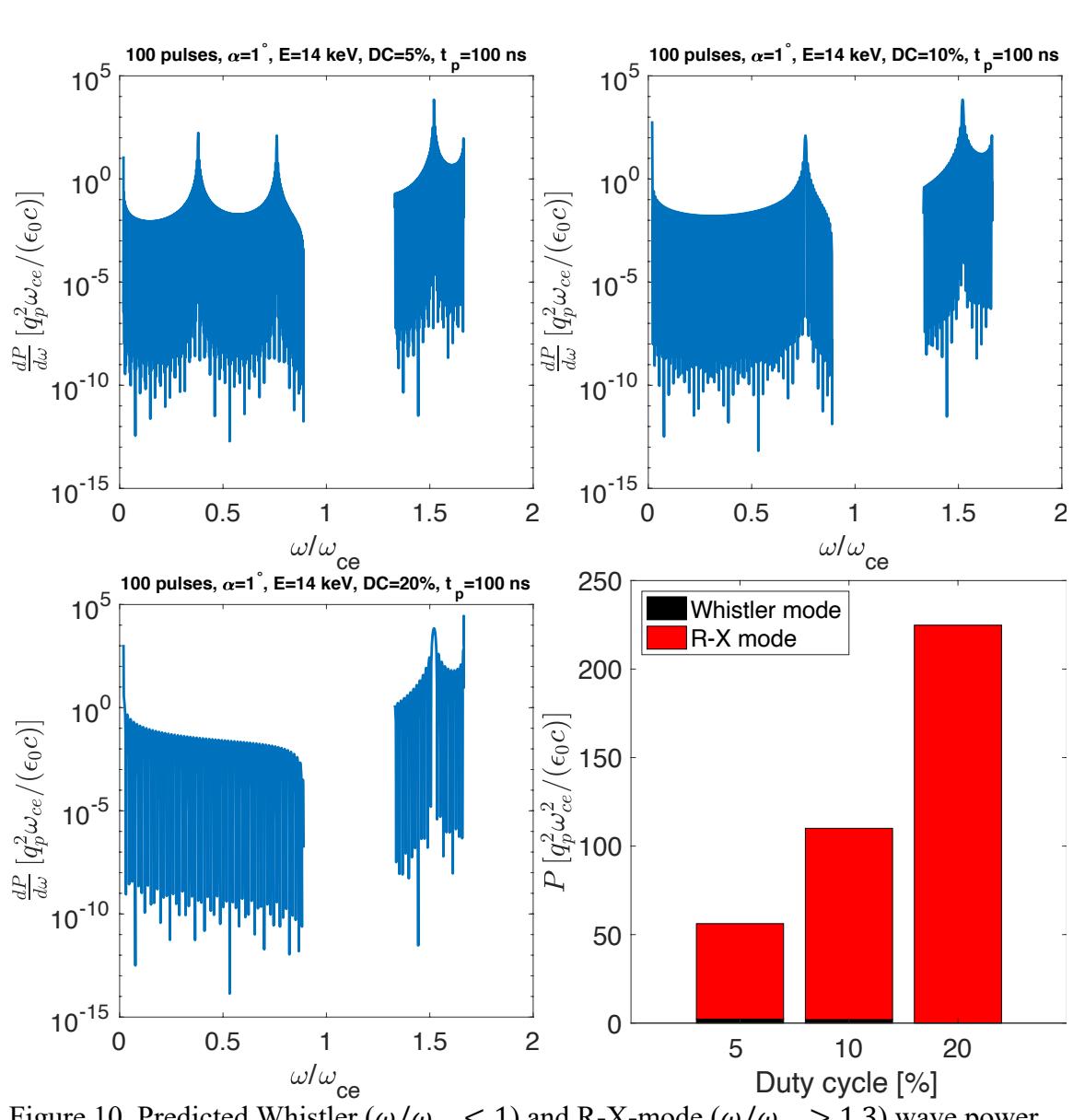


Figure 10. Predicted Whistler ($\omega/\omega_{ce} < 1$) and R-X-mode ($\omega/\omega_{ce} > 1.3$) wave power spectra for a 14 keV beam with varying pulsing duty cycles (top and bottom-left panels). Note the discrete harmonic structure. The bottom-right panel shows the partition of the total integrated power between whistler and R-X modes.

424

An example of the predicted energy partitioning between whistler and R-X-mode waves is shown in Figs. 10 and 11, together with more detailed examples of wave dependence on beam parameters.

425 Figure 10 is obtained for beam energy $E=14$ keV, pitch angle $\alpha = 1^\circ$, 100 pulses of length
 426 corresponding to 100 ns and varying the duty-cycle between 5 and 20%. This corresponds to a beam
 427 modulation between 500 kHz and 2 MHz, which targets the R-X mode. Indeed, despite the fact that
 428 both whistler and R-X modes are generated, the total radiated power is overwhelmingly in the R-X
 429 modes. Figure 11 is obtained for the same parameters of Fig. 10, except that the duty-cycle is fixed at
 430 5% and the pulse length is varied between 1 μ s and 4 μ s. Since the duty-cycle is constant, varying
 431 the pulse length implies a modulation between 12.5 kHz and 50 kHz, i.e. in the whistler regime.
 432 Unlike the case in Fig. 10, in this case the radiated power in whistler and R-X mode waves is
 433 comparable. Note that the total normalized radiated power in Fig. 11 is lower than that in Fig. 10
 434

436 because it is plotted in units of $[\frac{q_p^2 \omega_{ce}}{\epsilon_0 c}]$. For the same beam current, a 1 μs beam pulse has 10 times
 437 larger pulse charge than a 100 ns beam pulse, implying that in reality the total radiated power in
 438 dimensional units is comparable in the two cases. In each of these cases both whistler and R-X-mode
 439 waves are generated. We note, however, that the partitioning of wave energy, the spectral shape in
 440 each mode, and the harmonic structures are all strongly frequency dependent providing a very
 441 sensitive test of the theory of beam-plasma-wave interactions.

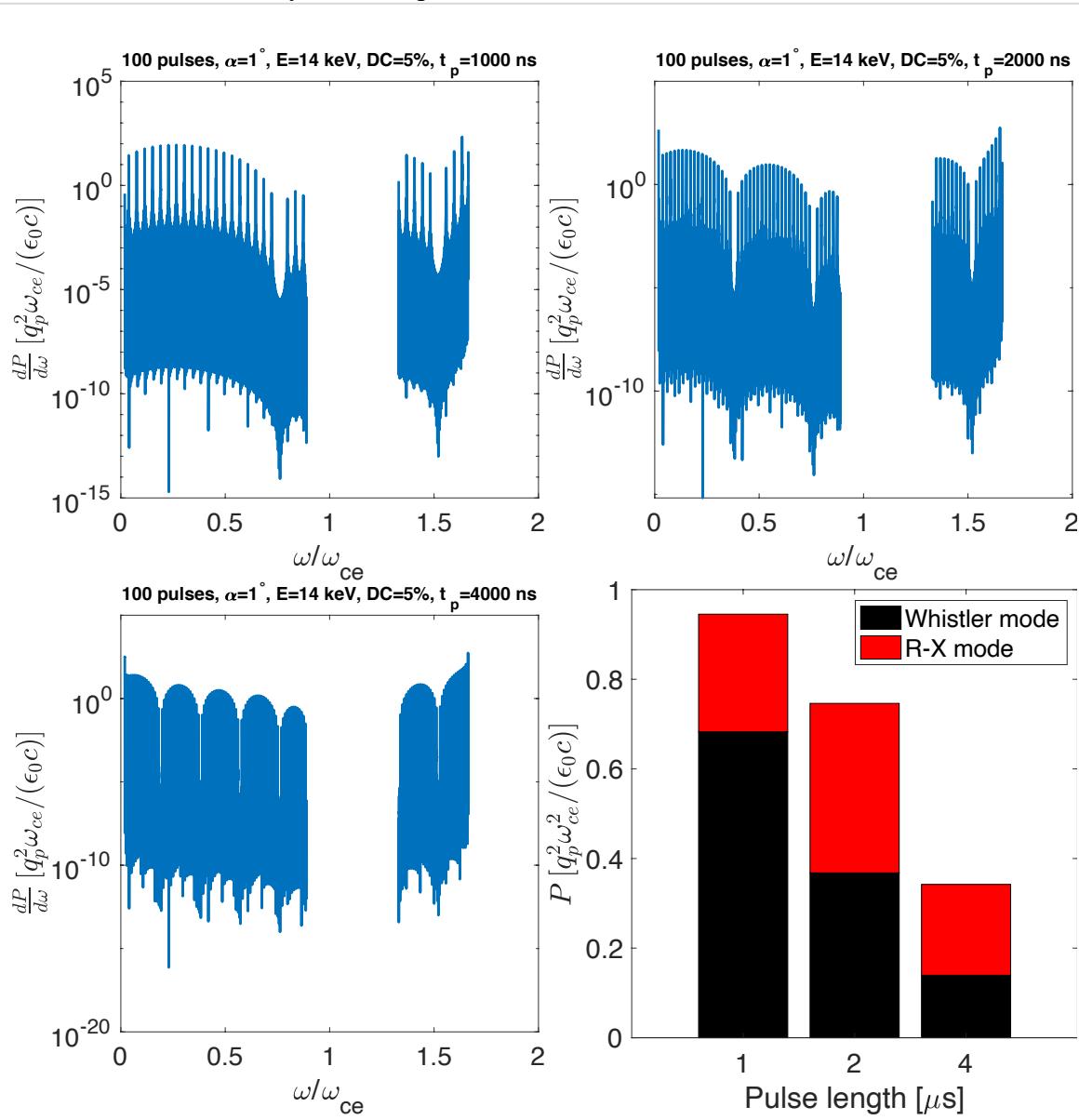


Figure 11. Predicted Whistler ($\omega/\omega_{ce} < 1$) and R-X-mode ($\omega/\omega_{ce} > 1.3$) wave power spectra for a 14 keV beam with 5% pulsing duty cycle. The top and bottom-left panels differ only in beam pulse length. The bottom-right panel shows the partition of the total integrated power between whistler and R-X modes.

442

443 4.1.4 Simulation support for Beam PIE

444 The HB theory provides a good starting point to estimate the response of a magnetized plasma to a
 445 pulsed electron beam. However, it has a number of limitations that need to be addressed to improve
 446 the accuracy of the Beam PIE predictions. In particular, the theory assumes an infinitesimal

447 transverse direction of the beam and is based on cold-plasma theory. These approximations imply
 448 that there are resonances at the lower- and upper-hybrid frequencies where the power spectral density
 449 diverges, even though the total radiated power remains finite (for non-zero pitch angles). The
 450 behavior of the power spectral density near resonances affects the total radiated power and the
 451 partition between whistler and R-X modes - particularly the power in the R-X modes since the power
 452 spectral density is monotonically increasing towards the upper-hybrid frequency, c.f. Fig. 9. There
 453 are several effects that can regularize the power spectral density (finite transverse beam size, thermal
 454 effects, nonlinear effects and collisions) around resonances and that need to be properly considered.
 455 Furthermore, the HB theory does not take into account beam dynamics nor the potential feedback
 456 between the plasma and the beam. The beam dynamics is important because the beam pulses can
 457 radiate efficiently (i.e. coherently) in certain wavelengths only if the longitudinal extension of the
 458 beam pulse is smaller/comparable to the excited wavelengths and this affects the longitudinal
 459 extension of the radiated wave field. The beam dynamics is in itself fairly complex since the beam
 460 can expand longitudinally due to its space-charge, while oscillating transversely due to the combined
 461 effects of space charge and the Lorentz force. How much the beam pulse charge is neutralized by the
 462 background plasma also affects the beam dynamics. Last, the feedback between beam and plasma is a
 463 possible source of instability, whose effect on the radiation pattern needs to be evaluated. Generally
 464 speaking, earlier work showed that the small, finite-size beam radius decreases the growth rate of the
 465 electrostatic two-stream instability [Galvez and Borovsky, 1988] and early active experiments
 466 showed that beams could propagate long-distances in space [Winckler, 1982]. A Spacelab
 467 experiment, on the other hand, showed radiation levels consistent with coherent Cherenkov emission
 468 and attributed it to beam bunching due to the two-stream instability [Farrell *et al.*, 1989].
 469 As a first step to address the limitations just discussed, we have modified the HB theory to account
 470 for pulses of finite transverse size, assuming pulses with a Gaussian shape characterized by a width
 471 along and perpendicular to the magnetic field, l_{\parallel} and l_{\perp} , respectively. While a cylindrical shape is
 472 characteristic of pulses when they leave the RF accelerator, a Gaussian shape might be more
 473 appropriate on longer time-scales of beam dynamics. We have applied the finite-transverse-size HB
 474 theory to the same case presented in Fig. 10, for a beam with $l_{\perp}=0.1$ m and $l_{\parallel}=3.4$ m. The results for
 475 the partition of the radiated power between whistler and R-X modes versus duty cycle are shown in
 476 Fig. 12 (left), where one can see that the radiated power is still dominated by R-X modes but it is
 477 lower by ~20-30% than what shown in Fig. 10. Figure 12 (right) shows the applications of the finite-
 478 transverse-size HB theory to the same case presented in Fig. 11, for a beam with $l_{\perp}=0.1$ m and $l_{\parallel}=34$
 479 m (pulse length equal to 1 μ s), $l_{\parallel}=69$ m (2 μ s) and $l_{\parallel}=138$ m (4 μ s), for a 5% duty cycle. While there
 480 is small reduction in the whistler radiated power, one can see that radiation in R-X modes is
 481 completely quenched (c.f. Fig. 11) since the pulse lengths are now larger than the characteristic
 482 wavelength of the modes. These results emphasize the importance of treating beam dynamics and the
 483 pulse evolution in the determination of the beam-generated wave field.

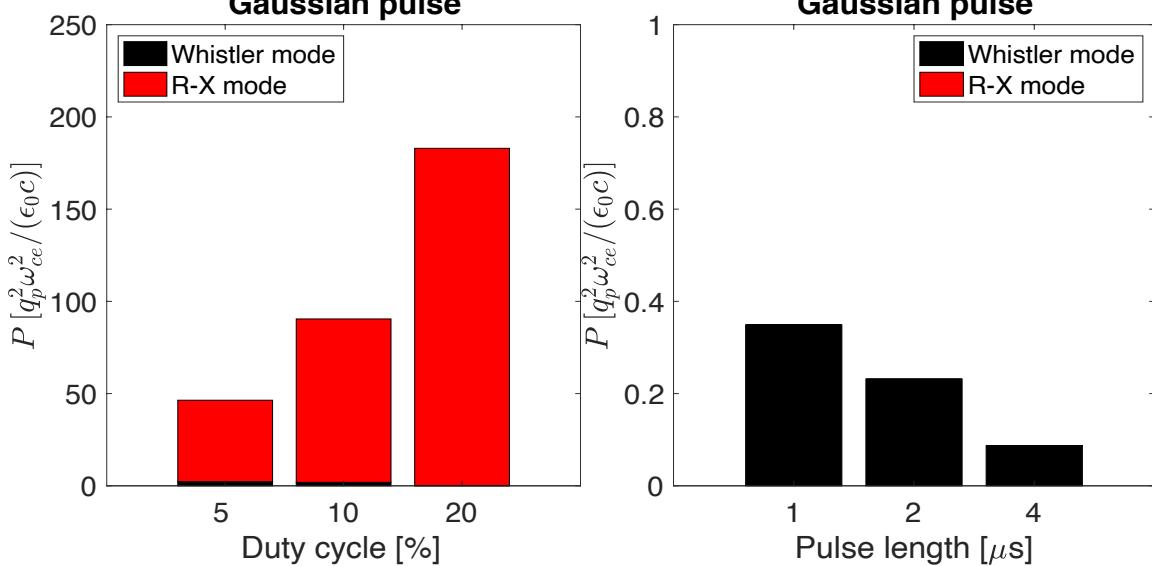
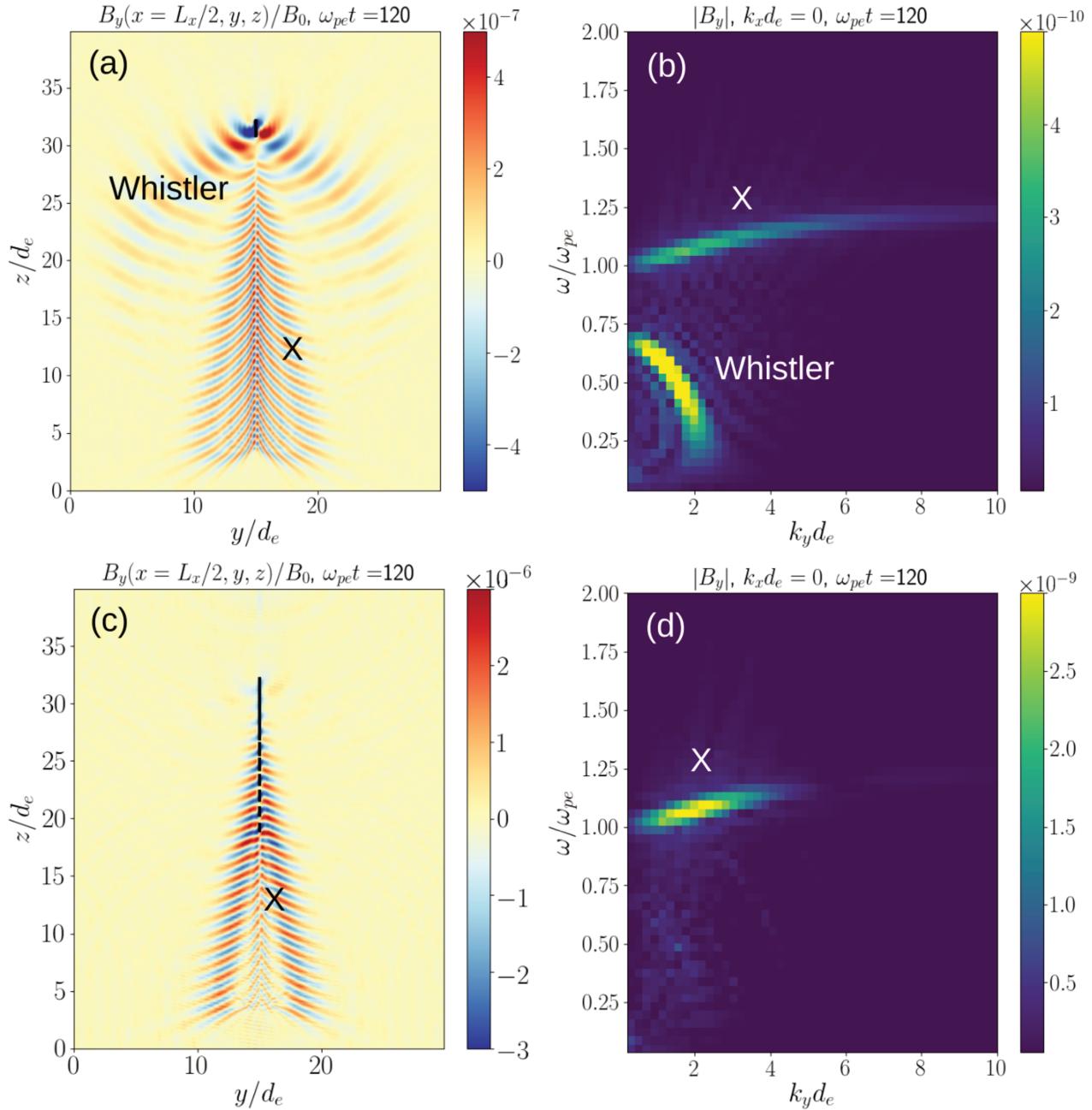



Figure 12. Predicted Whistler ($\omega/\omega_{ce} < 1$) and R-X-mode ($\omega/\omega_{ce} > 1.3$) partition of radiated wave power for a 14 keV beam made of 100 pulses with a Gaussian shape: (left) pulse length 100 ns for different duty cycles; (right) 5% duty cycle for different pulse lengths.

Furthermore, in order to address the issue of beam dynamics and stability, we have adopted a two-pronged approach. First, we are performing simulations of wave emission by a pulsed beam of a given shape with a highly accurate three-dimensional Vlasov code called the Spectral Plasma Solver (SPS) [Delzanno, 2015; Vencels *et al.*, 2016; Roytershteyn and Delzanno, 2018]. Second, we are performing simulations of beam pulse dynamics using the Particle-In-Cell (PIC) simulation code VPIC [Bowers *et al.*, 2008]. The properties of the spectral and PIC methods complement each other, so that such an approach allows for the most efficient exploration of the processes of interest. SPS uses a spectral decomposition of the plasma distribution function in terms of Hermite polynomials in velocity space, a Fourier decomposition in physical space (appropriate for problems with periodic boundary conditions) and an implicit time discretization. The velocity-space spectral decomposition is such that one can describe the plasma as a macroscopic fluid with the low-order moments of the expansion, while the kinetic physics is retained by adding more moments [Vencels *et al.*, 2015]. The beam simulations are performed using $N_H = 4$ Hermite polynomials in each velocity direction (corresponding to a fluid approximation) and the number of spatial modes along x, y, z directions equal correspondingly to 150, 150, and 248. The beam, implemented as an external current in the simulation, moves along z axis aligned with the external magnetic field \mathbf{B}_0 . Figure 13 (a) shows the B_y component of the magnetic field (normalized to B_0) at the end of a simulation ($\omega_{pe} t = 120$) with $E=14$ keV for a single beam pulse. The pulse is introduced into SPS as an external current produced by a cylindrical pulse with a total charge of 2 nC uniformly distributed inside the cylinder (shown as a black rectangle at $z/d_e \sim 32$). The initial length of the pulse corresponds to a 100 ns beam pulse, while its radius is equal to $0.1d_e$. In this SPS simulation, we follow the longitudinal dynamics of the pulse due to its own space charge but do not model the transverse dynamics of the pulse (see section 4.1.5). Also, we do not account for any potential neutralization of the beam pulse charge due to the background plasma. Two modes of radiation are clearly visible: the whistler mode (with longer wavelengths) and the R-X-mode (with shorter wavelengths). As the pulse propagates, its length increases and at $z/d_e \sim 25$ the length of the pulse becomes comparable to the wavelength of the R-X-mode plasma wave. Above this point the

512 radiation is dominated by the whistler mode waves as radiation in the R-X-mode decreases
513 significantly due to coherence effects as expected from radiation theory (c.f. Fig. 12). The wave
514 spectrum of the radiation field from the single pulse simulation is shown in panel (b) where the
515 presence of the two modes can be further differentiated. Panel (c) in Figure 13 shows radiation from
516 a 10-pulse finite-length beam with the same parameters as in Fig. 13 (a) but modulated by a
517 frequency equal to $(\omega_{pe} + \omega_{uh})/2$ corresponding to a frequency of R-X-mode plasma waves. As
518 expected from HB theory (Figure 10), the radiation is dominated by the R-X-mode. This is also
519 confirmed by a spectrum of the radiation shown in panel (d). At $z/d_e \sim 27$ the pulses (shown by black
520 rectangles) merge and the radiation field is dramatically reduced by coherence effects. Figure 13 (c)
521 suggests that, for the parameters considered, radiation in the R-X mode would be maximized over
522 $\sim 20d_e$ (i.e. ~ 600 m). Future work will revisit this type of simulations including the transverse beam
523 dynamics, beam energy spread and beam-pulse neutralization to make more accurate predictions of
524 the extension of the R-X-mode wave field and optimize the separation between accelerator and
525 receiver payloads accordingly.

526
527

528
529 **Figure 13. The B_y radiation field at $\omega_{pe}t = 120$ generated by (a) single beam pulse and (c) 10-
530 pulse beam modulated by a high frequency characteristic of R-X-mode waves. The energy of
531 each pulse is 14 keV and charge per pulse is 2 nC. The corresponding spectra are shown in
532 panels (b) and (d).**

533 A detailed comparison of wave generation and SPS simulations for a Gaussian pulse can be found in
534 [Delzanno and Roytershteyn, 2019]

535 The type of simulations presented in Fig. 13 already remove some of the limitations of the HB
536 theory. By accounting for finite-size beam pulses, thermal and non-linear effects, we can compute a
537 finite radiated power in the whistler and R-X modes and compute the corresponding wave amplitudes
538 for Beam PIE. In addition, a model for beam dynamics (which includes also the transverse dynamics)

539 is being implemented in SPS, thus allowing calculations of the effect of the beam dynamics on the
 540 wave field and, in particular, of its extent before coherence effects reduce the waves amplitude.

541 4.1.5 First-principle simulations of Beam Dynamics

542 The spectral plasma solver (SPS) simulations described in the previous section allow us to assess
 543 properties of the (relatively weak) radiated field. However, their computational cost would increase
 544 dramatically if the beam dynamics and feedback between the beam pulses and the magnetized plasma
 545 were fully resolved. Particle in Cell (PIC) methodology offers a convenient alternative to study such
 546 processes. The trade-off is that the radiated field is not accurately described, mostly due to statistical
 547 noise associated with the finite number of computational particles.

548 Here we discuss some of the results from a preliminary VPIC simulation intended to study dynamics
 549 of beam pulses. The VPIC code solves a system of relativistic Maxwell-Vlasov equations for each
 550 plasma species in a 3D domain of spatial extent $L_x = L_y \approx 0.065d_e$ and $L_z \approx 5.5d_e$ with uniform
 551 magnetic field in the z direction. Boundary conditions corresponding to a perfect electric conductor
 552 are used on x and y boundaries and a perfect magnetic conductor on z boundaries. The number of
 553 cells is $200 \times 200 \times 16384$. The simulation is initialized with a uniform, two-component plasma
 554 with the following parameters: $\beta_e = \beta_i \approx 7 \times 10^{-7}$, $\omega_{pe}/\omega_{ce} = 1.3$, $m_i/m_e = 1836$. As the
 555 simulation progresses, beam pulses with energy $E_b = 14\text{KeV}$ are injected at $z \approx 0$ with a δ -function
 556 distribution in energy. The beam electrons are treated as a separate plasma species. The initial beam
 557 radius is $r_b \approx 6.5 \times 10^{-4}d_e$ and the initial beam density is approximately 38 times higher than the
 558 background. The length of a single pulse is approximately $t_{p1}\omega_{pe} \approx 1$ and the time interval between
 559 pulses is $t_{p2}\omega_{pe} \approx 2\pi$. The beam is injected with zero pitch angle. The beam particles are absorbed
 560 at the other end of the domain at $z \approx L_z$. In the simulation discussed here, no additional positive
 561 charge is injected in the system to compensate for the injected beam charge.

562 As the beam pulse is injected, the electrostatic repulsion drives its rapid expansion transversely and,
 563 to a lesser degree, longitudinally, along the beam propagation direction (also aligned with the
 564 background magnetic field). This is illustrated in Fig. 14, which shows density-weighted mean-
 565 square radius of the pulses $r_b^2(z) = \int n_b(x, y, z)(x^2 + y^2) dx dy / \int n_b(x, y, z) dx dy$ as a function of
 566 z , the coordinate along the magnetic field. The transverse expansion is counterbalanced by the
 567 Lorentz force, such that mean beam radius oscillates in z . The transverse structure of a single pulse is
 568 shown in Fig. 15. Here, the top panel shows an isosurface of constant beam density (beam density
 569 equal to 0.1 of the reference background density for the case shown). The middle panel shows
 570 profiles of background ion and electron densities, as well as the profile of the beam density along the
 571 cut indicated in the top panel. Profiles of the electric field E_x and the beam rotation velocity U_{by}
 572 along the same cut are shown in the bottom panel. Several important observations could be
 573 immediately made: i) individual beam pulses are shaped by a combined action of electrostatic
 574 repulsion, Lorentz forces, and instabilities; ii) the resulting *microscopic* structure is quite complex,
 575 but overall the beam pulse maintains coherence on spatial scales relevant to wave emission; iii) the
 576 beam pulse is partially charge-neutralized by the electrons of the background plasma, which reduces
 577 the severity of the electrostatic repulsion.

578
 579

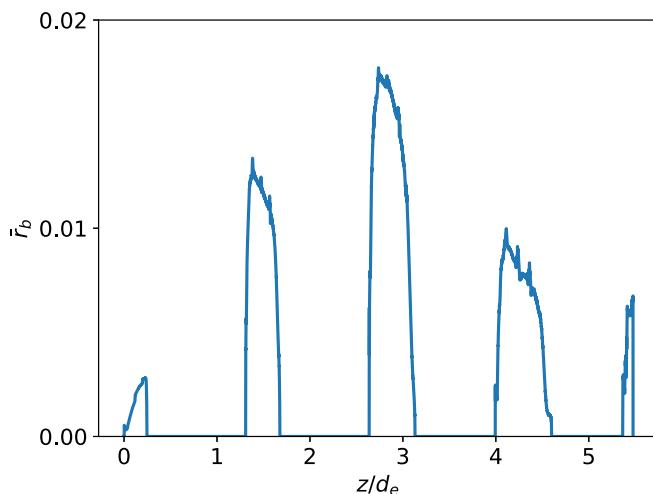


Figure 14. Density-weighted radius of beam pulses in a PIC simulation of beam dynamics as a function of the distance along the background magnetic field.

580
581

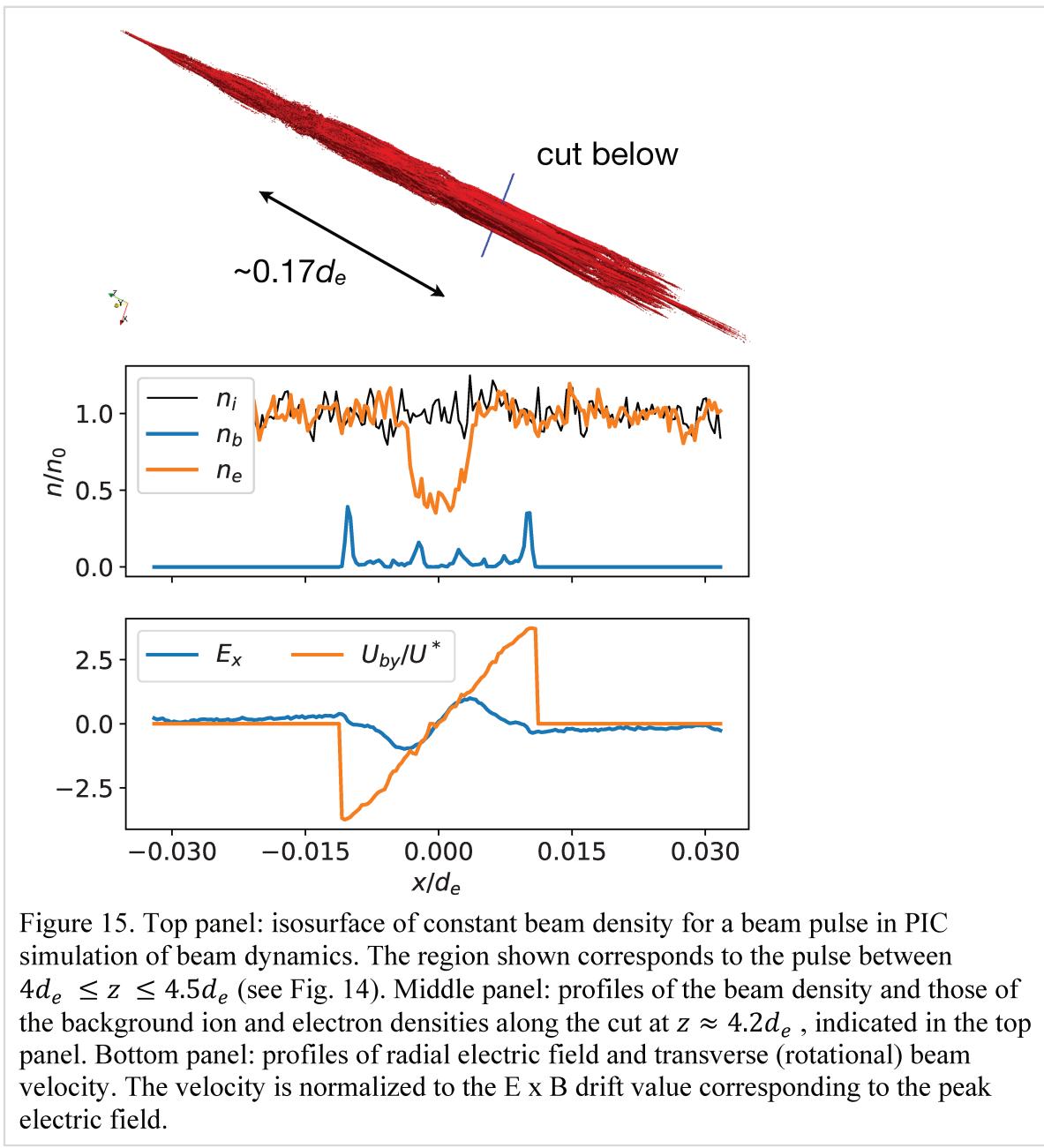


Figure 15. Top panel: isosurface of constant beam density for a beam pulse in PIC simulation of beam dynamics. The region shown corresponds to the pulse between $4d_e \leq z \leq 4.5d_e$ (see Fig. 14). Middle panel: profiles of the beam density and those of the background ion and electron densities along the cut at $z \approx 4.2d_e$, indicated in the top panel. Bottom panel: profiles of radial electric field and transverse (rotational) beam velocity. The velocity is normalized to the $E \times B$ drift value corresponding to the peak electric field.

582
583
584

585 **5 Discussion**

586 This paper describes the Beam-Plasma Interactions Experiment. Beam PIE is an active experiment
587 that uses a novel linear accelerator based electron beam and advanced wave and plasma diagnostics
588 instruments to test beam wave-generation physics in greater detail than previously possible. The
589 experiment uses a mother-daughter payload with the higher-altitude payload carrying the linear
590 accelerator and the lower-altitude payload carrying a suite of wave and particle detectors. The first
591 objective of the experiment is to conduct the first tests of modern linear accelerator technology in
592 space which, if successful, could enable a new generation of active experiments. The second
593 objective is to test the generation of whistler waves by the electron beam over a range of parameters
594 (energy, modulation frequency, and duty cycle) not previously investigated in space. The third

595 objective is to test the generation of R-X-mode radiation by the electron beam – an experiment that
 596 has not previously been done. The partitioning of energy and the detailed characteristics of the
 597 whistler vs. R-X-mode waves should be a sensitive test of our understanding of beam-plasma-wave
 598 interactions.

599 One example of a future active experiment is the Magnetosphere-Ionosphere Connections Explorer
 600 (CONNEX). The objective of this mission concept is to understand the magnetospheric processes
 601 that produce different types of auroral forms. It would use a multi-cell RF linear accelerator to
 602 accelerate electrons to energies up to 1 MeV. The beam is strong enough to produce a visible spot in
 603 the auroral ionosphere to test the magnetic connectivity between the auroral ionosphere and the
 604 dipole-to-tail transition region in the equatorial magnetosphere. We note, however, that the design of
 605 the CONNEX beam would also allow pulsed-beam operations and therefore the opportunity to test
 606 the generation of waves by pulsed electron beams under magnetospheric (rather than ionospheric)
 607 conditions. Both CONNEX and the USAF DSX experiment (which uses a physical antenna to
 608 generate waves) could provide technology demonstrations for future active modification of the space
 609 environment including remediation of artificial radiation belts from High Altitude Nuclear
 610 Explosions [Reeves, 2018; Carlsten *et al.*, 2019].

611

612 6 Conflict of Interest

613 *The authors declare that the research was conducted in the absence of any commercial or financial
 614 relationships that could be construed as a potential conflict of interest.*

615 7 Author Contributions

616 GR is PI of the Beam PIE mission and PF is deputy PI and mission manager. GLD, KY and VR are
 617 responsible for the simulation and modelling work shown. BC, JL, MH, and DN make up the
 618 electron accelerator team. RP is Goddard lead and responsible for the DC and AC electric field
 619 experiments as well as the fluxgate magnetometer. BF is responsible for the search coil. DR is
 620 responsible for the Langmuir probe. MS is responsible for the electron plasma spectrometer. ES, ES,
 621 and ED are responsible for ground observations

622 8 Funding

623 Funding for the Beam-PIE investigation is provided by the National Aeronautics and Space
 624 Administration, NASA, under grant number 80HQTR18T0078. GLD was supported by the US
 625 Department of Energy through the Los Alamos National Laboratory, Laboratory Directed Research
 626 and Development (LDRD) program. KY acknowledges support from the Center for Space and Earth
 627 Science (CSES) of the Los Alamos National Laboratory. The Los Alamos National Laboratory
 628 LDRD and CSES program offices were not involved in the study design, collection, analysis,
 629 interpretation of data, the writing of this article or the decision to submit it for publication. Los
 630 Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear
 631 Security Administration of U.S. Department of Energy. The simulation work used resources provided
 632 by the Los Alamos National Laboratory Institutional Computing Program. Contributions of VR were
 633 supported by NSF award 1707275 and NASA award 80NSSC18K1232. PIC simulations were
 634 conducting using resources provided by the NASA High-End Computing Program through the
 635 NASA Advanced Supercomputing Division at Ames Research Center as well as resources of the
 636 National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy
 637 Office of Science User Facility operated under Contract No. DE-AC02-05CH11231

638 **9 Acknowledgments**

639 The authors are grateful to the Magnetosphere-Ionosphere Connections (CONNEX) satellite team for
 640 close collaborations and many fruitful discussions.

641 **10 References**

642 Baker, D. N., et al. (2014), Gradual diffusion and punctuated phase space density enhancements of
 643 highly relativistic electrons: Van Allen Probes observations, *Geophys. Res. Lett.*, **41**, 5,
 644 doi:10.1002/2013gl058942.

645 Banks, P. M., et al. (1990), Charge-2 rocket observations of vehicle charging and charge
 646 neutralization, *Adv. Space Res.*, **10**, 7, doi:10.1016/0273-1177(90)90286-9.

647 Bush, R. I., et al. (1987), Electromagnetic fields from pulsed electron beam experiments in space:
 648 Spacelab-2 results, *Geophys. Res. Lett.*, **14**, 10, doi:10.1029/GL014i010p01015.

649 Cambou, F., et al. (1978), ARAKS - controlled or puzzling experiment?, *Nature*, **271**.

650 Cambou, F., et al. (1980), General description of the ARAKS experiments, *Ann. Geophys.*, **36**.

651 Carlsten, B. E., et al. (2019), Radiation-belt remediation using space-based antennas and electron
 652 beams, *IEEE Transactions on Plasma Science*, **47**, 5, doi:10.1109/tps.2019.2910829.

653 Dechambre, M., et al. (1980), Waves observed by the ARAKS experiments: The whistler mode, *Ann.*
 654 *Geophys.*, **36**.

655 Delzanno, G. L. (2015), Multi-dimensional, fully-implicit, spectral method for the vlasov–maxwell
 656 equations with exact conservation laws in discrete form, *Journal of Computational Physics*,
 657 **301**, doi:10.1016/j.jcp.2015.07.028.

658 Delzanno, G. L., and V. Roytershteyn (2019), High-frequency plasma waves and pitch angle
 659 scattering induced by pulsed electron beams, *Journal of Geophysical Research: Space*
 660 *Physics*, **124**, 9, doi:10.1029/2019ja027046.

661 Farrell, W. M., et al. (1988), An analysis of whistler-mode radiation from the spacelab-2 electron
 662 beam, *J. Geophys Res.*, **93**.

663 Farrell, W. M., et al. (1989), Coherent cerenkov radiation from the spacelab 2 electron beam, *Journal*
 664 *of Geophysical Research*, **94**, A1, doi:10.1029/JA094iA01p00443.

665 Galvez, M., and J. E. Borovsky (1988), The electrostatic two-stream instability driven by slab-shaped
 666 and cylindrical beams injected into plasmas, *Physics of Fluids*, **31**, 4, doi:10.1063/1.866767.

667 Gary, S. P. (1993), *Theory of space microinstabilities*, Cambridge University Press, New York.

668 Gendrin, R. (1974), The french-soviet ARAKS experiment, *Space Sci. Rev.*, **15**.

669 Gurnett, D. A., et al. (1986), Whistler-mode radiation from the spacelab~2 electron beam, *Geophys.*
 670 *Res. Lett.*, **13**.

671 Harker, K. J., and P. M. Banks (1983), Radiation from pulsed electron beams in space plasmas,
 672 *Planet. Space Sci.*, **19**.

673 Harker, K. J., and P. M. Banks (1985), Radiation from long pulse train electron beams in space
 674 plasmas, *Planet. Space Sci.*, **33**.

675 Harker, K. J., and P. M. Banks (1987), Near fields in the vicinity of pulsed electron beams in space,
 676 *Planet. Space Sci.*, **35**.

677 Harker, K. J., et al. (1989), Ray equation solutions to radiation from pulsed electron beams.

678 Hendrickson, R. A., et al. (1975), Echo 1: An experimental analysis of local effects and conjugate
679 return echoes from an electron beam injected into the magnetosphere by a sounding rocket,
680 *Planet. Space Sci.*, 23.

681 Hendrickson, R. A., et al. (1976), Echo iii: A study of electron beams injected into the auroral
682 ionosphere, *Geophys. Res. Lett.*, 3.

683 Jordanova, V. K., et al. (2008), Relativistic electron precipitation by EMIC waves from self-
684 consistent global simulations, *J. Geophys. Res.*, 113, A00A10, doi:10.1029/2008JA013239.

685 Mansfield, V. N. (1967), Radiation from a charged particle spiraling in a cold magnetoplasma, *The
686 Astrophysical Journal*, 147, doi:10.1086/149043.

687 Marshall, R. A., et al. (2014), Diagnostics of an artificial relativistic electron beam interacting with
688 the atmosphere, *Journal of Geophysical Research: Space Physics*, 119, 10,
689 doi:10.1002/2014ja020427.

690 McKenzie, J. F. (1963), Cerenkov radiation in a magneto-ionic medium (with application to the
691 generation of low-frequency electromagnetic radiation in the exosphere by the passage of
692 charged corpuscular streams), *Philosophical Transactions of the Royal Society A:
693 Mathematical, Physical and Engineering Sciences*, 255, 1063, doi:10.1098/rsta.1963.0012.

694 Michell, R. G., et al. (2016), Apes: Acute precipitating electron spectrometer-a high time resolution
695 monodirectional magnetic deflection electron spectrometer, *Journal of Geophysical
696 Research: Space Physics*, 121, 6, doi:10.1002/2016ja022637.

697 Monson, S. J., et al. (1976), Whistler mode plasma waves observed on electron echo ii, *J. Geophys.
698 Res.*, 81.

699 Mullen, E. G., et al. (1986), Scatha survey of high-level spacecraft charging in sunlight, *Journal of
700 Geophysical Research*, 91, A2, doi:10.1029/JA091iA02p01474.

701 Nicolls, M. J., et al. (2007), Imaging of Polar mesosphere summer echoes with the 450 mhz poker
702 flat advanced modular incoherent scatter radar, *Geophys. Res. Lett.*, 34, 20,
703 doi:10.1029/2007gl031476.

704 Obayashi, T., et al. (1982), Space experiments with particle accelerators (sepac), in *Artificial Particle
705 Beams in Space Plasma Studies*.

706 Pfaff, R. (1996), In-situ measurement techniques for ionospheric research, in *Modern ionospheric
707 science*, edited by H. Kohl, et al., pp. 459-551, European Geophysical Society.

708 Pfaff, R., and P. A. Marionni (1998), Multiple-baseline spaced receivers, in *Measurement techniques
709 in space plasmas: Fields*, edited by R. Pfaff, et al., pp. 161-167, American Geophysical
710 Union.

711 Pfaff, R., et al. (2004), Electric field, magnetic field, and density measurements on the active plasma
712 experiment, *J. Spacecraft and Rockets*, 42.

713 Reeves, G. D., et al. (1988a), VLF wave emissions by pulsed and dc electron beams in space, 1,
714 Spacelab 2 observations, *Journal of Geophysical Research*, 93, A12,
715 doi:10.1029/JA093iA12p14699.

716 Reeves, G. D., et al. (1988b), VLF wave emissions by pulsed and dc electron-beams in space .1.
717 Spacelab-2 observations, *J Geophys Res-Space*, 93, A12, doi:10.1029/JA093ia12p14699.

718 Reeves, G. D., et al. (1990a), VLF wave emissions by pulsed and dc electron-beams in space .2.
 719 Analysis of spacelab-2 results, *J Geophys Res-Space*, 95, A5, doi:10.1029/Ja095ia05p06505.

720 Reeves, G. D., et al. (1990b), Spacelab 2 electron beam wave stimulation: Studies of important
 721 parameters, *J Geophys Res-Space*, 95, A7, doi:10.1029/Ja095ia07p10655.

722 Reeves, G. D., et al. (2013), Electron acceleration in the heart of the Van Allen radiation belts,
 723 *Science*, 341, 6149, doi:10.1126/science.1237743.

724 Reeves, G. D. (2018), Electron beams for radiation belt remediation, proceedings of the ANS RPSD
 725 2018 - 20th Topical Meeting of the Radiation Protection & Shielding Division of ANS,
 726 American Nuclear Society, LaGrange Park, IL, Santa Fe, NM, August 26 – 31.

727 Roytershteyn, V., and G. L. Delzanno (2018), Spectral approach to plasma kinetic simulations based
 728 on hermite decomposition in the velocity space, *Frontiers in Astronomy and Space Sciences*,
 729 5, doi:10.3389/fspas.2018.00027.

730 Sasaki, S., et al. (1986), Vehicle charging observed in sepac spacelab-1 experiment, *J. Spacecr.
 731 Rockets*, 23.

732 Sasaki, S., et al. (1988), Tethered rocket experiment (charge-2) initial results on electrodynamics,
 733 *Rad. Sci.*

734 Scherbarth, M., et al. (2009), Afrl's demonstration and science experiments (dsx) mission,
 735 *Proceedings of the SPIE - The International Society for Optical Engineering*, 7438,
 736 doi:10.1117/12.824898.

737 Thorne, R. M., et al. (2013), Rapid local acceleration of relativistic radiation-belt electrons by
 738 magnetospheric chorus, *Nature*, 504, 7480, doi:10.1038/nature12889.

739 Ukhorskiy, A. Y., and M. I. Sitnov (2012), Dynamics of radiation belt particles, *Space Science
 740 Reviews*, doi:10.1007/s11214-012-9938-5.

741 Usanova, M. E., et al. (2014), Effect of EMIC waves on relativistic and ultrarelativistic electron
 742 populations: Ground- based and Van Allen Probes observations, *Geophys. Res. Lett.*, 41, 5,
 743 doi:10.1002/2013gl059024.

744 Vencels, J., et al. (2015), Spectral solver for multi-scale plasma physics simulations with dynamically
 745 adaptive number of moments, *Procedia Computer Science*, 51,
 746 doi:10.1016/j.procs.2015.05.284.

747 Vencels, J., et al. (2016), Spectralplasmasolver: A spectral code for multiscale simulations of
 748 collisionless, magnetized plasmas, *Journal of Physics: Conference Series*, 719.

749 Winckler, J. R., et al. (1975), Echo ii: A study of electron beams injected into a high-latitude
 750 ionosphere from a large sounding rocket, *J. Geophys. Res.*, 80.

751 Winckler, J. R. (1982), The use of artificial electron beams as probes of the distant magnetosphere, in
 752 *Artificial Particle Beams in Space Plasma Studies*.

753