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1 Introduction

Entanglement dynamics in systems out of equilibrium is a rich phenomenon that has been
studied in many areas of physics [1-10]. The quasiparticle model [2, 11, 12] provides an
intuitive way to understand the general characteristics of entanglement dynamics, however,
while it is an accurate description of integrable theories [13, 14], it does not capture all the
properties present in a chaotic system [5, 6, 12, 15].

Recently, a new effective model has been proposed: the membrane theory. First dis-
covered in the context of unitary random evolution in two dimensions [9], it has been
generalized to arbitrary dimensions using the holographic correspondence [16]. In this
model, the problem of computing entanglement entropy is translated into the problem of
computing the “energy” of a minimal timelike codimension-1 membrane of angle dependent
tension &(v), which connects two faces of a slab of d-dimensional Minkowski spacetime of
height T, where v is a local velocity of the membrane, the time component of the unit
normal vector of the membrane. The entanglement entropy is then:
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S = Sth/dd_ly\/ — Nk (1.1)



where s, is the thermal entropy density, y* are the coordinates and 7i; is the induced
metric on the membrane world volume.

This theory is expected to accurately describe the dynamics of entanglement in the
scaling regime: R,T > [, where R is the characteristic size of the entangling region,
T is the time elapsed since the quench and f is the inverse temperature of the system at
equilibrium. Furthermore, it has been shown to successfully capture many of the important
properties of the dynamics of operators in chaotic systems, specially the relation between
entanglement dynamics and operator spreading [3]. In this paper we will show that the
membrane theory holds for a broad range of generalizations.

In [16], the initial excited state was produced by a global quench which preserves
translational invariance. We will show that the membrane theory is valid for more general
initial states, in particular those that do not exhibit translational invariance. At late
enough time, once the system has reached local equilibrium, the coarse-grained dynamics
can be described in terms of the diffusive transport of a few conserved quantities [17]. If
the excitations of the system are characterized by sufficiently long wavelengths, we can
study this diffusive transport in terms of a hydrodynamic expansion.

Hydrodynamic systems possess a well-established holographic description [18-20], for
which the long wavelength approximation is seen as a gradient expansion for an inhomo-
geneous black brane solutions. We use this fluid /gravity correspondence to compute the
holographic entanglement entropy and show that in the scaling limit it obeys the membrane
theory prescription. We also provide further evidence for the validity of the membrane the-
ory by studying other inhomogeneous setups: the joining quench for semi-infinite systems
separately in thermal equilibrium is described by the membrane theory with an added
brane on which membranes can end, and the entanglement entropy of time evolved local
operators is computed by a membrane living in a double cone geometry representing the
footprint of the growing operator [21].

A key ingredient in the derivation of the membrane theory for higher dimensions is
the holographic correspondence. Hence it is of interest to see if this effective theory holds
under generalizations of the simplest holographic setup in terms of Einstein gravity. We do
this by considering higher derivative gravity theories, the simplest example being Gauss-
Bonnet gravity, and the most complicated explicitly analyzed is the general four derivative
gravity. In addition to correcting to the geometry of the spacetime, these new terms also
modify the holographic entanglement entropy functional [22, 23]. Once again we show that
the membrane theory is robust under the deformation of the bulk gravitational action, and
data read off from the membrane tension function £(v) reproduces previous results about
entanglement growth in higher derivative gravity obtained in [3]. We also show how to
incorporate subleading corrections in /R into the theory. These should be thought of as
analogs of higher gradient terms in hydrodynamics.

We organize this paper as follows: in section 2 we revisit the original derivation of
the membrane theory for global quenches, setting the basic simplifications achieved by
the scaling limit. In section 3 we generalize this to consider systems without translational
invariance, described in terms of the Fluid/Gravity correspondence, we show that the basic
description in terms of a codimension-1 membrane still holds but we need to generalize
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Figure 1. Penrose diagram of a spacetime dual to a quench. Before the quench we have pure AdS,
the infalling matter shell is colored orange, where the spacetime is strongly time dependent, and
the spacetime subsequently settles to a static black brane. The horizon is a diagonal black line, the
singularity is a red line, the Poincare horizon and the AdS boundary are drawn by blue, while the
HRT surface computing the entropy of half space is a purple curve.

it to include a coupling the membrane to the fluid. We follow this by introducing a
specific quench, the thermal joining quench and analyzing its entropy in the scaling limit.
In section 5 we consider one more case, corresponding to a state created by the action
of a particular operator, which is dual to the shock-wave geometry. We then consider
holographic entanglement entropy in theories with higher derivatives in section 6. We
discuss next-to-leading order corrections in the scaling limit in section 7. We end with a
summary, discussion and open questions in section 8.

2 Membrane theory for global quenches

Let us first review the original derivation of the membrane theory, as first presented in [16].
As was noticed in the Introduction, the system is taken to be on a state [1)) = e7T |¢)g),
where [1)g) is a highly excited short-range entangled state, prepared by a global quench.
This configuration is dual to a dynamical spacetime modeling black brane formation from
collapse, represented by the Penrose diagram figure 1. We are interested on the entangle-
ment entropy for a spatial subregion with characteristic size R, which can be computed
holographically by the usual prescription in terms of extremal surfaces [24].

In order to implement the limit R, 7" > (3, we follow [25] and introduce a book keeping
parameter A > 1, performing the transformation: R,T — AR, AT. We are interested only
on the leading A%~! contributions to the entanglement entropy.

A key observation is that, in this approximation, only the part of the HRT surface that
lies behind the horizon of the final black brane geometry contributes to the entropy [3, 16].
The other pieces of the surface contribute only to order A%~2, this includes in particular
the usual area law contribution for the entanglement entropy of the ground state.

The most general static black brane geometry can be written in infalling coordinates
as:

2
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ds® =

1
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and a codimention-2 surface can be defined by the embedding z(¢,2) and r(t, §2), where €2
stands for the collective coordinates in S?~2. The entanglement entropy is then computed
by extremizing the area functional:!

d—2

1 r
S—4GN/dtdQZd_1f,

Q= [7"2 — (1 + (82§)Za(z)>

We implement the rescaling:

t—>At, r—Ar, Q—-0, z-z (2.3)

At leading order in 1/A, the equation of motion for z(¢,2) becomes algebraic and it is

given by:
2 /
I A G B
v= 1+ (Gar)? = al(?) 2(d—1)

™

= c(z2), (2.4)

from where we can solve z(t,Q) = ¢~! (v%(,Q)) and rewrite the area functional as:

2
S = sip / dtdQri=24/1 + <a;3;“ ) E(v),
(2.5)
_ —a'(z)
Elv) = 2(d — 1)224-3 .
z=c~1(v2)

where we introduced sy, = ﬁ and set A = 1.

We see that the problem of obtaining the HRT surfaces translates, in this limit, to the
problem of minimizing a codimension-1 surface, or membrane, extending along the interval
[0,7] and with the boundary condition that, at ¢t = T, it is equal to the codimension-2
entangling region,? while on the ¢ = 0 surface representing the short range entangled initial
state it ends perpendicularly. The information about the original holographic set up is
encoded on the membrane tension £(v) and by solving the membrane problem one can
reconstruct the full HRT surface, to leading order, using the map (2.4). The projection of
the HRT surface into the membrane can be seen in figure 2.

There is one more ingredient that is required to make the membrane theory match
the HRT prescription. We also have to allow for horizontal membranes (that formally give
v = 00) to capture the saturation of entropy [16]. These do not have to extend down to
the t = 0 boundary, and give S = s}, vol(A) when they are the minimal action membrane.

The membrane tension £(v) obeys a series of consistency conditions that encode infor-
mation about operator spreading [9], namely, it is a positive even function, monotonically

In the following expressions, all products involving the angular coordinates are taken using the metric
on S% 2 and f = o.f.

2At this boundary the relation between v and z (2.4) breaks down. This is because the HRT surface
stops obeying the scaling Ansatz exactly at this point.



Figure 2. Projection of the HRT surface into the membrane picture. Only the region between the
infalling matter (Orange) and the horizon (Gray) contribute to leading order in the scaling limit.

increasing and convex for 0 < v < 1. It diverges as v — 1 and certain important values
are [16]:
5(0) = Vg, S(UB) = vpB, gl(vB) =1. (26)

In the following sections we will use these relations to compute corrections to the
butterfly and entanglement velocities as well as consistency checks for the membrane theory.

3 Entanglement dynamics in the hydrodynamic limit

A generalization, with respect to the previous picture, is to take more general initial states.
In the scaling limit we are interested in studying systems out of equilibrium at times 7" > £.
In this regime, generic states without translational invariance can be described in terms of
a hydrodynamic expansion in the low energy/long wavelength limit. Let us then begin this
section by reviewing the fundamental ideas of the fluid/gravity correspondence (see [18-20]
for details).

The degrees of freedom of the effective hydrodynamic description are encoded in the
stress tensor Ty, and conserved current J,, which in turn can be expressed in terms of a
velocity field u, and certain scalar functions, such as the pressure, temperature, energy
density, and conserved charges. The dynamics of these quantities is determined by the
conservation equations and the equation of state of the medium.

We will consider a theory in d—dimensional Minkowski spacetime, for simplicity we
assume the theories has no global symmetries and we focus only in the dynamics of the
stress tensor. The hydrodynamic regime is organized in terms of a gradient expansion, at
leading order we have an ideal fluid, for which:

Tég) = pugup + pPup, (3.1)



where p is the energy density, p is the pressure, and P, = 14+ uqup is a projection operator
into the plane orthogonal to the velocity field, we normalized the later as u,u® = —1.

To next order in the gradient expansion, the stress tensor receives contributions from
derivatives of the velocity field, these can be organized by their transformation under the
Lorentz group as:

0 = Oqu®,
g = ubﬁbua,
o™ = glayb) 4 ylogh) — . 6Pt (3:2)
d—1 ’
w® = oyl + yloghl,
By symmetry considerations these quantities contribute to the stress tensor as:

TV = —2n0,, — COP, 3.3
ab naab < abs ( . )

where 1 and ( are transport coefficients, known as the shear and bulk viscosities, respec-
tively.

To all orders in the hydrodynamics expansion, the stress tensor possesses the same
structure: we will have a series of tensors, formed out of the velocity field and its deriva-
tives, whose contribution to the stress tensor is characterized by a series of transport
coefficients, which encode the specific details of the underlying theory. We will see that the
membrane theory follows a similar structure. Just as these transport coefficients depend
on the temperature, the angle dependent membrane tension £(v) can be regarded as a gen-
eralized transport coefficient of the membrane effective theory: the form of the theory is
universal, but £(v) is specific to a theory. In this section we will introduce new membrane
theory transport coefficients that determine the entropy dynamics in inhomogeneous states.

In order to construct the holographic dual of this hydrodynamic theory, one considers
first a boosted AdS-Schwartzschild black brane, characterized by a constant timelike vector
Ug:

1
ds® = = <2uadzx“dz + (Nap + (1 — a (dz/47T)) uqup) d:r“da:b> , (3.4)

which is a vacuum solution of the Einstein equations with negative cosmological constant
and a(¢) = 1 —¢%3 We then promote the vector u, and the temperature 7" to be functions
of x = (t,Z). The result is no longer a vacuum solution, but one can systematically correct
the metric in the form g, = g,(fl),) + g,(}y) + ..., organized as a gradient expansion in terms of
derivatives of u,(x) and T'(x), to obtain a solution. As showed first in [20], this perturbative
expansion of the Einstein equations reproduces order by order the hydrodynamic expansion
of the dual field theory.

The most general solution to the perturbative equations takes the form [18]:

1

ds? = 2 {2ua(:v)d3:“dz + [Gap(z, ) — 2uq () By(z, x)] d:vadxb} , (3.5)

*Note that in section 2 we set T' = d/(4x), hence had ¢ = z.



where the functions Gg(z,z) and By(z,x) are determined order by order in the gradient
expansion. To leading non-trivial order:

1
Bu(z,z) = ia (dz/47T) ug + 2Aq,

8T
d

(3.6)

Gap(z,x) = Pyp + ——g1 (dz/47T) 0 gp,

where A, = a, — ﬁ@ua. The function ¢;(¢) depends only in the dimension of spacetime
and is known in integral form:

00 yd—l -1
91(¢) = / dy———- 3.7
The local entropy density of the fluid is also coordinate dependent and it is given, up

s(z) = 4(1;N (4”2@))“. (3.8)

to second order, by:

3.1 Entanglement entropy and the scaling limit

We want to consider the scaling limit by performing the rescaling (2.3). In doing this, one
must also be mindful of the way the metric rescales, and hence must specify the particular
scaling for each of the quantities in the gradient expansion. For the velocity field uq(z) we
have:

Up — Uy, up — Uy, uqn — Aug, (3.9)

which preserves the normalization condition u,u® = —1 in the new, rescaled, coordinates.
We observe that due to the explicit 72 factor in the sphere metric, the angular components
are rescaled, while other components are not scaled. This pattern holds true for the different
tensors constructed out of the velocity field and its derivatives. To first order in the gradient
expansion the quantities that require rescaling are:

aq — ACLQ,

1
rQ) JtQ O_’I”Q tQ)7 (310)

and the antisymmetric tensor w® follows the same rescaling as o%.

We then compute the holographic entanglement entropy for the same set up as in
section 2. The area functional is given, to zeroth order in the gradient expansion, by:

Adl
tdQ)——
5= oy | 0%

(597“)2

(8ar)?
7"2

Q = —a(dz/4nT) (1 + ) + (1 —a(dz/4nT)) (1 +

y (24192 4 (u2 + g 00Dy _guador (4 ,) 4 2upu,
o 1+ G ’
r2

>w27 (3.11)




where all the information about the fluid is contained in the function w. Note that in the ho-
mogenous setting w = 0, and we recover the area functional (2.2) in the scaling limit. This
expression does not look very enlighting, however it posses a key property, the functional
does not contain derivatives of z(¢, ), so the corresponding equation of motion is algebraic.

We can further simplify the previous expression by writing it in terms of contractions
of tensors characterizing the fluid and the membrane. To see this we introduce the vector,
in d—dimensional Minkowski spacetime, normal to the entangling region:

1
Ng = (—r,1,—0qr), (3.12)
1 + (89;‘)2 _ 722

where we use the (¢,7,)) ordering of coordinates. We can then rewrite the function Q as:*

(1 + (3927“)2 _ 7"2)
= - v? — a(dz/4n
0= (1—2?) ( (d=/4nT)) (3.13)
2 _ (n - u)?
1+ (n-u)?’

where we notice only the second factor has a z dependence.
Since the temperature T'(x) is a non-trivial function of the boundary coordinates, it is

convenient to introduce a new variable ( = Adeiz(z). The algebraic equation of motion for
the embedding function ((¢,€?) is then
2 ¢a’'(¢) _
= —_— = -14
= alQ) = 5 g = €(0) (314)

which can be solved to obtain ¢ as a function of v?. Using this equation we can rewrite
the area functional as

_ _ E(v)
S:Adl/ddl /—~ %’

yv— T2

—a(0) (3.15)
EW) = | =5
2(d —1)¢2d—3 ’
( )6 (=c~1(v?)

where in spherical coordinates d% 1y /—y = r4724/1 + (827;)2 — 72dtdS) is the area element

for a codimension one surface in Minkowski spacetime, characterized by the embedding
r=r(t, Q). We used (3.8) to rewrite all T'(z) dependence in terms of the entropy density.

We see that this expression is precisely the membrane theory prescription (1.1), with
the two generalization being that now the entropy density is a function of the coordinates
and the velocity v is measured with respect to u instead of £. This is a beautiful minimal
coupling of the membrane to the fluid. Next we consider the leading corrections to this
action in the fluid gradient expansion, which induces nonminimal couplings between the
fluid and the membrane.

In the case where (us, ur, ug) = (—1,0,0), we have v> — recovering the translational invariant

_
2 9

1+(8927)
7‘

case.



As before, we compute the area functional using the metric (3.5) and the rescaled
embedding (2.3), and we express the result in terms of invariant products of the form
(n-u) and products of the normal vector with the quantities defined in (3.2), we have that:

(1+M-&2> g (A-n)(n-u)—A-
) r s n)(n-u u
7r ownn”
+ ilT(x)gl(C)a(C)m> '

We notice that there is no contribution from the antisymmetric tensor wgy, this is due to
symmetry: we cannot form an invariant product involving only that tensor and n,. The
particular form of the first correction term is due to conformal symmetry, instead of the
quantities a, = u’Oyu, and § = 0%, appearing separately, they arrange themselves into
the Weyl connection A, = a, — %uw

It is convenient to define new ( independent variables, which encode the higher order

corrections: . () ( A
T ) (n-u)—A-u
o= ()T
81 ogn®nt (3.17)
0= T o )
The algebraic equation of motion for {(x) is then
_ ¢a'(¢) | 2d-3 Cg1(¢)a’(¢) ¢a(¢)g1(¢)
= alQ) = 3o g+ (2( P e + G ) Q,. (3.18)

Unlike the zeroth order case, we cannot write this simply in the form v? = ¢((), instead
we must solve this equation order by order in the gradient expansion:
07 o) _ .2
2(d—-1) ’
Cy = Fay (v, dv), (3.19)
4(2) = F(Q) (7)7 ava 821})7

C(C(O)) = a(C(o))

where 0"v denotes the nth-order corrections to the fluid/gravity metric, contracted with
the normal vector n,. For instance:

' , 1($(0))
gy o VAT (91(Cone (G + aléy) (91(C)) — 2(d = 2ER)) %

a’ (¢,
@"(Goy) — (2 — 3

where (o) = ¢ (v?).
The equation (3.18) can then be use to write the area functional as
_ _ E(v)
S:Adl/ddl _8(1‘) ,
yv—o Nl
Ew) =ED0) (1+ q1(v)Q1 + g2(v) Q2) (3.21)

=¢£0 <1 - d(1éi:r?rz@)u)2) <Q1 (A-n)(n-u)— A u)+ (Daabn“nb)) :



where

0w = 5o 7
20 = DT e
d—1
-4 3.22
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We see that the dissipative corrections modify the tension function €(v) but they still
can be taken into account within the framework of the membrane theory. Furthermore
the corrections appear as we expected, this is, as tensor structures made out of invariant
products of the vector n, characterizing the membrane and the different tensors describing
the fluid dynamics.

Even though (3.21) was derived using holography, one may expect that the membrane
theory holds beyond that framework; one just considers a membrane in Minkowski space-
time, non-minimally coupled to a fluid with coefficients dependent in the particular details
of the theory. Similarly, although (3.21) was derived only to leading order in the dissipative
corrections, it is easy to see that it holds for higher corrections, one just need to incorporate
further tensor structures in (3.18) and solve the equation order by order in the gradient
expansion, obtaining a result of the form:

E) = EO(v) (1 + znj S g Q?)) : (3.23)
=1 T

where the first sum is over the gradient expansion, up to order n; while the second sum is
over the different tensor structures, at a given order, allowed by symmetry.

We have determined the bulk Lagrangian of the membrane theory in an inhomogeneous
quench. To make the problem well-defined, we have to specify the boundary conditions
on the membrane. At ¢t = T the membrane is anchored on the subregion A(7"). The
other boundary condition is specified by the quench protocol that created the state. One
straightforward protocol would be to create a short range entangled state with a prescribed
density of conserved charges at ¢ = 0. Strongly coupled chaotic systems are expected to
loose the memory of the details of the initial state in a time of order £, which is dual to
black brane quasinormal modes decaying in times of order /3 (except for the hydrodynamic
ones). Hence for 1 < z < z, the spacetime settles to a fluid/gravity metric in a short
time of order 5. The membrane theory is insensitive to such short time details, hence the
whole quench protocol is represented as a brane at ¢ = 0 on which the membrane can
end perpendicularly. We can consider some variation on this setup: the quench could be
implemented at different times at different spatial locations, resulting in a wavy membrane
tquench (). The initial state could also contain significant amount of entanglement, in which
case the membrane action has to be supplemented by a boundary term [9], and as a result
will obey different boundary conditions at ¢t = 0.

~10 -



4 Joining quench

In the previous section we showed that, for a generic quench without translational in-
variance, the dynamics of entanglement entropy is characterized by the membrane theory
coupled to a fluid. We did this by considering an effective hydrodynamic description of
the quench after local equilibration. In this section we will consider a particular quench
without translational invariance, study its time dependence in general, and show that it is
accurately captured by the membrane theory in the scaling limit.

We consider two decoupled theories on half spaces that are separately thermalized. We
can quench this system by coupling the two theories along their boundaries, as was discussed
in the random circuit context in [9], by which we are heavily influenced. Joining quenches
were studied in field theory in the vacuum state in many interesting papers [13, 26, 27].

In this section, we first construct a simple bottom up holographic model of this joining
process. A simplifying feature of this model, is that it postulates the existence of an end
of the world brane in the bulk theory that can be treated as a probe. Its presence results
in a joining quench that involves no transport of energy, hence trivial hydrodynamics, but
nontrivial entanglement dynamics. We find a simple membrane theory description of the
entanglement dynamics. The results are in complete agreement with those obtained in
the random circuit context in [9], and complement it by providing a membrane theory
spacetime picture.

Next, we study conformal boundaries in CFTy. The joining quench can be solved
for using CFT techniques, and a bulk picture is obtained using mappings similar to those
introduced in [28]. The distinguishing feature of this quench model is that the joining is
accompanied by an energy shock, i.e. the energy and entropy dynamics are coupled. A
similar situation has been recently studied in the context of JT gravity [29, 30].

While the entanglement entropy in the scaling regime agree with those obtained in
the simplified model, the membrane theory description of the process seems considerably
more complicated, and we only make initial steps towards deriving the membrane theory
description of this particular joining quench. It would be very interesting to complete the
derivation.

4.1 A simple holographic model

A holographic BCFT (on a half space) in the vacuum state has the dual gravitational
description of a patch of AdS space ending on an end of the world brane [31, 32]. The
brane satisfies boundary conditions:

Kzzb - (K - Tbrane) haba (41)

where K, is the extrinsic curvature and Tirane the tension. By demanding conformal
boundary conditions on the boundary theory, the brane behaves as a AdS; foliation of
AdS441 and can be seen as an end of the world brane extending from the boundary of the
half-plane into the bulk. The angle of the brane with the boundary is determined by the
boundary conditions as:

Torane = tanh 6. (4.2)

- 11 -



Figure 3. The membrane theory description of the joining quench. The end of the world brane is
the double half line from ¢ = 0 to t = —o0, and membranes can end on it anywhere. We included
the membranes for the half space A(T) for T = 0, a time T < b/vg and T > b/vg. On the left
figure the membrane is horizontal, and S(T = 0) = sy, Asb. On the middle figure the membrane
is composed of a horizontal piece and a “light sheet” of slope vp. On the right figure the minimal
membrane is a sheet of slope b/T.

In terms of field theory data, the angle is determined by the boundary entropy as
Shdy = ﬁ. In the following, we choose Tiiane = 0 = 0 for simplicity. We expect that the
results obtained in this special case should carry over to the Ty ane 7 0, where we would
need to treat back reaction. The spectrum of brane tensions is given by the bulk string
theory, and it would be interesting to find examples, where the end of the world brane can
be approximately tensionless.

Intuitively, a joining quench corresponds to taking two BCFTs and gluing the branes
together so that they become a folded brane and letting the folded brane freely fall into
the bulk [33-35].° While this setup certainly requires UV regularization, a folded brane
whose tip makes its closest approach to the AdS boundary at t = 0 should be a good model
of a joining quench. The trajectory of the tip of the folded brane in AdS follows a null
geodesic [34] which we take to be given by z = 2 + ||, where zg  Thrane/(GN Ebrane) [33,
34], that we take to be finite in the tensionless limit.

In the case, when the BCFTs are initially in thermal equilibrium, we have two black
branes cut in half by end of the world branes, and we model the joining quench by a
folded tensionless brane “bouncing off” the AdS boundary. Since there is no back reaction,
the spacetime is that of a black brane for all times. In particular, there is no transport,
and hydrodynamics is trivial. We just have a folded brane in the bulk, on which HRT
surfaces can end, and this gives rise to the time dependence of entanglement entropy. In
the hydrodynamic limit, all we have to do is include this end of the world brane in the
membrane theory. Since the tip of the brane is on the ¢ = 0 infalling time plane, we get a
codimension one end of the world brane also in membrane theory, extending from ¢ = 0 to
t = —o0, see figure 3. The membrane can end anywhere on this brane.

We work out the example of the half space entangling surface defined by z € (—o0, b).

5This model for joining quench was first proposed by [33], here we follow the same model but not their
calculation of the entanglement entropy.

- 12 —
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Figure 4. Left: S(t) from (4.3) plotted for b = 1. The graph asymptotes to S(T') ~ sgnAs vT.
Right: if instead we fix time, and plot the entropy as a function of v = b/t, we obtain directly the
effective membrane tension function E.g(v) [9, 25], which agrees with £(v) for v < vp, and is equal
to v for v > vp. A black dotted 45° line is added to guide the eye.

The membrane ends at the tip of the brane, and from what is explained on figure 3 we get:

b (UBT<b),

TE(L) (vpT >b). “3)

S(T) = spnAs {

Note that the function is continuous, because &€ (vg) = vp (2.6), see figure 4 for the graph of
this function. Remarkably, from this graph we can read off the membrane tension function
straightforwardly. Perhaps an even better visualization method comes from fixing ¢ and
changing b, which directly maps out the membrane tension function & (v), see figure 4. It
would be interesting to work out the time evolution for other shapes.

The same result (4.3) has been obtained for random circuit models in [9]. Here we
provided a holographic derivation in a simple setup and gave a spacetime picture for the
process in figure 3. Below we analyze a CFTy joining quench, over which we have complete
field theory (and holographic) control. A complication arises: the joining creates a shock
of energy as in [29, 30], which propagates through the system ballistically. While the time
evolution of the entropy is identical to that in (4.3), the membrane theory description seems
to be a lot more complicated in this case, as we explain in detail.

4.2 An exactly solvable joining quench in CFT,
4.2.1 Field theory computations

For the case of a global quench, the initial state of the system can be approximated as
a conformal boundary state e~ il |B) [2, 7]. Such state is prepared by a path integral
in Euclidean time, over a strip of width §/2. For theories with conformal invariance, the
strip can be mapped into the half-plane. The time-dependence of correlation functions and
entanglement entropy is then determined by general properties of conformal field theories
with boundaries (BCFTs) [2, 13].

In the absence of translational invariance, the initial state cannot be represented as
a conformal boundary state. However, it can still be prepared as a path integral over a
Riemann surface, which can be conformally mapped into the half-plane [26, 27, 36]. For
two-dimensional theories, it is convenient to introduce complex coordinates w,w, with
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w = x +i7; the conformal map is then a biholomorphic transformation w — f(w). We can
always choose the transformation such that the half-plane is given by Re f(w) > 0.

As noticed earlier, a conformal field theory in the half-plane has a well-known holo-
graphic dual in terms of a section of AdS spacetime, divided by a brane homologous to
the boundary of the half-plane [31, 32]. Entanglement entropy can then be computed us-
ing the standard holographic prescription [24]. Due to the presence of a boundary, there
are in general two possible extremal surfaces, a connected and a disconnected one, the
holographic prescription then instructs us to take the surface with smaller area.

For two-dimensional theories and a finite entangling regions x € [a, b], the two possible
values of the holographic entanglement entropy are

ey (1) — fu)P
Seon = 108 (52 )] \f’(w2)> |

(4.4)
c 4Re f(w1) Re f(w2)
Saisc = 7 log 2| £1 7 )
6 8 | f/(wi) 1 (w2)]
where 0 is the UV cutoff and we perform an analytic continuation 7 = ¢7, then
wi=a—T, wo=b—-"T,
! ? (4.5)

wy=a+T, wy=b+"1T.

A specific example of a quench without translational invariance is the joining quench,
where two semi-infinite systems are prepared on their respective ground states and joined
together at time 7" = 0, producing an excited state of the full Hamiltonian [26, 27], which
however quickly settles back to the vacuum, and any subregion has subextensive entropy.
In order to make contact with the regime of applicability of the membrane theory, we will
modify this quench protocol: instead of the ground state, the semi-infinite systems will be
prepared in thermal equilibrium. We refer to this as the thermal joining quench.

In the original joining quench, the initial state is prepared as a path integral in Eu-
clidean time over the whole plane, except for branch cuts along 7 € (—o0, —¢] U [¢,00) at
x = 0. In order to take the two systems to be in thermal equilibrium we compactify the
Euclidean time direction on a circle of length 3, the path integral is then over the thermal
cylinder, except for a cut at x = 0, along 7 € [—3/2, —€| U [, 8/2].

Considering the transformations:

Gw) = — ((eza”w + 1)_1 - ;) ,

F(w)=w+m7 (4.6)

where the transformation G(w) maps the cylinder to the plane by the usual exponential
map and then translates the cut so that it coincides with the cut in the vacuum case, the
second transformation F'(w) then maps this to the half-plane. We can then map the cut
cylinder to the half-plane by the composite transformation w — f(w) = F(G(w)).
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Using this conformal map in the general formula (4.4) we obtain the entanglement
entropy for the joining thermal quench. The result is dependent in the position of the
entangling region with respect to the joining point at x = 0 and the value of T. Without
lost of generality we assume that b > 0 and |a| < b, then we have two cases, depending on
the sign of a.

For the case 0 < a < b we have:

5 log % sinh (@)) T <a,
Seon = 4 £ log (5 {sinh 20(b— a) — sinh 2 (b — T) — sinh 2 (T — a)}) a<T<b,
5 log % sinh (@)) T >b,
(4.7)

while the contribution from disconnected geodesics is

& log ﬂ2§2 sinh 2”7“ sinh Q%f) T < a,
Sdise = 4 € log %;esinh%sinh%(T—a)sinh%(a—i—T)) a<T<b,

& log %52462 sinh % (a — T') sinh 5 (b — T') sinh §(a + T") sinh 5 (b + T)) T > b,

(4.8)
which in the zero temperature limit 5 — oo reproduces the results for ground state joining
quenches [26, 27]:

£ log (bg‘l)> T < a,
Secon = %bg 2(bfa)(€;€a)(b—T)> a<T<b, (49)
$10g (125%) T >0,
¢ log (%) T <a,
2_a2
Sdisc = %1 %) a<T< b, (410)
[s10g (A2 s,

Depending on the position of the entangling region with respect to x = 0, the early time
behavior can be dominated either by the connected or disconnected contributions, however
at late times the connected contributions is always preferred.

A similar calculation can be done for a < 0:

(<log %fgsinh%(a—T)sinh%(b—T)sinh%(a+T)sinh%(b+T)) T <|al,
Seon =1 Elog %ﬁesinhg(T—a)sinhg(b—T)sinhg(b—a)> la| <T <b,
$log (Lsinh5(b—a)) T>b,
(4.11)
(%log %ﬁnh%\a!sinh%b) T < lal,
Saise = { §log 7r23’§zﬁsilr1h%ﬂbsinh%(T—a)simh%(a—i—T)) la| <T <,
¢ log %;Smhg(T_a)sinhg(T_b)smhg(ﬂa)smh%(bw)) T>b
(4.12)
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Figure 5. Connected (Blue) and Disconnected (Red) contributions to the entanglement entropy
for a = 0.1 (Left), a = 0.5 (Right) and b = 2.

However, neither of these cases are suited for study in the scaling limit because of their
short thermalization time, instead we consider a new entangling region, given by the semi-
infinite interval [b,00). For this case the only contribution comes from the disconnected
surface:

¢ log (£ sinh 2°0) T <b,

disc = 2

5 ) ) (4.13)
& log ( Z55: (cosh FWT — cosh %b)) T>b,

we can then take the scaling limit by again performing a rescaling b — Ab and T" — AT

Sdisc = {37/51’ +0(logB) T <b, (4.14)
551+ O(logB) T >0,
where we can recognize the prefactor % as the entropy density for a CFT3 in the high
temperature limit, as given by the Cardy formula [37-39]. For d = 2, the membrane tension
is degenerate, £(v) = 1 and vp = 1, hence (4.14) exactly agrees with (4.3) computed for a
joining quench whose details are somewhat different from the protocol implemented here.
This result hints at universality of joining quenches in the scaling limit. Next, we attempt
to derive a membrane description of this process starting from the bulk dual geometry,
and will find that it differs from the membrane description of the simplest joining quench

protocol summarized in figure 3.

4.2.2 Bulk geometry for the thermal joining quench

In the previous section we computed the holographic entanglement entropy in a section
of AdS3 spacetime and then apply the map w — f(w) to the final result. We can also
consider what is the holographic dual of the space before the conformal maping into the

half-plane.
We begin with AdS3 in infalling coordinates:
1
ds* = —5 (=dV* = 2dVdZ + dX?). (4.15)

We then apply a large diffeomorphism that extends the conformal map (4.6) into the bulk
and that gives a metric in infalling gauge studied in [40, 41]:

1
ds* = — [ (1 — 2M(t,2)z%) dt* — 2dvdz + 2J (t, z)dtdz + dz?] (4.16)

_Z2
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Figure 6. Geodesics for (b,T) = (5,4),(10,5) (left) and (5,10), (10,15) (Right). In red we show
the end of the world brane. Here we consider a projection in the z coordinate, which we expect to
become the membrane in the scaling limit.

with M =L, +L_,J=L, —L_ and

3f(x )2 —2f(x £t) f(x £ t)"
Af(x £ t)? '

L= (4.17)

We found the appropriate diffeomorphism by working perturbatively in z. We followed
a similar computation performed by [28], who worked in Fefferman-Graham gauge. The

result is:

. zf'(a:—t)f’(ac—l—t)(f’(x—t)+f'(m+t)—2 f’(a:—t)f’(x—l—t))
B L L e P 1 Py Wy 7 iy Y ey ey e R
e L Pty et oy 7 gy e e (419
Zatz) = 22(f'(x =) f' (e +1))*"

Pt @)+ (e —0) @f (D) —2f" (@ +1)°

The condition X > 0 is translated, using (4.18), into a non-trivial condition for z.
The spacetime then has a boundary (an end of the world brane) located at zgow(z,t),
given by solving X (z,t, zgow) = 0. Furthermore, in AdSs the connected geodesics follow
semi-circular trajectories which in infalling coordinates can be parametrized as:

Xurr(A) = X(b,T)(1 - N),
Virt(A) = V(b,T) — X (b, T)\/A(2 — \), (4.19)
Zurr(A) = X (b, T)v/A2 = V),

with 0 < A <1, the geodesic begins on the conformal boundary for A = 0 and ends on the

end-of-the-world brane at A = 1. One can then numerically invert the map (4.18) along
this trajectory to obtain the geodesic on the original spacetime (4.16).

To obtain a membrane theory description, one needs to carefully analyze geodesics to
learn what portions of them are important, and then to implement the appropriate scaling
on these portions [4, 16]. The qualitative behavior of the geodesics is different for the cases
T < band T > b as can be seen in the following figures. = We see that for T > b the
behavior is very similar to the one in the previous model, with the geodesic ending on the
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Figure 7. Geodesics for (b,T) = (5,4), (10,5). Unlike in the projection in the z coordinate, here
we see that the geodesic does not intersect the end of the world brane but goes around it.

tip of the end of the world brane, however we still see some interesting behavior, since the
geodesic does not seem to go directly to the tip. The behavior for T' < b is even stranger,
the geodesic goes around the end of the world brane and then approaches it asymptotically.
In this later case the inversion of the map (4.18) becomes impossible for A near 1, since the
geodesic seems to leave the patch cover by the coordinates (z,t,z). Since we do not know
how to incorporate all these features into the membrane theory, we do not describe more
details of these geodesics further.

5 Entanglement entropy of growing operators

Another interesting inhomogeneous setup is to consider the entanglement entropy of a time
evolved local operator:
O(t,z) = e H'O(0, z)e' (5.1)

Let us review the concept of operator entanglement. There is a one to one map between
operators and states in the doubled Hilbert space H = Hy ® HF:

O« [0)=) (Ol li,i)y » (5.2)
2
where the matrix element is taken in one copy of the system. What we mean by entangle-
ment entropy of an operator is the entanglement entropy of the state |O(z,t)). A simple
state to consider is the maximally entangled state |I) = ", [i,),,.

In QFT these notions requires regularization. The regularized maximally entangled
state is the thermofield double state |TFD) = [e #H/2) = 3~ =FFn/2 |n,n),,. Local
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operators require smearing, which can be conveniently implemented by Euclidean evolution:
Op(t,z) = O(t,x)e P2 |Os(t,x)) = O (t,x) |TFD) , (5.3)

where we noticed that the operator has the interpretation of acting on the l.h.s. of the TFD
state.67

The gravitational dual of the TFD state is the eternal black hole [42], while that of
|O0p(to,0)) is the localized shock spacetime of [21], see [43, 44] for important early literature.
To get the operator entanglement, we have to determine the extremal area HRT surfaces
anchored on the boundary at t = 0 on Ar, U Agr. For tp,x > (3, the limit we are interested

in, it is well approximated by the metric:
ds? = 2A(uv)dudv + B(uv)dz? — 2A(uv)h(z)d(u)du? (5.4)
where u, v are Kruskal coordinates, and

27
1 7(t0*|1|/vB) 9 24
¢ op = 25, [ 240 (5.5)

h(z) ae W B3\ @=1)B0)

That is we have two black half eternal black branes glued together along their horizon with
the shift in v equalling h(z). To get to the membrane theory description, the outgoing
Eddington-Finkelstein coordinate system is more appropriate:®

_ 27

trL R Eulps (2) N dZ,
UL7R:ZE€ B, uw =—ef " ) Z*(Z)E CL(Zi

2
b(2)

A key observation is that for the region of interest, 1 < z < z,, we have uv = O(1), hence

1
dS%,R =23 —a(z)dtiR + dzdtr, g + d];2:| )

in the scalQing limit we have to have logu ~ —logwv. This means that we can think of
VL,R = ieftI"R.

Now let us consider what the HRT surface is doing in this spacetime, see figure 8.
The HRT surface connects to the boundary regions Ay, g by cylinder-like portions that are
marked by dotted purple lines on the Penrose diagram. These portions only contribute an
area worth of entropy, and just like in the familiar quench setup, they are not captured by
the membrane theory. The important parts of the HRT surface, drawn by solid purple line)
is in the “white hole” region of the respective black branes (note that ¢;, runs downwards).
These can be parametrized by large values of the outgoing times t; r. These portions
individually are identical to membranes in the familiar quench setup. The nontrivial physics

SThere are other possible regularization prescriptions schemes, e.g. the ordering eiBH/2O(t,x) gives
Or(t,z) |TFD).

"The Heisenberg evolution is defined by O(t) = e*#*O(0)e .

8For completeness we give explicit expressions for various quantities of interest:

(5.6)
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Figure 8. Left: the Penrose diagram of the shockwave spacetime is obtained by gluing together two
black branes along their u = 0 horizon (solid black line) with the shift in the space dependent shift
in the v coordinates equalling h(x). This is indicated by the mismatch of the vy, g horizons drawn
by dashed black lines. With magenta we sketch the HRT surface interpolating between the regions
Ay and Ag, the solid portions of the line are indicating the parts of the HRT surface captured by
the membrane theory, while the dotted portions are discarded in the effective theory. Right: the
membrane theory description of the entanglement entropy of O(to,0). The solid portions of the
HRT surfaces map onto the membranes living in the two cones, whose faces are glued together as
indicated by the dotted green lines. The tips of the cones are displaced from O by tsc;.

comes from the way they are glued together. There is a shift Av = vy —vr = h(z) between
the left and right Kruskal coordinates across the u = 0 horizon where the shockwave
lies. To get a continuous HRT surface, it has to obey this matching condition, vy =
vgr + h(x). This leaves the joining curve vr(§2) as an arbitrary timelike variable that we
have to maximize over. Following the arguments in appendix C of [21], as well similar
maximization computations in [45, 46], we conclude that the result of this maximization
is vg & —vr = h(x)/2, i.e. the crossing point is halfway between the shifted vr gr = 0

27
. . s . . ..
horizons. Since v, g ~ +e 8 " this translates into the condition

tp, A tp ~ glogh(ac) =to — tser — |2| JUB, (5.8)

where we defined the scrambling time tg., = % log G following [21, 45, 46]. We conclude
that the membrane lives in two cones defined by the contours (5.8), whose faces are glued
together. See figures 8 and 9 for illustration, where the identifications are shown by a
dotted green line and a gray surface respectively.

This is the time fold geometry found to be the intrinsic geometry of the maximal
Cauchy slice through the geometry in [21]. The same geometry was introduced in the
membrane theory from the random circuit perspective in [9]. The difference here is the
presence of the scrambling time ts.,. It is remarkable that a growing local operator has a
simple entanglement structure that can be captured by the membrane theory in a nontrivial
glued cone or time fold geometry. Within the cones we have to work with the same
membrane tension function £(v) as in other setups, there is no sensitivity to the operator
O and no substructure within the butterfly cone. Probing growing operators with out of
time order correlation functions [21, 45, 47|, one finds richer, but less universal structure

—90 —



Figure 9. A three-dimensional version of the right figure of figure 8. Ay is chosen to be a circle,
while Ay is of a keyhole shape. The purple parts of the membrane inside the yellow cones are glued
together as indicated by the grey surface. Since Ay, and Ag do not overlap, hence we have to include
a horizontal section of the membrane drawn with purple that also contributes to the entropy.

within the butterfly cone [48-50]. In view of this complicated physics, we find it remarkable
that operator entanglement is so universal and simple.

6 Higher derivative corrections

So far we have showed that the membrane theory is an accurate description for a large fam-
ily of quench protocols. However, our analysis so far based on the holographic dual being
Einstein gravity. In this section we show that the membrane theory can be generalized to
also take into account more general theories of gravity and the corresponding generalization
of the holographic entanglement entropy prescription. In the context of AdS/CFT, this can
be seen as o corrections to the original formula for entanglement entropy, corresponding
to finite 't Hooft coupling.

We will consider gravity theories characterized by an action of the form:

-1
I =
167G N

d(d—1
/ ey [(R + (52)> + M R? + AR, R + AgRuypgR“”p”] , (6.1)

which lead to equations of motion that include up to forth order derivatives of the metric.
An special case of this class of theories, whose equations of motion include only second
order derivatives, is Gauss-Bonnet gravity [51]:

-1 d(d—1)
T, — dd+1 b 2 4R, Qv oo prpo |
GB 167TGN/ m\/ﬁKR—i-p >+ GB(R R, R"™ + Ruypo R )
(6.2)
For the following analysis it will be convenient to introduce a new coupling;:
d—3)(d—2)A
AGB::( )(p ) ¢B. (6.3)
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that is dimensionless and emphasizes the fact that, for d < 3, the Gauss-Bonnet term does
not modify the equations of motion, since it is a topological invariant. We also introduce:

A= Aes

2 (d-3)(d—-2) (6.4)
2T T d=3)(d—2)
in terms of which:
1
I'=- 167G N /dde\/Z] [(R Tdld=1))

AGB 2 uv uvpo

+(d ~3)(d—2) (R 4R, R™ + Ryypo R ) (6.5)

+ A R? + AR, R™ |,

where we set the dimensionful parameter {? to one, we will work in this units from this
point forward.

As before, we are interested on black brane solutions of the form:

2
b(2)

l2
2 AdS 2
ds® = 2 a(z)dt* —

dtdz + dr? + r2dQ3_, |, (6.6)
where a(z) and b(z) are also functions of the higher curvature couplings. We impose the
boundary conditions: a(1) = 0 and a(0) = b(0) = 1, in order to obtain an asymptotically

anti-de Sitter black brane solution.”

For the particular case of Gauss-Bonnet gravity, it is possible to find a charge neutral
black brane solution, given by [52, 53]:

(1 /1401 - zd)AGB>

e (N e rvee B

b(z) =1,

Bas = 2868
71 /T —4Agg

For the more general case with A1, As # 0, no black brane solution is known, however
we can consider a perturbative solution which, to second order in the higher derivative

9We notice that, even though we are now working in units of 12 = 1, this does not fix the physical AdS
radius laqs, since in general it will receive corrections from the higher derivative couplings.
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couplings, takes the form:

a(z) = (1 -2 [1 —z%Agn <1 +(3 - 2:)Agp + 24 <2(j(2d__51)) —~ zd> A

d
— ﬁ(2d2 — 5d + 5)A2)] ,
b(z) = 14 2dz* Agp ((2d + 1)Ay + (d + 1)As), (6.8)
1 d(d —3)
lags =1 - SAcp — Ad=1) ((d+1)A1 + Ag)

(s

2
8 d—l ((d+1>A1+A2)+AGB) s

where again we see that no correction occurs if d < 3. It is easy to see that, for Ay =
Ay = 0, this agrees with the expansion of the full solution (6.7). We notice that corrections
proportional to A; and Ao appear only to second order and contribute only if Agp # 0.

6.1 Entanglement with higher derivatives in the scaling limit

With the black brane solutions in hand, we can compute the entanglement entropy in
the same way as described in section 2, being careful to notice that for gravitational
theories with higher derivatives the original prescription for the area functional is modified
to [22, 23]:

1 .
S= 1o~ /dd vl

6.9)
1 (

X (1 F2MR 4+ A (Rg - 2K“Ka> +2) (Rgg - KWKW>) ,

where the codimension two surface is characterized by two normal vectors mn,
Ropeda = nﬁnﬁné’ng uwpo, and K, is the extrinsic curvature. = We evaluate this

functional in the scaling limit by performing the rescaling (2.3).

We notice an important simplification: the Gauss-Bonnet term is always subleading in
1/A, hence:

d—1
=4 /ddly\/h\ 14+2M R+ Ay | RY — EKGKQ : (6.10)
4G N 2
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or more explicitly:

oo ot [ B

(1+2A1F1 (Z )+A2F2(Z U))

Fi(2) =—b(2) (= ( b(z)a" (z) + ( )(Zb/( ) —2db(2)))
(d (d+1)b 2dzb'(z))),
(

FQ(Z,’U) HO —I—Q}zHl( )—I—U4H2(Z)),

8(7) 2 (6.11)
Ho(z) =a(z )(* 2b( )a'(2)? —4za(z) (2b(2)a" (2) +a'(2) (2 (2) = 2(d+1)b(2)))
—4(d+1)a(2)? ((d+1)b(z) =220 (2))) ,
Hy(z)=4a(z )( (3zb(z)a"(z) a'(z )(32()'( )— (d—|—1)b(z)))
+2(d+1)a(z) ((d+1)b(z) —220'(2))),
Hy(2) =8z (d'(2) ((d+1)b(z) — b( )) —zb(z)a"(2))
—4(d+1)a(z) ((d+1)b(z) — 22 (2)) .

Let us consider first the simplest case of A1 = A = 0, for which all corrections come
from the change in the metric. The algebraic equation of motion for z is then the same as

in the case without higher derivatives:

zal(z
v? = c(2) = a(z) — 2(d(— i) (6.12)
In terms of which:
2
S = spAT! / drdQrd=2 <1 - @)5@),
r
E(v?
= sgp AT /dd Ly =y 1( 2}2, (6.13)
_ —a'(z)
EW) =[5 =),2a 1
z=c~1(v2)

From this expression we can obtain the entanglement velocity by evaluating £(0) =
p [16]. This requires solving the equation ¢(z,) = 0, the full non-perturbative expression is:

2-d
iAo ((d—l)(2—d+4(3d—4)AGB+\/(d—2)2+4d(3d—4)AGB)) d

(3d—4)?2AgB
2
() =
’ (d=1) (1~ VI~ihap) (6.14)
X 1 )
\/ (1—4Agp) + 4<d’1)(2*d+4<3d*4>Ag3>_z)\2/ (d—2)+4d(3d—1)Agp

— 24 —



As it stands this expression is not very insightful, so it is useful to consider its expansion

d—1
ow = (1= (=3 ) don)

d—2

o _ ()™
d—1"?
(2(dd—1)) d

for small Agpg:

(6.15)

where Ug)) is the entanglement velocity for the Schwarzschild solution [16].

Similarly, we can compute the butterfly velocity from either £(vg) = vp or £'(vp) =1,
order by order in Agp [16]. We can obtain the butterfly velocity nonperturbatively, by not-
ing that in the membrane theory, vp is the largest possible value of v in the physically rele-
vant interval 1 < z < z,. Since ¢(z) is a monotonically decreasing function, then v = ¢(1):

(0)\/1 +V1—4Agg
2 )

VB = Up

o y (6.16)

21y
where once again the prefactor vg) corresponds to the butterfly velocity for the case of a
black brane without higher derivatives.

We remark once again that this is an exact result, and it is in agreement with previous
calculations in the literature [21]. It is straightforward to confirm that this velocity satisfies
the equations £(vp) = vp and &'(vp) = 1.

The next simplest case is given by A; # 0 but Ay = 0, for which the functional is
modified but the algebraic equation of motion for z still contains only single powers of v?.
Because of this full analytic results are still available.

From (6.11), the algebraic equation for z is:

2(14 201 F1(2))d/ (2)

2
g = —_— . -1
vi=e2) =) - ST A am R (2) — 4N 2F(2) (6.17)
Using this expression we can write the entanglement functional as:'°
_ _ E(v)
S =3 Rd 1 /dd 1 S~ “\Y)
th Yy Y m
—»3-2d(1 L+ A F I
E(v) = 2 (1L 2M Fi(e)a(z) (6.18)
2(d—1)(1+2M1Fi(2)) — 4zA1 F(2)

1+ 2A1F1(2)
% (1+2A1F1(1)>

z—c—1(v2) .

10Tt is important to notice that, in the definition of the entropy density s, we use not the Bekenstein
formula but its generalization, given by the Wald formula, which takes into consideration corrections from
higher derivatives [54].
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We can then compute the butterfly velocity as before, evaluating the function ¢(z) at
z=1:

, (1420 F1(1))d/ (1)
YB T T — 1)1+ 2 Fi (1)) — 4AFL (1)

For general functions a(z) and b(z), expanded around z = 1 and satisfying the appro-

(6.19)

priate boundary conditions, the expression (6.19) agrees with the previous result obtained
in [3]. For our particular solution (6.8), we can obtain a result to next-to-leading order in
the couplings:

Agg 5 d(d+1)(3d -5
(0) <1_ G _Spp Al 2(d)£ y )AGBAl). (6.20)

We notice that at leading order we have corrections only from the Gauss-Bonnet cou-
pling, and the first two correction terms in the parenthesis agree with a perturbative ex-
pansion of (6.16). Again we compute the entanglement velocity to next-to-leading order:

_ Oy _d-1 (d((5—2d)d+3) —6)A};  d(d+1)(3d—5)

AlAGB) ,

(6.21)
where the first two correction terms are just the second order expansion of the full result
for Gauss-Bonnet gravity (6.14).

With the experience obtained from the two previous cases, we can now turn to the
general situation of higher derivative gravity with A; and A non-zero. In this case one
can in principle follow the same procedure as before, determining the equation of motion
of z from (6.11). However, in this case we do not have an equation of the form v? = ¢(z),
but an equation that depends on powers of v? up third order. This equation can still be
solved in principle, since it is just a cubic equation on v?, and from it one can still compute
the entanglement and butterfly velocity and determine the energy function £(v). However,
since the gravitational solutions themselves are perturbative, it will be easier to solve this
problem order by order in the higher derivative couplings.

Before considering the perturbative expansion, we notice that a simplification occurs
when evaluating v%, since Ho(1) = Hy(1) = 0:

Bi(A1, Ag) — /Bi(A1, Ag)2 — 16b(1) Ay Hy (1) Bo (A1, Ag)
4Bs(A1, A2) ’
Bi(A1,A2) = (8+16A1 F1(1) — 3A2b(1)H(1)) o’ (1) — 2A2b(1)Hy(1), (6.22)
By (A1, Ag) = Hy(1)Asb' (1) — d (b(1)Ha(1)Ag + 16Fy (1)A; + 8)
+ b(1) A2 Hy(1) + b(1)Ha(1)As + 167 (F{(1) + Fi(1)) + 8.

v =

Which again agrees with previous calculations of vp for general metrics with appro-
priate boundary conditions [3].
In perturbation theory we can solve the cubic equation in v? to write it as:

za/(2)
v? = c(z) =a(z) — A1
(d—1)
g (6.23)

1 (2dsz1 + 29 — 22905 + dZdA2> 22,
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The first line is the known algebraic equation for the unmodified functional and it
contains all order corrections from the metric. The second term is the correction from the
change in the functional, it contains up to first order corrections from the metric and we
notice it does not contribute to the algebraic equation to first order.This expression can
then be evaluated at z = 1 to compute the perturbative expansion of vp, in agreement
with our previous results:

a'(1) d?

vh = YD @=0) (2A1 + A2)Ags, (6.24)

where the first term is given by metric corrections to the unmodified functional and the
second one comes from the modification of the functional.
Finally we can provide a form for the energy function as an implicit function of v:

—d'(2)

E0 =\ 5= ).z

(1 + 5(1) (U))

i

z=c~1(v) (625)
Eny(v) = —dAgs ((2(2d — DAL+ (d—2)Ag) 2% +2d2TAy — 2(d — 1) (A + Ag) :

where the prefactor is the result coming from the unmodified action, containing all order
corrections in the metric function, while the second term accounts for corrections on the
functional itself, and so it contains only second order corrections. We can write this as an
explicit function of v to next-to-leading order in the higher curvature couplings:

vE 2(d — 1)? 5
E(v) = 1 A
W= (1+ 20— e
2(d — 1)?v* (d (d (5d (v* — 1) — 1602 + 12) 4+ 9v?) + 2v%) AZ 5 (6.26)
B (d —2)3d?
n 2(d — 1)(3d — 5)1)2 (dAl + A+ AQ) AgB
d—2 ’
where
) B d—1 (d((5 —2d)d+3) —G)AQGB B d(3d—5) (dAl + A1 +A2)AGB
B (1 q—ahent 2(d—2)3 d—2 ’
(6.27)

that we notice agrees with (6.21) when Ay = 0.

7 Subleading orders

The membrane theory only captures the leading order extensive piece of the entropy in
the large R/ expansion. It is an interesting question, whether subleading orders in this
expansion can be captured by the membrane theory. Such corrections come from three
sources: from the part of the HRT surface connecting the black brane horizon to the
boundary, from subleading terms that come from the behind the horizon part of the static
black brane patch of the geometry, and the part of the HRT surface that is in the genuinely
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time dependent part of the geometry and contributions from the initial state (represented
by a pure AdS region in the Vaidya quench model or the near end of the world brane part
of the geometry). In this section, we analyze the second source of corrections, and leave
the others for future work. We find that the way the membrane theory captures these is
analogous how higher derivative terms appear in the chiral Lagrangian or to higher gradient
terms in hydrodynamics. The effects of some phenomenologically added higher derivatives
terms were also considered in [9], here we derive their explicit form from holography.

Let us recall (2.2). In this section, after the rescaling (2.3), we want to keep the first
subleading term in A.

sam) = A0 i /dtdQ r 2\/@[1+[1XF(2,1")+...]

4G N m~A(T)

Qo(z,1) = [ (1 + (am) ) a(z)} (7.1)

’I”

Fen = g |- (1 98) ]

As is familiar from perturbation theory, to obtain the first order correction to the on shell

action, we can use the first order solution evaluated on the correction to the action. We
obtain (after setting A = 1):
SIA(T)] = So[A(T)] + —— / dt . Eo(v) F(z,7) +o (7.2)
4G N z=c—1(v2)
Since F'(z,r) depends on the derivatives of z(¢,(2), it is clear that we cannot write this cor-
rection simply as a function of v, which is a function of (7 - f). Instead, we have to consider
derivatives of n,, the extrinsic curvature tensor, K,,. A term linear in K, produces the
right scaling 1/A; at higher orders we would also encounter the Riemann tensor, their pow-
ers and derivatives. Hence we expect that (7.2) can be written as Cy (v) K} +Ca(v) K, tH#".
Evaluating the expression explicitly, we only find the second structure:

STA(T)] = So[A( / dt A2 €, (v) K + ...

(1-ov )5/2 (7.3)

dz <0
Eo(v) b(2) 22(‘1—1) dv '

c1(v2?)

81 (U)

It would be interesting to understand in what situations the extrinsic curvature term plays
an important role in the physics of entanglement growth.

8 Summary, discussion and open questions

In this paper we have significantly enlarged the domain of applicability of the membrane
effective theory of entanglement dynamics. We studied quenches for inhomogeneous initial
states: generically such states will also have inhomogeneities in conserved densities, whose
dynamics is described by hydrodynamics. We derived how the membrane theory couples
to hydrodynamics (but does not back react) in a beautiful geometric way.
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We also studied another inhomogeneous setup, the joining of two separately ther-
malized systems (living on a half space). Since the membrane theory Lagrangian is only
sensitive to the conserved densities, and in the thermal joining quench hydrodynamics is
trivial, we obtain nontrivial entanglement dynamics in this case from boundary conditions:
there is a brane in the membrane theory Minkowski spacetime (descending from an end
of the world brane in holography) on which the membrane can end. Our results precisely
reproduce those of [9] obtained from a transport equation reformulation of the problem,
but complement it with a spacetime picture. We note that in the global quench it is also
the boundary conditions that give the time dependence to the entanglement entropy (this
is also partially true in inhomogeneous quenches), but there the brane is on the ¢t = 0 slice
respecting the symmetry of the problem.

This joining quench setup makes it possible to address the recent claim that black
holes may not be fast scramblers based on entanglement, only based on out-of-time order
correlators [55, 56]. In their setup, they consider a black hole cut in half and then joined,
and based on a quantum circuit model of the photon sphere argue that entanglement
saturation is slow. The spherical version of our model with an end of the world brane
makes it clear that entanglement saturates in a time of order the light crossing time: this

is the fastest possible entropy saturation time for a local quantum system.!!

Another setup that we considered was an entanglement entropy of a time evolved local
operator. There we found that the membrane spacetime is a double cone glued along
their faces or equivalently a time fold. This same geometry was derived from random
circuits in [9]; our derivation applies to holographic gauge theories, and a distinguishing
feature is that the scrambling time separates the tips of the cones, see figures 8 and 9.
In this geometry, we have to use the same membrane tension, as in other setups. The
same geometry was found to be that of the maximal spatial slice through the shockwave
spacetime dual to the growing operator in [21], and it was related to the geometry of a
minimal tensor network reproducing the operator.

The connection between tensor networks and the membrane theory is very direct:
the membrane can be thought of as a coarse grained cut through the tensor network
representing the state whose subsystem entropies we are computing. This is in fact how
the membrane description is derived in the random circuit approach [9, 58]. However,
the connection between the tensor network and the bulk geometry is more subtle, than
envisioned in [21]: the HRT surfaces (that become the membranes) do not lie in the
same Cauchy slice, so it is not the geometry of the maximal volume slice that enters the
membrane theory, but the geometry of the spacetime in the sliver between z;, < z < z, that
gets reprocessed into an effective tensor network description. This geometry determines
both the background spacetime and the angle dependent membrane tension £(v). It would
be very interesting to better incorporate this way of thinking into the relation between
tensor network approaches and holography [59-62].

An important direction in the exploration of the membrane theory is to enlarge the
set of theories for which it can be derived as an effective description. To this end, we

LA related end of the world brane model for a joining quench demonstrating fast saturation of the
entropy was proposed independently by Juan Maldacena [57].
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showed that finite coupling corrections to holographic gauge theories do not change the
structure of the theory, by deriving the membrane tension function from the holographic
entropy functional of higher derivative gravity theories. The entropy functional contains
higher derivative terms, which may have been guessed to give rise to higher derivative
terms in membrane theory. Instead, we found that only the explicit form of £(v) and its
relation to the geometry changed, but the membrane theory Lagrangian does not contain
higher derivative terms, its structure is preserved. Finally, we asked whether going to
subleading order in the /R expansion is possible within the membrane theory framework.
We answered this question in the affirmative, and found that at subleading orders we have
to include higher derivative corrections.

We regard our work as an important demonstration of the versatility and robustness
of the membrane theory. The rich applications of the theory include the demonstration
of entropy inequalities that follow from it [63], its bit thread reformulation [25], applica-
tion to Rényi entropies [8] and logarithmic negativity [64], and the exploration of shape
dependence of entropy dynamics numerically [65]. In the future, it would be interesting to
generalize the holographic derivation of a membrane theory to other entanglement mea-
sures, such as Rényi entropies, negativity, and reflected entropy [66]. Crucial stress tests
of the theory would be to include bulk quantum corrections in holography that are dual to
1/N corrections in the field theory and to test whether the membrane theory’s predictions
are correct for the entropy of a two interval subregion in chaotic spin chain numerics and
arbitrary chaotic two-dimensional CFTs. If the membrane theory passes these feasible
future tests, it would present an extremely strong case for the general applicability of the
membrane theory for all chaotic systems in the hydrodynamic limit R, T >> t),c, where the
local thermalization time ¢, ~ £ in strongly coupled theories, but could be significantly
larger in weakly coupled (but chaotic) theories tjoc ~ 3/, where \ is some weak coupling
constant. Instead of relying on hopefully representative examples to make the case for the
membrane effective theory, it would be very desirable to present a derivation of it based
on general principles that is applicable to all chaotic theories.
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