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1 Introduction

Line operators in four-dimensional gauge theories are important observables which can be

used to classify phases of gauge theories. Wilson lines — worldlines of heavy electrically

charged particles — obey an area law in a confining phase, while its magnetic analogs,

’t Hooft lines — disorder operators which can be thought of as worldlines of magnetic

monopoles — obey an area law in a Higgs phase [1, 2].

While the gauge algebra of a four-dimensional gauge theory fully determines its local

operators, it does not fully determine its line operators. Possible line operators are asso-

ciated to representations of the gauge algebra and its GNO (Langlands) dual [3, 4], and

constraints from locality requires that only a subset of possible operators is allowed. In

abelian theories, the charges of line operators have to satisfy the Dirac-Schwinger-Zwanziger

quantization condition [5–7], and in non-abelian theories they have to satisfy its general-

ization [8]. Different subsets of allowed line operators correspond to different gauge groups

and Lagrangians corresponding to the same gauge algebra.

In addition to their charges, line operators also carry quantum numbers under the

spacetime symmetries, transforming under the little group of the Poincaré symmetry. On

oriented manifolds, this is the group SO(3)r of spatial rotations, whose projective repre-

sentations are labeled by the spin, and line operators can be either bosonic or fermionic.

However, for non-spin manifolds, there is no spin structure so one cannot define chargeless

fermionic lines (worldlines of heavy neutral fermions). Equivalently for a line operator of

a given charge, we cannot have both fermionic and bosonic lines, since they could fuse to

produce a chargeless fermionic line. However, the existence of charged fermionic lines on

such manifolds is allowed and does not require a spin structure. For instance, in the pure

U(1) gauge theory the dyon is a fermion [9–11] and the theory does not depend on a spin

structure. Therefore on non-spin manifolds, the classification of gauge theories requires

the specification of the spin of each allowed line operator, i.e. a spin/charge relation.1 In

contrast, on spin manifolds the classification does not depend on the spin, since for any

charge there are both bosonic and fermionic lines. This is because the chargeless fermionic

lines can be fused with any line in the theory to produce another one with the same charge

but different spin. Therefore, on spin manifolds, lines are labeled only by their charges and

were classified in [24] for all simple Lie groups. The purpose of this paper is to classify line

1Such spin/charge relations depend on weaker structures rather than a spin structure. For instance, an

abelian gauge theory with fermionic Wilson lines requires a SpinC structure on the spacetime manifold. For

the case of U(1) and SU(2) gauge theories this was discussed in [12–23].
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operators on oriented but non-spin manifolds, which amounts to consistently specifying the

spins of all allowed lines in the theory.

Similarly, on non-orientable spacetime manifolds, we can measure the Kramers prop-

erties of Wilson-’t Hooft lines. In this article, we focus on oriented spacetime manifolds

and leave the unoriented case for future work. For the case of abelian gauge theories, this

classification was previously done in [25, 26].

Gauge theories have dynamical particles of spin 1 — the gauge bosons — and hence

the spins of line operators are only measurable, at long distances, modulo 1. Therefore, the

theory has line operators labelled by their electromagnetic charges, as well as their spins

modulo 1 — that is, whether the line operators are bosonic (integer spin) or fermionic

(half-integer spin).

Because of the angular momentum of the gauge field, a bound state of two bosonic

dyons can be a fermion. For instance, in U(1) gauge theories the bound state of a bosonic

electron and a bosonic magnetic monopole of minimal charge is a fermion. More generally,

the angular momentum J3, stored in the gauge fields is given by the Dirac pairing between

the two dyons

2J3 =
1

2π
(Q1

eQ
2
m −Q2

eQ
1
m) (mod 2Z) , (1.1)

where Qi
e and Qi

m are their electric and magnetic charges.

The Dirac quantization condition can be derived by requiring the angular momentum

stored in the gauge field to be half-integer, or equivalently the Dirac pairing between any

two dyons to be an integer. For a non-abelian gauge theory in the Coulomb phase, it turns

out that there is a non-abelian version of the Dirac pairing between line operators which

measures the angular momentum stored in the gauge field, see appendix B. Motivated by

this, we conjecture a way to determine the spin of every allowed line operator, given the

spins of two generating lines.

For a non-abelian gauge theory based on Lie algebra g, the set of line operators are

specified by the Weyl orbit of a weight-coweight pairs

w = (ν, µ∨) ∈ Λw × Λcw , (1.2)

where Λw and Λcw are the weight and coweight lattice of g [4]. Wilson lines are labeled by

the Weyl orbit of a weight ν ∈ Λw which specifies the highest weight of the corresponding

representation. Similarly, the ’t Hooft lines are labeled by (the Weyl orbit of) a coweight

µ∨ ∈ Λcw which specifies the corresponding GNO charge. The Dirac pairing between two

dyonic lines is defined by

〈
w,w′〉

D
:= ⟨ν, µ∨′⟩ − ⟨ν ′, µ∨⟩ . (1.3)

The Dirac quantization condition requires the Dirac pairing to be an integer. Let sw be

the spin of a line (0 for boson and 1 for fermion) whose weights is given by the Weyl orbit

of w ∈ Λw ×Λcw. We propose that given the spins of lines with weights w,w′ ∈ Λw ×Λcw,

the spin of the line with weight w + w′ is

sw+w′ = sw + sw′ +
〈
w,w′〉

D
(mod 2Z) . (1.4)
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We further require that the lines whose weights are pure (co)roots to be bosonic, since they

correspond to (dual) gluons. In other words, the lines with weights of the form (α, 0) and

(0,α∨), where α ∈ Λr and α∨ ∈ Λcr, should be bosonic.

We provide various checks for our proposal. As was showed in [24], for a given group

G, there are several theories with different generating lines. These theories differ by theta

terms, discrete or continuous. The definition of the later on non-spin manifolds, requires

a quadratic refinement [27]. We show that our proposal is consistent with a quadratic

refinement of the discrete theta terms, which we study in detail. These theta terms were

determined recently in [28], and our proposal is in complete agreement.

Another check is provided by the Higgsing of a theory with gauge group G down to

its maximal torus by adding an adjoint Higgs field. In appendix B, we show that after

Higgsing, the proposal (1.4) correctly produces the spins of line operatros in U(1) theories.

Furthermore, in appendix C, we show that the S and T orbtits for SU(2) theories reduce

to those of U(1) theories [25, 26]. In appendix D, we provide an additional cohomological

check of our proposal.

The remainder of the paper proceeds as follows. In section 2, we review the classi-

fication of abelian charge lattices on non-spin manifolds as a warm up. There are four

such theories that we denote by WbTb, WbTf , WfTb and WfTf . The last one is typically

referred to as all-fermion electrodynamics and has a gravitational anomaly. We give the

UV-completion of all these theories in terms of the Georgi-Glashow model. The Georgi-

Glashow model with certain matter whose effective theory is the WfTf theory, exhibits the

new anomaly discussed in [16]. We also give the action of S and T transformations.

In section 3, we present our proposal for consistently assigning spin labels to every

allowed line operator. For a given gauge group G, only a subset of lines satisfying the

Dirac quantization condition is allowed, and typically, there are several such sets. For each

set, we give the list of requirements which has to be satisfied when assigning spins to lines

in the theory. For each set of lines with a given spin, we give a Lagrangian realization and

show that our proposal is equivalent to a quadratic refinement of the discrete theta terms.

We further define the action of the T -transformation on the weights of the lines, which we

use to determine the SL(2,Z) orbits.
In section 4, we apply our proposal for all simple Lie groups with non-trivial center.

We present a complete classification of their charge lattices including the spins of allowed

lines. For each case, we give the discrete theta terms and show which theories are related

by a T transformation.

In section 5, we consider the couplings to background gauge fields for the one-form

symmetry. We review the mixed ’t Hooft anomaly in the abelian Maxwell theory. We then

consider non-abelian Yang-Mills theories. We show how gauging subgroups of the discrete

one-form symmetries yields different theories with the same algebra. This procedure relates

all theories in the same family. We further study the requirements for the absence of mixed

anomalies for non-abelian theories and we find new anomalies for center gauge groups.

Finally, in the appendix we have included additional material to the main discussion

of the paper. In appendix A, we fix our conventions about Lie algebras. In appendix B,

we perform a consistency check by adding adjoint Higgs fields to the non-abelian theories
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and flow to abelian theories. In appendix C we give two examples of S and T orbits for

the groups SU(2) and SU(4). In appendix D, we present a cohomological check of or our

proposal. In appendix E we fix a normalization for the continuous theta term for any group

G. Lastly, in appendix F we discuss the relation between discrete and continuous theta

parameters, in terms of torsion characteristic classes of G.

2 Abelian theories

As a warm up, we review the classification of U(1) gauge theories on arbitrary oriented

four-dimensional Riemannian spacetime manifolds. These spacetime manifolds are only

required to carry an orientation and a metric — not, for instance, a spin structure. A

given theory has a maximal set of line operators that are mutually local, i.e., satisfying the

Dirac-Schwinger-Zwanziger (DSZ) quantization condition

Q1
eQ

2
m −Q2

eQ
1
m ∈ 2πZ , (2.1)

where Qi
e and Qi

m are the electric and magnetic charges of two line operators. Apart

from these charges, the line operators can be in different representations of the spacetime

symmetries, in particular the (−1)F symmetry. But before studying the properties of the

lines under the spacetime symmetries, we first study the electric and magnetic charges of

the lines.

2.1 The electromagnetic charge lattice

We denote the electric and magnetic charge lattice of the theory as Λ. In complex coordi-

nate, Λ consists of points z = Qe + iQm, where Qe and Qm are the electric and magnetic

charges of some line operator in the theory. Requiring the DSZ quantization condition,

the closeness of the OPE of lines operators, and CPT invariance of the theory, the charge

lattice has to satisfy

∀z1, z2 ∈ Λ : Im{z̄1z2} = Q1
eQ

2
m −Q2

eQ
1
m ∈ 2πZ , (2.2)

∀z1, z2 ∈ Λ : z1 + z2 ∈ Λ , (2.3)

∀z ∈ Λ : − z ∈ Λ . (2.4)

It is easy to see a maximal lattice that satisfy these conditions must be generated by the two

closest point to the origin which we denote as z1 and z2, i.e. Λ = {n1z1+n2z2|n1, n2 ∈ Z}.
However, for U(1) theories with a Lagrangian description, there is always the electric

excitation of charge Qe = e, where e is the coupling constant of the theory. This particle

corresponds to the fundamental Wilson line W (γ) = exp(i
∮
γ A), where A is the U(1)

connection. Hence we can set z1 = e and furthermore to satisfy (2.2), we can parametrize

z2 such that

z1 = e , z2 = τe , where τ =
θ

2π
+

2πi

e2
, (2.5)

and z2 is the charge of the fundamental monopole (dyon), which corresponds to the fun-

damental ’t Hooft line. A priori θ is a parameter allowed by the DSZ condition and
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momentarily we will relate it to the Lagrangian description of the theory. Thus all the

possible charge lattices are labeled by τ , where Λτ = { (n + mτ)e | n,m ∈ Z} and it is

generated by the fundamental Wilson line W and the fundamental ’t Hooft line T . The

point (n +mτ)e ∈ Λτ corresponds to the Wilson-’t Hooft line of the form WnTm, which

we denote as (n,m) and its electric and magnetic charges are given by

Qe =

(
n+

θ

2π
m

)
e , Qm = m

2π

e
, (2.6)

If we ignore discrete spacetime symmetries, the charge lattice Λτ classifies all the U(1)

theories on spin manifolds, and we could write a local Lagrangian for these theories as

Sτ =

∫

M4

(
− 1

2e2
f ∧ ∗f +

θ

8π2
f ∧ f

)
. (2.7)

where we have identified the charge lattice label τ with the coupling constant and the theta

angle of the theory. Indeed in such a theory, the fundamental monopole has electric charge
θ
2πe because of the Witten effect [29].

2.2 Oriented U(1) gauge theories

Now that we have identified the charge lattice, to classify different theories it is enough to

label the generating Wilson and ’t Hooft lines Ws and Ts with their spins s. There are four

possibilities: WbTb, WbTf , WfTb, and WfTf . However the last theory WfTf , also known

as the “all-fermion electrodynamics”, has a gravitational anomaly [30–32]. In section 2.4,

we give UV completions of all these four theories. In the Lagrangian description, the

first two theories correspond to U(1) gauge theories and the second two correspond to

SpinC(4) := Spin(4) ×Z2 U(1) theories, where we have a SpinC(4) connection instead of

a U(1) connection [12, 13, 26]. Hence we get the following theories with their generating

lines as

U(1)b : (1, 0)b , (0, 1)b , U(1)f : (1, 0)b , (0, 1)f , (2.8)

SpinCb : (1, 0)f , (0, 1)b , SpinCf : (1, 0)f , (0, 1)f . (2.9)

where the labels b and f stand for boson and fermion.

Note that the properties of the Wilson and ’t Hooft lines, uniquely determine those of

the other lines by fusion, or taking bound states if we think of the lines as world line of

heavy classical particles. For instance, the line (n,m) is the bound state of n Wilson lines,

and m ’t Hooft lines. The quantum numbers of this bound state is the sum of quantum

numbers of the individual lines plus the quantum numbers of the electromagnetic field. The

electromagnetic field carries a non-trivial quantum number only when there is a minimal

pairing between the (n, 0) and (0,m) lines [9–11], i.e. nm ≡ 1 (mod 2Z). In that case,

the non-trivial quantum number is a half-integer angular momentum. For instance, in the

U(1)b = WbTb theory the dyon (1, 1) is a fermion, hence (1, 1)f .
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2.3 S and T transformations

In this section we define the action of S and T transformations on the oriented U(1)

theories, by defining a map on the line operators of these theories. We define the maps

by their action on the (n,m)s labels denoting the Wilson-’t Hooft line WnTm with spin s.

Define the action of S and T on the line operators as

T : (n,m)s +→ (n−m,m)s , (2.10)

S : (n,m)s +→ (m,−n)s , (2.11)

which leaves the spins invariant. These transformations map the line operators of the

oriented U(1) theories to each others. In particular we get the following maps

U(1)b
T+−→ U(1)f

S+−→ SpinCb
T+−→ SpinCb

(1, 0)b +→ (1, 0)b +→ (0,−1)b +→ (1,−1)b

(0, 1)b +→ (−1, 1)b +→ (1, 1)b +→ (0, 1)b

(1, 1)f +→ (0, 1)f +→ (1, 0)f +→ (1, 0)f

(2.12)

and the line operators of the SpinCf theory is mapped to itself. However if we also act on

the coupling constant τ as

S : τ +→ −1

τ
, T : τ +→ τ + 1 , (2.13)

then S and T become duality transformations (up to gravitational SPT phases) [13, 33].

In particular, for the T -transformation we get a duality between U(1)τf and U(1)τ+1
b , that

is shifting θ by 2π is equivalent to changing the spin of the monopole2 [16, 26, 31, 34].

Altogether, we get the identifications

U(1)τb = U(1)τ+1
f ,

(
SpinC

)τ

b
=

(
SpinC

)τ+1

b
,

(
SpinC

)τ

f
=

(
SpinC

)τ+1

f
, (2.14)

U(1)τb = U(1)−1/τ
b , U(1)τf =

(
SpinC

)−1/τ

b
,

(
SpinC

)τ

f
=

(
SpinC

)−1/τ

f
. (2.15)

Thus there are only two classes of physically distinct theories that are not related by

continues deformations — the anomalous and the non-anomalous theories — and hence we

have the following SL(2,Z) orbits

U(1)b U(1)f SpinCb SpinCfS
T S

T S, T (2.16)

2Another way to see this duality is by noting that from the Witten effect, the T -transformation also

leaves the electric and magnetic charges invariant. It keeps all the physical properties of the lines invariant,

i.e. their charges and their spins.
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2.4 UV completion of the oriented U(1) theories

Here we comment on the Ultra-Violet completions of the oriented U(1) theories we discussed

so far. Physically line operators correspond to world line of heavy particles. Therefore

to realize microscopic descriptions of these theories, we must provide UV completions

where for each line operator there is the corresponding dynamical particle of the same

quantum numbers.

The fundamental Wilson line can be UV completed by just adding ordinary matter

fields of electric charge 1. The only non-trivial part is the UV completion of the ’t Hooft

lines as dynamical monopoles [35, 36]. This can be done by the ’t Hooft-Polyakov monopole,

which is a classical solution of the Georgi-Glashow model [37]; for review see [38, 39]. The

Georgi-Glashow model is an SU(2) gauge theory with a scalar Higgs field in the adjoint

representation of the gauge group. The ’t Hooft-Polyakov monopole is a soliton of finite

mass, spin 0, and unit magnetic charge in the topological sector of the theory. Therefore

the U(1)b and
(
SpinC

)
b
theories can be UV completed by such solutions where there is

a dynamical bosonic monopole. Also note that we have the relation U(1)θf = U(1)θ+2π
b ,

therefore to UV complete the U(1)f theory we just need to add a θSU(2) = π term in the

Georgi-Glashow model as we have the relation

θU(1) = 2θSU(2) ,

with the theta angle in the U(1) theory after Higgsing.

The only remaining theory to discuss is the anomalous
(
SpinC

)
f
theory which was re-

cently studied in [16]. The UV completion is the Georgi-Glashow model with an additional

Weyl fermion of isospin 3
2 which is coupled to the Higgs field via a Yukawa coupling. As

it was discussed in [16], the UV theory also has a gravitational anomaly. The additional

Weyl fermion gives fermionic zero modes to the ’t Hooft-Polyakov monopole solution which

makes it a fermion. Hence all of the oriented U(1) theories can be given a microscopic de-

scription.

3 Wilson-’t Hooft operators and spin

We move on to classify non-abelian gauge theories on oriented spacetime manifolds. In

this section, we present and give some justification for our proposal, and give an explicit

recipe for constructing the actions of these theories. In the next section, we apply the

proposal to each simple Lie group, finding agreement with results in the literature. When

the spacetimes are also required to carry spin structures, such a classification was previously

carried out in [24]. Here, we extend that discussion to oriented and non-spin manifolds.

As we discussed in the introduction, on non-spin spacetimes the line operators, apart

from their electromagnetic charges, are labelled by their spins modulo 1 — that is, whether

the line operators are bosonic (integer spin) or fermionic (half-integer spin). Mutual locality

restricts the set of allowed line operators in a given gauge theory to a maximal set satisfying

the Dirac quantization condition. This information can be expressed in terms of a charge

lattice decorated with spin labels (boson or fermion).
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3.1 Line operators

We begin by reviewing line operators in gauge theories defined on spin spacetime manifolds,

following [24]. Consider a four-dimensional gauge theory with a simple gauge algebra g.

Fix a Cartan decomposition t ⊂ g and let Λr ⊂ Λw ⊂ t∗ be respectively the root and weight

lattices, and t∗ the dual Cartan algebra. We denote by W the Weyl group. Wilson lines

are labelled by representations of g, which are in bijective correspondence with elements of

the Weyl chamber Λw/W — the highest weights. ’t Hooft lines are disorder line operators

defined by removing the line from spacetime and imposing boundary conditions on a tubular

neighborhood around the line. They are labelled by the dual Weyl chamber Λcw/W, where

Λcw ⊂ t is the coweight lattice.3 More generally, dyonic Wilson-’t Hooft lines are classified

by weight-coweight pairs
[
ν, µ∨]

W
∈ (Λw × Λcw)/W , (3.1)

where [ν, µ∨]W is the Weyl orbit of (ν, µ∨) ∈ Λw × Λcw. Not all line operators are allowed

in a given theory. They are restricted by a non-abelian version of the Dirac-Schwinger-

Zwanziger quantization condition [4, 8], which says that the Dirac pairing between any two

allowed lines w = (ν, µ∨) and w′ = (ν ′, µ∨′) in a given theory must be integral:

〈
w,w′〉

D
:= ⟨ν, µ∨′⟩ − ⟨ν ′, µ∨⟩ ∈ Z . (3.2)

Here, ⟨·, ·⟩ is the pairing induced from the inclusions Λw ⊂ t∗ and Λcw ⊂ t and the natural

pairing between t and t∗ = Hom(t,R/Z). This condition is required for the locality of the

correlation function between the two line operators, in that the correlation function should

remain invariant when the first line operator is transported along a closed surface linking

the second line. In the Coulomb phase, this is equivalent to requiring the electromagnetic

field between two dyons to have half-integer angular momentum.

The gauge theory contains dynamical adjoint-valued gauge bosons, whose worldlines

are labelled by the adjoint representation. Therefore, any line labelled by the sum of

an allowed weight with the highest weight of the adjoint representation must itself also

be allowed. In other words, it suffices to check the quantization condition (3.2) on the

quotient by the root and coroot lattices

Λw/Λr × Λcw/Λcr = Ẑ(G̃)× Z(G̃) , (3.3)

where Z(G̃) is the center of the simply connected Lie group G̃ corresponding to g.4 A

maximal subset of lines obeying the condition (3.2), as well as closure under fusion, cor-

responds to a subgroup L ⊂ Ẑ(G̃) × Z(G̃) for which the pairing ⟨w,w′⟩ is integral — in

other words, a subgroup which is Lagrangian with respect to the pairing e2πi⟨w,w′⟩ [24].

3The coweight lattice Λcw = Hom(Λr,Z) ⊂ t is the dual of the root lattice Λr (see (A.9)), or equivalently,

the weight lattice of the Langlands dual algebra Lg.
4Ẑ denotes the Pontryagin dual of a group Z, Ẑ := Hom(Z,R/Z). Note that for a symmetry based on

a finite group Z, the group elements are inside Z, while the charges (the one-dimensional representations

of Z) are inside Ẑ.
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In this article, we shall consider gauge theories on oriented, but not necessarily spin,

spacetime manifolds. As we discussed in the introduction, the main novelty is that with-

out a spin structure, there is a spin/charge5 relation and a line operator of given (gauge)

charge has definite spin (bosonic or fermionic). This is because, if there exist two line

operators of same charge (weights) but different spin, one of them could fuse with the

CPT reversal of the other line to produce a neutral fermionic line. But existence of such

chargeless fermions (worldlines of gauge singlet fermions) requires a spin structure. To find

the possible spin/charge relations, first, we consider the spins of line operators resulting

from the fusion of two line operators. Upon fusion, the resulting line generically sits in

a reducible representation, and the fusion rules are specified by a complicated operator

product expansion (OPE) whose exact form is known only in cases with sufficient super-

symmetry [8, 40–44]. We will not need any details of the OPE — the only fact used in this

article is that the fusion of line operators [ν, µ∨]W and [ν ′, µ∨′]W ∈ (Λw × Λcr) /W includes

the line operator [ν + ν ′, µ∨ + µ∨′]W .6 We propose that the angular momentum stored in

the electromagnetic field of the two dyons w and w′ is

J3 =
1

2
⟨w,w′⟩D (mod Z) , (3.4)

which is integral or half-integral (multiple of !) depending on the value of the Dirac pairing

〈
w,w′〉

D
:= ⟨ν, µ∨′⟩ − ⟨ν ′, µ∨⟩ (3.5)

Fusing two dyonic lines with the same spin (boson-boson or fermion-fermion) and odd

mutual pairing produces fermionic dyons, while fusing two lines of opposite spins (boson-

fermion) and odd pairing produces bosonic dyons. For even paired dyons, the con-

verse holds.

This implies that fusing a line operator with a dynamic gauge boson may change the

parity of the pairing (3.5), so a line dressed with even or odd numbers of gauge bosons can

remain distinguishable at long distances. On the other hand, shifting ν (µ∨) by twice a root

(or coroot) does not change the parity of the pairing and hence preserves spin. Hence, on

non-spin manifolds, we propose that the quantization condition (3.2) needs to be checked

on the charges modulo twice of the root and coroot lattices. To classify the allowed sets

of line operators, and therefore all the possible theories with the same Lie algebra, on a

spacetime without spin structure, we consider subsets L̃ ⊂ Λ̃ of the quotient

Λ̃ := Λw/2Λr × Λcw/2Λcr (3.6)

together with a function s : L̃ → Z2, which specifies the spin of each line operator (0 for

boson and 1 for fermion). As line operators are labelled by Weyl orbits, we demand the

value of s to be the same on each Weyl orbit of L̃. Furthermore, the data (L̃, s) should

satisfy the following conditions:

5Here the charge is the gauge charge, which is the weight-coweight pair labeling Wilson-’t Hooft lines,

and should not be confused with some global symmetry charge.
6Note that [ν + ν′, µ∨ + µ∨′]W depends on the choice of representatives in the Weyl orbits [ν, µ∨]W and

[ν′, µ∨′]W .
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1. As in [24], the set of allowed line operators L̃ ⊂ Λ̃ should be closed under fusion,

and be maximal. In other words, it must once again be a subgroup of Λ̃ which

is Lagrangian with respect to the pairing e2πi⟨w,w′⟩ defined in (3.5). Note that La-

grangian subgroups L̃ ⊂ Λ̃ are in one-to-one correspondence with Lagrangian sub-

groups L ⊂ Λ ≃ Λ̃/ ((Λr × Λcr)/(2Λr × 2Λcr)). Indeed, roots have integer Dirac

pairing with all weights, thus every Lagrangian subgroup L̃ always includes all roots.

The main difference between considering L and L̃ is that the pairing (3.5) is defined

modulo integers on L, but is defined modulo even integers on L̃. Moreover, the

pairing is odd when there is a half-integer angular momentum contribution from the

chromodynamic field to the spin, and it is even when the contribution is integral.

2. As discussed above, pure gluons and dual gluons in a gauge theory are bosonic, so we

require that s maps elements of the form (α, 0) and (0,α∨) to zero, where α ∈ Λr/2Λr

and α∨ ∈ Λcr/2Λcr.

3. The labeling s must be consistent with the fusion rule of two lines taking into account

the angular momentum contribution from the chromodynamic field:

s(w + w′) = s(w) + s(w′) + ⟨w,w′⟩D (mod 2) . (3.7)

That is to say, the line w+w′ arising from the fusion of two lines with weights w and

w′ has spin given by the sum of the spins of the individual lines and the contribution

from the angular momentum of gauge field, which is 1
2⟨w1, w2⟩D (mod Z).

As a consistency check, we should make sure that the condition (3.7) is consistent with s

being constant on Weyl orbits. Indeed, this follows from the pairing (3.5) being invariant

under a Weyl transformation

⟨w,w′⟩D = ⟨x · w, x · w′⟩D , x ∈ W . (3.8)

Based on these consistency conditions, in order to classify possible weights and spins

(L̃, s) of gauge theories, it is sufficient to study the set of lines generated by some funda-

mental Wilson and ’t Hooft lines. We denote them respectively as W (γ) and T (γ) that

have supports on a line γ in the spacetime. We choose their weights to be some specific

weight ν◦ ∈ Λw and coweight µ∨
◦ ∈ Λcw, which we define them specifically in a later section.

More precisely, we denote the Wilson-’t Hooft lines

WnTm(γ) , with weights: (nν◦,mµ∨
◦ ) ∈ Λw × Λcw , (3.9)

and also label them by the pair of integers (n,m). However, not all of these lines are

genuine in a given theory, but to determine the theory it is enough to know the spins of

the genuine lines of this form.

3.2 Lagrangian formulation and discrete theta terms

Spin manifolds. In this section, we review the Lagrangian formulations of the gauge

theories considered above, with line operators labelled by (L̃, s). As a warm up, we begin
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1-form Charges Symmetry group

Electric Γ̂e = Ẑ(G) = ΛG/Λr Γe = Z(G) = Λcw/ΛcG

Magnetic Γm = π1(G) = ΛcG/Λcr Γ̂m = π̂1(G) = Λw/ΛG

Table 1: The relation between Γe,Γm, the (co)weight lattices ΛG,ΛcG, and the one-form

symmetries and charges of the plain G = G̃/Γm gauge theory. In particular Γe = Z(G)

is the electric one-form symmetry group (also known as the center symmetry), and Γm =

π1(G) is the group of magnetic charges carried by the ’t Hooft lines, which was denoted Γ

in [27].

with spin spacetime manifolds, where the choice of lines is completely determined by L,
which is the projection of L̃ ⊂ Λ̃ onto Λ = Ẑ(G̃) × Z(G̃). This will largely be a review

of [24], but will also serve to introduce notation used in the rest of this paper. Let Γm

denote the projection of L onto Z(G̃). The gauge group of the theory is G := G̃/Γm.

Let Γe := Z(G) denote the center of the gauge group. The center Z(G̃) of the universal

covering group and the group of line operators L sit in the following two extensions7

0 → Γm
i−→ Z(G̃) → Γe → 0 , (3.10)

0 → Γ̂e → L → Γm → 0 . (3.11)

To see (3.11), note that the line operators with trivial magnetic charge — Wilson lines —

must be representations of G, and therefore sit in Γ̂e = Ẑ(G) ⊂ Ẑ(G̃). In terms of the

(co)weight lattices, Γ̂e = ΛG/Λr and Γm = ΛcG/Λcr are the electric and magnetic charges

of the Wilson and ’t Hooft lines respectively for the G gauge theory not coupled to any

TQFT, i.e. without any discrete theta term (see table 1).

There are generically many theories with the same gauge group G, which differ from

each other by discrete theta terms. We now describe these terms. Lagrangian subgroups

L ⊂ Λ projecting onto Γm ⊂ Z(G̃) are in one-to-one correspondence with bilinear forms

η : Γm × Γm → R/Z on Γm [27]. This can be seen explicitly as follows: taking (3.11) and

the dual of (3.10), notice that L arises as the pullback

0 Γ̂e L Γm 0

0 Γ̂e Ẑ(G̃) Γ̂m 0

η

î

(3.12)

with respect to some homomorphism η : Γm → Γ̂m, or, equivalently, a bilinear form

η : Γm × Γm → R/Z. In other words, the maximal subgroup labeling the lines is

L = {(ν, µ∨) ∈ Ẑ(G̃)× Γm : η(µ∨) = î(ν)} , (3.13)

7The extension (3.10) can be viewed as the decomposition of the one-form symmetry group of the G̃ gauge

theory into the subgroup Γm and the quotient Γe = Z(G̃)/Γm. In section 5.2.5, we will see that gauging

the Γm symmetry yields the G = G̃/Γm gauge theory with emergent Γ̂m one-form magnetic symmetry.
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where î : Ẑ(G̃) → Γ̂m is the projection map dual to the inclusion i : Γm → Z(G̃). Physi-

cally, this means that the electric charge of a line with magnetic charge µ∨ must project

onto η(µ∨).

The desired discrete theta term is then

2π

∫

M
Pσ(bm) (3.14)

where bm ∈ H2(M,Γm) is the Brauer class8 of the gauge bundle, σ : Γm → R/Z is

a quadratic refinement9 of η, and Pσ : H2(M,Γm) → H4(M,R/Z) is the Pontryagin

square10 operation corresponding to the quadratic form σ [27, 45].

On a spin manifold, the discrete theta term (3.14) is independent of the choice of

quadratic refinement σ (and depends only on η). This gives the complete relation between

(1) the set of allowed line operators L of the theory, (2) the bilinear form η, and (3)

the discrete theta term (3.14) in the Lagrangian formulation. As an example, consider

G = SO(3), for which G̃ = SU(2) and Γm = Z(G̃) = Z2. On a spin manifold, there are two

distinct choices of line operators, including either the magnetic line L0 = {(0, 0∨), (0, 1∨)} ⊂
Ẑ2 ×Z2 or the dyonic line L1 = {(0, 0∨), (1, 1∨)} ⊂ Ẑ2 ×Z2. They correspond respectively

to the bilinear forms η0, η1 : Z2 × Z2 → R/Z defined by η0(1∨, 1∨) = 0 and η1(1∨, 1∨) =
1
2 .

Each bilinear form has two quadratic refinements, given respectively by

σ0(1
∨) = 0, σ1(1

∨) =
1

4
, σ′

0(1
∨) =

1

2
, σ′

1(1
∨) =

3

4
. (3.15)

The corresponding discrete theta terms are, respectively,

Pσ0 = 0, Pσ1 , Pσ′
0
= 2Pσ1 , Pσ′

1
= 3Pσ1 . (3.16)

Indeed, on spin manifolds Pσ′
0
(bm) = bm ∪ bm = b ∪ w2(TM) = 0 (mod 2), establishing

that the discrete theta terms are not dependent on the choice of quadratic refinement.

The discrete theta terms (3.16) may be more familiar to the reader expressed in terms

of continuum gauge fields [46, 47]

1

2π

∫

M
f ∧ (da+ kb̃) +

p(1− k2)

2k
kb̃ ∧ kb̃ , (3.17)

8The Brauer class is the characteristic class of the G = G̃/Γm bundle corresponding to the group

extension 1 → Γm → G̃ → G → 1. In the physics literature, this is sometimes called the second Stiefel-

Whitney class, because the Brauer class coincides with the second Stiefel-Whitney class for the frame

bundle, where G is SO(d) and G̃ is Spin(d).
9A quadratic refinement σ : Γm → R/Z of a bilinear form η : Γm × Γm → R/Z is a function satisfying

σ(γ + γ′) = σ(γ) + σ(γ′) + η(γ, γ′).
10The Pontryagin square is usually defined as a map P : H2(M, Z) → H4(M,U(Z)) where U(Z) is

the universal quadratic group of an abelian group Z. The universal quadratic group is an abelian group

equipped with a quadratic function γ : Z → U(Z), with the property that any quadratic function q :

Z → A taking values in any abelian group A (in this paper, A = R/Z) factors through γ, i.e. there exists

q̃ : U(Z) → A such that q = q̃ ◦ γ. (See e.g. the appendix of [45] for more details.) Then, we define Pq as

q̃∗P : H2(M, Z) → H4(M, A).
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where a is a one-form U(1) gauge field, b̃ is a two-form gauge field and f is a two-form

Lagrange multiplier enforcing the constraint that b̃ is a Zk gauge field. The extra factor of

(1− k2) is to insure the gauge invariance of (3.17) under

b +→ b− λ, a +→ a+ k dλ , (3.18)

which is equivalent to p(1 − k2)k being even. For even k this factors drops out and pk is

indeed even, but for odd k this is necessary to make pk even. Integrating out f and a, and

making the replacement kb̃/2π = bm yields the discrete theta term

2π

∫

M
pPσ◦(bm) = 2π

p(1− k2)

2k

∫

M
bm ∪ bm + bm ∪1 δbm , (3.19)

for the quadratic function σ◦(m) = (1−k2)
2k m2. The second term is required since the cup

product is not supercommutative at the level of cochains [46]. In the example of SO(3)

above, k = 2 and σ◦ = σ1.

Non-spin manifolds. On non-spin manifolds, different quadratic refinements yield dis-

tinct discrete theta terms. This is expected, since there is more information contained

in the line operators (L̃, s) of a non-spin gauge theory, which determines the appropriate

quadratic refinement, and hence discrete theta term (3.14) in the Lagrangian formulation.

Consider first the situation where all purely electric line operators are bosonic, s(w) = 0

for all w ∈ L̃ of the form w = (ν, 0). (This corresponds to the gauge group being G rather

than Spin -G := Spin(4) ×Z2 G.) We claim that the relation between the set (L̃, s) of

allowed line operators and the quadratic function σ : Γm → R/Z is given by

σ([µ∨]) =
1

2

〈
ν, µ∨〉+ 1

2
s(ν, µ∨), (3.20)

where (ν, µ∨) ∈ L̃ is the weights of any allowed line, and [µ∨] ∈ Λcw/Λcr denotes the

mod Λcr reduction of the coweight µ∨ ∈ Λcw, similarly [ν] ∈ Λw/Λr denotes the mod Λr

reduction of the weight ν ∈ Λcw. Note that ⟨ν, µ∨⟩ is defined modulo 2, so the above

definition is single-valued. It can be checked that the right hand side is independent of the

choice of representative µ∨ as well as choice of line (ν, µ∨), and furthermore that σ is a

quadratic refinement of η, using the conditions we imposed on (L̃, s) above. We carry out

these checks explicitly below.

In the general case, purely electric line operators are not required to be bosonic. In the

Lagrangian description, this corresponds to also allowing the gauge group to be Spin -G :=

Spin(4)×Z2 G, where Spin(4) is the Lorentz group of the spacetime manifold. In order to

account for this, we require σ to be extended to a function σ̃ : L → R/Z defined on all of

L, as follows11

σ̃([ν], [µ∨]) =
1

2

〈
ν, µ∨〉+ 1

2
s(ν, µ∨) . (3.22)

11Note that σ̃ is well-defined and only depends on [ν]. That is the r.h.s. of (3.22) is unchanged if we shift ν

by a root. Suppose ν, ν′ ∈ Λw/2Λr are two representatives of [ν] ∈ Λw/Λr. Indeed, from the condition (3.7)

we have

s(ν′, µ∨) = s(ν, µ∨) + s(ν′ − ν, 0) +
〈
ν − ν′, µ∨〉 (mod 2) . (3.21)

Now, s(ν′ − ν, 0) = 0 according to condition 2, as different representatives differ by a root. This shows that

σ̃ is independent of representative of [ν]. A similar argument can be given for [µ∨].
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Note that σ̃ is a quadratic refinement of η trivially extended to L× L as

η
(
([ν], [µ∨]), ([ν ′], [µ∨′])

)
:=

〈
ν, µ∨′〉 =

〈
ν ′, µ∨〉 (mod Z) . (3.23)

(One can check that η defined this way does not actually depend on ν and ν ′, and coincides

with the η defined above corresponding to L.) Indeed, this follows immediately from the

conditions (3.7) since

σ̃([ν + ν ′], [µ∨ + µ∨′])− σ̃([ν], [µ∨])− σ̃([ν ′], [µ∨′]) = η
(
([ν], [µ∨]), ([ν ′], [µ∨′])

)
. (3.24)

The discrete theta term corresponding to the generalized quadratic refinement (3.22) is

2π

∫

M
Pσ̃(b) , (3.25)

where b ∈ H2(M,L) is a dynamical cocycle generating the one-form symmetry — discrete

analog of the symmetry current. b can be related to the Brauer class bm ∈ H2(M,Γm)

mentioned above, as well as another class be ∈ C2(M, Γ̂e) via the decomposition

b = b̃m + be , (3.26)

where b̃m ∈ C2(M,L) is some lift of bm to L. The cochain be satisfyies a twisted closure

condition

δbe = b∗me , (3.27)

where e ∈ H3(B2Γm, Γ̂e) is the extension class of L. In practice, the discrete theta term

will only involve a Z2 subgroup of Γ̂e, and we only need deal with a mod 2 reduction of

be.12 be is only turned on when there are fermionic pure electric lines, identifying the Z2

subgroup of the gauge group with (−1)F and imposing a spin/charge relation on the theory.

In the simple case where L is a direct product Γ̂e × Γm, be is closed, and the discrete

theta term can be written explicitly in terms of the conserved cocycles be and bm as

2π

∫

M
Pσ̃(be, bm) = 2π

∫

M

s′

2
be ∪ be + Pσ(bm) , (3.28)

where s′ is the spin of any pure electric line generating Γe, and σ is σ̃ restricted to {0}×Γm.

By integrating out be, it can be explicitly seen that this coupling turns the gauge group

from G to Spin -G = Spin(4)×Z2 G when s′ = 1.

As an example, take again the example of G = SO(3), focussing on the case where

the line operator is magnetic, which we denoted by L0 above. Corresponding to L0, there

are two possible assignments of spins s on L̃0. Identifying Λcw/2Λcr ≃ Z4, we denote the

lines as

L̃0 = {(0, 0∨), (0, 1∨), (0, 2∨), (0, 3∨), (2, 0∨), (2, 1∨), (2, 2∨), (2, 3∨)}. (3.29)

The two possible assignments are s(1) assigning (2, 1∨) and (2, 3∨) to be fermionic and

all other lines to be bosonic, or s(2) assigning (0, 1∨) and (0, 3∨) to be fermionic, and all

12Fermionic electric lines are only possible when Γe = Z(G) has a Z2 subgroup, which couples to (−1)F ∈
Spin(4) of the Lorentz symmetry.
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other lines bosonic. These theories are denoted as SO(3)0,b and SO(3)0,f in the discussion

around (4.26) and correspond respectively to the two quadratic refinements

σ(1)(1∨) = 0 , σ(2)(1∨) =
1

2
, (3.30)

of the bilinear form η = η0(1∨, 1∨) = 0. Therefore, the corresponding discrete theta

terms are

0 , 2π

∫

M

1

2
bm ∪ bm = 2π

∫

M

1

2
bm ∪ w2(TM) , (3.31)

respectively, recovering the result that the discrete theta term π bm ∪w2(TM) changes the

spin of the magnetic lines.

3.3 T transformations

Some theories with the same gauge group but different discrete theta terms can be related

to one another by shifts of the usual continuous theta angle13

θ

2

∫

M
tr

f

2π
∧ f

2π
. (3.32)

A discrete theta term (3.14) changes the set (L̃, s) of line operators of a theory [24], while

the continuous theta term (3.32) does not change the charge lattice. Nevertheless, in

some situations, instantons fractionalize and the periodicity of θ is increased.14 When this

happens, shifting θ by 2π becomes equivalent to adding a discrete theta term.15 More

precisely, a theory (with a given discrete theta term) at θ = θ0 is dual to another theory

(with a different discrete theta term) at θ = θ0 +2π. We refer to the duality map between

the two theories as the T transformation

T : Gθ
p → Gθ+2π

p−∆p , (3.33)

where Gθ
p denotes the theory with gauge group G with parameter θ and discrete theta

parameter labelled by p, as in [24].

Relation between continuous and discrete theta terms. In the following, we com-

pute the exact discrete theta term, schematically denoted ∆p in (3.33), generated by in-

creasing θ by 2π.

First, we choose a special basis for the weights and coweights, as follows. Assume for

now that g is a simple Lie algebra, but not of type DN with N even, so that the center

Λcw/Λcr = Z(G̃) is a cyclic group ZM . Choose a coweight µ∨
◦ ∈ Λcw whose class [µ∨

◦ ] in

Z(G̃) generates it. Now, choose a weight ν◦ ∈ Λw such that its class in Ẑ(G̃) has weight

one with respect to the chosen coweight; that is,

〈
ν◦, µ

∨
◦
〉
=

1

M
. (3.34)

13See appendix E for conventions for the normalization of theta terms.
14This heralds an anomaly between the (−1)-form symmetry θ (→ θ + 2π and the 1-form electric center

symmetry of the G̃ gauge theory [24, 27]. It can also be understood as an anomaly in the space of coupling

constants [28, 48].
15See appendix F for a mathematical discussion of this phenomenon.
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Every weight (coweight) can be expressed as an integer multiple of ν◦ (µ∨
◦ ) modulo roots

(coroots), i.e. [ν] ≡ n[ν◦] (mod Λr) and [µ∨] ≡ m[µ∨
◦ ] (mod Λcr), for some n,m ∈ ZM .16

For example, for g = su(N) the center is isomorphic to ZN and we choose17 µ∨
◦ := µ∨

1

corresponding to the fundamental representation of the dual algebra Lg, and ν◦ := νN−1 to

be the highest weight of the anti-fundamental representation of g which acts with charge

1/N on the defining N -dimensional representation.

We call a line of weight (ν◦, 0) a basic Wilson line W , and a line of weight (0, µ∨
◦ ) a

basic ’t Hooft line T . Not all possible lines are allowed in a given theory. Consider, for

example, G̃ gauge theory. W is an allowed line operator, while T is not. Rather, T is

the boundary of the (open) Gukov-Witten surface operator Ue(Σ) implementing the Z(G̃)

electric one-form symmetry. Then, (3.34) leads to the following relation

Ue(Σ)W (γ) = e2πi⟨ν◦,µ
∨
◦ ⟩ link(Σ,γ)W (γ) = e2πi/k link(Σ,γ)W (γ) . (3.35)

Thus, (3.34) is equivalent to choosing a basis such that the fundamental line W has charge

one under the fundamental electric symmetry generator. A similar argument can be made

for G̃/Z(G̃) theory where T is now an allowed line operator and W is the boundary of

the fundamental magnetic surface operator implementing the Ẑ(G̃) magnetic one-form

symmetry which can be written as

Um(Σ) = exp

(
2πi[ν◦]

∮

Σ
bm

)
, (3.36)

where18 bm ∈ H2(M, Z(G̃)) is the Brauer class of the gauge bundle.

Next, consider the effect of adding discrete theta terms on the line operators of a theory

with gauge group G̃/Zk, where Zk is some subgroup of Z(G̃) = ZM , so M = kk′ for some

integer k′. Quadratic functions on Γm = Zk can be written as σ = pσ◦ : Zk → R/Z for

some p, where, following the conventions of [27], we define19

σ◦(mk′[µ∨
◦ ]) =

⎧
⎪⎪⎨

⎪⎪⎩

m2

2k
k even ,

(1− k)m2

2k
k odd .

(3.37)

(Note that k′[µ∨
◦ ], with [µ∨

◦ ] as defined above, generates the Zk subgroup of ZM .) In this

paper, we often identify Zk with integers modulo k, and k′[µ∨
◦ ] with 1 ∈ Z/kZ, so in both

cases this can be written as

σ◦(m) =
1− k2

2k
m2 . (3.38)

16n and m can be taken modulo M since M times of ν◦ (µ∨
◦ ) is a root (coroot).

17Such a choice of generator for Z(G̃), is equivalent to choosing a ring structure for Z(G̃) whose unit

element under multiplication is [µ∨
◦ ]. Writing cup product in the action requires such a ring structure, but

here such a choice is made in (3.37) which defines a pairing on H2(M, Z(G̃)).
18Eq. (3.34) implies that [ν◦] generates the magnetic symmetry group Ẑ(G̃).
19σ◦ is so chosen because it is a quadratic refinement of the bilinear form η◦(m[µ∨

◦ ],m
′[µ∨

◦ ]) = mm′/k.

For k odd, this is the unique refinement, reflecting the fact that the basic ’t Hooft line must be bosonic,

while for k even, there are two refinements, σ◦ and (1 + k)σ◦, since the basic ’t Hooft line can be bosonic

or fermionic.
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According to our proposal (3.22), the theory defined by adding the discrete theta term

2πp

∫

M
Pσ◦(bm) (3.39)

has the bosonic line labelled by (p(1− k2)ν◦, k′µ∨
◦ )b as a genuine line operator.

Meanwhile, a shift θ +→ θ + 2π of the continuous theta angle (3.32) results in the

following shift in the line operators [4]

T : (ν, µ∨)s +→ (ν − µ∨∗, µ∨)s , (3.40)

where ∗ is a map from Λcw to Λw induced by the Killing form and the inclusions Λcw ⊂ t

and Λw ⊂ t∗, and s is the spin label. The Killing form, denoted by tr in (3.32), is

normalized such that a generator of Λcw is mapped to a generator of Λw. More explicitly,

the normalization is such that a simple coroot α∨
i is mapped to a simple root with the

following prefactor [4]

α∨
i
∗ =

trα∨
i α

∨
i

2
αi , (3.41)

where the length-squared of short coroot(s) is 2; see appendix A for our Lie algebra con-

ventions. The 2π shift maps one allowed set (L̃, s) of line operators to another allowed set,

and therefore maps between theories with the same gauge group.20

We now derive the relation between continuous and discrete theta terms. T sends a line

(ν, k′µ∨
◦ ) with fundamental magnetic charge to (ν − k′µ∨

◦
∗, k′µ∨

◦ ). According to (3.22), the

shift in its electric charge is equivalent to adding a discrete theta term (3.14) corresponding

to the quadratic function

σT (k
′[µ∨

◦ ]) = −1

2

〈
k′µ∨

◦
∗, k′µ∨

◦
〉
= −k′2

2
trµ∨

◦µ
∨
◦ , (3.42)

that is shifting θ by 2π is equivalent to adding the coupling 2πPσT (bm). Identifying Γm

with the integers modulo k using the basis we chose earlier, we find σT = (−∆p)σ◦, where

∆p
1− k2

2k
=

k′2

2
trµ∨

◦µ
∨
◦ (mod 1) , (3.43)

and from this we solve for ∆p, yielding

∆p = kk′2 trµ∨
◦µ

∨
◦ =

M2

k
trµ∨

◦µ
∨
◦ , (3.44)

with the above equality taken modulo 2k for k even and modulo k for k odd.21

To summarize, there is a duality (3.33), which we call the T transformation, between

gauge theories labelled by the following continuous and discrete theta parameters

(θ + 2π, p) ∼ (θ, p+ (M2/k) trµ∨
◦µ

∨
◦ ) . (3.45)

The discrete parameter p is defined modulo 2k for even k, and modulo k for odd k [46].

20T transformations do not affect the spins of purely electric lines (or equivalently, the gauge group), and

therefore do not affect the be dependence of discrete theta terms (3.25).
21To derive (3.44) for k odd, we have made use of the fact that kk′2 trµ∨

0 µ
∨
0 is always an even integer.
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In section 4, we will explain how ∆p = (M2/k) trµ∨
◦µ

∨
◦ can be obtained by looking

at the inverse Cartan matrix. We will also calculate ∆p for simple Lie groups, finding

agreement with [28]. For the DN series with N even, where Γm may not be cyclic, refer to

section 4.4.

4 Non-Abelian theories

4.1 A series: su(N)

In this section we start the classification of line operators, with the Lie algebra su(N) which

has rank N − 1 and the following Dynkin diagram

where each of theN−1 nodes correspond to the fundamental weights, denoted ν1, . . . , νN−1.

The coweight lattice Λcw is generated by the fundamental coweights µ∨
1 , . . . , µ

∨
N−1. (See

appendix A for our conventions with Lie algebras.) As mentioned in section 3, the weight

of the fundamental ’t Hooft line T should be a generator of Z(SU(N)) = Γm
∼= ZN , which

we choose to be µ∨
◦ := µ∨

1 . Having fixed this, a choice of the fundamental Wilson line

satisfying (3.34) is ν◦ := νN−1. Note that since

〈
νi, µ

∨
j

〉
= (C−1)ij , (4.1)

we can find appropriate choices of fundamental Wilson and ’t Hooft lines by looking at the

inverse of the Cartan matrix.

The dyonic Wilson-’t Hooft line WnTm has weights (nνN−1,mµ∨
1 ) ∈ Λw ×Λcw. Since

W 2N and T 2N belong to twice the root 2Λr and coroot 2Λcr lattices, it is sufficient for our

purposes to consider the mod 2N reduction of the integers n and m. Therefore we label

the line WnTm by

(n,m) ∈ Z2N × Z2N ⊂ Λ̃ . (4.2)

A further mod N quotient of (n,m) yields the one-form symmetry charges

(n (mod N),m (mod N)) ∈ Λ = Ẑ(SU(N))× Z(SU(N)) . (4.3)

Let us find the Dirac quantization conditions (3.2) in terms of the integers (4.2) by

calculate the pairing between two dyonic lines of the form WnTm and Wn′
Tm′

〈
(n,m), (n′,m′)

〉
D
≡ 1

N

(
nm′ − n′m

)
(mod 2Z) . (4.4)

Note that if we had defined ν1 and µ∨
1 as the basis for W and T , there would have been an

extra factor of N − 1, since ⟨ν1, µ∨
1 ⟩ = (N − 1)/N . Requiring the r.h.s. of (4.4) to be an

integer, we get different solutions that are labeled by two integers k and q [24]; the integer

k is a divisor of N , i.e. N = kk′ for some integer k′. The charge lattice of the theory

Lk,q ⊂ ZN × ZN , is then generated by the lines

W k ≡ (k, 0) and W qT k′ ≡ (q, k′) , (4.5)
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where q = 0, 1, . . . , k−1.22 Now we can give a microscopic description of a theory with such

set of lines. The value of k fixes the gauge group to be SU(N)/Zk, and for spin theories q

can be identified with the theta parameter p defined in (3.39) as q ≡ p (mod k). However

for non-spin theories, we also need to determine the spin of the generating lines in (4.5).

We denote the theory where the generating electric line W k is bosonic and the magnetic

generating line has weights and spin (q, k′)s, as (SU(N)/Zk)q,s. For theories where the

generating electric line is fermionic, we denote the theory as (Spin-SU(N)/Zk)q,s where

again the other generating line is (q, k′)s. In summary we have the following possibilities

with the following generating lines for non-spin theories:

(SU(N)/Zk)q,s : (k, 0)b, (q, k′)s ,

(Spin-SU(N)/Zk)q,s : (k, 0)f , (q, k′)s . (4.6)

However, not all these choices are consistent. As stated in rule 2 in section 3, lines labelled

by just a root or a coroot must be bosonic. For instance, for N odd, k = 1 and q = 0, the

gauge group is SU(N) and the fundamental Wilson line with weight (νN−1, 0) cannot be

fermionic; this is because fusing N of them, according to (3.7), results in a fermionic line

labelled by a root, and hence is not allowed. We will find the consistency conditions below

and demonstrate the details with a few examples. But before that, let us discuss the theta

parameters in these theories.

Consider the SU(N)/Zk theory whose set of lines and their spins are

s′(SU(N)/Zk)q,s : (k, 0)s′ , (q, k′)s . (4.7)

Here the label s′ denotes SU(N)/Zk for s′ = 0 and (Spin-SU(N)/Zk for s′ = 1, see (4.6);

these two notations are used interchangeably in this article. We claim that such theory

can be obtained from (SU(N)/Zk)0,b theory by adding the coupling (3.25) associated with

the quadratic refinement

σ(nk +mq,mk′) ≡ q
m2

2k
+ s

m

2
+ s′

n

2
≡ (q + sk)

m2

2k
+ s′

n2

2
(mod Z) , (4.8)

where (nk+mq,mk′) ∈ ZN×ZN are the electric and magnetic charges. This simply follows

from (3.22) by noting that the line (nk +mp,mk′)s′′ can be obtained by fusing (nk, 0)ns′

with (mq,mk′)ms and thus has spin s′′ ≡ ms+ns′+nm (mod 2Z). Such quadratic function

induces a coupling of the form

2πi

∫

M

(
q + sk

2k
P(bm) +

s′

2
be ∪ be

)
, (4.9)

where the pair (be, bm) essentially measure the integers n and m. As explained in sec-

tion 5.2.6, after adding such coupling the one-form symmetry extension changes which

puts some constraints on the symmetry generators which restricts the coefficients in (4.9).

For instance we should check that σ is a well-defined function; that is if we shift the electric

22One can show that the charge lattice Lk,q is isomorphic to Zgcd(k,k′,q) × ZN/gcd(k,k′,q) [27].
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and magnetic charges by N it does not change mod Z. One can easily see that this gives

the relations

ks+ (k + s′)q ≡ k′s′ ≡ 0 (mod 2Z) . (4.10)

For the sake of completeness let us rederive these relations by the consistency conditions

for the spin labels. Take (k, 0)s′ line and fuse it k′ times with it self to get (N, 0)k′s′ which

is a pure root and must be bosonic hence the first relation. Now fusing the line (qk, 0)qs′

with (kq, kk′)ks gives (0, N)qs′+ks+kq which is bosonic hence the second relation. Therefore,

we get the following consistent theories based on Lie group su(N) on non-spin manifolds

(SU(N)/Zk)q,s : for k(q + s) ∈ 2Z ,

(Spin-SU(N)/Zk)q,s : for ks+ (k + 1)q, k′ ∈ 2Z . (4.11)

Now we find the relation between the T -transformation and adding the coupling (4.9)

for these theories. For the case where s′ = 0 and the basic Wilson line is bosonic, we have

the usual theta parameter p in (3.39) and the identification

q + ks ≡ (1− k2)p (mod 2kZ) , (4.12)

which automatically satisfies (4.10). A result of this relation is the fact that for even k,

shifting p by k changes the spin of the basic ’t Hooft line [49], hence p is 2k periodic.

Furthermore since the basic ’t Hooft line is T k′ , following the discussion around (3.45), we

have ∆p = k(k′µ∨
1 , k

′µ∨
1 ) = k′(N − 1) and hence we get the following identification of the

theta parameters

(θ + 2π, p) ∼
(
θ, p+ k′(N − 1)

)
, (4.13)

where p ∈ Zk for odd k and p ∈ Z2k for even k. Thus shifting p by one and the T -

transformation is equivalent to the following maps on the weights and spins

p → p+ 1 : (n, k′m)s0 +→ (n+ (1− k2)m, k′m)s0 , (4.14)

θ → θ + 2π : (n, k′m)s0 +→ (n+ k′(N − 1)m, k′m)s0 . (4.15)

Therefore we get the relation

(SU(N)/Zk)
θ+2π
q,s = (SU(N)/Zk)

θ
q+k′(N−1),s , (4.16)

thus for k even θ is 4πk/gcd(2k, k′) periodic, and for odd k it is 2πk/gcd(k, k′) periodic.

For the Spin-SU(N)/Zk theories23 where s′ = 1, however the coupling (3.39) does not

make sense for arbitrary values of p and we should really think of the coupling (4.9) instead,

where from (4.10) we have the relation k′ ≡ ks+ (k + 1)q ≡ 0 (mod 2Z). When k is odd,

s must be even and we have the map

q → q + 1 : (n, k′m)s0 +→ (n+m, k′m)s0 . (4.17)

23For the microscopic description of the Spin-SU(N)/Zk := Spin(4) ×Z2 SU(N)/Zk theory, we need a

Spin(4)×Z2 SU(N)/Zk connection defined on a manifold which has Spin-SU(N)/Zk structure. Where such

structure is an extension of the SO(N) frame bundle by the gauge SU(N)/Zk-bundle [16].
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However when k is even, q must be even too and we can only shift q by an even number. In

both cases by comparing the above map with the T -transformation we get the identification

(θ + 2π, q) ∼ (θ, q + k′(N − 1)). However, note that shifting q by k does not change

the spins and therefore q is only defined mod kZ, hence for both k even and odd θ is

2πk/gcd(k, k′) periodic.

g = su(2). Let us begin with the simplest example of the su(2) algebra. This algebra

has only one simple root and therefore

ν◦ = ν1 and µ∨
◦ = µ∨

1 . (4.18)

The Dirac quantization condition for the lines WnTm and Wn′
Tm′

is given by

⟨(n,m), (n′,m′)⟩D =
1

2

(
nm′ − n′m

)
≡ 0 (mod Z) . (4.19)

For spin theories only the charges (n,m) mod 2 — modulo the root lattices — matters and

we get three solutions by solving (4.19). In each case the charge lattice L ⊂ Λ is isomorphic

to Z2 and hence is generated by a single line operator as [24]

SU(2) : (1, 0), SO(3)0 : (0, 1), SO(3)1 : (1, 1) . (4.20)

The T -transformation (3.40) acts as

T : (n,m)s +→ (n−m,m)s , (4.21)

and leaves the SU(2) charge lattice invariant, while mapping SO(3)0 to SO(3)1.

Going to the case of oriented theories without spin-structure, we label the lines by

their weights in the quotient (3.6) which can be identified with mod 4 reduction of n and

m, i.e. (n,m) ∈ Λw/2Λr × Λcw/2Λcr
∼= Z4 × Z4. For instance, the lines T and W 2T have

the same one-form charge in Λ, but they are distinguishable since they have different spins.

For SU(2) we have two lattices, one where the generating line is (1, 0)b — a boson — and

one where it is a fermion, i.e. (1, 0)f . As we mentioned in section 3 we require that the

adjoint line (0, 2) is always bosonic; this along with the fusion rule (3.7) fixes the spin of

all the lines completely. For each case, we get the following set of weights and spins

SU(2) : (±1, 0)b, (0, 2)b, (±1, 2)f , (2, 0)b , (2, 2)b, (0, 0)b , (4.22)

Spin-SU(2) : (±1, 0)f , (0, 2)b, (±1, 2)b, (2, 0)b , (2, 2)b, (0, 0)b ; (4.23)

which are also depicted in the figure 1. The T -transformation leaves both lattices invariant

and therefore θ is 2π periodic for both.

Similarly for each SO(3) we get two lattices, one where the generating line is bosonic

and fermionic. In total we get four lattices shown in figure 2. All of these lattices are

related by the T -transformation as

SO(3)θ+2π
q,s = SO(3)θq+1,s , (4.24)
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Figure 1. SU(2) lattices.
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Figure 2. SO(3) lattices.

hence θ is 8π periodic. From (4.12) we have p ≡ q + 2s (mod Z), thus we get the identifi-

cation (θ + 2π, p) ∼ (θ, p+ 1). We also have the relation

SO(3)θq,s = SO(3)θq+2,s+1 , (4.25)

which can be verified by either looking at the weight lattices of these theories and match

their line operators, looking at the relation p ≡ q + 2s (mod Z), or looking at the cou-

pling (3.39) for p = 2. Using the Wu formula 1
2bm ∪ bm ≡ 1

2bm ∪ w2(TM) (mod Z), this
coupling is equivalent to adding πi

∫
M bm ∪ w2(TM), which attaches a w2(TM) surface

to the fundamental ’t Hooft line and hence changes its spin [15, 16, 31, 49]. To see these

relations explicitly, let us take a closer look at how the T -transformation (4.21) maps the
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line operators of these four theories to each other:

SO(3)0,b
T+−→ SO(3)1,f

T+−→ SO(3)0,f
T+−→ SO(3)1,b

(0,±1)b +→ (∓1,±1)b +→ (2,±1)b +→ (±1,±1)b

(2,±1)f +→ (±1,±1)f +→ (0,±1)f +→ (∓1,±1)f

(2, 0)b +→ (2, 0)b +→ (2, 0)b +→ (2, 0)b

(0, 2)b +→ (2, 2)b +→ (0, 2)b +→ (2, 2)b

(2, 2)b +→ (0, 2)b +→ (2, 2)b +→ (0, 2)b

(4.26)

g = su(4). As the last example of su(N), in this section we study lines operators of

su(4) theories. The weights of the basic Wilson and ’t Hooft lines are given by ν◦ := ν3
and µ∨

◦ := µ∨
1 . Here we only consider dyonic lines of the form WnTm, denoted by their

weights (n,m) ∈ Z8×Z8 ⊂ Λ̃ in the quotient (3.6). From (4.5), on spin manifolds different

charge lattices are generated by the following lines

SU(4) : (1, 0), (0, 4), (SU(4)/Z2)q=0,1 : (2, 0), (q, 2), PSU(4)q=0,1,2,3 : (4, 0), (q, 1) .

Let us first review the results of [24] for these theories on spin manifolds. For the case of

SU(4), there is only one theory and θ is 2π periodic. For gauge group SO(6) = SU(4)/Z2,

the two solutions with p = 0 and p = 1 are not related by the T -transformation and θ is

2π periodic. Finally for PSU(4), all the four theories are related by the T -transformation

and hence θ is 8π periodic.

Moving to non-spin manifolds, we need to also determine the spin of the generating

lines of the above charge lattices. For SU(4) there are two theories one where the basic

Wilson line W (γ) is bosonic and one where it is fermionic. Both are consistent since the

adjoint lines W 4 and T 4 are bosonic. Thus we get two solutions denoted as SU(4) and

Spin-SU(4). From (4.15), we see that for both lattices θ is 2π periodic.

For SO(6)0 both the generating (2, 0) and (0, 2) lines can be either bosonic or fermionic

and we get four theories. Whereas for SO(6)1, the line (2, 0) can only be bosonic; this is

because it can be obtained by fusing the line (1, 4) with itself and therefore must be bosonic.

Hence there is no Spin-SO(6)1,s solution and in total we get six theories. From (4.12), we

have q + 2s ≡ p (mod 4). To verify this relation, let us study the action of shifting p by

one — given in (4.14) — on the line operators of different SO(6) theories

SO(6)0,b +→ SO(6)1,b +→ SO(6)0,f +→ SO(6)1,f

(0, 2)b +→ (1, 2)b +→ (2, 2)b +→ (3, 2)b

(2, 0)b +→ (2, 0)b +→ (2, 0)b +→ (2, 0)b

(2, 2)f +→ (3, 2)f +→ (4, 2)f +→ (5, 2)f

(6, 2)f +→ (7, 2)f +→ (0, 2)f +→ (1, 2)f

(2, 6)f +→ (5, 6)f +→ (0, 6)f +→ (3, 6)f

(4.27)
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There is also the identification the theta parameters as (θ + 2π, p) ∼ (θ, p + 2). Thus

we get the action of the T-transformation on these theories as shown in (4.28) and (4.29).

SO(6)0,b SO(6)0,f
T SO(6)1,b SO(6)1,f

T (4.28)

Spin-SO(6)bT Spin-SO(6)f T (4.29)

Hence θ is 4π periodic for the SO(6) theories, and 2π for the Spin-SO(6) theories.

For the PSU(4)q theories, the charge lattice is generated by (q, 1) which can have any

spin. Thus we get eight different theories denoted as PSU(4)q,s, where the generating

line has weights and spin (q, 1)s. All of these eight theories are related by adding the

coupling (3.39), where p ≡ q + 4s (mod 8). There is also the identification (θ + 2π, p) ∼
(θ, p+ 3), thus all of these theories are also scanned by the T -transformation and we have

the relations

PSU(4)θ+2π
q,s = PSU(4)θq+3,s, PSU(4)θq,b = PSU(4)θq+4,f . (4.30)

These theories have interesting ’t Hooft anomalies which are discussed in section 5. In

particular, the Spin-SO(6)f theory has the same gravitational anomaly as the all-fermion

electrodynamics theory SpinCf .

4.2 C series: sp(N)

The universal covering group of g = sp(N) is Sp(N), whose center is isomorphic to Z2.

The Dynkin diagram of the sp(N) algebra is

where the nodes correspond to the N fundamental weights denoted as ν1, . . . , νN with αN

the long root. The Langlands dual Lie algebra is Lg = so(2N+1) with the Dynkin diagram

where the nodes correspond to the N fundamental coweights µ∨
1 , . . . , µ

∨
N with α∨

N the short

coroot. [µ∨
N ] generates the center Z(Sp(N)), so we choose µ∨

◦ := µ∨
N as the weight of the

fundamental ’t Hooft line T and the fundamental representation ν◦ := ν1 as the weight of

the fundamental Wilson line W , since ⟨ν1, µ∨
N ⟩ = 1

2 . Labelling the dyonic lines WnTm by

(n,m), the (3.2) condition becomes

〈
(n,m), (n′,m′)

〉
D
=

1

2
(nm′ − n′m) = 0 (mod Z) . (4.31)

Following the same method as su(N), we get the following theories, written below together

with lines generating the set of allowed line operators:

Sp(N) : (1, 0)b, (0, 2)b ,

Spin-Sp(N) : (1, 0)f , (0, 2)b , (4.32)

(Sp(N)/Z2)q,s : (2, 0)b, (q, 1)s ,
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where q = 0, 1. For the universal covering group Sp(N), there is no possible discrete theta

term and θ is 2π periodic. For the Sp(N)/Z2 theories, the periodicity of θ is increased, and

according to (3.45), the T -transformation identifies theories differing by ∆p = 2(µ∨
◦ , µ

∨
◦ ) =

2(C−1)NN = N and the following continuous and discrete theta parameters are identified

(θ + 2π, p) ∼ (θ, p+N) , (4.33)

where p ≡ q + 2s (mod 4), in agreement with [28]. Thus, the various Sp(N)/Z2 theories

have the following relations

(Sp(N)/Z2)
θ+2π
q,s = (Sp(N)/Z2)

θ
q+N,s , (Sp(N)/Z2)

θ
q+2,b = (Sp(N)/Z2)

θ
q,f . (4.34)

4.3 B series: so(2N + 1), N ≥ 2

The classification of the lines for theories with so(2N+1) algebra proceeds similarly to that

of the Langlands dual algebra sp(N), but with roots and coroots exchanged. The universal

covering group is Spin(2N + 1), with center isomorphic to Z2. The Dynkin diagram is

.

We denote the simple roots by α1, . . . ,αN with αN the short root, and the corresponding

fundamental weights by ν1, . . . , νN and fundamental coweights by µ∨
1 , . . . , µ

∨
N . Note that

[µ∨
1 ] generates the center Λcw/Λcr = Z(Spin(2N + 1)) = Z2, and νN has 1/2 pairing with

µ∨
1 , so we choose µ∨

◦ := µ∨
1 and ν◦ := νN as the weights of the fundamental ’t Hooft and

Wilson lines T andW . Solving the quantization condition (3.2) yields the following theories

Spin(2N + 1) : (1, 0)b, (0, 2)b ,

Spin - Spin(2N + 1) : (1, 0)f , (0, 2)b , (4.35)

SO(2N + 1)q,s : (2, 0)b, (q, 1)s ,

for q = 0, 1. According to (3.45), the T -transformation identifies theories with the theta

parameters

(θ + 2π, p) ∼ (θ, p+ 2(C−1)11) = (θ, p+ 2) , (4.36)

where, once again, p ≡ q + 2s (mod 4). Thus, the various SO(2N + 1) theories have the

following relations

SO(2N + 1)θ+2π
q,s = SO(2N + 1)θq+2,s = SO(2N + 1)θq,s+1 . (4.37)

4.4 D series: so(2N), N ≥ 3

The universal covering group is Spin(2N) and the Dynkin diagram is

.
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We denote the fundamental weights by ν1, . . . , νN−2, νs, νc, where νs and νc are the highest

weights of the spinor and conjugate spinor representations respectively, and the correspond-

ing fundamental coweights by µ∨
1 , . . . , µ

∨
N−2, µ

∨
s , µ

∨
c . The inverse of the Cartan matrix is

C−1
ij = min{i, j} , C−1

is = C−1
ic =

i

2
,

C−1
ss = C−1

cc =
N

4
, C−1

sc = C−1
cs =

N − 2

4
, (4.38)

where i, j = 1, . . . , N − 2.

The classification of the lines for theories with D-series gauge groups differs qualita-

tively depending on the parity of N . For odd N , the center Z(Spin(2N)) = Λcw/Λcr is

isomorphic to Z4, and is generated by either [µ∨
s ] or [µ∨

c ]. For even N , the center is iso-

morphic to Zs
2 × Zc

2, with generators [µ∨
s ] and [µ∨

c ]. We shall discuss each case separately.

Odd N . We choose the coweight µ∨
◦ of the fundamental ’t Hooft line T to be µ∨

◦ := µ∨
s ,

and the weight ν◦ of the fundamental Wilson line W such that ⟨ν◦, µ∨
◦ ⟩ = 1/4.24 The

condition (3.2) for the dyonic lines WnTm and Wn′
Tm′

then becomes

〈
(n,m), (n′,m′)

〉
=

1

4
(nm′ − n′m) = 0 (mod Z) . (4.39)

Labeling the lines with spins consistent with (3.7), and solving (3.2), we get the follow-

ing theories

Spin(2N) : (1, 0)b , (0, 4)b , Spin - Spin(2N) : (1, 0)f , (0, 4)b ,

SO(2N)q,s : (2, 0)b , (q, 2)s , Spin -SO(2N)0,s : (2, 0)f , (0, 2)s , (4.40)

PSO(2N)q,s : (4, 0)b , (q, 1)s .

For theories with gauge group Spin(2N) and Spin-Spin(2N), the θ parameter is 2π-periodic.

For the (Spin(2N)/Zk)q,s theories (with k = 2, 4), theta periodicity is enhanced. Following

the discussion around (3.45), a 2π shift in the theta angle is dual to a discrete theta angle of

∆p = kk′2 trµ∨
◦µ

∨
◦ =

16

k
C−1
ss =

4N

k
(mod 2k). (4.41)

Hence, the following theta parameters are identified

(θ + 2π, p) ∼ (θ, p+ 4N/k) , (4.42)

where p ≡ q + sk (mod 2k). θ is 4π-periodic for the SO(N) theories and 16π-periodic for

the PSO(N) theories. The following theories are dual:

SO(N)θ+2π
q,s = SO(N)θq+2N,s , PSO(N)θ+2π

q,s = PSO(N)θq+N,s . (4.43)

24Unlike in the previous cases, there are no fundamental weights that satisfy this relation.
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Even N . When N is even, the center of the universal covering group Spin(2N) is Zs
2×Zc

2,

which is novel, as all the π1(G) we have encountered thus far have been cyclic. The center is

generated by the fundamental coweights corresponding to the spinor and conjugate spinor

representations

µ∨
◦1 := µ∨

s , µ∨
◦2 := µ∨

c , (4.44)

and we denote the ’t Hooft lines with these coweights as T1 and T2 respectively. The

weights of the fundamental Wilson lines W1 and W2 are chosen such that

⟨ν◦i, µ∨
◦j⟩ =

1

2
δij . (4.45)

Denote the Wilson-’t Hooft line Wn1
1 Wn2

2 Tm1
1 Tm2

2 by (n1, n2;m1,m2). The quantization

condition (3.2) reads

〈
(n1, n2;m1,m2), (n1, n2;m1,m2)

〉
=

1

2
(n1m

′
1 + n2m

′
2 − n′

1m1 − n′
2m2) = 0 (mod Z) .

The following are the possible solutions of this condition. Next to each theory, we have

given two lines generating the full set of line operators.

s′i
Spin(2N) : (1, 0; 0, 0)s′1 , (0, 1; 0, 0)s′2 ,

s′SO(2N)q,s : (1,−1; 0, 0)s′ , (q, 0; 1, 1)s ,

s′Ss(2N)q,s : (0, 1; 0, 0)s′ , (q, 0; 1, 0)s ,

s′Sc(2N)q,s : (1, 0; 0, 0)s′ , (0, q; 0, 1)s ,

PSO(2N)qij ,si : (q11, q21; 1, 0)s1 , (q12, q22; 0, 1)s2 ,

(4.46)

where each qij = 0 or 1, and q12 = q21. We have defined the various gauge groups

with algebra so(2N) following the notation of [24], by taking quotients of Spin(2N) by

the subgroups of its center Λcw/Λcr = Zs
2 × Zc

2. To wit, SO(2N) := Spin(2N)/Zv
2,

Ss(2N) := Spin(2N)/Zs
2, Sc(2N) := Spin(2N)/Zc

2 and PSO(2N) := Spin(2N)/(Zs
2 × Zc

2),

where the subgroups Zv
2, Zs

2 and Zc
2 are generated by the vector, spinor and conjugate spinor

representations of the dual Lie algebra Lso(2N) ≈ so(2N) respectively. As before, the left

subscript s′ denotes the spin of the fundamental Wilson line; for instance 1SO(2N) :=

Spin -SO(2N). Note that, as there are three Z2 subgroups of Z(Spin(2N)) = Zs
2 × Zc

2, the

notation Spin - Spin(2N) is ambiguous and it is more precise to use the notation with the

left subscript.

We now investigate the relation between theta terms. The SO(2N), Ss(2N) and

Sc(2N) theories have Γm
∼= Z2, and there is a single discrete theta term p ≡ q + 2s

(mod 4). For SO(2N) theories, (3.45) yields

∆p = 2 tr(µ∨
s + µ∨

c )(µ
∨
s + µ∨

c ) = 2 (mod 4) (4.47)

leading to the identification

(θ + 2π, p) ∼ (θ, p+ 2) (4.48)
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and therefore

s′SO(2N)θ+2π
q,s = s′SO(2N)θq+2,s = s′SO(2N)θq,s+1 . (4.49)

For the Ss(2N) and Sc(2N) theories,

∆p = 2 trµ∨
s µ

∨
s =

N

2
(mod 4) , (4.50)

leading to the identification

(θ + 2π, p) ∼ (θ, p+N/2) (4.51)

and therefore

s′Ss(2N)θ+2π
q,s = s′Ss(2N)θq+N/2,s, s′Sc(2N)θ+2π

q,s = s′Sc(2N)θq+N/2,s . (4.52)

Note that for all of these theories — SO(2N), Ss(2N) and Sc(2N) — there is no relation

between s, q and s′ since the electric sector is decoupled from the magnetic sector, i.e. the

basic Wilson line has zero pairing with the basic ’t Hooft line. Furthermore the one-form

symmetry group is the direct product of the Z2 electric and Z2 magnetic symmetry groups.

For PSO(2N) theories, the magnetic one-form symmetry group is Γ̂m = Ẑs
2× Ẑc

2. Here,

we arrive at a novel situation not discussed in section 3.1: Γm is not cyclic. In this case,

on top of the usual Z4-valued Pontryagin square terms

2π

∫

M

ps
4
P(bs) +

pc
4
P(bc) , (4.53)

there is also a Z2-valued cross term25

2π

∫

M

psc
2
bs ∪ bc . (4.54)

The quadratic function σ (3.22) for the PSO(2N)qij ,si theory is

σ(m1,m2) = qij
mimj

4
+ si

mi

2
=

1

4
(qij + 2δijsj)mimj (mod Z) , (4.55)

and so PSO(2N)qij ,si theory can be obtained from PSO(2N)0,0 by adding the discrete

theta term

2π

∫

M

(
ps
4
P(bs) +

pc
4
P(bc) +

psc
2
bs ∪ bc

)
. (4.56)

where ps = q11 + 2s1 (mod 4), pc = q22 + 2s2 (mod 4) and psc = q12 (mod 2).

As was seen in (3.40), a 2π-shift of the usual theta angle (3.32) is equivalent to shifting

the lines by the quadratic function

σ′(m1,m2) =
1

2
mimj trµ

∨
◦iµ

∨
◦j (mod Z) . (4.57)

Comparing this to (4.55) yields

∆ps = 2 trµ∨
◦1µ

∨
◦1 =

1

2
N, ∆pc = 2 trµ∨

◦2µ
∨
◦2 =

1

2
N, ∆psc = 2 trµ∨

◦1µ
∨
◦2 =

N − 2

2
(4.58)

25This corresponds to the universal quadratic group U(Z2 × Z2) being Z4 × Z4 × Z2.
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modulo 4 for ∆ps and ∆pc and modulo 2 for ∆psc. The values of trµ∨i
◦ µ∨j

◦ were read

off from the entries of the inverse Cartan matrix (4.38). Therefore, the T -transformation

identifies the theories

PSO(2N)θ+2π
qij ,si = PSO(2N)θqij+∆pij ,si

, (4.59)

with ∆pij given in (4.58). In other words, shifting θ +→ θ + 2π is equivalent to adding the

discrete theta term

2π

∫

M

(
N

8
P(bs + bc) +

1

2
bs ∪ bc

)
, (4.60)

reproducing the result of [28].

4.5 E series: e6 and e7

Of the exceptional Lie groups, only E6 and E7 have non-trivial centers, with Z(E6) = Z3

and Z(E7) = Z2.

e6. The center of E6 is isomorphic to Z3, and there are two possible gauge groups with

e6 algebra, namely E6 and E6/Z3. The Dynkin diagram of the Lie algebra is

α1

α6

α2 α3 α4 α5

Its center is generated by any of µ∨
1 , µ

∨
2 , µ

∨
4 or µ∨

5 , and any of them furnishes a possible

choice of basic magnetic charge. We choose µ∨
◦ := µ∨

1 . The basic electric charge ν◦ should

be chosen so that ⟨ν◦, µ∨
◦ ⟩ = 1/3. The quantization condition (3.2) has the following

solutions, listed with the generating lines:

E6 : (1, 0)b, (0, 3)b ,

(E6/Z3)q,s : (3, 0)b, (q, 1)s , (4.61)

where, for consistency, as discussed in (4.10), q ≡ s (mod 2). In the E6 theory, θ is 2π

periodic, while for the E6/Z3, shifting θ +→ θ + 2π is equivalent to adding a discrete theta

term of

∆p = 3C−1
11 = 4 (4.62)

where, as in (4.12), 4p = q + 3s (mod 6). Thus, the following theories are identified

(E6/Z3)
θ+2π
q,s = (E6/Z3)

θ
q+4,s = (E6/Z3)

θ
q+1,s+1 , (4.63)

and θ is 6π periodic. The three different E6/Z3 theories are in the same T -orbit.

e7. The Dynkin diagram of e7 is

α1

α7

α2 α3 α4 α5 α6
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and the center of the universal covering group E7 is isomoprphic to Z2. It is generated by

either µ∨
4 , µ

∨
6 or µ∨

7 , and we choose µ∨
◦ := µ∨

6 . Once again, the basic electric weight ν◦ is

chosen so that ⟨ν◦, µ∨
◦ ⟩ = 1/2. Solving for the quantization conditions yields the following

theories and corresponding generating lines

sE7 : (1, 0)s, (0, 2)b ,

(E7/Z2)q,s : (2, 0)b, (q, 1)s .

For E7/Z2 theory, the discrete theta parameter can be identified as p = q + 2s (mod 4),

and the T -transformation relates theories differing by a discrete theta term with

∆p = 2C−1
66 = 3 , (4.64)

leading to the identifications

(E7/Z2)
θ+2π
q,s = (E7/Z2)

θ
q+3,s = (E7/Z2)

θ
q+1,s+1 . (4.65)

Thus, θ is 8π periodic for E7/Z2 theories, and all such theories are in the same T -orbit.

5 Coupling to background fields

5.1 Abelian theories

5.1.1 Symmetries

U(1) gauge theory, with action (2.7), has one-form symmetry group U(1)e × U(1)m [27],

generated by the Noether currents

je =
1

e2
∗f − θ

4π2
f , jm =

1

2π
f , (5.1)

whose conservations follow from the equation of motion and the Bianchi identity respec-

tively. In the notation of section 2.1, the integer-valued charges on a two-dimensional cycle

Σ are

n =

∫

Σ
je , m =

∫

Σ
jm , (5.2)

which are related to the electric and magnetic charges by (2.6). There is a mixed ’t Hooft

anomaly between U(1)e and U(1)m, which can be explicitly seen in the next section when

the theory is coupled to background gauge fields for the symmetries.

5.1.2 Coupling to background gauge fields

The background gauge field Bm ∈ H2(M,U(1)m) for the magnetic symmetry U(1)m couples

to the action (2.7) as

S[Bm] =

∫

M
− 1

2e2
f ∧ ∗f +

θ

2

f

2π
∧ f

2π
+ 2π

Bm

2π
∧ f

2π
. (5.3)
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Meanwhile, the coupling to the electric gauge field Be ∈ H2(M,U(1)e) is more complicated.

To motivate it, we look at a simpler example of a two dimensional sigma model on target

space S1
∫

Σ

R2

2
dφ ∧ ∗dφ , (5.4)

which has an ordinary (zero-form) symmetry U(1)t ×U(1)w with associated currents jt =

R2 ∗ dφ and jw = dφ/2π. The translation symmetry U(1)t is the analog of the electric

symmetry of Maxwell theory. A background field At is a flat connection for some circle

bundle over Σ. In order to couple the theory to At, φ is promoted to a section of a bundle

associated to said circle bundle, and the derivative is replaced with the covariant derivative

∫

Σ

R2

2
(dφ+At) ∧ ∗(dφ+At) . (5.5)

Analogously, in Maxwell theory, in order to couple to Be, the gauge field a is promoted

to a bundle-valued section of a flat U(1) gerbe, on which Be is a gerbe connection. The

action is ∫

M
− 1

2e2
(f +Be) ∧ ∗(f +Be) +

θ

2

f +Be

2π
∧ f +Be

2π
. (5.6)

Note that Maxwell theory cannot be simultaneously coupled to both Be and Bm.

Indeed, upon coupling to Bm, the conservation of the current je is violated by terms

involving Bm. Equivalently, if we took the action (5.6) coupled to Be and tried to add the

minimal coupling Bm ∧ f/2π, we find that Be background gauge invariance is lost. It can

be restored by introducing a bulk term on a five dimensional manifold Y with boundary

∂Y = M, as follows
∫

M
− 1

2e2
(f +Be) ∧ ∗(f +Be) +

θ

2

f +Be

2π
∧ f +Be

2π

+ 2π
Bm

2π
∧
(

f

2π
+

Be

2π

)
−

∫

Y
2π

Bm

2π
∧ dBe

2π
. (5.7)

In other words, there is a mixed anomaly between the one form symmetries U(1)e and

U(1)m, with anomaly polynomial

2π

∫

Y

Bm

2π
∧ dBe

2π
., (5.8)

which can be obtained via descent from the six dimensional polynomial [27, 50]

I6 =
dBm

2π
∧ dBe

2π
. (5.9)

5.1.3 Relation to non-spin theories

The non-spin theories we considered in section 2 can be obtained by turning on specific

background fields. More specifically, we would like to couple a Z2 subgroup of either the

electric or magnetic U(1) one-form symmetry to the second Stiefel-Whitney class w2(TM)

of the spacetime manifold.
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In the magnetic case, setting Bm = 2π 1
2w2(TM) yields

∫

M
− 1

2e2
f ∧ ∗f +

θ

2

f

2π
∧ f

2π
+ 2π

1

2
w2(TM)c1(E) , (5.10)

where c1(E) is the (mod 2 reduction of the) first Chern class of the gauge bundle E. This

discrete theta term makes the monopole a fermion [16].

In the electric case, to gauge a Z2 subgroup of U(1)e, it is only necessary to promote

the U(1) bundle to a U(1)/Z2 ≃ U(1) bundle, rather than a full blown gerbe. The quotient

bundle has a characteristic class arising from the exact sequence

0 → Z2 → U(1) → U(1)/Z2 → 0 (5.11)

which we set to be equal to Be. If Be = 2π 1
2w2(TM), then the connection on the quotient

bundle is exactly a SpinC connection, which we saw in section 2 describes a theory with a

fermionic electric particle.

If we turn on both background gauge fields Be = Bm = 2π 1
2w2(TM), then we have

a theory describing all-fermion electrodynamics. According to (5.8), this theory has an

anomaly of [26, 30, 31]

2π

∫

Y

1

2
w2β(w2) = 2π

∫

Y

1

2
w2w3 . (5.12)

Here, β is the Bockstein homomorphism associated to the sequence 0 → Z2 → Z4 →
Z2 → 0.26

5.1.4 S-duality

S-duality in Maxwell theory is an equivalence of theories under the exchange of electric and

magnetic charges. In the path integral framework, it can be implemented by coupling the

theory to a gauge field for its one-form electric symmetry, and integrating over the gauge

field while inserting a Lagrange multiplier field coupled to the gauge field. Integrating out

the Lagrange multiplier enforces flatness and triviality of the gauge field, returning us to

the original Maxwell theory, while integrating out the gauge field instead leads one to the

S-dual theory, formulated in terms of the Lagrange multiplier field [33].

For the non-spin Maxwell theories defined in section 2, the theory with fermionic

electric particle is S-dual to the theory with fermionic magnetic particle. This can be seen

in a completely analogous manner, and was done in great detail in [13]. In the following,

we give a brief outline of the procedure.

Let us review this procedure for spin spacetime manifolds. The partition function of

Maxwell theory is

Z[τ ] =
1

Vol(G)
∑

[f ]∈H2(M,Z)

∫
[da] exp (iS[a; τ ]) , (5.13)

where the sum is over U(1) bundles on M, and the path integral taken with respect to

the connections on each bundle. The factor Vol(G) is the volume of the group of gauge

26β is also known as the first Steenrod square Sq1.
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transformations of a. The Maxwell action is
∫

M
− 1

2e2
f ∧ ∗f +

θ

2

f

2π
∧ f

2π
=

∫

M

iτ̄

4π
f+ ∧ f+ +

iτ

4π
f− ∧ f− , (5.14)

where we define f± := 1
2(f ± ∗f) and recall (2.5)

τ =
θ

2π
+ i

2π

e2
. (5.15)

Now, we couple Maxwell theory to the electric background field Be, and sum over Be while

introducing a U(1) connection-valued Lagrange multiplier ã, with curvature f̃

∫

M
2π

Be

2π
∧ f̃

2π
=

∫

M

1

2π

(
Be,+ ∧ f̃+ +Be,− ∧ f̃−

)
(5.16)

yielding the partition function

Z =
1

Vol(G)Vol(G̃)Vol(Gb)

∑

[f ],[f̃ ]∈H2(M,Z)

∫
[da dã dbe] exp (iS[a, ã, be; τ ]) ,

(5.17)

S[a, ã, be; τ ] =

∫

M

iτ̄

4π
(f+ + be,+) ∧ (f+ + be,+) +

iτ

4π
(f− + be,−) ∧ (f− + be,−)

+
i

2π
be,+ ∧ f̃+ +

i

2π
be,− ∧ f̃− . (5.18)

If one integrates out ã first, the Lagrange multiplier term enforces the flatness of the

gerbe connection be, and the sum over bundles on which ã is a connection enforces the

topological triviality of be. This shows that the partition function is identical to that of

Maxwell theory (5.13).

If instead one integrates out be first, one can use its gauge symmetry to set f = 0. The

squares can be completed to

S[a, ã, be; τ ] =

∫

M

iτ̄

4π

(
be,+ +

1

τ̄
f̃+

)
∧
(
be,+ +

1

τ̄
f̃+

)
(5.19)

+
iτ

4π

(
be,− +

1

τ
f̃−

)
∧
(
be,− +

1

τ
f̃−

)
− i

4πτ̄
f̃+ ∧ f̃+ − i

4πτ
f̃− ∧ f̃− .

The gaussian integral over be yields an overall τ -dependent numerical factor,27 while the

terms on the second line give exactly Maxwell theory, with connection ã and coupling

constant −1/τ .

On non-spin manifolds, there is a possibility of coupling Maxwell theory (electrically

or magnetically) coupling to w2(TM). Consider first adding a magnetic coupling to (5.14)

of the form

2π

∫

M

1

2
w2(TM)c1(E) (5.20)

27The factor is τ−(χ+σ)/4τ̄−(χ−σ)/4 [33].
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where c1(E) is (the mod 2 reduction of) the first Chern class of the line bundle. Upon

coupling to be and gauge fixing, this results in a five dimensional term

2π

∫

Y

1

2
w2(TM)

dbe
2π

, (5.21)

and integrating out be enforces the constraint

f̃

2π
=

1

2
w2(TM) (mod Z) . (5.22)

In other words, the connection valued Lagrange multiplier ã is a SpinC connection.

5.2 Non-Abelian theories

5.2.1 Symmetries

Consider, as in section 4, Yang-Mills theory based on a simple, connected and compact

gauge group G. Let L be its set of line operators, which, as we saw in section 3.1, can be

described as an extension of groups

0 → Γ̂e → L → Γ̂m → 0 , (5.23)

where G = G̃/Γm and Γe = Z(G). The one-form symmetry group L̂ is the Pontryagin

dual L̂
0 → Γm → L̂ → Γe → 0 . (5.24)

The charge operator — the analogs of the Noether charges in the abelian case — for the

Γm subgroup is

Qm(Σ) =

∮

Σ
bm , (5.25)

where bm ∈ H2(M, Γ̂m) is the Brauer class of the G-bundle, as we defined in section 3.1.

The unitary operator implementing the symmetry transformation by the group element

g ∈ Γm, is given by the exponential of the charge operator as

Um(Σ, g) = e2πi ⟨g,Qm⟩ . (5.26)

The symmetry operators for the group elements which project non-trivially onto Γe are

disorder-type Gukov-Witten surface operators [51]. For ease of exposition, we denote the

charge and unitary symmetry operator by

Q(Σ) =

∮

Σ
b , U(Σ, g) = exp

(
2πi g

∮

Σ
b

)
, (5.27)

with g ∈ L̂, keeping in mind that b ∈ H2(M,L) has a non-local expression in terms of

fundamental fields of the theory. Let b̃m ∈ C2(M,L) be a lift of bm, and let be ∈ C2(M, Γ̂e)

be defined by

b = b̃m + be . (5.28)
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The conservation of b leads to the relation

δbe = β̂(bm) , (5.29)

where β̂ : H∗(M, Γ̂m) → H∗+1(M, Γ̂e) is the Bockstein homomorphism28 associated to the

extension (5.23).

5.2.2 Coupling to background gauge fields

Let A ∈ H2(M, L̂) be the background field for the L̂ one-form symmetry. Let Ae denote

the projection of A to H2(M,Γe), and Am ∈ C2(M,Γe) be defined by

A = Ãe +Am , (5.30)

where Ãe is some choice of lift of Ae. The flatness of A implies

δAm = β(Ae) , (5.31)

where β : H∗(M,Γe) → H∗+1(M,Γm) is the Bockstein homomorphism29 associated to

the extension (5.24). Physically, this reflects the fact that the symmetry group L̂ is a

Γm-projective extension of Γe — so lifts of Γe elements violate the group law up to ele-

ments of Γm. This means that Γm flux can be sourced by junctions between Γe symmetry

operators [52].

In terms of the fields Am and Ae, the minimal coupling can be written as

2π

∫

M
A ∪ b = 2π

∫

M
Ae ∪ be +Am ∪ bm + Ãe ∪ b̃m . (5.32)

(Note that Am ∪Be = 0 due to exactness.)

5.2.3 Anomalies

As in abelian gauge theory, there may exist mixed ’t Hooft anomalies in the L̂ one-form

symmetry, which can be detected by coupling to the background gauge field A. Mixed

anomalies between Γe and Γm are characterized by the mild violation (i.e. violation only

when background fields are turned on) of discrete “current” conservation

δbm = A∗
e ê , (5.33)

where ê ∈ H3(B2Γe, Γ̂m) satisfies the condition

e ∪ ê = 0 ∈ H6(B2Γe,R/Z) . (5.34)

Fixing cocycle representatives for e, ê and a representative ω ∈ C5(B2Γe,R/Z) satisfying
δω = e ∪ ê, the five-dimensional anomaly polynomial can be written as [52]

2π

∫

Y
Am ∪A∗

e ê−A∗
eω . (5.35)

28β̂ : Hp(−−, Γ̂m) → Hp+1(−−, Γ̂e) can also thought of as the extension class ê ∈ Hp+1(BpΓ̂m, Γ̂e)

of (5.23) as p-groups, under the relation β̂(bm) = b∗mê.
29Similarly, β can be thought of as the extension class e ∈ H3(B2Γe,Γm) of (5.24) as higher groups,

under the relation β(Ae) = A∗
ee.
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As an example of a theory exhibiting such an anomaly, consider the gauge group

SU(rs)/Zs, with η = 0. The one-form symmetry of the theory is the direct product of

Γe = Zr and Γm = Zs. The generator for the magnetic symmetry is the Brauer class

bm = wm(E) ∈ H2(M, Γ̂m) of the gauge bundle E associated to the sequence

0 → Γ̂m = Zs → SU(rs) → SU(rs)/Zs → 0 . (5.36)

To couple to the background field Ae for Γe = Zr, one relaxes the SU(rs)/Zs gauge bundle

to a PSU(rs) gauge bundle, and sums over PSU(rs) bundles in the path integral with

Brauer class we(E) ∈ H2(M,Γe) associated to the sequence

0 → Γe = Zr → SU(rs)/Zs → PSU(rs) → 0 (5.37)

equal to the background field Ae. In other words, the action of the theory coupled to Ae is

SPSU(rs)[a] + 2π

∫

M

1

r
b̃e ∪ (we(E)−Ae) , (5.38)

where SPSU(rs)[a] is the Yang-Mills action for a PSU(rs) gauge connection a, and b̃e is a

Zr-valued two-form Lagrange multiplier field enforcing we(E) = Ae.

PSU(rs) bundles have a Brauer class w ∈ H2(M,Zrs) associated to

0 → Zrs → SU(rs) → PSU(rs) → 0 (5.39)

whose mod s reduction is the class mentioned above

w(E) = we(E) (mod s). (5.40)

Meanwhile, the mod s-valued class bm = wm(E) defined above for SU(rs)/Zs-bundles are

no longer well-defined here. Instead, we consider

b′m =
1

r
(w̃e(E)− w(E)) , (5.41)

where w̃e(E) ∈ C2(M,Zrs) is some lift of we(E). Note that the expression in brackets is

an integer multiple of r, so (5.41) defines a Zs-valued cochain. The failure of the cocycle

condition

δb′m =
1

r
δw̃e(E) = β(we(E)) = A∗

e ẽ , (5.42)

is exactly given by the Bockstein homomorphism β : H2(M,Γe) → H3(M, Γ̂m) acting

on we, which can equivalently be thought of as the pullback of the extension class ẽ ∈
H3(B2Γe, Γ̂m) of the one-form extension

0 → Γ̂m → Z(SU(rs)) → Γe → 0 . (5.43)

Comparing this to (5.33), we see that Yang-Mills theory with gauge group SU(rs)/Zs and

η = 0 has a mixed ’t Hooft anomaly

2π

∫

Y
Am ∪A∗

e ẽ . (5.44)
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Like in the abelian case, the spacetime manifold can couple to (Z2 subgroups of) the

one-form symmetries. For example, if r is even, one could set Ae = r w2(TM)/2, which

makes the fundamental electric particles fermionic. If s is even, setting Am = sw2(TM)/2

makes the fundamental magnetic particles fermionic. In both r and s are even, turning on

both couplings to w2(TM) results in the same all-fermion anomaly

2π

∫

Y

1

2
w2 ∪ Sq1w2 = 2π

∫

Y

1

2
w2w3 , (5.45)

as can be seen from (5.35).

5.2.4 Anomalies and T -transformation

Returning to the general setup at the beginning of section 5.2.3, consider now the addition

of a discrete theta term

2π

∫

M
Pσ(bm) . (5.46)

Due to the anomaly (5.33), the discrete theta term is not gauge invariant. Indeed,

δS = 2π

∫

Y
A∗

ee ∪ η(bm) = 2π

∫

Y
η(A∗

ee,∪bm) . (5.47)

Comparing this with (5.35), observe that this gauge variation can be cancelled by shifting

the extension class e by

∆e = −η ◦ ê . (5.48)

In other words, the addition of a discrete theta term modifies the extension class e of the

one-form symmetry group by an amount proportional to the ’t Hooft anomaly ê.

5.2.5 Gauging one-form symmetries

The various different gauge theories with based on the same Lie algebra can be related to

one another by gauging their one-form symmetries. Indeed, we have already encountered

and implicitly used this fact starting from the theory based on the simply connected Lie

group G̃. The one-form symmetry group in this case is purely electric and equal to its center

Z(G̃). Suppose we minimally couple and dynamically gauge a subgroup Γ̂m ⊂ Z(G̃).30

According to the prescription discussed above, this is done by promoting the G̃ bundle to

a G̃/Γ̂m bundle, allowing cocycle conditions to be violated by elements in Γ̂e. The Brauer

class w(E) ∈ H2(M, Γ̂m) of the G̃/Γ̂m bundle is constrained to be equal to the gauge field

am by a Lagrange multiplier field, which is then summed over in the path integral. Clearly,

this simply yields G̃/Γ̂m theory with η = 0, which now has an emergent Γm one-form

symmetry generated by the cocycle w(E).

In order to arrive at the theories with non-trivial η, or, equivalently, non-trivial

extensions

0 → Γ̂e → L → Γ̂m → 0 , (5.49)

30Note that this is subtly different from coupling to a Z(G̃) background field and then gauging a subgroup.

There are some G̃/Γ̂m theories that cannot be obtained in this manner, whereas they can be reached by

coupling directly to Γ̂m gauge fields.
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one couples non-minimally to the gauge field am by adding discrete theta terms of the form

2π

∫

M
Pσ(am) , (5.50)

where σ is the quadratic form corresponding to the desired theory, as discussed in section 4.

We can apply the same procedure to any theory, dynamically gauge some subgroup of

its one-form symmetry L̂, possibly with discrete theta terms, to arrive at any other theory

with the same gauge algebra.

5.2.6 Anomalies and one-form symmetries under gauging

Gauging a subgroup of the one-form symmetry yields another theory, with the same gauge

algebra, but with the ’t Hooft anomaly and group extension class exchanged. This is a

manifestation of the phenomenon described in [52].

We illustrate this by beginning with a G̃ gauge theory, and gauge a subgroup Γm of

its one-form symmetry group Z(G̃) yielding G̃/Γm gauge theory. The parent G̃ theory

has one-form symmetry group described by the extension (3.10). Let e ∈ H3(B2Γm,Γe)

denote its extension class. This theory is non-anomalous, so the one-form symmetry of the

daughter G̃/Γm theory is a direct product Γe× Γ̂m. Meanwhile, the background gauge field

bm of the parent theory is now summed over in the daughter theory, so the failure of the

cocycle condition

δb̂m = A∗
ee (5.51)

is now interpreted as a mixed anomaly with anomaly polynomial [52]

2π

∫

Y
A∗

ee ∪ Âm , (5.52)

where Ae, Âm are the two-form gauge fields for Γe and Γ̂m respectively.

In order to arrive at other theories with gauge group G̃/Γm — whose set of line

operators L is not a direct product of electric and magnetic factors, but rather a nontrivial

extension (3.11) — we add a discrete theta term (3.14). As discussed in section 5.2.4, such

a term shifts the extension class of the one-form symmetry by the mixed anomaly

e′ = η ◦ e , (5.53)

where η(x, y) = σ(x+ y)− σ(x)− σ(y) is the bilinear form corresponding to the quadratic

form used to define the Pontryagin square term in (3.14).

This discussion of the one-form symmetry gives an alternative understanding of (3.12)

in terms of its Pontryagin dual. Indeed, e ∈ H3(B2Γe,Γm) is the extension class of (3.10),

while e′ ∈ H3(B2Γe, Γ̂m) is the extension class of the Pontryagin dual of (3.11)

0 → Γ̂m → L̂ → Γe → 0 . (5.54)

The relation e′ = η ◦ e establishes the one-form symmetry group L̂ as the pushout

0 Γ̂m L̂ Γe 0

0 Γm Z(G̃) Γe 0

η (5.55)

which is dual to the pullback diagram (3.12).
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A Lie algebra basis and weight lattices

We begin with a simple Lie algebra g, and choose a Cartan subalgebra t ⊂ g. Let αi ∈ t∗

denote the simple roots of g. The Cartan matrix is defined by

Cij = 2
trαiαj

trαjαj
, 1 ≤ i, j ≤ r (A.1)

where tr is the Killing form on g and r is the rank of g. This does not depend on the overall

normalization of the Killing form, but following an often used convention, we normalize

it such that the length-squared of the long root(s) is 2. The simple coroots α∨
i ∈ t are

defined by

⟨αi,α
∨
j ⟩ = 2

trαiαj

trαjαj
, (A.2)

which also does not depend on the overall normalization of the Killing form. The length-

squared of the short coroot(s) is 2. If we identify t with t∗ using the Killing form, we get

α∨
i
∗ =

trα∨
i α

∨
i

2
αi , and (trα∨

i α
∨
j )(trαiαi) = 4 . (A.3)

The corresponding fundamental weights are

νi = C−1
ij αj , (A.4)

which generate the weight lattice Λw of g. Note that although Cij has integral entries,

its inverse generally does not. An irreducible representation of g is characterized by its

highest weight

ν = miνi, mi ∈ Zr . (A.5)

Simple coroots α∨
i and fundamental coweights µ∨

i of g are defined as the dual vectors to the

fundamental weights and simple roots. They generate respectively the coroot and coweight

lattices Λcr and Λcw. For convenience, we list here the pairings between fundamental

weights, simple roots, fundamental coweights and simple coroots.

⟨αi,α
∨
j ⟩ = Cij , (A.6)

⟨νi,α∨
j ⟩ = δij , (A.7)

⟨αi, µ
∨
j ⟩ = δij , (A.8)

⟨νi, µ∨
j ⟩ = C−1

ij . (A.9)
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The coroots and fundamental coweights generate Λcr and Λcw respectively and we have

Λr ⊂ ΛG ⊂ Λw ⊂ t∗ , (A.10)

Λcr ⊂ ΛcG ⊂ Λcw ⊂ t . (A.11)

Here ΛcG is the cocharacter lattice of G where the magnetic charges take value in, and its

dual lattice ΛG := Hom(ΛcG,Z) is the character lattice of G. The lattices ΛG and ΛcG

are dual in the sense that for any ν ∈ ΛG and µ∨ ∈ ΛcG, ⟨ν, µ∨⟩ ∈ Z. As explained in

section 3.2, the actual weight lattice of a theory with gauge group G is an extension of

ΛcG by ΛG, where the extension is determined by the topological theta parameters of the

theory. In particular modding out by the (co)root lattices and projecting onto the one-form

symmetry charges, we get the extension (3.11). For weights ν ∈ Λw and µ∨ ∈ Λcw, we

denote the corresponding one-form symmetry charges by [ν] ∈ Λw/Λr and [µ∨] ∈ Λcw/Λcr,

which are the projection of the weights onto Λw/Λr and Λcw/Λcr.

B Adjoint Higgsing

In this section we perform a consistency condition of our proposal by adjoint Higgsing. We

add an adjoint scalar Higgs field to the non-abelian theories we discussed. As a result, the

theory flows in the infrared to an abelian gauge theory with gauge group T = t/ΛcG —

which is the maximal (Cartan) torus of G — with some topological theta term. We refer to

this infrared theory as the Coulomb phase. This abelian theory is free and as discussed in

section 2 we know its set of line operators and their spins exactly. We see how our proposal

predict the spins of these lines in the infrared.

Denoting the gauge field of the Higgsed theory as A ∈ Ω1(M, t), the gauge transfor-

mation are given by

A +→ A+ dλ , for : λ ∈ Ω0(M,T) , (B.1)

where λ : M → T is a smooth function. Every such map can be written as

λ = exp(iλih∨i ) , (B.2)

where h∨1 , . . . , h
∨
r=rank(G) generate the cocharacter lattice of G,

ΛcG = {m1h
∨
1 + · · ·+mrh

∨
r | mi ∈ Z} . (B.3)

This lattice is the kernel of the exponential map above and we have the short exact sequence

0 → ΛcG → t
exp−−→ T → 0 . (B.4)

Therefore λi : M → R/Z, and each of them individually define a separate U(1) gauge

transformation. Accordingly if we expand the gauge fields as

A = Aih∨i , where : Ai ∈ Ω1(M,R) , (B.5)

each of Ai is a seperate U(1) gauge field with U(1) holonomies. Upon Higgsing, the theory

flows in the infrared to

S =

∫

M4

(
− 1

2e2
gijF

i ∧ ∗F j +
θ

8π2
gijF

i ∧ F j

)
, (B.6)

where gij = trh∨i h
∨
j , and F i = dAi.
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Denote Qie and Qim as the electric and magnetic charges under Ai. More precisely

Qie =
1

e

∮

Σ
∗F i , Qim =

1

e

∮

Σ
F i , (B.7)

measure the electric and magnetic charges inside the surface Σ. By doing the Noether

procedure as in (5.2), we find the integer valued one-form symmetry charges

ni = gij

∮

Σ

(
1

e2
∗ F j − θ

4π2
F j

)
, mi =

1

2π

∮

Σ
F i , (B.8)

where we have the relations

ni = gij

(
1

e
Qje −

eθ

4π2
Qjm

)
, mi =

e

2π
Qim . (B.9)

Therefore, it is easy too see that we have

Qie g
−1
ij Q′

jm −Q′
ie g

−1
ij Qjm ∈ 2πZ , (B.10)

for any pair of dyons. This is in fact the DSZ quantization condition of this theory, which

also measures the angular momentum stored in the electromagnetic fields in the presence

of the pair of dyons. Now one could find the Wilson-’t Hooft lines which are charged under

these one-form symmetries and match them with the UV line operators. We define the

Wilson lines by integrating the gauge fields, and the ’t Hooft lines can be defined as the

boundary of the surfaces which generate the electric one-form symmetries,

W i(γ) = exp

(
2πi

∮

γ
Ai

)
, T i(∂Σ) = exp

(
2πi gij

∫

Σ

(
1

e2
∗ F j − θ

4π2
F j

))
. (B.11)

We find the UV line operators that flows after Higgsing to these basic Wilson and ’t Hooft

lines, by finding their corresponding weights. First we pick a basis for the character lattice

ΛG of G which is dual to the chosen basis for ΛcG, i.e.

⟨hi, h∨j ⟩ = δij . (B.12)

Thus in the UV weights of the form (hi, h∨j ) generate all the possible genuine Wilson-’t

Hooft lines. Wilson lines of the UV theory are labeled by representations of G. Define Ri

as the representation whose highest weight is hi, then the corresponding UV Wilson line

is defined by

W (Ri) = trRi exp

(
i

∮
A

)
=

∑

ν∈Ri

exp

(
i

∮
⟨ν, A⟩

)
= exp

(
i

∮
Ai

)
+ · · · , (B.13)

where the sum is over all the weights ν of the representation Ri. In particular, hi is such a

weight and since ⟨hi, A⟩ = Ai, the sum includes the IR Wilson line W i. Thus we see that

the UV Wilson line, decomposes into a sum of IR Wilson lines which should all carry the

same spin as the UV line. Thus having a labeling for the UV Wilson lines, we infer the

spins of the IR lines. Similarly one could see that the UV ’t Hooft line characterized by
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the coweight h∨i , flows in the IR into a sum including basic IR ’t Hooft line T i. For these

IR lines, the angular momentum of the electromagnetic fields of two dyons with charges

(ni,mi) and (n′
i,m

′
i) is given by the Dirac pairing (B.10) as

2J3 =
r∑

i=1

nim
′
i − n′

imi =
〈
(nihi,mih

∨
i ), (n

′
ihi,m

′
ih

∨
i )
〉
D

(mod 2) . (B.14)

Thus the Dirac pairing of the UV lines labeled by weights (nihi,mih∨i ) and (n′
ihi,m

′
ih

∨
i ),

indeed calculate the angular momentum of the electromagnetic fields in this Coulomb

phase. Thus our proposal of labeling the UV lines with spin, is consistent with the spin of

the IR lines after Higgsing.

Also note that all the ’t Hooft lines of the IR theory whose weights (charges) are inside

the coroot lattice Λcr, can be realized as dynamical ’t Hooft-Polyakov monopole solutions

of the UV theory. This is because, the VEV of the Higgs field breaks the guage group

G down to its Cartan torus T. Thus topologically solitonic solutions are characterized by

π2(G/T). There is the long exact sequence

π2(G) = 1 → π2(G/T) → π1(T) = ΛcG → π1(G) = ΛcG/Λcr → · · · , (B.15)

and we get π2(G/T) = Λcr. Thus ’t Hooft lines with charges (0,mi) such that mih∨i ∈ Λcr,

are UV completed as ’t Hooft-Polyakov monopoles of the UV theory.

Furthermore, from (B.9) one could find the effect of shifting θ by 2π by noting that

ni = gij

(
1

e
Qje −

θ

2π
mj

)
. (B.16)

Hence shifting θ by 2π shifts the electric weight ν = nihi by

∆ν = −gijmjhi = −(mjh
∨
j )

∗ , (B.17)

which is consistent with the T -transformation defined in section 3.

C S and T transformations

Here we study the S and T operations defined in [27] (section 6), on the non-abelian gauge

theories discussed in the previous section. These operations are defined as a generalization

of Witten’s operation on 3d theories with global symmetries [53]. The T operation is

already discussed in section 3.3, and acts by adding a discrete theta term to the action.

Whereas the S operation acts by gauging the one-form symmetry of the theory which is

further explained in section 5. The S and T operations can be defined by their action on

the line operators as

S : (ν, µ∨)s +→ (µ∨∗,−ν∗)s , (C.1)

T : (ν, µ∨)s +→ (ν − µ∨∗, µ∨)s , (C.2)

where the map ∗ : t → t∗ is induced by the Killing form on t — see section 3.3. Since

different gauge theories are determined by their set of genuine line operators and their
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spins, these maps uniquely determine a map between the theories. It is straightforward

then to obtain the full SL(2,Z) orbits of these non-abelian gauge theories. We do it for

u(2) and su(4) gauge theories below.

Note that these operations, a priori, do not act on the coupling constant τ of the

theory. But in some cases if we also change τ we can obtain duality transformations. For

instance as was explained in section 3.3, for the T operation by shifting the θ-angle of the

theory by 2π, the T operation becomes a duality transformation. Furthermore, for the case

of U(1) theories by a proper action on τ we have the full SL(2,Z) duality transformation

on the abelian theories. However, for non-abelian theories to get the full SL(2,Z) group

to act as a duality transformation, we need to look at the supersymmetric version of the

Yang-Mills theory.

N = 4 super Yang-Mills on non-spin manifolds. For the case of N = 4 super

Yang-Mills theory, the S and T operations become duality transformations [54–56] given

the actions

S : τ +→ − 1

ngτ
, T : τ +→ τ + 1 , (C.3)

on the coupling constant of the theory, where ng = 1 for simply laced Lie algebras (for

non-simply laced algebras see [40, 57]). The orbits of S-duality for non-abelian theories on

spin manifolds was obtained in [24]. Here we extend that discussion to non-spin manifolds.

As explained in [15], to define N = 2 super Yang-Mills theory with SU(2) guage group

on non-spin manifolds, we have to define a non-abelian spin/charge relation [14, 16] because

of the adjoint fermions. In particular, we have to identify the Z2 subgroup of the Lorentz

transformation generated by (−1)F with the central Z2 subgroup of the global R-symmetry

that the adjoint fermions are charged under. For the case of N = 4 supersymmetry, the

adjoint fermions transform in the fundamental representation of the SU(4)R symmetry, so

one could identify the central element − ∈ SU(4)R with (−1)F of the Lorentz group. This

defines a non-abelian spin/charge relation which allows us to define the N = 4 Yang-Mills

theory on non-spin manifolds.

C.1 g = su(2)

For the example of su(2) gauge theory on non-spin manifolds, all the theories belong to

the same orbit of S and T operations and we get the following web

SO(3)1,f

SU(2) SO(3)0,b SO(3)0,f Spin-SU(2)

SO(3)1,b

T

S

T

S

T

T

S

T

T

(C.4)

By looking at the N = 4 version of these theories, we can obtain extra consistency checks

for our proposal by Higgsing these theories to U(1), and match the S-duality orbits.
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For the case of s′SU(2) theory, the fundamental Wilson line has spin s′ which under

Higgsing becomes the fundamantal Wilson line of the U(1) theory. For the SO(3)q,s theory

however, the basic Wilson line isW 2 = (2, 0)b which Higgses to the fundamental Wilson line

of the U(1) theory (1, 0)b. The other generating line W qT = (q, 1)s, Higgses to a line of spin

s and electric charge q/2 in the U(1) theory. This fractional electric charge is equivalent

to adding a theta angle of qπ to the U(1) theory. Moreover by looking at the coupling

constants of these theories, we have the relations τU(1) = 2τSU(2) and τU(1) = τSO(3)/2.

Therefore after Higgsing we get

s′SU(2)
τ : (1, 0)s′ , (0, 2)b SO(3)τq,s : (2, 0)b, (q, 1)s

s′U(1)
2τ
b : (1, 0)s′ , (0, 1)b U(1)(τ+q)/2

s : (1, 0)b, (0, 1)s

Higgsing Higgsing (C.5)

To see the consistency of the S-duality of su(2) theories with U(1), we Higgs the theories

in (C.4) and indeed we get a web of dualities for the U(1) theories as expected

U(1)(2τ−1)/2τ
f

U(1)2τb U(1)−1/2τ
b U(1)(2τ−1)/2τ

f

(
SpinC

)2τ/(1−2τ)

b

U(1)(4τ−1)/2τ
b

S

T

T

S

T 2

(C.6)

C.2 g = su(4)

For the case of Yang-Mills theory based on the Lie algebra su(4), we get the following orbits

PSU(4)2,b

PSU(4)1,f PSU(4)3,f

SO(6)1,f

SU(4) PSU(4)0,b PSU(4)0,f Spin-SU(4)

SO(6)1,b

PSU(4)3,b PSU(4)1,b

PSU(4)2,f

T

S

T

S

T

ST

T

S

T

T

S

T

S

T

TT

SO(6)0,b SO(6)0,f Spin-SO(6)b Spin-SO(6)fS
T S

T S, T .
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Interestingly for this example, different orbits have different one-form symmetry groups or

the same symmetry but different ’t Hooft anomalies for that symmetry. In particular, the

theories in the orbit of SU(4) have a Z4 one-form symmetry, whereas the other theories

have a Z2×Z2 one-form symmetry. Furthermore, as explained in section 5, the theories in

the orbit of Spin-SO(6)b are anomaly free while the Spin-SO(6)f theory has a gravitational

’t Hooft anomaly.

D Consistency with Wu’s formula

In this appendix we perform a non-trivial check on our proposal of determining the spin

of lines in non-Ableian gauge theories. This check is based on Wu’s formula, which states

that for any Z2 cohomology class x ∈ H2(M,Z2),

1

2
w2(TM) ∪ x+

1

2
x ∪ x ≡ 0 (mod 2) , (D.1)

where w2(TM) is the second Stiefel-Whitney class of (the tangent bundle of) the manifold

M. In the examples of section 4, take x = bm as a generator of some Z2 one-form symmetry.

Adding (2π times) the l.h.s. of (D.1) to the action, we get a duality since the action remains

invariant mod 2π. This duality puts some constraints on the set of line operators and their

spin. To see this, note that the first term in (D.1) attaches a w2(TM) surface to those

lines which are charged under this Z2 symmetry, and hence changes their spin. Whereas

the second term attaches the surface

exp

(
2πi

∫

Σ
x

)
, (D.2)

to the charged line operators supported on γ = ∂Σ. But such open surfaces are not gauge

invariant, and has to be attached to a line operator with some weight which we denote by

∆γ̃ ∈ Λ̃. Therefore, if we start with a theory that have a line operator with weight γ̃ ∈ L̃
and spin s (mod 2) which is charged under the Z2 symmetry, then the duality guarantees

that the theory should also have a line with spin s+ 1 (mod 2) and weight γ̃ +∆γ̃. Now

we want to prove this requirement by using our proposal.

Let us assume that the theory has a set of lines labeled by their weights in L̃. Thus

the one-form symmetry charges of these lines is given by projection of their weights onto

L. This projection is given by the restriction of the projection p : Λ̃ → Λ to L̃ ⊂ Λ̃. Also,

since L is the group of the charges, its Pontryaging dual L̂, is the symmetry group. Denote

b ∈ H2(M,L) as the generator of this one-form symmetry, and denote the Z2 one-form

symmetry subgroup by the inclusion i : Z/2Z → L̂. The Pontryagin dual of this inclusion

defines the generator of this Z2 one-form by

î(b) =: x ∈ H2(M,Z/2Z) , (D.3)

where we have identified Z2 and Ẑ2 with Z/2Z. Now take an arbitrary line operator of

the theory with weight γ̃ and one-form charge γ = p(γ̃), then the Z2 charge of this line is

given simply by î(γ) ∈ Z/2Z. We conclude that adding the first term in (D.1) to the action
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change the spin of a line with weight γ̃ by î(γ). So it changes the spin lables s : L̃ → Ẑ2

to s′ = s+ î ◦ p. Now we want to find how the weights change by adding the second term

in (D.1), i.e. finding ∆γ̃. To do so note that the second coupling in (D.1) can be written as

η(b,∪b) = 1

2
î(b) ∪ î(b) (mod Z) , (D.4)

where η : L× L → R/Z. Equivalently, η can be viewed as a homomorphism η : L → Λ/L,
where we have identified L̂ with Λ/L by an isomorphism31 induced by the Dirac pairing

on Λ. Then similar to (3.13), η changes the Lagrangian charge lattice L ⊂ Λ to32

L′ = {γ +∆γ | γ ∈ L , ∆γ ≡ 2η(γ) mod L} , (D.6)

and we have ∆γ̃ ∈ 2p−1(η(γ)), where here p is the projection Λ̃ → Λ/L.
Putting everything together the duality sends the line with weight γ̃ with spin s(γ̃) to

the line with weight γ̃ +∆γ̃ and spin (s+ î ◦ p)(γ̃) which has to be the genuine line of the

same theory. But before the action of this duality the line with weight γ̃ + ∆γ̃ has spin

s(γ̃ + ∆γ̃). Thus the consistency of our proposal with Wu’s formula requires these two

spins to be the same, i.e.

(s+ î ◦ p)(γ̃) ≡ s(γ̃ +∆γ̃) (mod 2Z)

s(γ̃) + î ◦ p(γ̃) ≡ s(γ̃) + s(∆γ̃) + ⟨∆γ̃, γ̃⟩Dirac (mod 2Z)

î(γ) ≡ 2⟨η(γ), γ⟩Dirac (mod 2Z)

î(γ)̂i(γ) ≡ 2η(γ, γ) (mod 2Z)

(D.7)

where in the second line we have used s(∆γ̃) ≡ 0 (mod 2Z), this is because ∆γ̃ is inside

2p−1(η(γ)) and hence is twice of some weight, so according to (3.7) is bosonic. The last

line simply follows from the definition of η in (D.4). Thus we have shown the consistency

of our proposal with Wu’s formula.

E Normalization of theta terms

In this appendix, we discuss our normalization of the continuous theta term

θ

2

∫

M
tr

f

2π
∧ f

2π
. (E.1)

We shall do so by specifying the characteristic class, as well as any numerical factor, which

multiplies the periodic parameter θ. This will unambiguously give the definition of θ,

31More precisely the Dirac pairing on Λ — which is the projection of the pairing (3.5) on Λ — gives an

isomorphism ∗ : L̂ → Λ/L, by the relation

⟨g∗, γ⟩Dirac = ⟨g, γ⟩ (mod Z) for : g ∈ L̂ and γ ∈ L , (D.5)

where the r.h.s. is evaluated by the natural pairing between L̂ and L. This can be summarized in a short

exact sequence 0 → L → Λ → L̂ → 0. Interestingly when the sequence is not split, the L̂ one-form

symmetry is anomalous.
32However for η given in (D.4) L′ = L, otherwise the duality would have failed.
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avoiding any niggly numerical factors, and furthermore, the integrality and multiplicity of

characteristic classes will immediately tell us the periodicity of θ.

For abelian U(1) theory, the theta term is normalized as

θ

2

∫

M
c1(E)2 , (E.2)

where c1(E) is the first Chern class of the U(1) bundle E. On spin manifolds, c21 is even,

and so θ is 2π-periodic for a spin theory. On non-spin manifolds, however, θ is 4π-periodic.

For non-abelian theories, the story is more complicated, as there are different Lie

groups corresponding to the same Lie algebra. The fourth cohomology of a connected,

simply connected and simple Lie group G̃ has rank one

H4(BG̃,Z) = Z , (E.3)

and let x̃ be its generator (fixed up to sign of θ). For example, in the case G̃ = SU(N), x̃ is

the second Chern class c2 of the N -dimensional complex bundle; for G̃ = Sp(N), x̃ is the

first Pontrjagin class p1 of the 2N -(complex) dimensional quaternionic bundle. The theta

term an oriented Yang-Mills theory with gauge group G̃ is normalized as

θ

∫

M
a∗x̃ , (E.4)

where a : M → BG̃ is the Yang-Mills connection. It follows that θ is 2π periodic.

Now, consider a group G = G̃/π1(G) which is not simply connected. The fourth

integral group cohomology of BG is again of rank one, and the projection map ρ : G̃ → G

induces an injection

ρ∗ : H4(BG,Z) → H4(BG̃,Z) . (E.5)

Let x be a generator of H4(BG,Z). Then

ρ∗x = nx̃ (E.6)

for some nonzero integer n ∈ Z, which we can choose to be positive by redefining x. The

theta term of an oriented Yang-Mills theory with gauge group G is normalized as

θ

n

∫

M
a∗x , (E.7)

and it follows that θ is 2πn periodic.

For example, for G = PSU(N) = SU(N)/ZN , n = N if N is odd and n = 2N if

N is even [28]. One way of computing n is to compute c2(Ad) for the associated adjoint

bundle Ad, which is a characteristic class of PSU(N), in terms of characteristic classes of

the defining N -dimensional bundle. One finds that c2(Ad) = 2Nc2(N) [58]. For N even,

this class is primitive and is therefore equal to ρ∗x (up to sign), while for N odd, this class

is divisible by 2 and so 2ρ∗x = c2(Ad) (up to sign) [28, 59].
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G G̃ n ∆p (mod n)

PSU(N), N even SU(N) 2N N − 1

PSU(N), N odd SU(N) N −1

PSp(N) Sp(N) 2 N

SO(N), N ≥ 5 Spin(N) 2 1

PSO(2N), N odd Spin(2N) 8 N

PSO(2N), N even Spin(2N) 8 see (4.60)

E6/Z3 E6 3 1

E7/Z2 E7 2 1

Figure 3. Table of gauge groups, θ periodicities and T -transformations.

F Relation between discrete and continuous theta terms

The relation between discrete and continuous theta terms can be understood as a relation

between integral and torsion characteristic classes of the gauge G-bundle. See section 6

of [24] for a similar discussion on spin spacetime manifolds. As in appendix E, let x be a

generator of H4(BG,Z), and the positive integer n be such that the continuous theta term

is normalized as θx/n.

When θ is a multiple of 2π, the continuous theta term can be expressed in terms of a

discrete theta term P(w), where b is the Brauer class of the G bundle corresponding to the

extension 1 → Γm → G̃ → G → 1. This is the topological genesis of the T -transformation

described in section 3.3. The relation takes the form

x = −∆pP(b) (mod n) . (F.1)

The values of theta period n and T -transformation ∆p are tabulated in table 3. For some

gauge groups such as PSU(N) and SO(N), the relations can be found and corroborated

in the mathematics literature — see [59, 60], as well as [24, 28] and the references therein.

For other gauge groups, we are not aware of results in the mathematics literature, and

the physical arguments in this and the earlier papers [24, 28] serve as heuristic arguments

for them.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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