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1 Introduction

Entanglement dynamics in systems out of equilibrium is a rich phenomenon that has been

studied in many areas of physics [1–10]. The quasiparticle model [2, 11, 12] provides an

intuitive way to understand the general characteristics of entanglement dynamics, however,

while it is an accurate description of integrable theories [13, 14], it does not capture all the

properties present in a chaotic system [5, 6, 12, 15].

Recently, a new effective model has been proposed: the membrane theory. First dis-

covered in the context of unitary random evolution in two dimensions [9], it has been

generalized to arbitrary dimensions using the holographic correspondence [16]. In this

model, the problem of computing entanglement entropy is translated into the problem of

computing the “energy” of a minimal timelike codimension-1 membrane of angle dependent

tension E(v), which connects two faces of a slab of d-dimensional Minkowski spacetime of

height T, where v is a local velocity of the membrane, the time component of the unit

normal vector of the membrane. The entanglement entropy is then:

S = sth

∫
dd−1y

√
−γ

E(v)√
1− v2

, (1.1)
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where sth is the thermal entropy density, yi are the coordinates and γij is the induced

metric on the membrane world volume.

This theory is expected to accurately describe the dynamics of entanglement in the

scaling regime: R, T ≫ β, where R is the characteristic size of the entangling region,

T is the time elapsed since the quench and β is the inverse temperature of the system at

equilibrium. Furthermore, it has been shown to successfully capture many of the important

properties of the dynamics of operators in chaotic systems, specially the relation between

entanglement dynamics and operator spreading [3]. In this paper we will show that the

membrane theory holds for a broad range of generalizations.

In [16], the initial excited state was produced by a global quench which preserves

translational invariance. We will show that the membrane theory is valid for more general

initial states, in particular those that do not exhibit translational invariance. At late

enough time, once the system has reached local equilibrium, the coarse-grained dynamics

can be described in terms of the diffusive transport of a few conserved quantities [17]. If

the excitations of the system are characterized by sufficiently long wavelengths, we can

study this diffusive transport in terms of a hydrodynamic expansion.

Hydrodynamic systems possess a well-established holographic description [18–20], for

which the long wavelength approximation is seen as a gradient expansion for an inhomo-

geneous black brane solutions. We use this fluid/gravity correspondence to compute the

holographic entanglement entropy and show that in the scaling limit it obeys the membrane

theory prescription. We also provide further evidence for the validity of the membrane the-

ory by studying other inhomogeneous setups: the joining quench for semi-infinite systems

separately in thermal equilibrium is described by the membrane theory with an added

brane on which membranes can end, and the entanglement entropy of time evolved local

operators is computed by a membrane living in a double cone geometry representing the

footprint of the growing operator [21].

A key ingredient in the derivation of the membrane theory for higher dimensions is

the holographic correspondence. Hence it is of interest to see if this effective theory holds

under generalizations of the simplest holographic setup in terms of Einstein gravity. We do

this by considering higher derivative gravity theories, the simplest example being Gauss-

Bonnet gravity, and the most complicated explicitly analyzed is the general four derivative

gravity. In addition to correcting to the geometry of the spacetime, these new terms also

modify the holographic entanglement entropy functional [22, 23]. Once again we show that

the membrane theory is robust under the deformation of the bulk gravitational action, and

data read off from the membrane tension function E(v) reproduces previous results about
entanglement growth in higher derivative gravity obtained in [3]. We also show how to

incorporate subleading corrections in β/R into the theory. These should be thought of as

analogs of higher gradient terms in hydrodynamics.

We organize this paper as follows: in section 2 we revisit the original derivation of

the membrane theory for global quenches, setting the basic simplifications achieved by

the scaling limit. In section 3 we generalize this to consider systems without translational

invariance, described in terms of the Fluid/Gravity correspondence, we show that the basic

description in terms of a codimension-1 membrane still holds but we need to generalize
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Figure 1. Penrose diagram of a spacetime dual to a quench. Before the quench we have pure AdS,
the infalling matter shell is colored orange, where the spacetime is strongly time dependent, and
the spacetime subsequently settles to a static black brane. The horizon is a diagonal black line, the
singularity is a red line, the Poincare horizon and the AdS boundary are drawn by blue, while the
HRT surface computing the entropy of half space is a purple curve.

it to include a coupling the membrane to the fluid. We follow this by introducing a

specific quench, the thermal joining quench and analyzing its entropy in the scaling limit.

In section 5 we consider one more case, corresponding to a state created by the action

of a particular operator, which is dual to the shock-wave geometry. We then consider

holographic entanglement entropy in theories with higher derivatives in section 6. We

discuss next-to-leading order corrections in the scaling limit in section 7. We end with a

summary, discussion and open questions in section 8.

2 Membrane theory for global quenches

Let us first review the original derivation of the membrane theory, as first presented in [16].

As was noticed in the Introduction, the system is taken to be on a state |ψ⟩ = e−iHT |ψ0⟩,
where |ψ0⟩ is a highly excited short-range entangled state, prepared by a global quench.

This configuration is dual to a dynamical spacetime modeling black brane formation from

collapse, represented by the Penrose diagram figure 1. We are interested on the entangle-

ment entropy for a spatial subregion with characteristic size R, which can be computed

holographically by the usual prescription in terms of extremal surfaces [24].

In order to implement the limit R, T ≫ β, we follow [25] and introduce a book keeping

parameter Λ ≫ 1, performing the transformation: R, T → ΛR,ΛT . We are interested only

on the leading Λd−1 contributions to the entanglement entropy.

A key observation is that, in this approximation, only the part of the HRT surface that

lies behind the horizon of the final black brane geometry contributes to the entropy [3, 16].

The other pieces of the surface contribute only to order Λd−2, this includes in particular

the usual area law contribution for the entanglement entropy of the ground state.

The most general static black brane geometry can be written in infalling coordinates

as:

ds2 =
1

z2

(
−a(z)dt2 − 2

b(z)
dtdz + dr2 + r2dΩ2

d−2

)
, (2.1)
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and a codimention-2 surface can be defined by the embedding z(t,Ω) and r(t,Ω), where Ω

stands for the collective coordinates in Sd−2. The entanglement entropy is then computed

by extremizing the area functional:1

S =
1

4GN

∫
dtdΩ

rd−2

zd−1

√
Q,

Q =

[
ṙ2 −

(
1 +

(∂Ωr)
2

r2
a(z)

)]
+

2

b(z)

[
ṙ
∂Ωr · ∂Ωz

r2
−

(
1 +

(∂Ωr)
2

r2
ż

)]
− (∂Ωz)

2

r2b(z)2
.

(2.2)

We implement the rescaling:

t → Λt, r → Λr, Ω → Ω, z → z. (2.3)

At leading order in 1/Λ, the equation of motion for z(t,Ω) becomes algebraic and it is

given by:

v2 ≡ ṙ2

1 + (∂Ωr)2

r2

= a(z)− za′(z)

2(d− 1)
≡ c(z), (2.4)

from where we can solve z(t,Ω) = c−1
(
v2(t,Ω)

)
and rewrite the area functional as:

S = sth

∫
dtdΩrd−2

√
1 +

(∂Ωr)2

r2
E(v),

E(v) =

√
−a′(z)

2(d− 1)z2d−3

∣∣∣∣∣
z=c−1(v2)

,

(2.5)

where we introduced sth = 1
4GN

and set Λ = 1.

We see that the problem of obtaining the HRT surfaces translates, in this limit, to the

problem of minimizing a codimension-1 surface, or membrane, extending along the interval

[0, T ] and with the boundary condition that, at t = T , it is equal to the codimension-2

entangling region,2 while on the t = 0 surface representing the short range entangled initial

state it ends perpendicularly. The information about the original holographic set up is

encoded on the membrane tension E(v) and by solving the membrane problem one can

reconstruct the full HRT surface, to leading order, using the map (2.4). The projection of

the HRT surface into the membrane can be seen in figure 2.

There is one more ingredient that is required to make the membrane theory match

the HRT prescription. We also have to allow for horizontal membranes (that formally give

v = ∞) to capture the saturation of entropy [16]. These do not have to extend down to

the t = 0 boundary, and give S = sth vol(A) when they are the minimal action membrane.

The membrane tension E(v) obeys a series of consistency conditions that encode infor-

mation about operator spreading [9], namely, it is a positive even function, monotonically

1In the following expressions, all products involving the angular coordinates are taken using the metric

on Sd−2 and ḟ = ∂tf .
2At this boundary the relation between v and z (2.4) breaks down. This is because the HRT surface

stops obeying the scaling Ansatz exactly at this point.
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Figure 2. Projection of the HRT surface into the membrane picture. Only the region between the
infalling matter (Orange) and the horizon (Gray) contribute to leading order in the scaling limit.

increasing and convex for 0 ≤ v < 1. It diverges as v → 1 and certain important values

are [16]:

E(0) = vE , E(vB) = vB, E ′(vB) = 1. (2.6)

In the following sections we will use these relations to compute corrections to the

butterfly and entanglement velocities as well as consistency checks for the membrane theory.

3 Entanglement dynamics in the hydrodynamic limit

A generalization, with respect to the previous picture, is to take more general initial states.

In the scaling limit we are interested in studying systems out of equilibrium at times T ≫ β.

In this regime, generic states without translational invariance can be described in terms of

a hydrodynamic expansion in the low energy/long wavelength limit. Let us then begin this

section by reviewing the fundamental ideas of the fluid/gravity correspondence (see [18–20]

for details).

The degrees of freedom of the effective hydrodynamic description are encoded in the

stress tensor Tab and conserved current Ja, which in turn can be expressed in terms of a

velocity field ua and certain scalar functions, such as the pressure, temperature, energy

density, and conserved charges. The dynamics of these quantities is determined by the

conservation equations and the equation of state of the medium.

We will consider a theory in d−dimensional Minkowski spacetime, for simplicity we

assume the theories has no global symmetries and we focus only in the dynamics of the

stress tensor. The hydrodynamic regime is organized in terms of a gradient expansion, at

leading order we have an ideal fluid, for which:

T (0)
ab = ρuaub + pPab, (3.1)

– 5 –
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where ρ is the energy density, p is the pressure, and Pab = ηab+uaub is a projection operator

into the plane orthogonal to the velocity field, we normalized the later as uaua = −1.

To next order in the gradient expansion, the stress tensor receives contributions from

derivatives of the velocity field, these can be organized by their transformation under the

Lorentz group as:

θ = ∂au
a,

aa = ub∂bua,

σab = ∂(aub) + u(aab) − 1

d− 1
θP ab,

wab = ∂[aub] + u[aab].

(3.2)

By symmetry considerations these quantities contribute to the stress tensor as:

T (1)
ab = −2ησab − ζθPab, (3.3)

where η and ζ are transport coefficients, known as the shear and bulk viscosities, respec-

tively.

To all orders in the hydrodynamics expansion, the stress tensor possesses the same

structure: we will have a series of tensors, formed out of the velocity field and its deriva-

tives, whose contribution to the stress tensor is characterized by a series of transport

coefficients, which encode the specific details of the underlying theory. We will see that the

membrane theory follows a similar structure. Just as these transport coefficients depend

on the temperature, the angle dependent membrane tension E(v) can be regarded as a gen-

eralized transport coefficient of the membrane effective theory: the form of the theory is

universal, but E(v) is specific to a theory. In this section we will introduce new membrane

theory transport coefficients that determine the entropy dynamics in inhomogeneous states.

In order to construct the holographic dual of this hydrodynamic theory, one considers

first a boosted AdS-Schwartzschild black brane, characterized by a constant timelike vector

ua:

ds2 =
1

z2

(
2uadx

adz + (ηab + (1− a (dz/4πT ))uaub) dx
adxb

)
, (3.4)

which is a vacuum solution of the Einstein equations with negative cosmological constant

and a(ζ) = 1− ζd.3 We then promote the vector ua and the temperature T to be functions

of x = (t, x⃗). The result is no longer a vacuum solution, but one can systematically correct

the metric in the form gµν = g(0)µν + g(1)µν + . . ., organized as a gradient expansion in terms of

derivatives of ua(x) and T (x), to obtain a solution. As showed first in [20], this perturbative

expansion of the Einstein equations reproduces order by order the hydrodynamic expansion

of the dual field theory.

The most general solution to the perturbative equations takes the form [18]:

ds2 =
1

z2

{
2ua(x)dx

adz + [Gab(z, x)− 2ua(x)Bb(z, x)] dx
adxb

}
, (3.5)

3Note that in section 2 we set T = d/(4π), hence had ζ = z.
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where the functions Gab(z, x) and Bb(z, x) are determined order by order in the gradient

expansion. To leading non-trivial order:

Ba(z, x) =
1

2
a (dz/4πT )ua + zAa,

Gab(z, x) = Pab +
8πT

d
g1 (dz/4πT )σab,

(3.6)

where Aa = aa − 1
d−1θua. The function g1(ζ) depends only in the dimension of spacetime

and is known in integral form:

g1(ζ) =

∫ ∞

ζ
dy

yd−1 − 1

y(yd − 1)
. (3.7)

The local entropy density of the fluid is also coordinate dependent and it is given, up

to second order, by:

s(x) =
1

4GN

(
4πT (x)

d

)d−1

. (3.8)

3.1 Entanglement entropy and the scaling limit

We want to consider the scaling limit by performing the rescaling (2.3). In doing this, one

must also be mindful of the way the metric rescales, and hence must specify the particular

scaling for each of the quantities in the gradient expansion. For the velocity field ua(x) we

have:

ur → ur, ut → ut, uΩ → ΛuΩ, (3.9)

which preserves the normalization condition uaua = −1 in the new, rescaled, coordinates.

We observe that due to the explicit r2 factor in the sphere metric, the angular components

are rescaled, while other components are not scaled. This pattern holds true for the different

tensors constructed out of the velocity field and its derivatives. To first order in the gradient

expansion the quantities that require rescaling are:

aΩ → ΛaΩ,

σrΩ,σtΩ → 1

Λ
(σrΩ,σtΩ),

σΩΩ → 1

Λ2
σΩΩ,

(3.10)

and the antisymmetric tensor ωab follows the same rescaling as σab.

We then compute the holographic entanglement entropy for the same set up as in

section 2. The area functional is given, to zeroth order in the gradient expansion, by:

S =
Λd−1

4GN

∫
dtdΩ

rd−2

zd−1

√
Q,

Q = ṙ2 − a (dz/4πT )

(
1 +

(∂Ωr)2

r2

)
+ (1− a (dz/4πT ))

(
1 +

(∂Ωr)2

r2

)
w2,

w2 =
(u2r +

u2
Ω
r2 )ṙ

2 + (u2r +
uΩ
r2

(∂Ωr)2

r2 )− 2uΩ·∂Ωr
r2 (utṙ + ur) + 2utur ṙ

1 + (∂Ωr)2

r2

,

(3.11)

– 7 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
3

where all the information about the fluid is contained in the function w. Note that in the ho-

mogenous setting w = 0, and we recover the area functional (2.2) in the scaling limit. This

expression does not look very enlighting, however it posses a key property, the functional

does not contain derivatives of z(t,Ω), so the corresponding equation of motion is algebraic.

We can further simplify the previous expression by writing it in terms of contractions

of tensors characterizing the fluid and the membrane. To see this we introduce the vector,

in d−dimensional Minkowski spacetime, normal to the entangling region:

na =
1√

1 + (∂Ωr)2

r2 − ṙ2
(−ṙ, 1,−∂Ωr), (3.12)

where we use the (t, r,Ω) ordering of coordinates. We can then rewrite the function Q as:4

Q =

(
1 + (∂Ωr)2

r2 − ṙ2
)

(1− v2)

(
v2 − a (dz/4πT )

)
,

v2 =
(n · u)2

1 + (n · u)2 ,

(3.13)

where we notice only the second factor has a z dependence.

Since the temperature T (x) is a non-trivial function of the boundary coordinates, it is

convenient to introduce a new variable ζ = dz
4πT (x) . The algebraic equation of motion for

the embedding function ζ(t,Ω) is then

v2 = a(ζ)− ζa′(ζ)

2(d− 1)
≡ c(ζ), (3.14)

which can be solved to obtain ζ as a function of v2. Using this equation we can rewrite

the area functional as

S = Λd−1
∫

dd−1y
√
−γ

s(x)E(v)√
1− v2

,

E(v) =

√
−a′(ζ)

2(d− 1)ζ2d−3

∣∣∣∣∣
ζ=c−1(v2)

,
(3.15)

where in spherical coordinates dd−1y
√
−γ = rd−2

√
1 + (∂Ωr)2

r2 − ṙ2dtdΩ is the area element

for a codimension one surface in Minkowski spacetime, characterized by the embedding

r = r(t,Ω). We used (3.8) to rewrite all T (x) dependence in terms of the entropy density.

We see that this expression is precisely the membrane theory prescription (1.1), with

the two generalization being that now the entropy density is a function of the coordinates

and the velocity v is measured with respect to u instead of t̂. This is a beautiful minimal

coupling of the membrane to the fluid. Next we consider the leading corrections to this

action in the fluid gradient expansion, which induces nonminimal couplings between the

fluid and the membrane.

4In the case where (ut, ur, uΩ) = (−1, 0, 0), we have v2 → ṙ2

1+
(∂Ωr)2

r2

, recovering the translational invariant

case.
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As before, we compute the area functional using the metric (3.5) and the rescaled

embedding (2.3), and we express the result in terms of invariant products of the form

(n ·u) and products of the normal vector with the quantities defined in (3.2), we have that:

Q =

(
1 + (∂Ωr)2

r2 − ṙ2
)

(1− v2)

(
v2 − a(ζ)− ζ

8π

d
T (x)

(
(A · n) (n · u)−A · u

1 + (n · u)2

)

+
8π

d
T (x)g1(ζ)a(ζ)

σabnanb

1 + (n · u)2

)
.

(3.16)

We notice that there is no contribution from the antisymmetric tensor ωab, this is due to

symmetry: we cannot form an invariant product involving only that tensor and na. The

particular form of the first correction term is due to conformal symmetry, instead of the

quantities aa = ub∂bua and θ = ∂aua appearing separately, they arrange themselves into

the Weyl connection Aa = aa − θ
d−1ua.

It is convenient to define new ζ independent variables, which encode the higher order

corrections:

Q1 =
8π

d

(
(A · n) (n · u)−A · u

1 + (n · u)2

)
T (x),

Q2 =
8π

d

σabnanb

1 + (n · u)2T (x).
(3.17)

The algebraic equation of motion for ζ(x) is then

v2 = a(ζ)− ζa′(ζ)

2(d− 1)
+

2d− 3

2(d− 1)
ζQ1+

(
ζg1(ζ)a′(ζ)

2(d− 1)
− a(ζ)g1(ζ) +

ζa(ζ)g′1(ζ)

2(d− 1)

)
Q2. (3.18)

Unlike the zeroth order case, we cannot write this simply in the form v2 = c(ζ), instead

we must solve this equation order by order in the gradient expansion:

c(ζ(0)) = a(ζ(0))−
ξ(0)a

′(ζ(0))

2(d− 1)
= v2,

ζ(1) = F(1)(v, ∂v),

ζ(2) = F(2)(v, ∂v, ∂
2v),

...

(3.19)

where ∂nv denotes the nth-order corrections to the fluid/gravity metric, contracted with

the normal vector na. For instance:

F(1) =
(2d− 3)Q1 +

(
g1(ζ(0))a

′(ζ(0)) + a(ζ(0))
(
g′1(ζ(0))− 2(d− 1)

g1(ζ(0))
ζ(0)

))
Q2

a′′(ζ(0))− (2d− 3)
a′(ζ(0))
ζ(0)

, (3.20)

where ζ(0) = c−1(v2).

The equation (3.18) can then be use to write the area functional as

S = Λd−1
∫

dd−1y
√
−γ

s(x)E(v)√
1− v2

,

E(v) = E(0)(v) (1 + q1(v)Q1 + q2(v)Q2) ,

= E(0)

(
1 +

8πT (x)

d(1 + (n · u)2)

(
q1 ((A · n) (n · u)−A · u) + q2σabn

anb
))

,

(3.21)
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where

E(0)(v) =

√
−a′(ζ)

2(d− 1)ζ2d−3

∣∣∣∣∣
ζ(0)=c−1(v2)

,

q1(v) =
d− 1

a′(ζ(0))

∣∣∣∣
ζ(0)=c−1(v2)

,

q2(v) = − d− 1

ζ(0)a′(ζ(0))
a(ζ(0))g1(ζ(0))

∣∣∣∣
ζ(0)=c−1(v2)

.

(3.22)

We see that the dissipative corrections modify the tension function E(v) but they still

can be taken into account within the framework of the membrane theory. Furthermore

the corrections appear as we expected, this is, as tensor structures made out of invariant

products of the vector na characterizing the membrane and the different tensors describing

the fluid dynamics.

Even though (3.21) was derived using holography, one may expect that the membrane

theory holds beyond that framework; one just considers a membrane in Minkowski space-

time, non-minimally coupled to a fluid with coefficients dependent in the particular details

of the theory. Similarly, although (3.21) was derived only to leading order in the dissipative

corrections, it is easy to see that it holds for higher corrections, one just need to incorporate

further tensor structures in (3.18) and solve the equation order by order in the gradient

expansion, obtaining a result of the form:

E(v) = E(0)(v)

(
1 +

n∑

i=1

∑

I

q(i)I Q(i)
I

)
, (3.23)

where the first sum is over the gradient expansion, up to order n; while the second sum is

over the different tensor structures, at a given order, allowed by symmetry.

We have determined the bulk Lagrangian of the membrane theory in an inhomogeneous

quench. To make the problem well-defined, we have to specify the boundary conditions

on the membrane. At t = T the membrane is anchored on the subregion A(T ). The

other boundary condition is specified by the quench protocol that created the state. One

straightforward protocol would be to create a short range entangled state with a prescribed

density of conserved charges at t = 0. Strongly coupled chaotic systems are expected to

loose the memory of the details of the initial state in a time of order β, which is dual to

black brane quasinormal modes decaying in times of order β (except for the hydrodynamic

ones). Hence for 1 ≤ z ≤ z∗ the spacetime settles to a fluid/gravity metric in a short

time of order β. The membrane theory is insensitive to such short time details, hence the

whole quench protocol is represented as a brane at t = 0 on which the membrane can

end perpendicularly. We can consider some variation on this setup: the quench could be

implemented at different times at different spatial locations, resulting in a wavy membrane

tquench(x). The initial state could also contain significant amount of entanglement, in which

case the membrane action has to be supplemented by a boundary term [9], and as a result

will obey different boundary conditions at t = 0.
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4 Joining quench

In the previous section we showed that, for a generic quench without translational in-

variance, the dynamics of entanglement entropy is characterized by the membrane theory

coupled to a fluid. We did this by considering an effective hydrodynamic description of

the quench after local equilibration. In this section we will consider a particular quench

without translational invariance, study its time dependence in general, and show that it is

accurately captured by the membrane theory in the scaling limit.

We consider two decoupled theories on half spaces that are separately thermalized. We

can quench this system by coupling the two theories along their boundaries, as was discussed

in the random circuit context in [9], by which we are heavily influenced. Joining quenches

were studied in field theory in the vacuum state in many interesting papers [13, 26, 27].

In this section, we first construct a simple bottom up holographic model of this joining

process. A simplifying feature of this model, is that it postulates the existence of an end

of the world brane in the bulk theory that can be treated as a probe. Its presence results

in a joining quench that involves no transport of energy, hence trivial hydrodynamics, but

nontrivial entanglement dynamics. We find a simple membrane theory description of the

entanglement dynamics. The results are in complete agreement with those obtained in

the random circuit context in [9], and complement it by providing a membrane theory

spacetime picture.

Next, we study conformal boundaries in CFT2. The joining quench can be solved

for using CFT techniques, and a bulk picture is obtained using mappings similar to those

introduced in [28]. The distinguishing feature of this quench model is that the joining is

accompanied by an energy shock, i.e. the energy and entropy dynamics are coupled. A

similar situation has been recently studied in the context of JT gravity [29, 30].

While the entanglement entropy in the scaling regime agree with those obtained in

the simplified model, the membrane theory description of the process seems considerably

more complicated, and we only make initial steps towards deriving the membrane theory

description of this particular joining quench. It would be very interesting to complete the

derivation.

4.1 A simple holographic model

A holographic BCFT (on a half space) in the vacuum state has the dual gravitational

description of a patch of AdS space ending on an end of the world brane [31, 32]. The

brane satisfies boundary conditions:

Kab = (K − Tbrane)hab, (4.1)

where Kab is the extrinsic curvature and Tbrane the tension. By demanding conformal

boundary conditions on the boundary theory, the brane behaves as a AdSd foliation of

AdSd+1 and can be seen as an end of the world brane extending from the boundary of the

half-plane into the bulk. The angle of the brane with the boundary is determined by the

boundary conditions as:

Tbrane =
d− 1

L
tanh θ. (4.2)
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Figure 3. The membrane theory description of the joining quench. The end of the world brane is
the double half line from t = 0 to t = −∞, and membranes can end on it anywhere. We included
the membranes for the half space A(T ) for T = 0, a time T < b/vB and T > b/vB . On the left
figure the membrane is horizontal, and S(T = 0) = sthAΣb. On the middle figure the membrane
is composed of a horizontal piece and a “light sheet” of slope vB . On the right figure the minimal
membrane is a sheet of slope b/T .

In terms of field theory data, the angle is determined by the boundary entropy as

Sbdy = θ
4GN

. In the following, we choose Tbrane = θ = 0 for simplicity. We expect that the

results obtained in this special case should carry over to the Tbrane ̸= 0, where we would

need to treat back reaction. The spectrum of brane tensions is given by the bulk string

theory, and it would be interesting to find examples, where the end of the world brane can

be approximately tensionless.

Intuitively, a joining quench corresponds to taking two BCFTs and gluing the branes

together so that they become a folded brane and letting the folded brane freely fall into

the bulk [33–35].5 While this setup certainly requires UV regularization, a folded brane

whose tip makes its closest approach to the AdS boundary at t = 0 should be a good model

of a joining quench. The trajectory of the tip of the folded brane in AdS follows a null

geodesic [34] which we take to be given by z = z0 + |t|, where z0 ∝ Tbrane/(GNEbrane) [33,

34], that we take to be finite in the tensionless limit.

In the case, when the BCFTs are initially in thermal equilibrium, we have two black

branes cut in half by end of the world branes, and we model the joining quench by a

folded tensionless brane “bouncing off” the AdS boundary. Since there is no back reaction,

the spacetime is that of a black brane for all times. In particular, there is no transport,

and hydrodynamics is trivial. We just have a folded brane in the bulk, on which HRT

surfaces can end, and this gives rise to the time dependence of entanglement entropy. In

the hydrodynamic limit, all we have to do is include this end of the world brane in the

membrane theory. Since the tip of the brane is on the t = 0 infalling time plane, we get a

codimension one end of the world brane also in membrane theory, extending from t = 0 to

t = −∞, see figure 3. The membrane can end anywhere on this brane.

We work out the example of the half space entangling surface defined by x ∈ (−∞, b).

5This model for joining quench was first proposed by [33], here we follow the same model but not their

calculation of the entanglement entropy.
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1.2

S(t)/sthAΣ t = ℰeff(v)

Figure 4. Left: S(t) from (4.3) plotted for b = 1. The graph asymptotes to S(T ) ∼ sthAΣ vET .
Right: if instead we fix time, and plot the entropy as a function of v ≡ b/t, we obtain directly the
effective membrane tension function Eeff(v) [9, 25], which agrees with E(v) for v ≤ vB , and is equal
to v for v > vB . A black dotted 45◦ line is added to guide the eye.

The membrane ends at the tip of the brane, and from what is explained on figure 3 we get:

S(T ) = sthAΣ

{
b (vBT < b) ,

T E
(
b
T

)
(vBT ≥ b) .

(4.3)

Note that the function is continuous, because E (vB) = vB (2.6), see figure 4 for the graph of

this function. Remarkably, from this graph we can read off the membrane tension function

straightforwardly. Perhaps an even better visualization method comes from fixing t and

changing b, which directly maps out the membrane tension function E (v), see figure 4. It

would be interesting to work out the time evolution for other shapes.

The same result (4.3) has been obtained for random circuit models in [9]. Here we

provided a holographic derivation in a simple setup and gave a spacetime picture for the

process in figure 3. Below we analyze a CFT2 joining quench, over which we have complete

field theory (and holographic) control. A complication arises: the joining creates a shock

of energy as in [29, 30], which propagates through the system ballistically. While the time

evolution of the entropy is identical to that in (4.3), the membrane theory description seems

to be a lot more complicated in this case, as we explain in detail.

4.2 An exactly solvable joining quench in CFT2

4.2.1 Field theory computations

For the case of a global quench, the initial state of the system can be approximated as

a conformal boundary state e−
β
4H |B⟩ [2, 7]. Such state is prepared by a path integral

in Euclidean time, over a strip of width β/2. For theories with conformal invariance, the

strip can be mapped into the half-plane. The time-dependence of correlation functions and

entanglement entropy is then determined by general properties of conformal field theories

with boundaries (BCFTs) [2, 13].

In the absence of translational invariance, the initial state cannot be represented as

a conformal boundary state. However, it can still be prepared as a path integral over a

Riemann surface, which can be conformally mapped into the half-plane [26, 27, 36]. For

two-dimensional theories, it is convenient to introduce complex coordinates w, w̄, with
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w = x+ iτ ; the conformal map is then a biholomorphic transformation w → f(w). We can

always choose the transformation such that the half-plane is given by Re f(w) ≥ 0.

As noticed earlier, a conformal field theory in the half-plane has a well-known holo-

graphic dual in terms of a section of AdS spacetime, divided by a brane homologous to

the boundary of the half-plane [31, 32]. Entanglement entropy can then be computed us-

ing the standard holographic prescription [24]. Due to the presence of a boundary, there

are in general two possible extremal surfaces, a connected and a disconnected one, the

holographic prescription then instructs us to take the surface with smaller area.

For two-dimensional theories and a finite entangling regions x ∈ [a, b], the two possible

values of the holographic entanglement entropy are

Scon =
c

6
log

(
|f(w1)− f(w2)|2

δ2 |f ′(w1)| |f ′(w2)|

)
,

Sdisc =
c

6
log

(
4Re f(w1)Re f(w2)

δ2 |f ′(w1)| |f ′(w2)|

)
,

(4.4)

where δ is the UV cutoff and we perform an analytic continuation τ = iT , then

w1 = a− T, w2 = b− T,

w̄1 = a+ T, w̄2 = b+ T.
(4.5)

A specific example of a quench without translational invariance is the joining quench,

where two semi-infinite systems are prepared on their respective ground states and joined

together at time T = 0, producing an excited state of the full Hamiltonian [26, 27], which

however quickly settles back to the vacuum, and any subregion has subextensive entropy.

In order to make contact with the regime of applicability of the membrane theory, we will

modify this quench protocol: instead of the ground state, the semi-infinite systems will be

prepared in thermal equilibrium. We refer to this as the thermal joining quench.

In the original joining quench, the initial state is prepared as a path integral in Eu-

clidean time over the whole plane, except for branch cuts along τ ∈ (−∞,−ϵ] ∪ [ϵ,∞) at

x = 0. In order to take the two systems to be in thermal equilibrium we compactify the

Euclidean time direction on a circle of length β, the path integral is then over the thermal

cylinder, except for a cut at x = 0, along τ ∈ [−β/2,−ϵ] ∪ [ϵ,β/2].

Considering the transformations:

G(w) = −
((

e
2π
β w + 1

)−1
− 1

2

)
,

F (w) = w +

√

w2 +

(
πϵ

2β

)
,

(4.6)

where the transformation G(w) maps the cylinder to the plane by the usual exponential

map and then translates the cut so that it coincides with the cut in the vacuum case, the

second transformation F (w) then maps this to the half-plane. We can then map the cut

cylinder to the half-plane by the composite transformation w → f(w) = F (G(w)).
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Using this conformal map in the general formula (4.4) we obtain the entanglement

entropy for the joining thermal quench. The result is dependent in the position of the

entangling region with respect to the joining point at x = 0 and the value of T . Without

lost of generality we assume that b > 0 and |a| < b, then we have two cases, depending on

the sign of a.

For the case 0 < a < b we have:

Scon =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
3 log

(
β
πδ sinh

(
π(b−a)

β

))
T < a,

c
6 log

(
β3

2π3δ2ϵ

{
sinh 2π

β (b− a)− sinh 2π
β (b− T )− sinh 2π

β (T − a)
})

a < T < b,

c
3 log

(
β
πδ sinh

(
π(b−a)

β

))
T > b,

(4.7)

while the contribution from disconnected geodesics is

Sdisc =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
6 log

(
β2

π2δ2 sinh
2πa
β sinh 2πb

β

)
T < a,

c
6 log

(
2β3

π3δ2ϵ sinh
2πb
β sinh π

β (T − a) sinh π
β (a+ T )

)
a < T < b,

c
6 log

(
4β4

π3δ2ϵ2 sinh
π
β (a− T ) sinh π

β (b− T ) sinh π
β (a+ T ) sinh π

β (b+ T )
)

T > b,

(4.8)

which in the zero temperature limit β → ∞ reproduces the results for ground state joining

quenches [26, 27]:

Scon =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
3 log

(
(b−a)

δ

)
T < a,

c
6 log

(
2(b−a)(T−a)(b−T )

δ2ϵ

)
a < T < b,

c
3 log

(
(b−a)

δ

)
T > b,

(4.9)

Sdisc =

⎧
⎪⎪⎨

⎪⎪⎩

c
6 log

(
4ab
δ2

)
T < a,

c
6 log

(
4b(T 2−a2)

δ2ϵ

)
a < T < b,

c
6 log

(
4(T 2−b2)(T 2−b2)

δ2ϵ2

)
T > b.

(4.10)

Depending on the position of the entangling region with respect to x = 0, the early time

behavior can be dominated either by the connected or disconnected contributions, however

at late times the connected contributions is always preferred.

A similar calculation can be done for a < 0:

Scon=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
6 log

(
4β4

π4δ2ϵ2 sinh
π
β (a−T )sinh π

β (b−T )sinh π
β (a+T )sinh π

β (b+T )
)

T < |a|,
c
6 log

(
2β3

π3δ2ϵ sinh
π
β (T −a)sinh π

β (b−T )sinh π
β (b−a)

)
|a|<T <b,

c
3 log

(
β
πδ sinh

π
β (b−a)

)
T >b,

(4.11)

Sdisc=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
6 log

(
β2

π2δ2 sinh
2π
β |a|sinh 2π

β b
)

T < |a|,
c
6 log

(
2β3

π3δ2ϵ sinh
2π
β bsinh π

β (T −a)sinh π
β (a+T )

)
|a|<T <b,

c
6 log

(
4β4

π4δ2ϵ2 sinh
π
β (T −a)sinh π

β (T −b)sinh π
β (T +a)sinh π

β (b+T )
)

T >b.

(4.12)
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Figure 5. Connected (Blue) and Disconnected (Red) contributions to the entanglement entropy
for a = 0.1 (Left), a = 0.5 (Right) and b = 2.

However, neither of these cases are suited for study in the scaling limit because of their

short thermalization time, instead we consider a new entangling region, given by the semi-

infinite interval [b,∞). For this case the only contribution comes from the disconnected

surface:

Sdisc =

⎧
⎨

⎩

c
6 log

(
β
πδ sinh

2π
β b

)
T < b,

c
6 log

(
β2

π2δϵ

(
cosh 2π

β T − cosh 2π
β b

))
T > b,

(4.13)

we can then take the scaling limit by again performing a rescaling b → Λb and T → ΛT :

Sdisc =

{
cπ
3β b+O(log β) T < b,
cπ
3βT +O(log β) T > b,

(4.14)

where we can recognize the prefactor cπ
3β as the entropy density for a CFT2 in the high

temperature limit, as given by the Cardy formula [37–39]. For d = 2, the membrane tension

is degenerate, E(v) = 1 and vB = 1, hence (4.14) exactly agrees with (4.3) computed for a

joining quench whose details are somewhat different from the protocol implemented here.

This result hints at universality of joining quenches in the scaling limit. Next, we attempt

to derive a membrane description of this process starting from the bulk dual geometry,

and will find that it differs from the membrane description of the simplest joining quench

protocol summarized in figure 3.

4.2.2 Bulk geometry for the thermal joining quench

In the previous section we computed the holographic entanglement entropy in a section

of AdS3 spacetime and then apply the map w → f(w) to the final result. We can also

consider what is the holographic dual of the space before the conformal maping into the

half-plane.

We begin with AdS3 in infalling coordinates:

ds2 =
1

Z2

(
−dV 2 − 2dV dZ + dX2

)
. (4.15)

We then apply a large diffeomorphism that extends the conformal map (4.6) into the bulk

and that gives a metric in infalling gauge studied in [40, 41]:

ds2 =
1

z2
[
−
(
1− 2M(t, x)z2

)
dt2 − 2dvdz + 2J(t, x)dtdx+ dx2

]
, (4.16)
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Figure 6. Geodesics for (b, T ) = (5, 4), (10, 5) (left) and (5, 10), (10, 15) (Right). In red we show
the end of the world brane. Here we consider a projection in the z coordinate, which we expect to
become the membrane in the scaling limit.

with M = L+ + L−, J = L+ − L− and

L± =
3f(x± t)′′2 − 2f(x± t)′f(x± t)′′′

4f(x± t)′2
. (4.17)

We found the appropriate diffeomorphism by working perturbatively in z. We followed

a similar computation performed by [28], who worked in Fefferman-Graham gauge. The

result is:

V (x,t,z)=
1
2
(f(x+t)−f(x−t))+

zf ′(x−t)f ′(x+t)
(
f ′(x−t)+f ′(x+t)−2

√
f ′(x−t)f ′(x+t)

)

zf ′(x+t)f ′′(x−t)+f ′(x−t)(2f ′(x+t)−zf ′′(x+t))
,

X(x,t,z)=
1
2
(f(x+t)+f(x−t))+

zf ′(x−t)f ′(x+t)(−f ′(x−t)+f ′(x+t))
zf ′(x+t)f ′′(x−t)+f ′(x−t)(2f ′(x+t)−zf ′′(x+t))

,

Z(x,t,z)=
2z(f ′(x−t)f ′(x+t))3/2

zf ′(x+t)f ′′(x−t)+f ′(x−t)(2f ′(x+t)−zf ′′(x+t))
.

(4.18)

The condition X > 0 is translated, using (4.18), into a non-trivial condition for z.

The spacetime then has a boundary (an end of the world brane) located at zEOW(x, t),

given by solving X(x, t, zEOW) = 0. Furthermore, in AdS3 the connected geodesics follow

semi-circular trajectories which in infalling coordinates can be parametrized as:

XHRT(λ) = X(b, T )(1− λ),

VHRT(λ) = V (b, T )−X(b, T )
√
λ(2− λ),

ZHRT(λ) = X(b, T )
√
λ(2− λ),

(4.19)

with 0 ≤ λ ≤ 1, the geodesic begins on the conformal boundary for λ = 0 and ends on the

end-of-the-world brane at λ = 1. One can then numerically invert the map (4.18) along

this trajectory to obtain the geodesic on the original spacetime (4.16).

To obtain a membrane theory description, one needs to carefully analyze geodesics to

learn what portions of them are important, and then to implement the appropriate scaling

on these portions [4, 16]. The qualitative behavior of the geodesics is different for the cases

T < b and T > b as can be seen in the following figures. We see that for T > b the

behavior is very similar to the one in the previous model, with the geodesic ending on the
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Figure 7. Geodesics for (b, T ) = (5, 4), (10, 5). Unlike in the projection in the z coordinate, here
we see that the geodesic does not intersect the end of the world brane but goes around it.

tip of the end of the world brane, however we still see some interesting behavior, since the

geodesic does not seem to go directly to the tip. The behavior for T < b is even stranger,

the geodesic goes around the end of the world brane and then approaches it asymptotically.

In this later case the inversion of the map (4.18) becomes impossible for λ near 1, since the

geodesic seems to leave the patch cover by the coordinates (z, t, x). Since we do not know

how to incorporate all these features into the membrane theory, we do not describe more

details of these geodesics further.

5 Entanglement entropy of growing operators

Another interesting inhomogeneous setup is to consider the entanglement entropy of a time

evolved local operator:

O(t, x) = e−iHtO(0, x)eiHt . (5.1)

Let us review the concept of operator entanglement. There is a one to one map between

operators and states in the doubled Hilbert space H = HL ⊗H∗
R:

O ↔ |O⟩ =
∑

i,j

⟨i| O |j⟩ |i, j⟩H , (5.2)

where the matrix element is taken in one copy of the system. What we mean by entangle-

ment entropy of an operator is the entanglement entropy of the state |O(x, t)⟩. A simple

state to consider is the maximally entangled state |I⟩ =
∑

i |i, i⟩H.
In QFT these notions requires regularization. The regularized maximally entangled

state is the thermofield double state |TFD⟩ ≡ |e−βH/2⟩ =
∑

n e
−βEn/2 |n, n⟩H. Local
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operators require smearing, which can be conveniently implemented by Euclidean evolution:

Oβ(t, x) = O(t, x)e−βH/2 ↔ |Oβ(t, x)⟩ = OL(t, x) |TFD⟩ , (5.3)

where we noticed that the operator has the interpretation of acting on the l.h.s. of the TFD

state.6,7

The gravitational dual of the TFD state is the eternal black hole [42], while that of

|Oβ(tO, 0)⟩ is the localized shock spacetime of [21], see [43, 44] for important early literature.

To get the operator entanglement, we have to determine the extremal area HRT surfaces

anchored on the boundary at t = 0 on AL ∪AR. For tO , x ≫ β, the limit we are interested

in, it is well approximated by the metric:

ds2 = 2A(uv)dudv +B(uv)dx2 − 2A(uv)h(x)δ(u)du2 , (5.4)

where u, v are Kruskal coordinates, and

h(x) ∝ 1

GN

e
2π
β (tO−|x|/vB)

|x/β|
d−2
2

, vB =
2π

β

√
2A(0)

(d− 1)B′(0)
. (5.5)

That is we have two black half eternal black branes glued together along their horizon with

the shift in v equalling h(x). To get to the membrane theory description, the outgoing

Eddington-Finkelstein coordinate system is more appropriate:8

uL,R = ±e−
2π
β tL,R , uv = −e

4π
β z∗(z) , z∗(z) ≡

∫ z dz′

a(z′)b(z′)
,

ds2L,R =
1

z2

[
−a(z)dt2L,R +

2

b(z)
dzdtL,R + dx2

]
.

(5.7)

A key observation is that for the region of interest, 1 < z ≤ z∗, we have uv = O(1), hence

in the scaling limit we have to have log u ≈ − log v. This means that we can think of

vL,R ≈ ±e
2π
β tL,R .

Now let us consider what the HRT surface is doing in this spacetime, see figure 8.

The HRT surface connects to the boundary regions AL,R by cylinder-like portions that are

marked by dotted purple lines on the Penrose diagram. These portions only contribute an

area worth of entropy, and just like in the familiar quench setup, they are not captured by

the membrane theory. The important parts of the HRT surface, drawn by solid purple line)

is in the “white hole” region of the respective black branes (note that tL runs downwards).

These can be parametrized by large values of the outgoing times tL,R. These portions

individually are identical to membranes in the familiar quench setup. The nontrivial physics

6There are other possible regularization prescriptions schemes, e.g. the ordering e−βH/2O(t, x) gives

OR(t, x) |TFD⟩.
7The Heisenberg evolution is defined by O(t) ≡ eiHtO(0)e−iHt.
8For completeness we give explicit expressions for various quantities of interest:

β =
4π

|a′(1)| , vB =

√
|a′(1)|
2(d− 1)

. (5.6)
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Figure 8. Left: the Penrose diagram of the shockwave spacetime is obtained by gluing together two
black branes along their u = 0 horizon (solid black line) with the shift in the space dependent shift
in the v coordinates equalling h(x). This is indicated by the mismatch of the vL,R horizons drawn
by dashed black lines. With magenta we sketch the HRT surface interpolating between the regions
AL and AR, the solid portions of the line are indicating the parts of the HRT surface captured by
the membrane theory, while the dotted portions are discarded in the effective theory. Right: the
membrane theory description of the entanglement entropy of O(tO, 0). The solid portions of the
HRT surfaces map onto the membranes living in the two cones, whose faces are glued together as
indicated by the dotted green lines. The tips of the cones are displaced from O by tscr.

comes from the way they are glued together. There is a shift ∆v ≡ vL−vR = h(x) between

the left and right Kruskal coordinates across the u = 0 horizon where the shockwave

lies. To get a continuous HRT surface, it has to obey this matching condition, vL =

vR + h(x). This leaves the joining curve vR(Ω) as an arbitrary timelike variable that we

have to maximize over. Following the arguments in appendix C of [21], as well similar

maximization computations in [45, 46], we conclude that the result of this maximization

is vR ≈ −vL ≈ h(x)/2, i.e. the crossing point is halfway between the shifted vL,R = 0

horizons. Since vL,R ≈ ±e
2π
β tL,R , this translates into the condition

tL ≈ tR ≈ β

2π
log h(x) = tO − tscr − |x| /vB , (5.8)

where we defined the scrambling time tscr =
β
2π logGN following [21, 45, 46]. We conclude

that the membrane lives in two cones defined by the contours (5.8), whose faces are glued

together. See figures 8 and 9 for illustration, where the identifications are shown by a

dotted green line and a gray surface respectively.

This is the time fold geometry found to be the intrinsic geometry of the maximal

Cauchy slice through the geometry in [21]. The same geometry was introduced in the

membrane theory from the random circuit perspective in [9]. The difference here is the

presence of the scrambling time tscr. It is remarkable that a growing local operator has a

simple entanglement structure that can be captured by the membrane theory in a nontrivial

glued cone or time fold geometry. Within the cones we have to work with the same

membrane tension function E(v) as in other setups, there is no sensitivity to the operator

O and no substructure within the butterfly cone. Probing growing operators with out of

time order correlation functions [21, 45, 47], one finds richer, but less universal structure
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Figure 9. A three-dimensional version of the right figure of figure 8. AL is chosen to be a circle,
while AR is of a keyhole shape. The purple parts of the membrane inside the yellow cones are glued
together as indicated by the grey surface. Since AL and AR do not overlap, hence we have to include
a horizontal section of the membrane drawn with purple that also contributes to the entropy.

within the butterfly cone [48–50]. In view of this complicated physics, we find it remarkable

that operator entanglement is so universal and simple.

6 Higher derivative corrections

So far we have showed that the membrane theory is an accurate description for a large fam-

ily of quench protocols. However, our analysis so far based on the holographic dual being

Einstein gravity. In this section we show that the membrane theory can be generalized to

also take into account more general theories of gravity and the corresponding generalization

of the holographic entanglement entropy prescription. In the context of AdS/CFT, this can

be seen as α′ corrections to the original formula for entanglement entropy, corresponding

to finite ’t Hooft coupling.

We will consider gravity theories characterized by an action of the form:

I =
−1

16πGN

∫
dd+1x

√
g

[(
R+

d(d− 1)

l2

)
+ λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ

]
, (6.1)

which lead to equations of motion that include up to forth order derivatives of the metric.

An special case of this class of theories, whose equations of motion include only second

order derivatives, is Gauss-Bonnet gravity [51]:

IGB =
−1

16πGN

∫
dd+1x

√
g

[(
R+

d(d− 1)

l2

)
+ λGB

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)]
.

(6.2)

For the following analysis it will be convenient to introduce a new coupling:

ΛGB =
(d− 3)(d− 2)λGB

l2
, (6.3)
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that is dimensionless and emphasizes the fact that, for d ≤ 3, the Gauss-Bonnet term does

not modify the equations of motion, since it is a topological invariant. We also introduce:

Λ1 =
λ1

l2
− ΛGB

(d− 3)(d− 2)
,

Λ2 =
λ2

l2
+ 4

ΛGB

(d− 3)(d− 2)
,

(6.4)

in terms of which:

I = − 1

16πGN

∫
dd+1x

√
g

[
(R+ d(d− 1))

+
ΛGB

(d− 3)(d− 2)

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)

+ Λ1R
2 + Λ2RµνR

µν

]
,

(6.5)

where we set the dimensionful parameter l2 to one, we will work in this units from this

point forward.

As before, we are interested on black brane solutions of the form:

ds2 =
l2AdS

z2

[
−a(z)dt2 − 2

b(z)
dtdz + dr2 + r2dΩ2

d−2

]
, (6.6)

where a(z) and b(z) are also functions of the higher curvature couplings. We impose the

boundary conditions: a(1) = 0 and a(0) = b(0) = 1, in order to obtain an asymptotically

anti-de Sitter black brane solution.9

For the particular case of Gauss-Bonnet gravity, it is possible to find a charge neutral

black brane solution, given by [52, 53]:

a(z) =

(
1−

√
1− 4(1− zd)ΛGB

)

(
1−

√
1− 4ΛGB

) ,

b(z) = 1,

l2AdS =
2ΛGB

1−
√
1− 4ΛGB

.

(6.7)

For the more general case with Λ1,Λ2 ̸= 0, no black brane solution is known, however

we can consider a perturbative solution which, to second order in the higher derivative

9We notice that, even though we are now working in units of l2 = 1, this does not fix the physical AdS

radius lAdS, since in general it will receive corrections from the higher derivative couplings.

– 22 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
3

couplings, takes the form:

a(z) = (1− zd)

[
1− zdΛGB

(
1 + (3− 2zd)ΛGB + 2d2

(
(d2 − 5)

2d(d− 1)
− zd

)
Λ1

− d

d− 1
(2d2 − 5d+ 5)Λ2

)]
,

b(z) = 1 + 2dz2dΛGB ((2d+ 1)Λ1 + (d+ 1)Λ2) ,

lAdS = 1− 1

2
ΛGB − d(d− 3)

2(d− 1)
((d+ 1)Λ1 + Λ2)

− 5

8

(
d(d− 3)

d− 1
((d+ 1)Λ1 + Λ2) + ΛGB

)2

,

(6.8)

where again we see that no correction occurs if d ≤ 3. It is easy to see that, for Λ1 =

Λ2 = 0, this agrees with the expansion of the full solution (6.7). We notice that corrections

proportional to Λ1 and Λ2 appear only to second order and contribute only if ΛGB ̸= 0.

6.1 Entanglement with higher derivatives in the scaling limit

With the black brane solutions in hand, we can compute the entanglement entropy in

the same way as described in section 2, being careful to notice that for gravitational

theories with higher derivatives the original prescription for the area functional is modified

to [22, 23]:

S =
1

4GN

∫
dd−1y

√
|γ|

×
(
1 + 2λ1R+ λ2

(
Ra

a −
1

2
KaKa

)
+ 2λ3

(
Rab

ab −KaµνKaµν

))
,

(6.9)

where the codimension two surface is characterized by two normal vectors nµ
a ,

Rabcd = nµ
anν

bn
ρ
cnσ

dRµνρσ, and Ka
µν is the extrinsic curvature. We evaluate this

functional in the scaling limit by performing the rescaling (2.3).

We notice an important simplification: the Gauss-Bonnet term is always subleading in

1/Λ, hence:

S =
Λd−1

4GN

∫
dd−1y

√
|γ|

(
1 + 2Λ1R+ Λ2

(
Ra

a −
1

2
KaKa

))
, (6.10)
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or more explicitly:

S=
Λd−1

4GN

∫
dτdΩ

rd−2

zd−1

√(
1+

(∂Ωr)2

r2

)
(v2−a(z))

×(1+2Λ1F1(z,v)+Λ2F2(z,v)) ,

F1(z)=−b(z)
(
z
(
zb(z)a′′(z)+a′(z)

(
zb′(z)−2db(z)

))

+a(z)
(
d(d+1)b(z)−2dzb′(z)

))
,

F2(z,v)=
b(z)

8(v2−a(z))2
(
H0(z)+v2H1(z)+v4H2(z)

)
,

H0(z)= a(z)
(
−z2b(z)a′(z)2−4za(z)

(
zb(z)a′′(z)+a′(z)

(
zb′(z)−2(d+1)b(z)

))

−4(d+1)a(z)2
(
(d+1)b(z)−2zb′(z)

))
,

H1(z)= 4a(z)
(
z
(
3zb(z)a′′(z)+a′(z)

(
3zb′(z)−4(d+1)b(z)

))

+2(d+1)a(z)
(
(d+1)b(z)−2zb′(z)

))
,

H2(z)= 8z
(
a′(z)

(
(d+1)b(z)−zb′(z)

)
−zb(z)a′′(z)

)

−4(d+1)a(z)
(
(d+1)b(z)−2zb′(z)

)
.

(6.11)

Let us consider first the simplest case of Λ1 = Λ2 = 0, for which all corrections come

from the change in the metric. The algebraic equation of motion for z is then the same as

in the case without higher derivatives:

v2 = c(z) = a(z)− za′(z)

2(d− 1)
. (6.12)

In terms of which:

S = sthΛ
d−1

∫
dτdΩrd−2

√(
1 +

(∂Ωr)2

r2

)
E(v),

= sthΛ
d−1

∫
dd−1y

√
−γ

E(v2)√
1− v2

,

E(v) =

√
−a′(z)

2(d− 1)z2d−3

∣∣∣∣∣
z=c−1(v2)

.

(6.13)

From this expression we can obtain the entanglement velocity by evaluating E(0) =

vE [16]. This requires solving the equation c(z∗) = 0, the full non-perturbative expression is:

v2E =

dΛGB

(
(d−1)

(
2−d+4(3d−4)ΛGB+

√
(d−2)2+4d(3d−4)ΛGB

)

(3d−4)2ΛGB

) 2−d
d

(d− 1)
(
1−

√
1− 4ΛGB

)

× 1√
(1− 4ΛGB) +

4(d−1)(2−d+4(3d−4)ΛGB)+
√

(d−2)2+4d(3d−4)ΛGB

(3d−4)2

.

(6.14)
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As it stands this expression is not very insightful, so it is useful to consider its expansion

for small ΛGB:

vE = v(0)E

(
1−

(
d− 1

d− 2

)
ΛGB

)
,

v(0)E =

(
d−2
d

) d−2
2d

(
2(d−1)

d

) d−1
d

,
(6.15)

where v(0)E is the entanglement velocity for the Schwarzschild solution [16].

Similarly, we can compute the butterfly velocity from either E(vB) = vB or E ′(vB) = 1,

order by order in ΛGB [16]. We can obtain the butterfly velocity nonperturbatively, by not-

ing that in the membrane theory, vB is the largest possible value of v in the physically rele-

vant interval 1 < z < z∗. Since c(z) is a monotonically decreasing function, then v2B = c(1):

vB = v(0)B

√
1 +

√
1− 4ΛGB

2
,

v(0)B =

√
d

2(d− 1)
,

(6.16)

where once again the prefactor v(0)B corresponds to the butterfly velocity for the case of a

black brane without higher derivatives.

We remark once again that this is an exact result, and it is in agreement with previous

calculations in the literature [21]. It is straightforward to confirm that this velocity satisfies

the equations E(vB) = vB and E ′(vB) = 1.

The next simplest case is given by Λ1 ̸= 0 but Λ2 = 0, for which the functional is

modified but the algebraic equation of motion for z still contains only single powers of v2.

Because of this full analytic results are still available.

From (6.11), the algebraic equation for z is:

v2 = c(z) = a(z)− z(1 + 2Λ1F1(z))a′(z)

2(d− 1)(1 + 2Λ1F1(z))− 4Λ1zF ′
1(z)

. (6.17)

Using this expression we can write the entanglement functional as:10

S = sthR
d−1

∫
dd−1y

√
−γ

E(v)√
1− v2

E(v) =

√
−z3−2d(1 + 2Λ1F1(z))a′(z)

2(d− 1)(1 + 2Λ1F1(z))− 4zΛ1F ′
1(z)

×
(
1 + 2Λ1F1(z)

1 + 2Λ1F1(1)

)∣∣∣∣
z−c−1(v2)

.

(6.18)

10It is important to notice that, in the definition of the entropy density sth, we use not the Bekenstein

formula but its generalization, given by the Wald formula, which takes into consideration corrections from

higher derivatives [54].
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We can then compute the butterfly velocity as before, evaluating the function c(z) at

z = 1:

v2B = − (1 + 2Λ1F1(1))a′(1)

2(d− 1)(1 + 2Λ1F1(1))− 4Λ1F ′
1(1)

. (6.19)

For general functions a(z) and b(z), expanded around z = 1 and satisfying the appro-

priate boundary conditions, the expression (6.19) agrees with the previous result obtained

in [3]. For our particular solution (6.8), we can obtain a result to next-to-leading order in

the couplings:

vB = v(0)B

(
1− ΛGB

2
− 5

8
Λ2
GB − d(d+ 1)(3d− 5)

2(d− 1)
ΛGBΛ1

)
. (6.20)

We notice that at leading order we have corrections only from the Gauss-Bonnet cou-

pling, and the first two correction terms in the parenthesis agree with a perturbative ex-

pansion of (6.16). Again we compute the entanglement velocity to next-to-leading order:

vE = v(0)E

(
1− d− 1

d− 2
ΛGB +

(d((5− 2d)d+ 3)− 6)Λ2
GB

2(d− 2)3
− d(d+ 1)(3d− 5)

d− 2
Λ1ΛGB

)
,

(6.21)

where the first two correction terms are just the second order expansion of the full result

for Gauss-Bonnet gravity (6.14).

With the experience obtained from the two previous cases, we can now turn to the

general situation of higher derivative gravity with Λ1 and Λ2 non-zero. In this case one

can in principle follow the same procedure as before, determining the equation of motion

of z from (6.11). However, in this case we do not have an equation of the form v2 = c(z),

but an equation that depends on powers of v2 up third order. This equation can still be

solved in principle, since it is just a cubic equation on v2, and from it one can still compute

the entanglement and butterfly velocity and determine the energy function E(v). However,
since the gravitational solutions themselves are perturbative, it will be easier to solve this

problem order by order in the higher derivative couplings.

Before considering the perturbative expansion, we notice that a simplification occurs

when evaluating v2B, since H0(1) = H1(1) = 0:

v2B =
B1(Λ1,Λ2)−

√
B1(Λ1,Λ2)2 − 16b(1)Λ2H ′

0(1)B2(Λ1,Λ2)

4B2(Λ1,Λ2)
,

B1(Λ1,Λ2) = (8 + 16Λ1F1(1)− 3Λ2b(1)H2(1)) a
′(1)− 2Λ2b(1)H

′
1(1),

B2(Λ1,Λ2) = H2(1)Λ2b
′(1)− d (b(1)H2(1)Λ2 + 16F1(1)Λ1 + 8)

+ b(1)Λ2H
′
2(1) + b(1)H2(1)Λ2 + 16Λ1

(
F ′
1(1) + F1(1)

)
+ 8.

(6.22)

Which again agrees with previous calculations of vB for general metrics with appro-

priate boundary conditions [3].

In perturbation theory we can solve the cubic equation in v2 to write it as:

v2 = c(z) = a(z)− za′(z)

2(d− 1)

− d2ΛGB

d− 1

(
2dzdΛ1 + 2Λ2 − 2zdΛ2 + dzdΛ2

)
z2d.

(6.23)
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The first line is the known algebraic equation for the unmodified functional and it

contains all order corrections from the metric. The second term is the correction from the

change in the functional, it contains up to first order corrections from the metric and we

notice it does not contribute to the algebraic equation to first order.This expression can

then be evaluated at z = 1 to compute the perturbative expansion of vB, in agreement

with our previous results:

v2B = − a′(1)

2(d− 1)
− d3

(d− 1)
(2Λ1 + Λ2)ΛGB, (6.24)

where the first term is given by metric corrections to the unmodified functional and the

second one comes from the modification of the functional.

Finally we can provide a form for the energy function as an implicit function of v:

E(v) =

√
−a′(z)

2(d− 1)z2d−3

(
1 + E(1)(v)

)
∣∣∣∣∣
z=c−1(v)

,

E(1)(v) = −dΛGB

(
(2(2d− 1)Λ1 + (d− 2)Λ2) z

2d + 2dzdΛ2 − 2(d− 1)(Λ1 + Λ2

)
.

(6.25)

where the prefactor is the result coming from the unmodified action, containing all order

corrections in the metric function, while the second term accounts for corrections on the

functional itself, and so it contains only second order corrections. We can write this as an

explicit function of v to next-to-leading order in the higher curvature couplings:

E(v) = vE

(1− v2)
d−2
2d

(
1 +

2(d− 1)2

d(d− 2)
ΛGBv

2

−
2(d− 1)2v2

(
d
(
d
(
5d

(
v2 − 1

)
− 16v2 + 12

)
+ 9v2

)
+ 2v2

)
Λ2
GB

(d− 2)3d2

+
2(d− 1)(3d− 5)v2 (dΛ1 + Λ1 + Λ2)ΛGB

d− 2

)
,

(6.26)

where

vE = v(0)E

(
1− d−1

d−2
ΛGB+

(d((5−2d)d+3)−6)Λ2
GB

2(d−2)3
− d(3d−5)(dΛ1+Λ1+Λ2)ΛGB

d−2

)
,

(6.27)

that we notice agrees with (6.21) when Λ2 = 0.

7 Subleading orders

The membrane theory only captures the leading order extensive piece of the entropy in

the large R/β expansion. It is an interesting question, whether subleading orders in this

expansion can be captured by the membrane theory. Such corrections come from three

sources: from the part of the HRT surface connecting the black brane horizon to the

boundary, from subleading terms that come from the behind the horizon part of the static

black brane patch of the geometry, and the part of the HRT surface that is in the genuinely
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time dependent part of the geometry and contributions from the initial state (represented

by a pure AdS region in the Vaidya quench model or the near end of the world brane part

of the geometry). In this section, we analyze the second source of corrections, and leave

the others for future work. We find that the way the membrane theory captures these is

analogous how higher derivative terms appear in the chiral Lagrangian or to higher gradient

terms in hydrodynamics. The effects of some phenomenologically added higher derivatives

terms were also considered in [9], here we derive their explicit form from holography.

Let us recall (2.2). In this section, after the rescaling (2.3), we want to keep the first

subleading term in Λ.

S[A(T )] =
Λd−1

4GN
min

m∼A(T )

∫
dt dΩ

rd−2

zd−1

√
Q0

[
1 +

1

Λ
F (z, r) + . . .

]

Q0(z, r) ≡
[
ṙ2 −

(
1 +

(∂Ωr)2

r2

)
a(z)

]

F (z, r) ≡ 1

Q0(z, r)b(z)

[
ṙ (∂Ωr · ∂Ωz)

r2
−

(
1 +

(∂Ωr)2

r2

)
ż

]
.

(7.1)

As is familiar from perturbation theory, to obtain the first order correction to the on shell

action, we can use the first order solution evaluated on the correction to the action. We

obtain (after setting Λ = 1):

S[A(T )] = S0[A(T )] +
1

4GN

∫
dt dΩ E0(v)F (z, r)

∣∣∣
z=c−1(v2)

+ . . . . (7.2)

Since F (z, r) depends on the derivatives of z(t,Ω), it is clear that we cannot write this cor-

rection simply as a function of v, which is a function of (n · t̂). Instead, we have to consider

derivatives of nµ, the extrinsic curvature tensor, Kµν . A term linear in Kµν produces the

right scaling 1/Λ; at higher orders we would also encounter the Riemann tensor, their pow-

ers and derivatives. Hence we expect that (7.2) can be written as C1(v)K
µ
µ+C2(v)Kµν t̂µt̂ν .

Evaluating the expression explicitly, we only find the second structure:

S[A(T )] = S0[A(T )] +
1

4GN

∫
dt dΩ E1(v)Kµν t̂

µt̂ν + . . . ,

E1(v) ≡
(1− v2)5/2

E0(v)

[
1

b(z) z2(d−1)

dz

dv

] ∣∣∣∣∣
c−1(v2)

< 0 .
(7.3)

It would be interesting to understand in what situations the extrinsic curvature term plays

an important role in the physics of entanglement growth.

8 Summary, discussion and open questions

In this paper we have significantly enlarged the domain of applicability of the membrane

effective theory of entanglement dynamics. We studied quenches for inhomogeneous initial

states: generically such states will also have inhomogeneities in conserved densities, whose

dynamics is described by hydrodynamics. We derived how the membrane theory couples

to hydrodynamics (but does not back react) in a beautiful geometric way.
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We also studied another inhomogeneous setup, the joining of two separately ther-

malized systems (living on a half space). Since the membrane theory Lagrangian is only

sensitive to the conserved densities, and in the thermal joining quench hydrodynamics is

trivial, we obtain nontrivial entanglement dynamics in this case from boundary conditions:

there is a brane in the membrane theory Minkowski spacetime (descending from an end

of the world brane in holography) on which the membrane can end. Our results precisely

reproduce those of [9] obtained from a transport equation reformulation of the problem,

but complement it with a spacetime picture. We note that in the global quench it is also

the boundary conditions that give the time dependence to the entanglement entropy (this

is also partially true in inhomogeneous quenches), but there the brane is on the t = 0 slice

respecting the symmetry of the problem.

This joining quench setup makes it possible to address the recent claim that black

holes may not be fast scramblers based on entanglement, only based on out-of-time order

correlators [55, 56]. In their setup, they consider a black hole cut in half and then joined,

and based on a quantum circuit model of the photon sphere argue that entanglement

saturation is slow. The spherical version of our model with an end of the world brane

makes it clear that entanglement saturates in a time of order the light crossing time: this

is the fastest possible entropy saturation time for a local quantum system.11

Another setup that we considered was an entanglement entropy of a time evolved local

operator. There we found that the membrane spacetime is a double cone glued along

their faces or equivalently a time fold. This same geometry was derived from random

circuits in [9]; our derivation applies to holographic gauge theories, and a distinguishing

feature is that the scrambling time separates the tips of the cones, see figures 8 and 9.

In this geometry, we have to use the same membrane tension, as in other setups. The

same geometry was found to be that of the maximal spatial slice through the shockwave

spacetime dual to the growing operator in [21], and it was related to the geometry of a

minimal tensor network reproducing the operator.

The connection between tensor networks and the membrane theory is very direct:

the membrane can be thought of as a coarse grained cut through the tensor network

representing the state whose subsystem entropies we are computing. This is in fact how

the membrane description is derived in the random circuit approach [9, 58]. However,

the connection between the tensor network and the bulk geometry is more subtle, than

envisioned in [21]: the HRT surfaces (that become the membranes) do not lie in the

same Cauchy slice, so it is not the geometry of the maximal volume slice that enters the

membrane theory, but the geometry of the spacetime in the sliver between zh ≤ z ≤ z∗ that

gets reprocessed into an effective tensor network description. This geometry determines

both the background spacetime and the angle dependent membrane tension E(v). It would
be very interesting to better incorporate this way of thinking into the relation between

tensor network approaches and holography [59–62].

An important direction in the exploration of the membrane theory is to enlarge the

set of theories for which it can be derived as an effective description. To this end, we

11A related end of the world brane model for a joining quench demonstrating fast saturation of the

entropy was proposed independently by Juan Maldacena [57].
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showed that finite coupling corrections to holographic gauge theories do not change the

structure of the theory, by deriving the membrane tension function from the holographic

entropy functional of higher derivative gravity theories. The entropy functional contains

higher derivative terms, which may have been guessed to give rise to higher derivative

terms in membrane theory. Instead, we found that only the explicit form of E(v) and its

relation to the geometry changed, but the membrane theory Lagrangian does not contain

higher derivative terms, its structure is preserved. Finally, we asked whether going to

subleading order in the β/R expansion is possible within the membrane theory framework.

We answered this question in the affirmative, and found that at subleading orders we have

to include higher derivative corrections.

We regard our work as an important demonstration of the versatility and robustness

of the membrane theory. The rich applications of the theory include the demonstration

of entropy inequalities that follow from it [63], its bit thread reformulation [25], applica-

tion to Rényi entropies [8] and logarithmic negativity [64], and the exploration of shape

dependence of entropy dynamics numerically [65]. In the future, it would be interesting to

generalize the holographic derivation of a membrane theory to other entanglement mea-

sures, such as Rényi entropies, negativity, and reflected entropy [66]. Crucial stress tests

of the theory would be to include bulk quantum corrections in holography that are dual to

1/N corrections in the field theory and to test whether the membrane theory’s predictions

are correct for the entropy of a two interval subregion in chaotic spin chain numerics and

arbitrary chaotic two-dimensional CFTs. If the membrane theory passes these feasible

future tests, it would present an extremely strong case for the general applicability of the

membrane theory for all chaotic systems in the hydrodynamic limit R, T ≫ tloc, where the

local thermalization time tloc ∼ β in strongly coupled theories, but could be significantly

larger in weakly coupled (but chaotic) theories tloc ∼ β/λ, where λ is some weak coupling

constant. Instead of relying on hopefully representative examples to make the case for the

membrane effective theory, it would be very desirable to present a derivation of it based

on general principles that is applicable to all chaotic theories.
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