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1 Introduction

Line operators in four-dimensional gauge theories are important observables which can be
used to classify phases of gauge theories. Wilson lines — worldlines of heavy electrically
charged particles — obey an area law in a confining phase, while its magnetic analogs,
't Hooft lines — disorder operators which can be thought of as worldlines of magnetic
monopoles — obey an area law in a Higgs phase [1, 2].

While the gauge algebra of a four-dimensional gauge theory fully determines its local
operators, it does not fully determine its line operators. Possible line operators are asso-
ciated to representations of the gauge algebra and its GNO (Langlands) dual [3, 4], and
constraints from locality requires that only a subset of possible operators is allowed. In
abelian theories, the charges of line operators have to satisfy the Dirac-Schwinger-Zwanziger
quantization condition [5-7], and in non-abelian theories they have to satisfy its general-
ization [8]. Different subsets of allowed line operators correspond to different gauge groups
and Lagrangians corresponding to the same gauge algebra.

In addition to their charges, line operators also carry quantum numbers under the
spacetime symmetries, transforming under the little group of the Poincaré symmetry. On
oriented manifolds, this is the group SO(3), of spatial rotations, whose projective repre-
sentations are labeled by the spin, and line operators can be either bosonic or fermionic.
However, for non-spin manifolds, there is no spin structure so one cannot define chargeless
fermionic lines (worldlines of heavy neutral fermions). Equivalently for a line operator of
a given charge, we cannot have both fermionic and bosonic lines, since they could fuse to
produce a chargeless fermionic line. However, the existence of charged fermionic lines on
such manifolds is allowed and does not require a spin structure. For instance, in the pure
U(1) gauge theory the dyon is a fermion [9-11] and the theory does not depend on a spin
structure. Therefore on non-spin manifolds, the classification of gauge theories requires
the specification of the spin of each allowed line operator, i.e. a spin/charge relation.! In
contrast, on spin manifolds the classification does not depend on the spin, since for any
charge there are both bosonic and fermionic lines. This is because the chargeless fermionic
lines can be fused with any line in the theory to produce another one with the same charge
but different spin. Therefore, on spin manifolds, lines are labeled only by their charges and
were classified in [24] for all simple Lie groups. The purpose of this paper is to classify line

!Such spin/charge relations depend on weaker structures rather than a spin structure. For instance, an
abelian gauge theory with fermionic Wilson lines requires a Spin® structure on the spacetime manifold. For
the case of U(1) and SU(2) gauge theories this was discussed in [12-23].



operators on oriented but non-spin manifolds, which amounts to consistently specifying the
spins of all allowed lines in the theory.

Similarly, on non-orientable spacetime manifolds, we can measure the Kramers prop-
erties of Wilson-"t Hooft lines. In this article, we focus on oriented spacetime manifolds
and leave the unoriented case for future work. For the case of abelian gauge theories, this
classification was previously done in [25, 26].

Gauge theories have dynamical particles of spin 1 — the gauge bosons — and hence
the spins of line operators are only measurable, at long distances, modulo 1. Therefore, the
theory has line operators labelled by their electromagnetic charges, as well as their spins
modulo 1 — that is, whether the line operators are bosonic (integer spin) or fermionic
(half-integer spin).

Because of the angular momentum of the gauge field, a bound state of two bosonic
dyons can be a fermion. For instance, in U(1) gauge theories the bound state of a bosonic
electron and a bosonic magnetic monopole of minimal charge is a fermion. More generally,
the angular momentum .J3, stored in the gauge fields is given by the Dirac pairing between
the two dyons

25 = 5-(QLQ% — @2QL) (mod 22), (11)

where Q% and Q¢ are their electric and magnetic charges.

The Dirac quantization condition can be derived by requiring the angular momentum
stored in the gauge field to be half-integer, or equivalently the Dirac pairing between any
two dyons to be an integer. For a non-abelian gauge theory in the Coulomb phase, it turns
out that there is a non-abelian version of the Dirac pairing between line operators which
measures the angular momentum stored in the gauge field, see appendix B. Motivated by
this, we conjecture a way to determine the spin of every allowed line operator, given the
spins of two generating lines.

For a non-abelian gauge theory based on Lie algebra g, the set of line operators are
specified by the Weyl orbit of a weight-coweight pairs

w= (v,1’) € Ay X Acyy, (1.2)

where Ay, and Ay, are the weight and coweight lattice of g [4]. Wilson lines are labeled by
the Weyl orbit of a weight v € Ay, which specifies the highest weight of the corresponding
representation. Similarly, the 't Hooft lines are labeled by (the Weyl orbit of) a coweight
1V € Aey which specifies the corresponding GNO charge. The Dirac pairing between two
dyonic lines is defined by

<w,w/>D = (") — (V) . (1.3)

The Dirac quantization condition requires the Dirac pairing to be an integer. Let s, be
the spin of a line (0 for boson and 1 for fermion) whose weights is given by the Weyl orbit
of w € Ay, X Aey. We propose that given the spins of lines with weights w,w’ € Ay X Ay,
the spin of the line with weight w + w’ is

Swaw = Sw + Sw + <w, w/>D (mod 27Z) . (1.4)



We further require that the lines whose weights are pure (co)roots to be bosonic, since they
correspond to (dual) gluons. In other words, the lines with weights of the form (o, 0) and
(0,a"), where a € A; and a" € A, should be bosonic.

We provide various checks for our proposal. As was showed in [24], for a given group
G, there are several theories with different generating lines. These theories differ by theta
terms, discrete or continuous. The definition of the later on non-spin manifolds, requires
a quadratic refinement [27]. We show that our proposal is consistent with a quadratic
refinement of the discrete theta terms, which we study in detail. These theta terms were
determined recently in [28], and our proposal is in complete agreement.

Another check is provided by the Higgsing of a theory with gauge group G down to
its maximal torus by adding an adjoint Higgs field. In appendix B, we show that after
Higgsing, the proposal (1.4) correctly produces the spins of line operatros in U(1) theories.
Furthermore, in appendix C, we show that the S and T" orbtits for SU(2) theories reduce
to those of U(1) theories [25, 26]. In appendix D, we provide an additional cohomological
check of our proposal.

The remainder of the paper proceeds as follows. In section 2, we review the classi-
fication of abelian charge lattices on non-spin manifolds as a warm up. There are four
such theories that we denote by WyTi,, W1, WiTy, and W¢T;. The last one is typically
referred to as all-fermion electrodynamics and has a gravitational anomaly. We give the
UV-completion of all these theories in terms of the Georgi-Glashow model. The Georgi-
Glashow model with certain matter whose effective theory is the W¢Tt theory, exhibits the
new anomaly discussed in [16]. We also give the action of S and T transformations.

In section 3, we present our proposal for consistently assigning spin labels to every
allowed line operator. For a given gauge group G, only a subset of lines satisfying the
Dirac quantization condition is allowed, and typically, there are several such sets. For each
set, we give the list of requirements which has to be satisfied when assigning spins to lines
in the theory. For each set of lines with a given spin, we give a Lagrangian realization and
show that our proposal is equivalent to a quadratic refinement of the discrete theta terms.
We further define the action of the T-transformation on the weights of the lines, which we
use to determine the SL(2,Z) orbits.

In section 4, we apply our proposal for all simple Lie groups with non-trivial center.
We present a complete classification of their charge lattices including the spins of allowed
lines. For each case, we give the discrete theta terms and show which theories are related
by a T transformation.

In section 5, we consider the couplings to background gauge fields for the one-form
symmetry. We review the mixed 't Hooft anomaly in the abelian Maxwell theory. We then
consider non-abelian Yang-Mills theories. We show how gauging subgroups of the discrete
one-form symmetries yields different theories with the same algebra. This procedure relates
all theories in the same family. We further study the requirements for the absence of mixed
anomalies for non-abelian theories and we find new anomalies for center gauge groups.

Finally, in the appendix we have included additional material to the main discussion
of the paper. In appendix A, we fix our conventions about Lie algebras. In appendix B,
we perform a consistency check by adding adjoint Higgs fields to the non-abelian theories



and flow to abelian theories. In appendix C we give two examples of S and T orbits for
the groups SU(2) and SU(4). In appendix D, we present a cohomological check of or our
proposal. In appendix E we fix a normalization for the continuous theta term for any group
G. Lastly, in appendix F we discuss the relation between discrete and continuous theta
parameters, in terms of torsion characteristic classes of G.

2 Abelian theories

As a warm up, we review the classification of U(1) gauge theories on arbitrary oriented
four-dimensional Riemannian spacetime manifolds. These spacetime manifolds are only
required to carry an orientation and a metric — not, for instance, a spin structure. A
given theory has a maximal set of line operators that are mutually local, i.e., satisfying the
Dirac-Schwinger-Zwanziger (DSZ) quantization condition

QeQr — QXQ), € 21, (2.1)

where Q! and Q¢ are the electric and magnetic charges of two line operators. Apart
from these charges, the line operators can be in different representations of the spacetime
symmetries, in particular the (—1)F symmetry. But before studying the properties of the
lines under the spacetime symmetries, we first study the electric and magnetic charges of
the lines.

2.1 The electromagnetic charge lattice

We denote the electric and magnetic charge lattice of the theory as A. In complex coordi-
nate, A consists of points z = Q¢ + iQm, where (). and @, are the electric and magnetic
charges of some line operator in the theory. Requiring the DSZ quantization condition,
the closeness of the OPE of lines operators, and CP7 invariance of the theory, the charge
lattice has to satisfy

V21,29 € A IHI{Z_LZQ} = QéQ?ﬂ — Qngln € 2n, (2.2)
V21,29 €N 21 +29 €A,
VzeA: —zeA.

It is easy to see a maximal lattice that satisfy these conditions must be generated by the two
closest point to the origin which we denote as z; and 29, i.e. A = {n1z1 +nazae|ni, ny € Z}.
However, for U(1) theories with a Lagrangian description, there is always the electric
excitation of charge Qe = e, where e is the coupling constant of the theory. This particle
corresponds to the fundamental Wilson line W(y) = exp(i ﬂ A), where A is the U(1)
connection. Hence we can set z; = e and furthermore to satisfy (2.2), we can parametrize

29 such that
0 27
=e, =rTe, h = — 4+ —, 2.5
a=e, m=r7e, where T=__+ 5 (2.5)
and zy is the charge of the fundamental monopole (dyon), which corresponds to the fun-

damental 't Hooft line. A priori # is a parameter allowed by the DSZ condition and



momentarily we will relate it to the Lagrangian description of the theory. Thus all the
possible charge lattices are labeled by 7, where A; = {(n + m7)e| n,m € Z} and it is
generated by the fundamental Wilson line W and the fundamental 't Hooft line T. The
point (n + m7)e € A; corresponds to the Wilson-"t Hooft line of the form W™T™, which
we denote as (n,m) and its electric and magnetic charges are given by

Qe = <n+9m>e, Qm:m2—w, (2.6)

2 e

If we ignore discrete spacetime symmetries, the charge lattice A, classifies all the U(1)
theories on spin manifolds, and we could write a local Lagrangian for these theories as

1 0
ST:/M4<—2€2f/\*f+87T2f/\f> . (2.7)

where we have identified the charge lattice label 7 with the coupling constant and the theta
angle of the theory. Indeed in such a theory, the fundamental monopole has electric charge
%e because of the Witten effect [29].

2.2 Oriented U(1) gauge theories

Now that we have identified the charge lattice, to classify different theories it is enough to
label the generating Wilson and 't Hooft lines W, and T with their spins s. There are four
possibilities: WyTy,, W1y, Wily, and WiT:. However the last theory WyT}, also known
as the “all-fermion electrodynamics”, has a gravitational anomaly [30-32]. In section 2.4,
we give UV completions of all these four theories. In the Lagrangian description, the
first two theories correspond to U(1) gauge theories and the second two correspond to
Spin®(4) := Spin(4) xz, U(1) theories, where we have a Spin®(4) connection instead of
a U(1) connection [12, 13, 26]. Hence we get the following theories with their generating
lines as

Uy : (17O)b7 (07 1)b7 U(l)f : (17 0)p, (0,1, (2'8)

Spin®,, : (1,0), (0,1)y, Spin®; ¢ (1,0)¢, (0,1); . (2.9)

where the labels b and f stand for boson and fermion.

Note that the properties of the Wilson and 't Hooft lines, uniquely determine those of
the other lines by fusion, or taking bound states if we think of the lines as world line of
heavy classical particles. For instance, the line (n,m) is the bound state of n Wilson lines,
and m 't Hooft lines. The quantum numbers of this bound state is the sum of quantum
numbers of the individual lines plus the quantum numbers of the electromagnetic field. The
electromagnetic field carries a non-trivial quantum number only when there is a minimal
pairing between the (n,0) and (0,m) lines [9-11], i.e. nm = 1 (mod 2Z). In that case,
the non-trivial quantum number is a half-integer angular momentum. For instance, in the
U(1)p = WT3, theory the dyon (1,1) is a fermion, hence (1, 1);.



2.3 S and T transformations

In this section we define the action of S and 7' transformations on the oriented U(1)
theories, by defining a map on the line operators of these theories. We define the maps
by their action on the (n,m)s labels denoting the Wilson-"t Hooft line W™T™ with spin s.
Define the action of S and T on the line operators as

:(nym)s = (n—m,m)s, (2.10)
:(ny,m)s — (m,—n)s, (2.11)

»n N

which leaves the spins invariant. These transformations map the line operators of the
oriented U(1) theories to each others. In particular we get the following maps

U(1)p U(1)¢ ER Spin®,, KN Spin®,,

(170)1)
(07 1)b
(17 1)f

(2.12)
(—1,1)b —> (1,1)b —> (0,1)b

KiN
— (1,0)p +— (0,—-1), — (1,—1),
s
= (0,1)f — (1,0)f — (1,0)¢

and the line operators of the Spin®; theory is mapped to itself. However if we also act on
the coupling constant 7 as

1
Sit=—, T:t—=714+1, (2.13)
T

then S and T' become duality transformations (up to gravitational SPT phases) [13, 33].
In particular, for the T-transformation we get a duality between U(1)f and U(l)g“, that
is shifting @ by 27 is equivalent to changing the spin of the monopole? [16, 26, 31, 34].

Altogether, we get the identifications

U(1); =07, (Spinc>; = (Spinc>:—1, (Spin(c): = (Spin(c) fT+1 , (2.14)

UL)f =U); " Uy = (Spin(c>b1/T, (Sme); - (Spinc)fl/T . (2.15)

Thus there are only two classes of physically distinct theories that are not related by
continues deformations — the anomalous and the non-anomalous theories — and hence we
have the following SL(2,Z) orbits

s Uy «— U)s « Spin, :)T Spin®; Ds, T (2.16)

2 Another way to see this duality is by noting that from the Witten effect, the T-transformation also

leaves the electric and magnetic charges invariant. It keeps all the physical properties of the lines invariant,
i.e. their charges and their spins.



2.4 UV completion of the oriented U(1) theories

Here we comment on the Ultra-Violet completions of the oriented U(1) theories we discussed
so far. Physically line operators correspond to world line of heavy particles. Therefore
to realize microscopic descriptions of these theories, we must provide UV completions
where for each line operator there is the corresponding dynamical particle of the same
quantum numbers.

The fundamental Wilson line can be UV completed by just adding ordinary matter
fields of electric charge 1. The only non-trivial part is the UV completion of the 't Hooft
lines as dynamical monopoles [35, 36]. This can be done by the ’t Hooft-Polyakov monopole,
which is a classical solution of the Georgi-Glashow model [37]; for review see [38, 39]. The
Georgi-Glashow model is an SU(2) gauge theory with a scalar Higgs field in the adjoint
representation of the gauge group. The 't Hooft-Polyakov monopole is a soliton of finite
mass, spin 0, and unit magnetic charge in the topological sector of the theory. Therefore
the U(1)p and (Spinc)b theories can be UV completed by such solutions where there is
a dynamical bosonic monopole. Also note that we have the relation U(1)¢ = U(1)9b+27r,
therefore to UV complete the U(1); theory we just need to add a 85V = 7 term in the
Georgi-Glashow model as we have the relation

U — 9SU(2)
with the theta angle in the U(1) theory after Higgsing.

The only remaining theory to discuss is the anomalous (Spinc) ¢ theory which was re-
cently studied in [16]. The UV completion is the Georgi-Glashow model with an additional
Weyl fermion of isospin % which is coupled to the Higgs field via a Yukawa coupling. As
it was discussed in [16], the UV theory also has a gravitational anomaly. The additional
Weyl fermion gives fermionic zero modes to the 't Hooft-Polyakov monopole solution which
makes it a fermion. Hence all of the oriented U(1) theories can be given a microscopic de-
scription.

3 Wilson-"t Hooft operators and spin

We move on to classify non-abelian gauge theories on oriented spacetime manifolds. In
this section, we present and give some justification for our proposal, and give an explicit
recipe for constructing the actions of these theories. In the next section, we apply the
proposal to each simple Lie group, finding agreement with results in the literature. When
the spacetimes are also required to carry spin structures, such a classification was previously
carried out in [24]. Here, we extend that discussion to oriented and non-spin manifolds.

As we discussed in the introduction, on non-spin spacetimes the line operators, apart
from their electromagnetic charges, are labelled by their spins modulo 1 — that is, whether
the line operators are bosonic (integer spin) or fermionic (half-integer spin). Mutual locality
restricts the set of allowed line operators in a given gauge theory to a maximal set satisfying
the Dirac quantization condition. This information can be expressed in terms of a charge
lattice decorated with spin labels (boson or fermion).



3.1 Line operators

We begin by reviewing line operators in gauge theories defined on spin spacetime manifolds,
following [24]. Consider a four-dimensional gauge theory with a simple gauge algebra g.
Fix a Cartan decomposition t C g and let A, C Ay, C t* be respectively the root and weight
lattices, and t* the dual Cartan algebra. We denote by W the Weyl group. Wilson lines
are labelled by representations of g, which are in bijective correspondence with elements of
the Weyl chamber Ay, /W — the highest weights. 't Hooft lines are disorder line operators
defined by removing the line from spacetime and imposing boundary conditions on a tubular
neighborhood around the line. They are labelled by the dual Weyl chamber Ay, /W, where
Aew C tis the coweight lattice.> More generally, dyonic Wilson-"t Hooft lines are classified
by weight-coweight pairs

v, MV]W € (Aw X Aew) /W, (3.1)

where [v, 1], is the Weyl orbit of (v, u") € Ay X Acw. Not all line operators are allowed

w
in a given theory. They are restricted by a non-abelian version of the Dirac-Schwinger-
Zwanziger quantization condition [4, 8], which says that the Dirac pairing between any two

allowed lines w = (v, ") and w’ = (v, 1"’) in a given theory must be integral:
(w,w'ypy = (,u) =/ pY) €L (3:2)

Here, (-,-) is the pairing induced from the inclusions Ay, C t* and Ay C t and the natural
pairing between t and t* = Hom(t,R/Z). This condition is required for the locality of the
correlation function between the two line operators, in that the correlation function should
remain invariant when the first line operator is transported along a closed surface linking
the second line. In the Coulomb phase, this is equivalent to requiring the electromagnetic
field between two dyons to have half-integer angular momentum.

The gauge theory contains dynamical adjoint-valued gauge bosons, whose worldlines
are labelled by the adjoint representation. Therefore, any line labelled by the sum of
an allowed weight with the highest weight of the adjoint representation must itself also
be allowed. In other words, it suffices to check the quantization condition (3.2) on the
quotient by the root and coroot lattices

Ay /A X A /Aer = Z(G) x Z(G), (3.3)

where Z (é) is the center of the simply connected Lie group G corresponding to g.* A
maximal subset of lines obeying the condition (3.2), as well as closure under fusion, cor-
responds to a subgroup £ C Z(é) x Z(@) for which the pairing (w,w’) is integral — in
other words, a subgroup which is Lagrangian with respect to the pairing e2mitww’) [24].

3The coweight lattice Acw = Hom(A,,Z) C tis the dual of the root lattice A, (see (A.9)), or equivalently,
the weight lattice of the Langlands dual algebra Zg.

17 denotes the Pontryagin dual of a group Z, Z := Hom(Z,R/Z). Note that for a symmetry based on
a finite group Z, the group elements are inside Z, while the charges (the one-dimensional representations
of Z) are inside Z.



In this article, we shall consider gauge theories on oriented, but not necessarily spin,
spacetime manifolds. As we discussed in the introduction, the main novelty is that with-
out a spin structure, there is a spin/charge® relation and a line operator of given (gauge)
charge has definite spin (bosonic or fermionic). This is because, if there exist two line
operators of same charge (weights) but different spin, one of them could fuse with the
CPT reversal of the other line to produce a neutral fermionic line. But existence of such
chargeless fermions (worldlines of gauge singlet fermions) requires a spin structure. To find
the possible spin/charge relations, first, we consider the spins of line operators resulting
from the fusion of two line operators. Upon fusion, the resulting line generically sits in
a reducible representation, and the fusion rules are specified by a complicated operator
product expansion (OPE) whose exact form is known only in cases with sufficient super-
symmetry [8, 40-44]. We will not need any details of the OPE — the only fact used in this
article is that the fusion of line operators [v, V], and [/, 1"}y € (Ayw X Aer) /W includes
the line operator [v + v/, u¥ + uV'],,.6 We propose that the angular momentum stored in
the electromagnetic field of the two dyons w and w’ is

J3 = %(w, w'yp (mod Z), (3.4)

which is integral or half-integral (multiple of i) depending on the value of the Dirac pairing

<w7w,>D = (v, :u\//> - <Vla/'6v> (3.5)

Fusing two dyonic lines with the same spin (boson-boson or fermion-fermion) and odd
mutual pairing produces fermionic dyons, while fusing two lines of opposite spins (boson-
fermion) and odd pairing produces bosonic dyons. For even paired dyons, the con-
verse holds.

This implies that fusing a line operator with a dynamic gauge boson may change the
parity of the pairing (3.5), so a line dressed with even or odd numbers of gauge bosons can
remain distinguishable at long distances. On the other hand, shifting v (1") by twice a root
(or coroot) does not change the parity of the pairing and hence preserves spin. Hence, on
non-spin manifolds, we propose that the quantization condition (3.2) needs to be checked
on the charges modulo twice of the root and coroot lattices. To classify the allowed sets
of line operators, and therefore all the possible theories with the same Lie algebra, on a
spacetime without spin structure, we consider subsets £ C A of the quotient

A= Ay /20; X Ay /2Aer (3.6)

together with a function s : £ — Zs, which specifies the spin of each line operator (0 for
boson and 1 for fermion). As line operators are labelled by Weyl orbits, we demand the
value of s to be the same on each Weyl orbit of £. Furthermore, the data (£~, s) should
satisfy the following conditions:

SHere the charge is the gauge charge, which is the weight-coweight pair labeling Wilson-"t Hooft lines,
and should not be confused with some global symmetry charge.
SNote that [v 42/, ¥ 4+ 1]y depends on the choice of representatives in the Weyl orbits [, 1] and

[l/v /J‘VI]W'



1. As in [24], the set of allowed line operators L < A should be closed under fusion,
and be maximal. In other words, it must once again be a subgroup of A which
is Lagrangian with respect to the pairing e2 @) defined in (3.5). Note that La-
grangian subgroups £ C A are in one-to-one correspondence with Lagrangian sub-
groups £ C A ~ A/ ((Ar X Aer)/(2A; X 2A¢;)). Indeed, roots have integer Dirac
pairing with all weights, thus every Lagrangian subgroup L always includes all roots.
The main difference between considering £ and £ is that the pairing (3.5) is defined
modulo integers on £, but is defined modulo even integers on L. Moreover, the
pairing is odd when there is a half-integer angular momentum contribution from the
chromodynamic field to the spin, and it is even when the contribution is integral.

2. As discussed above, pure gluons and dual gluons in a gauge theory are bosonic, so we
require that s maps elements of the form («, 0) and (0, a") to zero, where a € A;/2A,
and v € A /2A¢;.

3. The labeling s must be consistent with the fusion rule of two lines taking into account
the angular momentum contribution from the chromodynamic field:

s(w+w') = s(w) + s(w') + (w,w')p (mod 2) . (3.7)

That is to say, the line w+w’ arising from the fusion of two lines with weights w and
w’ has spin given by the sum of the spins of the individual lines and the contribution
from the angular momentum of gauge field, which is 1 (wy,ws)p, (mod Z).

As a consistency check, we should make sure that the condition (3.7) is consistent with s
being constant on Weyl orbits. Indeed, this follows from the pairing (3.5) being invariant
under a Weyl transformation

(w,wp = {x-w,x -whp, TEW. (3.8)

Based on these consistency conditions, in order to classify possible weights and spins
(ﬁ, s) of gauge theories, it is sufficient to study the set of lines generated by some funda-
mental Wilson and 't Hooft lines. We denote them respectively as W () and T'(y) that
have supports on a line v in the spacetime. We choose their weights to be some specific
weight v, € Ay, and coweight pY € Ay, which we define them specifically in a later section.
More precisely, we denote the Wilson-'t Hooft lines

wWnT™(v), with weights:  (nve, mpu)) € Ay X Acw , (3.9)

and also label them by the pair of integers (n,m). However, not all of these lines are
genuine in a given theory, but to determine the theory it is enough to know the spins of
the genuine lines of this form.

3.2 Lagrangian formulation and discrete theta terms

Spin manifolds. In this section, we review the Lagrangian formulations of the gauge

theories considered above, with line operators labelled by (£, s). As a warm up, we begin
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1-form Charges Symmetry group
Electric | Te=Z(G) = Ag/Ar | Te = Z(G) = Aew/Acci
m — 7/IEI(G) = AW/AG

=3

Magnetic | I'yy = m1(G) = Acg/Acr

Table 1: The relation between T'¢, 'y, the (co)weight lattices Ag, Acg, and the one-form
symmetries and charges of the plain G = é/ I gauge theory. In particular T'y = Z(G)
is the electric one-form symmetry group (also known as the center symmetry), and I'y, =
71(@G) is the group of magnetic charges carried by the 't Hooft lines, which was denoted I"
in [27].

with spin spacetime manifolds, where the choice of lines is completely determined by L,
which is the projection of £ € A onto A = Z(G) x Z(G). This will largely be a review
of [24], but will also serve to introduce notation used in the rest of this paper. Let I'y,

denote the projection of £ onto Z(G). The gauge group of the theory is G := G /T

Let Ty := Z(G) denote the center of the gauge group. The center Z(G) of the universal

covering group and the group of line operators £ sit in the following two extensions’
0—Tm > Z(G) »Te—0, (3.10)
0—=Te—=L—Ty—0. (3.11)

To see (3.11), note that the line operators with trivial magnetic charge — Wilson lines —
must be representations of G, and therefore sit in T'e = Z(G) C Z(G). In terms of the
(co)weight lattices, I'e = Ag /A; and Ty, = Acg/Acr are the electric and magnetic charges
of the Wilson and ’t Hooft lines respectively for the G gauge theory not coupled to any
TQFT, i.e. without any discrete theta term (see table 1).

There are generically many theories with the same gauge group G, which differ from
each other by discrete theta terms. We now describe these terms. Lagrangian subgroups
L C A projecting onto I'y, € Z (é) are in one-to-one correspondence with bilinear forms
n:Tm xTm — R/Z on I'y, [27]. This can be seen explicitly as follows: taking (3.11) and

the dual of (3.10), notice that £ arises as the pullback

0 > f‘e L >y I'm 0
’ i” (3.12)
0 s T'o Z(G) i s T 0

with respect to some homomorphism 7 : I'y, — L, or, equivalently, a bilinear form
n:Tm x Iy — R/Z. In other words, the maximal subgroup labeling the lines is

L={(v,n") € Z(G) x T : (p") = i(v)}, (3.13)

"The extension (3.10) can be viewed as the decomposition of the one-form symmetry group of the G gauge
theory into the subgroup I'my and the quotient I'e = Z(G)/T'm. In section 5.2.5, we will see that gauging
the I'm symmetry yields the G = G/I'm gauge theory with emergent ' one-form magnetic symmetry.
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where i : Z(G) — Ty, is the projection map dual to the inclusion i : T'y, — Z(G). Physi-
cally, this means that the electric charge of a line with magnetic charge u" must project

onto n(u").
The desired discrete theta term is then

2 /M P (bn) (3.14)

where by, € H?(M,T'y,) is the Brauer class® of the gauge bundle, o : Ty, — R/Z is
a quadratic refinement? of 7, and P, : H2(M,Ty) — H*(M,R/Z) is the Pontryagin
square!'” operation corresponding to the quadratic form o [27, 45].

On a spin manifold, the discrete theta term (3.14) is independent of the choice of
quadratic refinement o (and depends only on 7). This gives the complete relation between
(1) the set of allowed line operators £ of the theory, (2) the bilinear form 7, and (3)
the discrete theta term (3.14) in the Lagrangian formulation. As an example, consider
G = S0(3), for which G = SU(2) and I'y, = Z(G) = Zs. On a spin manifold, there are two
distinct choices of line operators, including either the magnetic line £y = {(0,0"), (0,1V)} C
Zo % Ty or the dyonic line £; = {(0,0v), (1,1Y)} C Zy X Zy. They correspond respectively
to the bilinear forms ng, 1 : Zs X Zs — R/Z defined by n9(1Y,1Y) = 0 and n;(1Y,1Y) = 3.

2
Each bilinear form has two quadratic refinements, given respectively by

1 1 3
oo(1V) =0, o1(1V)==, op(1V) ==, oi(1V)==. (3.15)
4 2 4
The corresponding discrete theta terms are, respectively,
Psy =0, Por, Py =2Ps, Py =3P . (3.16)

Indeed, on spin manifolds Py (bm) = bm U bm = bU wa(IT'M) = 0 (mod 2), establishing
that the discrete theta terms are not dependent on the choice of quadratic refinement.

The discrete theta terms (3.16) may be more familiar to the reader expressed in terms
of continuum gauge fields [46, 47]

1 oo p(L—K) o s
) da+ kb + PA=F) e ki 1
27T/Mf/\( at k) + 2 R A KD, (3.17)

8The Brauer class is the characteristic class of the G = é/Fm bundle corresponding to the group
extension 1 — I'; = G — G — 1. In the physics literature, this is sometimes called the second Stiefel-
Whitney class, because the Brauer class coincides with the second Stiefel-Whitney class for the frame
bundle, where G is SO(d) and G is Spin(d).

9A quadratic refinement ¢ : I'y, — R/Z of a bilinear form n : I'y, x I'm, — R/Z is a function satisfying
o(y+7) =0o(y) + () +n(v,7).

“The Pontryagin square is usually defined as a map P : H*(M, Z) — H*(M,U(Z)) where U(Z) is
the universal quadratic group of an abelian group Z. The universal quadratic group is an abelian group
equipped with a quadratic function v : Z — U(Z), with the property that any quadratic function ¢ :
Z — A taking values in any abelian group A (in this paper, A = R/Z) factors through +, i.e. there exists
G:U(Z) — A such that ¢ = Go~. (See e.g. the appendix of [45] for more details.) Then, we define P, as
4P HX (M, Z) = H*(M, A).
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where a is a one-form U(1) gauge field, b is a two-form gauge field and f is a two-form
Lagrange multiplier enforcing the constraint that bis a Z gauge field. The extra factor of
(1 — k?) is to insure the gauge invariance of (3.17) under

b=b—X ar—a+kd\, (3.18)

which is equivalent to p(1 — k2)k being even. For even k this factors drops out and pk is
indeed even, but for odd k this is necessary to make pk even. Integrating out f and a, and
making the replacement kb/2m = by, yields the discrete theta term

1—k?
o / Py (b) = 222 =) / bun U ban + b Uy b, (3.19)
M 2k Jm
for the quadratic function oo(m) = (1;7,]:2)1712. The second term is required since the cup

product is not supercommutative at the level of cochains [46]. In the example of SO(3)
above, k = 2 and o, = 07.

Non-spin manifolds. On non-spin manifolds, different quadratic refinements yield dis-
tinct discrete theta terms. This is expected, since there is more information contained
in the line operators (Z, s) of a non-spin gauge theory, which determines the appropriate
quadratic refinement, and hence discrete theta term (3.14) in the Lagrangian formulation.

Consider first the situation where all purely electric line operators are bosonic, s(w) = 0
for all w € £ of the form w = (v,0). (This corresponds to the gauge group being G rather
than Spin-G := Spin(4) xz, G.) We claim that the relation between the set (L, s) of
allowed line operators and the quadratic function o : I'y, — R/Z is given by

o(0]) = 5 (") + 55 u), (3.20)

where (v,1¥) € L is the weights of any allowed line, and [p¥] € Acw/Acr denotes the
mod A, reduction of the coweight p" € Acy, similarly [v] € Ay /A, denotes the mod A,
reduction of the weight v € Acy,. Note that (v,u") is defined modulo 2, so the above
definition is single-valued. It can be checked that the right hand side is independent of the
choice of representative p" as well as choice of line (v, "), and furthermore that o is a
quadratic refinement of 7, using the conditions we imposed on (£, s) above. We carry out
these checks explicitly below.

In the general case, purely electric line operators are not required to be bosonic. In the
Lagrangian description, this corresponds to also allowing the gauge group to be Spin-G :=
Spin(4) xz, G, where Spin(4) is the Lorentz group of the spacetime manifold. In order to
account for this, we require o to be extended to a function 6 : £ — R/Z defined on all of

L, as follows'!

S 1) = 5 (") + 550" (3.22)

"Note that & is well-defined and only depends on [v]. That is the r.h.s. of (3.22) is unchanged if we shift v
by a root. Suppose v,v’ € Ay /2A, are two representatives of [v] € Ay /A,. Indeed, from the condition (3.7)

we have

s(W,u) =s(w,p") +s(/ —v,0) + (v—v/, ,uv> (mod 2) . (3.21)
Now, s(v' —v,0) = 0 according to condition 2, as different representatives differ by a root. This shows that
& is independent of representative of [v]. A similar argument can be given for [u"].
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Note that & is a quadratic refinement of 7 trivially extended to £ x L as

n () [1']), (W] ") = (vn) = (V' ') (mod Z) . (3.23)

(One can check that 7 defined this way does not actually depend on v and v/, and coincides
with the 7 defined above corresponding to £.) Indeed, this follows immediately from the
conditions (3.7) since

(v + ] " + 1) = (vl (D) = (], ("] = 0 (W1, (7], () (D) - (3-24)

The discrete theta term corresponding to the generalized quadratic refinement (3.22) is

o /M Palb), (3.25)

where b € H?(M, L) is a dynamical cocycle generating the one-form symmetry — discrete
analog of the symmetry current. b can be related to the Brauer class by, € H2(M,Ty,)
mentioned above, as well as another class b, € C?(M,T,) via the decomposition

b= by +be, (3.26)

where by, € C?(M, L) is some lift of by, to L. The cochain b, satisfyies a twisted closure
condition

Sbe = bl e, (3.27)

where e € H3(B?T'y,, fe) is the extension class of £. In practice, the discrete theta term
will only involve a Zs subgroup of I's, and we only need deal with a mod 2 reduction of
be.'? b is only turned on when there are fermionic pure electric lines, identifying the Zo
subgroup of the gauge group with (—1)f" and imposing a spin/charge relation on the theory.

In the simple case where L is a direct product I X T, be is closed, and the discrete
theta term can be written explicitly in terms of the conserved cocycles b, and by, as

/
277/ P&(be7 bm) = 277/ ibe U be + Po(bm) ) (3'28)
M M 2

where s is the spin of any pure electric line generating I, and o is & restricted to {0} x T'y,.
By integrating out be, it can be explicitly seen that this coupling turns the gauge group
from G to Spin-G = Spin(4) xz, G when s’ = 1.

As an example, take again the example of G = SO(3), focussing on the case where
the line operator is magnetic, which we denoted by Lg above. Corresponding to Ly, there
are two possible assignments of spins s on £~0. Identifying Acyw/2Acr =~ Zy, we denote the
lines as

Lo = {(0,0Y),(0,1Y),(0,2%), (0,3),(2,0v), (2,1Y),(2,2Y), (2,3")}. (3.29)

The two possible assignments are s!) assigning (2,1Y) and (2,3") to be fermionic and
all other lines to be bosonic, or 5 assigning (0,1V) and (0,3") to be fermionic, and all

F

12Fermionic electric lines are only possible when T'e = Z(G) has a Za subgroup, which couples to (—1) €

Spin(4) of the Lorentz symmetry.
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other lines bosonic. These theories are denoted as SO(3)g1, and SO(3)g¢ in the discussion
around (4.26) and correspond respectively to the two quadratic refinements

AV =0, oP0Y) =7,

of the bilinear form n = n9(1V,1V) = 0. Therefore, the corresponding discrete theta

(3.30)

terms are

1 1
0, 277/ bmubm:27r/ L Uwn(TM) | (3.31)
M 2 M2

respectively, recovering the result that the discrete theta term 7 by, Uwa(T M) changes the
spin of the magnetic lines.

3.3 T transformations

Some theories with the same gauge group but different discrete theta terms can be related
to one another by shifts of the usual continuous theta angle'?

4 [ f
2/M tr%A% . (3.32)

A discrete theta term (3.14) changes the set (£, s) of line operators of a theory [24], while
the continuous theta term (3.32) does not change the charge lattice. Nevertheless, in
some situations, instantons fractionalize and the periodicity of € is increased.'* When this
happens, shifting § by 27 becomes equivalent to adding a discrete theta term.'® More
precisely, a theory (with a given discrete theta term) at 6 = 6y is dual to another theory
(with a different discrete theta term) at 0 = 6y + 2w. We refer to the duality map between
the two theories as the T' transformation

T:G)— G, (3.33)

where Gf, denotes the theory with gauge group G with parameter # and discrete theta
parameter labelled by p, as in [24].

Relation between continuous and discrete theta terms. In the following, we com-
pute the exact discrete theta term, schematically denoted Ap in (3.33), generated by in-
creasing 6 by 2.

First, we choose a special basis for the weights and coweights, as follows. Assume for
now that g is a simple Lie algebra, but not of type Dy with N even, so that the center
Aew/ANer = Z (é) is a cyclic group Zy;. Choose a coweight ) € Aey whose class [pY] in
Z(G) generates it. Now, choose a weight v, € A, such that its class in Z (G) has weight

one with respect to the chosen coweight; that is,
(Vo, pu ) = S . (3.34)
) o] M

13See appendix E for conventions for the normalization of theta terms.

!4This heralds an anomaly between the (—1)-form symmetry 6 +— 0 + 27 and the 1-form electric center
symmetry of the G gauge theory [24, 27]. It can also be understood as an anomaly in the space of coupling
constants [28, 48].

15See appendix F for a mathematical discussion of this phenomenon.
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Every weight (coweight) can be expressed as an integer multiple of v, (1Y) modulo roots
(coroots), i.e. [V] = n[vo] (mod A;) and [pV] = m[uY] (mod Ay ), for some n,m € Zp;.*°
For example, for g = su(N) the center is isomorphic to Zy and we choose!” pY := uy
corresponding to the fundamental representation of the dual algebra g, and v, := vn_; to
be the highest weight of the anti-fundamental representation of g which acts with charge
1/N on the defining N-dimensional representation.

We call a line of weight (vo,0) a basic Wilson line W, and a line of weight (0,u)) a
basic 't Hooft line T. Not all possible lines are allowed in a given theory. Consider, for
example, G gauge theory. W is an allowed line operator, while 7" is not. Rather, T is

the boundary of the (open) Gukov-Witten surface operator Ue(X) implementing the Z(G)
electric one-form symmetry. Then, (3.34) leads to the following relation

Ue(E)W(’}/) _ e?m(umug)link(Z,'y)W(,y) _ e?ﬂi/klink(E,’y)W(,y) ) (3'35)

Thus, (3.34) is equivalent to choosing a basis such that the fundamental line W has charge
one under the fundamental electric symmetry generator. A similar argument can be made
for G/Z(G) theory where T is now an allowed line operator and W is the boundary of
the fundamental magnetic surface operator implementing the Z (G) magnetic one-form
symmetry which can be written as

Ui (%) = exp <27Ti[uo] 72 bm> , (3.36)

where'® b, € H?(M, Z(G)) is the Brauer class of the gauge bundle.

Next, consider the effect of adding discrete theta terms on the line operators of a theory
with gauge group G/Zj,, where Z;, is some subgroup of Z(G) = Zy, so M = kk' for some
integer k’. Quadratic functions on I'y, = Zj can be written as ¢ = po, : Zy — R/Z for
some p, where, following the conventions of [27], we define!”

m2
% k even,

k) =4 (3.37)
BTy k odd .

(Note that &'[u)], with [uY] as defined above, generates the Zj subgroup of Zjy;.) In this
paper, we often identify Zj; with integers modulo k, and k'[n] with 1 € Z/kZ, so in both
cases this can be written as

1—k?
oo(m) = ok m? . (3.38)

n and m can be taken modulo M since M times of v, (uy) is a root (coroot).

16

17Such a choice of generator for Z(G&), is equivalent to choosing a ring structure for Z(G) whose unit
element under multiplication is [pg]. Writing cup product in the action requires such a ring structure, but
here such a choice is made in (3.37) which defines a pairing on H?(M, Z(G)).

8Eq. (3.34) implies that [vo] generates the magnetic symmetry group Z(G).

94, is so chosen because it is a quadratic refinement of the bilinear form no(m[uy], m'[uy]) = mm’/k.
For k£ odd, this is the unique refinement, reflecting the fact that the basic 't Hooft line must be bosonic,
while for k even, there are two refinements, o, and (1 + k)o,, since the basic 't Hooft line can be bosonic
or fermionic.
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According to our proposal (3.22), the theory defined by adding the discrete theta term

2p /M Py (ben) (3.39)

has the bosonic line labelled by (p(1 — k?)vs, k'Y ), as a genuine line operator.
Meanwhile, a shift 6 — 6 + 27 of the continuous theta angle (3.32) results in the
following shift in the line operators [4]

VA

T: (V7 :U’v)s = (V —H v:uv)s’ (3'40)

where * is a map from A.y to Ay induced by the Killing form and the inclusions A., C t
and Ay, C t*, and s is the spin label. The Killing form, denoted by tr in (3.32), is
normalized such that a generator of Ay is mapped to a generator of Ay,. More explicitly,
the normalization is such that a simple coroot «; is mapped to a simple root with the

following prefactor [4]
v

a)* = tm‘;o‘a (3.41)
where the length-squared of short coroot(s) is 2; see appendix A for our Lie algebra con-
ventions. The 27 shift maps one allowed set (ﬁ, s) of line operators to another allowed set,
and therefore maps between theories with the same gauge group.?’

We now derive the relation between continuous and discrete theta terms. T sends a line
(v, k' p) with fundamental magnetic charge to (v — k' uY*, k'p). According to (3.22), the
shift in its electric charge is equivalent to adding a discrete theta term (3.14) corresponding

to the quadratic function
12

1 . k
or(Kus]) = —5 (Kpd™ Kud) = == trpdpd, (3.42)

that is shifting 6 by 27 is equivalent to adding the coupling 27P,,.(by,). Identifying I'y,
with the integers modulo k using the basis we chose earlier, we find o7 = (—Ap) 0., where

1— k2 k/?
Ap T Ttr,ug,u;/ (mod 1), (3.43)
and from this we solve for Ap, yielding
M?
Ap = kK trp) p) = e tr pd p (3.44)

with the above equality taken modulo 2k for k even and modulo k for k odd.?!
To summarize, there is a duality (3.33), which we call the T" transformation, between
gauge theories labelled by the following continuous and discrete theta parameters

(0 +2m,p) ~ (0,p+ (M?/k) tr udpd) - (3.45)

The discrete parameter p is defined modulo 2k for even k, and modulo k for odd k& [46].

207 transformations do not affect the spins of purely electric lines (or equivalently, the gauge group), and
therefore do not affect the b, dependence of discrete theta terms (3.25).
21To derive (3.44) for k odd, we have made use of the fact that Ek'? tr puy pg is always an even integer.
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In section 4, we will explain how Ap = (M?2/k)tr u)p) can be obtained by looking

at the inverse Cartan matrix. We will also calculate Ap for simple Lie groups, finding
agreement with [28]. For the Dy series with N even, where I'y,, may not be cyclic, refer to
section 4.4.

4 Non-Abelian theories

4.1 A series: su(N)

In this section we start the classification of line operators, with the Lie algebra su(/N) which
has rank N — 1 and the following Dynkin diagram

o——C0——0—0

where each of the N —1 nodes correspond to the fundamental weights, denoted v4,...,vn_1.
The coweight lattice Acy is generated by the fundamental coweights py, ..., u% ;. (See
appendix A for our conventions with Lie algebras.) As mentioned in section 3, the weight
of the fundamental 't Hooft line 7" should be a generator of Z(SU(N)) = I'y, = Zy, which
we choose to be pY := py. Having fixed this, a choice of the fundamental Wilson line
satisfying (3.34) is v := vy_1. Note that since

(i) = (€N, (4.1)

we can find appropriate choices of fundamental Wilson and ’t Hooft lines by looking at the
inverse of the Cartan matrix.

The dyonic Wilson-"t Hooft line W"T™ has weights (nvy_1,muy) € Ay X Aey. Since
W2N and T2N belong to twice the root 2A; and coroot 2A.; lattices, it is sufficient for our
purposes to consider the mod 2N reduction of the integers n and m. Therefore we label
the line W"T™ by

(n,m) € Zon X Zon C A . (4.2)

A further mod N quotient of (n,m) yields the one-form symmetry charges
(n (mod N),m (mod N))e A= Z(SU(N)) x Z(SU(N)) . (4.3)
Let us find the Dirac quantization conditions (3.2) in terms of the integers (4.2) by
calculate the pairing between two dyonic lines of the form W™T"™ and wr'
1
((n,m), (n/,m/)>D =~ (nm’ —n'm)  (mod 2Z) . (4.4)

Note that if we had defined 14 and py as the basis for W and T', there would have been an
extra factor of N — 1, since (v, uy) = (N — 1)/N. Requiring the r.h.s. of (4.4) to be an
integer, we get different solutions that are labeled by two integers k and ¢ [24]; the integer
k is a divisor of N, i.e. N = kk’ for some integer k. The charge lattice of the theory
Ly, C ZN X Zn, is then generated by the lines

W= (k,0) and WITV = (¢, k), (4.5)
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where ¢ = 0,1,...,k—1.22 Now we can give a microscopic description of a theory with such
set of lines. The value of k fixes the gauge group to be SU(N)/Zj, and for spin theories ¢
can be identified with the theta parameter p defined in (3.39) as ¢ = p (mod k). However
for non-spin theories, we also need to determine the spin of the generating lines in (4.5).

We denote the theory where the generating electric line W* is bosonic and the magnetic
generating line has weights and spin (¢, k")s, as (SU(N)/Z)q,s- For theories where the
generating electric line is fermionic, we denote the theory as (Spin-SU(N)/Zy)q,s where
again the other generating line is (¢, k')s. In summary we have the following possibilities
with the following generating lines for non-spin theories:

(SU(N)/Zk)q,s : (ka O)bv (Qa k,)s ,
(Spin-SU(N)/Zy), , : (K, 0)r, (g, K)s - (4.6)

However, not all these choices are consistent. As stated in rule 2 in section 3, lines labelled
by just a root or a coroot must be bosonic. For instance, for N odd, k =1 and g = 0, the
gauge group is SU(N) and the fundamental Wilson line with weight (vy_1,0) cannot be
fermionic; this is because fusing N of them, according to (3.7), results in a fermionic line
labelled by a root, and hence is not allowed. We will find the consistency conditions below
and demonstrate the details with a few examples. But before that, let us discuss the theta
parameters in these theories.
Consider the SU(N)/Zj, theory whose set of lines and their spins are

5’(SU(N)/Zk)q75 : (k> 0)8’7 (Qa k,)s . (47)

Here the label s' denotes SU(N)/Zy, for s’ = 0 and (Spin-SU(N)/Zy, for s’ = 1, see (4.6);
these two notations are used interchangeably in this article. We claim that such theory
can be obtained from (SU(NN)/Zy), , theory by adding the coupling (3.25) associated with
the quadratic refinement

2 2 2

o(nk +mq, mk') = g s gD = (g + sk)% + s’% (mod Z), (4.8)

2k 2 2
where (nk+mgq, mk’) € Zn x Zy are the electric and magnetic charges. This simply follows
from (3.22) by noting that the line (nk + mp, mk’)s» can be obtained by fusing (nk,0),s
with (mg, mk");,s and thus has spin s” = ms+ns'+nm (mod 2Z). Such quadratic function

induces a coupling of the form

. q+ sk s’
2 m a Ye e ’ 4
m/M< 5% P(b)+2b Ub) (4.9)

where the pair (be,by,) essentially measure the integers n and m. As explained in sec-

tion 5.2.6, after adding such coupling the one-form symmetry extension changes which
puts some constraints on the symmetry generators which restricts the coefficients in (4.9).
For instance we should check that o is a well-defined function; that is if we shift the electric

220ne can show that the charge lattice Ly, q is isomorphic to Zgcq(k,k’,q) X ZN/ged(k,k',q) [27)-
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and magnetic charges by N it does not change mod Z. One can easily see that this gives

the relations
ks+ (k+s)g=ks =0 (mod 2Z) . (4.10)

For the sake of completeness let us rederive these relations by the consistency conditions
for the spin labels. Take (k,0)y line and fuse it &’ times with it self to get (N, 0)x ¢ which
is a pure root and must be bosonic hence the first relation. Now fusing the line (gk,0)4s
with (kq, kk")ks gives (0, N)qs/4ks+kq Which is bosonic hence the second relation. Therefore,
we get the following consistent theories based on Lie group su(N) on non-spin manifolds

(SU(N)/Zy), . : for k(q+s) € 2Z,

q?s

(Spin-SU(N)/Zy), .« for ks+ (k+1)q, k' €27 . (4.11)

q?s

Now we find the relation between the T-transformation and adding the coupling (4.9)
for these theories. For the case where s’ = 0 and the basic Wilson line is bosonic, we have
the usual theta parameter p in (3.39) and the identification

q+ks=(1—-k)p (mod2kZ), (4.12)

which automatically satisfies (4.10). A result of this relation is the fact that for even &,
shifting p by k changes the spin of the basic 't Hooft line [49], hence p is 2k periodic.
Furthermore since the basic 't Hooft line is 7%, following the discussion around (3.45), we
have Ap = k(k'uY, k' pny) = K'(N — 1) and hence we get the following identification of the
theta parameters

(0 +2m,p) ~ (0, p+ K'(N —1)), (4.13)

where p € Zj for odd k and p € Zsg for even k. Thus shifting p by one and the T-
transformation is equivalent to the following maps on the weights and spins

p—=p+1:(nk'm)s— (n+(1—k)m,k'm)s,, (4.14)
0 —0+2m: (n,k'm)s, — (n+ K (N —1)m,k'm)s, . (4.15)

Therefore we get the relation

(SUN)/Z1)052 = (SUN)/Z4)’ sy - (4.16)

q78

thus for k even 6 is 4wk /ged(2k, k') periodic, and for odd k it is 27k /ged(k, k) periodic.

For the Spin-SU(N)/Z;, theories?® where s’ = 1, however the coupling (3.39) does not
make sense for arbitrary values of p and we should really think of the coupling (4.9) instead,
where from (4.10) we have the relation £’ = ks + (k+ 1)¢ = 0 (mod 2Z). When k is odd,
s must be even and we have the map

q—q+1:(nk'm)s, — (n+m,k'm)s, . (4.17)

#3For the microscopic description of the Spin-SU(N)/Zj, := Spin(4) xz, SU(N)/Zs theory, we need a
Spin(4) xz, SU(N)/Zi connection defined on a manifold which has Spin-SU(N)/Z;, structure. Where such
structure is an extension of the SO(NV) frame bundle by the gauge SU(N)/Zj-bundle [16].
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However when k is even, ¢ must be even too and we can only shift ¢ by an even number. In
both cases by comparing the above map with the T-transformation we get the identification
(0 + 2m,q) ~ (0,g + K'(N — 1)). However, note that shifting ¢ by k£ does not change
the spins and therefore ¢ is only defined mod kZ, hence for both k& even and odd 6 is
27k /ged(k, k') periodic.

g = su(2). Let us begin with the simplest example of the su(2) algebra. This algebra
has only one simple root and therefore

vo=v; and pul=py . (4.18)
The Dirac quantization condition for the lines W"T™ and W' T™ is given by

((n,m), (n',m))p = = (nm' —n'm) =0 (mod Z) . (4.19)

N | =

For spin theories only the charges (n,m) mod 2 — modulo the root lattices — matters and
we get three solutions by solving (4.19). In each case the charge lattice £ C A is isomorphic
to Zy and hence is generated by a single line operator as [24]

SU(2) : (1,0), SO(3)o:(0,1), SO(3)1:(1,1). (4.20)
The T-transformation (3.40) acts as
T:(n,m)s+— (n—m,m)s, (4.21)

and leaves the SU(2) charge lattice invariant, while mapping SO(3)g to SO(3);.

Going to the case of oriented theories without spin-structure, we label the lines by
their weights in the quotient (3.6) which can be identified with mod 4 reduction of n and
m, i.e. (n,m) € Ay/2A; X Aew/2Aer = Zy x Zy. For instance, the lines 7' and W?2T have
the same one-form charge in A, but they are distinguishable since they have different spins.
For SU(2) we have two lattices, one where the generating line is (1,0), — a boson — and
one where it is a fermion, i.e. (1,0);. As we mentioned in section 3 we require that the
adjoint line (0,2) is always bosonic; this along with the fusion rule (3.7) fixes the spin of
all the lines completely. For each case, we get the following set of weights and spins

SU(Q) : (:tlv O)ba (07 2)b7 (ilv 2)f7 (27 O)b ’ (27 2)b7 (07 O)b ) (4‘22)

Spin-SU(2) : (£1,0)s, (0,2)p, (£1,2)p, (2,0), (2,2)p, (0,0)p, ; (4.23)

which are also depicted in the figure 1. The T-transformation leaves both lattices invariant
and therefore 6 is 27 periodic for both.

Similarly for each SO(3) we get two lattices, one where the generating line is bosonic
and fermionic. In total we get four lattices shown in figure 2. All of these lattices are
related by the T-transformation as

SO(3)412™ = 80(3)7 1.4, (4.24)
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(a) SU(2) (b) Spin-SU(2)

Figure 1. SU(2) lattices.

Figure 2. SO(3) lattices.

hence 6 is 87 periodic. From (4.12) we have p = ¢ + 2s (mod Z), thus we get the identifi-
cation (6 + 2m,p) ~ (6,p+ 1). We also have the relation

SO(3)4 . =S0(3)% 5411 (4.25)

which can be verified by either looking at the weight lattices of these theories and match
their line operators, looking at the relation p = ¢ + 2s (mod Z), or looking at the cou-
pling (3.39) for p = 2. Using the Wu formula by U by = 3bm U wa(TM) (mod Z), this
coupling is equivalent to adding =i [, bm U wo(T M), which attaches a wo(T'M) surface
to the fundamental 't Hooft line and hence changes its spin [15, 16, 31, 49]. To see these
relations explicitly, let us take a closer look at how the T-transformation (4.21) maps the
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line operators of these four theories to each other:

SO(3)op = SOB3)1s o SOB)os = SO(3)1w
0,41 — (F1,£1)p — (2,£1)y — (£1,41),
(2,j:1)f = (£, £1)f — (O,jzl)f — ($1,j:1)f (4.26)
2,00 = (2,00 = (2,0, —  (2,0)
0,2, — (2,2)p = (0,2), — (2,2)
2,2 = (0,2 = (2.2 =  (0,2)

g = su(4). As the last example of su(N), in this section we study lines operators of
su(4) theories. The weights of the basic Wilson and 't Hooft lines are given by v, := 13
and py := py. Here we only consider dyonic lines of the form W"T™, denoted by their
weights (n,m) € Zg x Zg C A in the quotient (3.6). From (4.5), on spin manifolds different
charge lattices are generated by the following lines

SU(4) . (1,0), (0,4), (SU(4)/Zg)q:071 . (2,0), (q, 2), PSU(4)q:0717273 : (4, 0), (q, 1) .

Let us first review the results of [24] for these theories on spin manifolds. For the case of
SU(4), there is only one theory and 6 is 27 periodic. For gauge group SO(6) = SU(4)/Zo,
the two solutions with p = 0 and p = 1 are not related by the T-transformation and 6 is
27 periodic. Finally for PSU(4), all the four theories are related by the T-transformation
and hence 0 is 87 periodic.

Moving to non-spin manifolds, we need to also determine the spin of the generating
lines of the above charge lattices. For SU(4) there are two theories one where the basic
Wilson line W (+y) is bosonic and one where it is fermionic. Both are consistent since the
adjoint lines W* and T* are bosonic. Thus we get two solutions denoted as SU(4) and
Spin-SU(4). From (4.15), we see that for both lattices 6 is 27 periodic.

For SO(6)¢ both the generating (2,0) and (0, 2) lines can be either bosonic or fermionic
and we get four theories. Whereas for SO(6)1, the line (2,0) can only be bosonic; this is
because it can be obtained by fusing the line (1, 4) with itself and therefore must be bosonic.
Hence there is no Spin-SO(6)1 s solution and in total we get six theories. From (4.12), we
have ¢ + 2s = p (mod 4). To verify this relation, let us study the action of shifting p by
one — given in (4.14) — on the line operators of different SO(6) theories

SO(6)o,b = SO(6)1,, = SO(6)o,s = SO(6)1
0,2, = (1,2)p — (2,2)p — (3,2)
(2,00, = (2,00, = (2,0), = (2,0) (4.27)
(2,2)r — (3,2)f — (4,2 — (5,2)¢
(6,2) — (7,2) — (0,2)f — (1,2)¢
(2,6)f — (5,6)f — (0,6)f — (3,6)f
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There is also the identification the theta parameters as (6 + 2w, p) ~ (6,p + 2). Thus
we get the action of the T-transformation on these theories as shown in (4.28) and (4.29).

SO(6)op < SO(6)or  SO(6)1 «—— SO(6), (4.28)

TC Spin-SO(6),  Spin-SO(6); :)T (4.29)

Hence 6 is 47 periodic for the SO(6) theories, and 27 for the Spin-SO(6) theories.

For the PSU(4), theories, the charge lattice is generated by (g, 1) which can have any
spin. Thus we get eight different theories denoted as PSU(4),s, where the generating
line has weights and spin (¢, 1)s. All of these eight theories are related by adding the
coupling (3.39), where p = g + 4s (mod 8). There is also the identification (6 4 27, p) ~
(0,p+ 3), thus all of these theories are also scanned by the T-transformation and we have
the relations

PSU(4)0%°" = PSU4)0,5,, PSUM4)S, =PSUM4)),,; . (4.30)

These theories have interesting 't Hooft anomalies which are discussed in section 5. In
particular, the Spin-SO(6)s theory has the same gravitational anomaly as the all-fermion
electrodynamics theory Spin(cf.

4.2 C series: sp(N)

The universal covering group of g = sp(INV) is Sp(IN), whose center is isomorphic to Zs.
The Dynkin diagram of the sp(/N) algebra is

o—0——0—0=0

where the nodes correspond to the N fundamental weights denoted as vy, ..., vy with ay
the long root. The Langlands dual Lie algebra is “g = s0(2N +1) with the Dynkin diagram

Oo—C0——C0O0——0C0=0

where the nodes correspond to the N fundamental coweights uy, ..., uX with a); the short
coroot. [py] generates the center Z(Sp(N)), so we choose uY := py as the weight of the
fundamental 't Hooft line 7" and the fundamental representation v, := 11 as the weight of
the fundamental Wilson line W, since (v, uy) = % Labelling the dyonic lines W"T™ by

(n,m), the (3.2) condition becomes
1

{(n,m), (n’,m')>D = i(nm' —n'm)=0 (mod Z) . (4.31)

Following the same method as su(N), we get the following theories, written below together
with lines generating the set of allowed line operators:

SP(N) : (1’ O)b’ (0’ 2)b )
Spin-Sp(N) : (1,0);, (0,2)y, (4.32)
1

(Sp(N)/ZQ)q,s : (2a O)b’ (Qv )s s
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where ¢ = 0, 1. For the universal covering group Sp(V), there is no possible discrete theta
term and 6 is 27 periodic. For the Sp(IN')/Zsy theories, the periodicity of 6 is increased, and
according to (3.45), the T-transformation identifies theories differing by Ap = 2(uY, ut) =
2(C~ Yy = N and the following continuous and discrete theta parameters are identified

0+ 2m,p)~(0,p+ N), (4.33)

where p = ¢ + 2s (mod 4), in agreement with [28]. Thus, the various Sp(IV)/Zs theories
have the following relations

(SP(N)/Z2) T4 = (SP(N)/Z2)0 vy s (SPIN)/Zn)o sy = (SD(N)/Za)oy . (4.34)

4.3 B series: so(2N +1), N > 2

The classification of the lines for theories with so(2/N +1) algebra proceeds similarly to that
of the Langlands dual algebra sp(N'), but with roots and coroots exchanged. The universal
covering group is Spin(2N + 1), with center isomorphic to Zs. The Dynkin diagram is

o——0——0O0—C=0".

We denote the simple roots by ag,...,ay with ay the short root, and the corresponding
fundamental weights by v1,...,vy and fundamental coweights by wuy,...,u¥. Note that
[11]] generates the center Acy /Ay = Z(Spin(2N + 1)) = Zg, and vy has 1/2 pairing with
uy, so we choose pY := py and v, := vy as the weights of the fundamental 't Hooft and
Wilson lines 7" and W. Solving the quantization condition (3.2) yields the following theories

Spin(2N + 1) : (170)137 (07 2)ba
Spin-Spin(2N + 1) : (1,0)¢, (0,2)p, (4.35)
SO2N +1)4s:(2,0)p, (g,1)s,

for ¢ = 0,1. According to (3.45), the T-transformation identifies theories with the theta
parameters

(64 2m,p) ~ (0, p+2(C" 1) = (0,p+2), (4.36)

where, once again, p = ¢ + 2s (mod 4). Thus, the various SO(2N + 1) theories have the
following relations

SO(2N + 1)212™ = SO(2N + 1)8,,, =SO2N +1)% ., . (4.37)

4.4 D series: so(2N), N > 3

The universal covering group is Spin(2/N) and the Dynkin diagram is

o——0—
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We denote the fundamental weights by vy, ..., vN_9, Vs, Ve, where v4 and v, are the highest
weights of the spinor and conjugate spinor representations respectively, and the correspond-

ing fundamental coweights by uy, ..., u} o, p, pte . The inverse of the Cartan matrix is
_ o _ _ i
Cz‘jl = min{i,j}, Cliy=0"1. = 3
_ _ N _ _ N —2
C 1SS - C 1CC == Z ) C 15(3 - C 1CS - T , (438)

where 7,5 =1,...,N — 2.

The classification of the lines for theories with D-series gauge groups differs qualita-
tively depending on the parity of N. For odd N, the center Z(Spin(2N)) = Acw/Acr 18
isomorphic to Z4, and is generated by either [p)] or [u]. For even N, the center is iso-
morphic to Z§ x Z$, with generators [p)] and [p/]. We shall discuss each case separately.

Odd N. We choose the coweight p of the fundamental 't Hooft line T to be uY := uY,
and the weight v, of the fundamental Wilson line W such that (v, puY) = 1/4.2* The
condition (3.2) for the dyonic lines W"T™ and W™ T™ then becomes

1
((n,m), (n',m)) = Z(nm/ —n'm)=0 (mod Z) . (4.39)
Labeling the lines with spins consistent with (3.7), and solving (3.2), we get the follow-

ing theories

Spin(2N) : (1,0)y,, (0,4)y, Spin-Spin(2N): (1,0)¢, (0,4)y,
SO@N)gs : (2.0, (6:2)s,  Spn-SO@N)os: (2,0)r, (0,2)s,  (4.40)
PSO(ZN)(LS : (470)b7 (Qa 1)8 :

For theories with gauge group Spin(2N) and Spin-Spin(2N), the 6 parameter is 27-periodic.
For the (Spin(2N)/Zy), , theories (with k = 2,4), theta periodicity is enhanced. Following
the discussion around (3.45), a 27 shift in the theta angle is dual to a discrete theta angle of

AN
CLl= ——  (wod 2k). (4.41)

16

Ap = kK trpdpg = =

Hence, the following theta parameters are identified
(0 +2m,p) ~ (0,p+4N/k), (4.42)

where p = ¢ + sk (mod 2k). 6 is 4r-periodic for the SO(N) theories and 167-periodic for
the PSO(NV) theories. The following theories are dual:

SO(N)GE™ = SO(N)gians,  PSO(N)GL*™ = PSO(N)g, s - (4.43)

q?S

24Unlike in the previous cases, there are no fundamental weights that satisfy this relation.
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Even N. When N is even, the center of the universal covering group Spin(2.N) is Z§ x ZS,
which is novel, as all the 71 (G) we have encountered thus far have been cyclic. The center is
generated by the fundamental coweights corresponding to the spinor and conjugate spinor

representations

foy = My fhon = He (4.44)

and we denote the 't Hooft lines with these coweights as 77 and T, respectively. The

weights of the fundamental Wilson lines W7 and Wy are chosen such that

L5 (4.45)

Vi __
<l/07:7 :u‘o_7> - 2

Denote the Wilson-"t Hooft line W{" W21 T, by (n1,ng2;mi, m2). The quantization
condition (3.2) reads

1
<(n1,n2;m1,m2), (nl,ng;ml,m2)> = §(n1m’1 +ngmby — nimy —nhms) =0 (mod Z) .

The following are the possible solutions of this condition. Next to each theory, we have
given two lines generating the full set of line operators.

o Spin(2N) : (1,0;0,0) (0,1;0,0)4, ,
#SO(2N)gs + (1, -1;0,0)y,  (g,0;1,1)s,
¢95(2N)gs :(0,1;0,0)4 , (¢,0;1,0)s, (4.46)
#S9¢c(2N)gs + (1,0;0,0) , (0,4;0,1)s,
PSO(2N)g;.s : (q11,2151,0)s, 5 (q12,422;0,1)s,

where each ¢;; = 0 or 1, and ¢q12 = g21. We have defined the various gauge groups
with algebra so(2/V) following the notation of [24], by taking quotients of Spin(2N) by
the subgroups of its center Acw/Ae = Z5 x Z§. To wit, SO(2N) := Spin(2N)/Z3,
Ss(2N) := Spin(2N)/Z5, Sc(2N) := Spin(2N)/ZS and PSO(2N) := Spin(2N)/(Z5 x Z5),
where the subgroups 73, Z5 and Z3 are generated by the vector, spinor and conjugate spinor
representations of the dual Lie algebra “s0(2N) ~ s0(2N) respectively. As before, the left
subscript s’ denotes the spin of the fundamental Wilson line; for instance ;SO(2N) :=
Spin-SO(2N). Note that, as there are three Zsy subgroups of Z(Spin(2N)) = Z§ x Z$, the
notation Spin- Spin(2/N) is ambiguous and it is more precise to use the notation with the
left subscript.

We now investigate the relation between theta terms. The SO(2N), Ss(2N) and
Sc(2N) theories have Ty, = Zs, and there is a single discrete theta term p = ¢ + 2s
(mod 4). For SO(2N) theories, (3.45) yields

Ap = 2tr(p) + p) (g +pd) =2 (mod 4) (4.47)

leading to the identification
(0 427, p) ~ (0,p+2) (4.48)
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and therefore

#SO(N)IE2™ = SO(2N), 5, = ,SOR2N)! .1 - (4.49)
For the Ss(2N) and Sc(2N) theories,
N
Ap =2trp) p! = 5 (mod 4), (4.50)
leading to the identification
(0 +2m,p) ~ (0,p + N/2) (4.51)
and therefore
Ss(2N)0+2 — | Ss5(2N)? Se(2N)0E2™ = | S¢(2N)? (4.52)
s’ q,8 s/ q+N/2,s0 ¢ q,8 s/ q+N/2;s * .

Note that for all of these theories — SO(2N), Ss(2N) and Sc¢(2N) — there is no relation
between s, ¢ and s’ since the electric sector is decoupled from the magnetic sector, i.e. the
basic Wilson line has zero pairing with the basic 't Hooft line. Furthermore the one-form
symmetry group is the direct product of the Zs electric and Zo magnetlc symmetry groups.

For PSO(2N) theories, the magnetic one-form symmetry group is T = Zb X ZC Here,
we arrive at a novel situation not discussed in section 3.1: 'y, is not cyclic. In this case,
on top of the usual Z4-valued Pontryagin square terms

on / B p(by) + EP (), (4.53)
M 4 4
there is also a Zs-valued cross term?®
o @b U be (4.54)
M

The quadratic function o (3.22) for the PSO(2N),,. s, theory is

MM m; 1
o(mi,my) = Qij% + 51'7z = 7 (@ + 28i585) mim; - (mod Z), (4.55)
and so PSO(2N)g;;s; theory can be obtained from PSO(2N)oo by adding the discrete
theta term

27T/M (’pr( O+ 2P (o) + 2, Ub) (4.56)

where ps = ¢11 + 251 (mod 4), pc = g22 + 2s2 (mod 4) and psc = ¢12 (mod 2).
As was seen in (3.40), a 27-shift of the usual theta angle (3.32) is equivalent to shifting
the lines by the quadratic function

1
o' (my,ms) = M tr ,u;/i,u;/j (mod Z) . (4.57)
Comparing this to (4.55) yields

1 1 N -2
Aps = 2tr pdypdy = §N7 Ape = 21tr pigopy = §N7 Apse = 241 iy fign = T (4.58)

25This corresponds to the universal quadratic group U(Zz x Z2) being Za X Za X Zs.
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modulo 4 for Aps and Ap. and modulo 2 for Apg.. The values of tr ,u;/i,uow were read

off from the entries of the inverse Cartan matrix (4.38). Therefore, the T-transformation
identifies the theories

PSO(2N), %" = PSO(2N) (4.59)

0
‘1ij+Apij»3i ’
with Ap;; given in (4.58). In other words, shifting § — 6 + 27 is equivalent to adding the
discrete theta term

N 1
271'/ (P(bs +be) + 5bs U bc> : (4.60)
M\ 8 2
reproducing the result of [28].

4.5 E series: eg and er

Of the exceptional Lie groups, only Eg and E; have non-trivial centers, with Z(Eg) = Zs
and Z(Er) = Za.
eg. The center of Eg is isomorphic to Zs, and there are two possible gauge groups with

¢¢ algebra, namely Fg and Eg/Zs3. The Dynkin diagram of the Lie algebra is

(€7}

oot oo

ap Qa3 Qg4 Qp

Its center is generated by any of uy, 3, wy or py, and any of them furnishes a possible
choice of basic magnetic charge. We choose uY := py. The basic electric charge v, should
be chosen so that (vo,uY) = 1/3. The quantization condition (3.2) has the following
solutions, listed with the generating lines:

Eg: (1,0)p, (0,3)p,
(E6/Z3)q,s : (3a 0)b7 (Q7 1)8 ; (4'61)

where, for consistency, as discussed in (4.10), ¢ = s (mod 2). In the Eg theory, 6 is 27
periodic, while for the Eg/Zs, shifting 6 — 0 + 27 is equivalent to adding a discrete theta
term of

Ap=30;' =4 (4.62)

where, as in (4.12), 4p = ¢ + 3s (mod 6). Thus, the following theories are identified

0+2m [/ 0
(Bo/Z3)qs"" = (Bs/Z3)g 4., = (B6/Z3)g 11 441 » (4.63)

and 6 is 67 periodic. The three different Eg/Zs theories are in the same T-orbit.

e7. The Dynkin diagram of e7 is

a7

oo booo

1 (%) a3 [0 7]) (6% Qg
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and the center of the universal covering group FE7 is isomoprphic to Zs. It is generated by
either wy, pg or ¥, and we choose py := p. Once again, the basic electric weight v, is
chosen so that (v, uY) = 1/2. Solving for the quantization conditions yields the following
theories and corresponding generating lines

sE7:(1,0)s, (0,2)p,
(E7/ZZ)Q75 : (270)b7 (qv 1)3

For Er/Zs theory, the discrete theta parameter can be identified as p = ¢ + 2s (mod 4),
and the T-transformation relates theories differing by a discrete theta term with

Ap =2Cg =3, (4.64)
leading to the identifications

(Br /L)t = (B7/Z2)) 5, = (B7/Z2)) 1 411 - (4.65)

Thus, 0 is 87 periodic for E7/Zy theories, and all such theories are in the same T-orbit.

5 Coupling to background fields

5.1 Abelian theories

5.1.1 Symmetries

U(1) gauge theory, with action (2.7), has one-form symmetry group U(1)e x U(1)m [27],
generated by the Noether currents

. 1 6 , 1
Je—ej*f—mfv jm—%f7 (5.1)

whose conservations follow from the equation of motion and the Bianchi identity respec-
tively. In the notation of section 2.1, the integer-valued charges on a two-dimensional cycle

=Lﬁ, mzém, (5.2)

which are related to the electric and magnetic charges by (2.6). There is a mixed 't Hooft

Y are

anomaly between U(1). and U(1)n, which can be explicitly seen in the next section when
the theory is coupled to background gauge fields for the symmetries.

5.1.2 Coupling to background gauge fields

The background gauge field By, € H?(M, U(1)y,) for the magnetic symmetry U(1),, couples
to the action (2.7) as

0 o
S[Bm]—/M Lpnsrt §2i %+2w7 zi (5.3)
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Meanwhile, the coupling to the electric gauge field B, € H?(M,U(1),) is more complicated.
To motivate it, we look at a simpler example of a two dimensional sigma model on target
space S*

/ R—Qdé/\*dqﬁ, (5.4)
5 2

which has an ordinary (zero-form) symmetry U(1); x U(1),, with associated currents j; =
R? x d¢ and j, = d¢/27. The translation symmetry U(1); is the analog of the electric
symmetry of Maxwell theory. A background field Ay is a flat connection for some circle
bundle over Y. In order to couple the theory to As, ¢ is promoted to a section of a bundle
associated to said circle bundle, and the derivative is replaced with the covariant derivative

R2

/ 7(dqurAt) A x(do + Ayp) . (5.5)
)

Analogously, in Maxwell theory, in order to couple to B, the gauge field a is promoted

to a bundle-valued section of a flat U(1) gerbe, on which B, is a gerbe connection. The

action is

(5.6)

1 0f+B. f+Be
—— (f+B)A B.) + 2 A .
/M g2 \f T Be) Ax(f+ Be) + 570 o

Note that Maxwell theory cannot be simultaneously coupled to both B, and By,.
Indeed, upon coupling to By, the conservation of the current j, is violated by terms
involving By,. Equivalently, if we took the action (5.6) coupled to B, and tried to add the
minimal coupling By, A f/2m, we find that B, background gauge invariance is lost. It can
be restored by introducing a bulk term on a five dimensional manifold ) with boundary

0Y = M, as follows
0f+Be A [+ Be

/M —2%2(1‘ + Be) Ax(f + Be) +

2 27 2m
Bl'l’l f Be Bm dBe
2T — —+ =] 2r— : .
+7T27T/\(27T+27T> /yﬂ27r/\27r (57)

In other words, there is a mixed anomaly between the one form symmetries U(1), and
U(1)m, with anomaly polynomial

B dB
or | ==/ A — ., (5.8)
which can be obtained via descent from the six dimensional polynomial [27, 50]
dB dB
Ig=——nN—. (5.9)
2 27

5.1.3 Relation to non-spin theories

The non-spin theories we considered in section 2 can be obtained by turning on specific
background fields. More specifically, we would like to couple a Zs subgroup of either the
electric or magnetic U(1) one-form symmetry to the second Stiefel-Whitney class wq(T'M)
of the spacetime manifold.
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In the magnetic case, setting By, = 2miwy(TM) yields

1 0f f 1
——f A —— AN—+2 T 5.10
[ =5l hoT+ G A+ 2rguaTAM)a (). (5.10)
where ¢ (E) is the (mod 2 reduction of the) first Chern class of the gauge bundle E. This
discrete theta term makes the monopole a fermion [16].
In the electric case, to gauge a Zso subgroup of U(1)e, it is only necessary to promote
the U(1) bundle to a U(1)/Zo ~ U(1) bundle, rather than a full blown gerbe. The quotient

bundle has a characteristic class arising from the exact sequence
0—Zy—U(l) > U(1)/Zy — 0 (5.11)

which we set to be equal to Be. If B, = 27T%’LU2(TM), then the connection on the quotient
bundle is exactly a Spin® connection, which we saw in section 2 describes a theory with a
fermionic electric particle.

If we turn on both background gauge fields B, = By, = 27T%w2(T/\/l), then we have
a theory describing all-fermion electrodynamics. According to (5.8), this theory has an

anomaly of [26, 30, 31]
1 1
27T/ *'U}Q,B('U}Q) = 271'/ —wows . (5.12)
v 2 y2

Here, 8 is the Bockstein homomorphism associated to the sequence 0 — Zo — Z4 —
Zy — 0.%5

5.1.4 S-duality

S-duality in Maxwell theory is an equivalence of theories under the exchange of electric and
magnetic charges. In the path integral framework, it can be implemented by coupling the
theory to a gauge field for its one-form electric symmetry, and integrating over the gauge
field while inserting a Lagrange multiplier field coupled to the gauge field. Integrating out
the Lagrange multiplier enforces flatness and triviality of the gauge field, returning us to
the original Maxwell theory, while integrating out the gauge field instead leads one to the
S-dual theory, formulated in terms of the Lagrange multiplier field [33].

For the non-spin Maxwell theories defined in section 2, the theory with fermionic
electric particle is S-dual to the theory with fermionic magnetic particle. This can be seen
in a completely analogous manner, and was done in great detail in [13]. In the following,
we give a brief outline of the procedure.

Let us review this procedure for spin spacetime manifolds. The partition function of
Maxwell theory is

Zlr) = Voll(g Z /da exp (iS[a; 7)) , (5.13)

[fleH2(M,Z)

where the sum is over U(1) bundles on M, and the path integral taken with respect to
the connections on each bundle. The factor Vol(G) is the volume of the group of gauge

263 is also known as the first Steenrod square Sq'.
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transformations of a. The Maxwell action is

f f _/ T T
/M o axfr et = [ b fek A S (5.14)
where we define fi := %(f + xf) and recall (2.5)
0 27r

Now, we couple Maxwell theory to the electric background field B, and sum over B, while
introducing a U(1) connection-valued Lagrange multiplier a, with curvature f

Bse f 1 . -
o2 AL = —(B A Be_ A ,) 5.16
/M 77'27_[_ o /M o e,+ f+ + De, f ( )

yielding the partition function

1 3 / [dadadbe] exp (iSla, @ be; 7))

Vol(G) Vol(G) Vol(gb) AR (M)
(5.17)
5 1T T
Stastsbir] = [ s+ bo) AU b)) A D)
M vy T
) ~ 7 -
+ 5bet A Fr+ gobo AT (5.18)

If one integrates out a first, the Lagrange multiplier term enforces the flatness of the
gerbe connection be, and the sum over bundles on which @ is a connection enforces the
topological triviality of b.. This shows that the partition function is identical to that of
Maxwell theory (5.13).

If instead one integrates out b, first, one can use its gauge symmetry to set f = 0. The
squares can be completed to

- iT 1~ 1~
Sla,a, be; 7] = / . <be,+ + f+> A <be,+ + f+> (5.19)
M 47
T 1- 1 ~ 7 - ~ i - -
— - —f) == AN —f Af.
i ( + /- > ( - ) e EeRAR Sty ERAV
The gaussian integral over b, yields an overall 7-dependent numerical factor,?” while the
terms on the second line give exactly Maxwell theory, with connection @& and coupling
constant —1/7.
On non-spin manifolds, there is a possibility of coupling Maxwell theory (electrically

or magnetically) coupling to we(T'M). Consider first adding a magnetic coupling to (5.14)
of the form

o /M %wQ(T./\/l)cl(E) (5.20)

2"The factor is 7~ to)/45=(x=)/4 [33],
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where ¢1(F) is (the mod 2 reduction of) the first Chern class of the line bundle. Upon
coupling to b. and gauge fixing, this results in a five dimensional term

1 dbe
2 —wa(T 5.21
v [ Guara0GE. (5.21)
and integrating out b, enforces the constraint
fo1
— = —we(TM) (modZ). (5.22)
2r 2

In other words, the connection valued Lagrange multiplier & is a Spin® connection.

5.2 Non-Abelian theories

5.2.1 Symmetries

Consider, as in section 4, Yang-Mills theory based on a simple, connected and compact
gauge group G. Let L be its set of line operators, which, as we saw in section 3.1, can be
described as an extension of groups

0—Te—L—Tm—0, (5.23)

where G = G/Ty, and Ty = Z(G). The one-form symmetry group L is the Pontryagin
dual £
0Ty —L—>Te—0. (5.24)

The charge operator — the analogs of the Noether charges in the abelian case — for the
I’y subgroup is

Qm(X) = jibm, (5.25)

where by, € H2(M,Ty,) is the Brauer class of the G-bundle, as we defined in section 3.1.
The unitary operator implementing the symmetry transformation by the group element
g € 'y, is given by the exponential of the charge operator as

U (2, g) = e271(9:Qm) | (5.26)

The symmetry operators for the group elements which project non-trivially onto I'e are
disorder-type Gukov-Witten surface operators [51]. For ease of exposition, we denote the
charge and unitary symmetry operator by

QX)) = }éb, U(X,g) =exp <2m’gi)b> , (5.27)

with g € L, keeping in mind that b € H?(M, L) has a non-local expression in terms of
fundamental fields of the theory. Let by, € C?(M, £) be a lift of by, and let b, € C?(M, T)
be defined by

b=by + be . (5.28)
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The conservation of b leads to the relation

A~

dbe = B(bm) , (5.29)
where 3 : H*(M,T'y) — H*t1(M,T) is the Bockstein homomorphism?® associated to the
extension (5.23).

5.2.2 Coupling to background gauge fields
Let A € H*(M, ﬁ) be the background field for the £ one-form symmetry. Let A, denote
the projection of A to H*(M,T.), and Ay, € C?(M,T) be defined by

A=A+ A, (5.30)
where A, is some choice of lift of A,. The flatness of A implies

0Am = B(Ae), (5.31)

where 3 : H*(M,T.) — H**1(M,Ty,) is the Bockstein homomorphism?® associated to
the extension (5.24). Physically, this reflects the fact that the symmetry group Lis a
I'y-projective extension of I'e — so lifts of 'y elements violate the group law up to ele-
ments of I'y,. This means that 'y, flux can be sourced by junctions between I'y symmetry
operators [52].

In terms of the fields Ay, and A., the minimal coupling can be written as

27r/ Aub_27r/ AeUbe + Ay Uby + Ag Uby, . (5.32)
M M
(Note that Ay U Be = 0 due to exactness.)

5.2.3 Anomalies

As in abelian gauge theory, there may exist mixed 't Hooft anomalies in the L one-form
symmetry, which can be detected by coupling to the background gauge field A. Mixed
anomalies between I's and I'y, are characterized by the mild violation (i.e. violation only

when background fields are turned on) of discrete “current” conservation
dby, = Alé, (5.33)
where é € H3(B?T', ') satisfies the condition
eUé=0¢c H%B.,R/Z) . (5.34)

Fixing cocycle representatives for e, é and a representative w € C®(B?I'.,R/Z) satisfying
dw = e U ¢, the five-dimensional anomaly polynomial can be written as [52]

o / AU A% — A% . (5.35)
Yy

QSB : Hp(——,f‘m) — Hp“(——,f‘e) can also thought of as the extension class é € H”“(Bpfm,f‘e)
of (5.23) as p-groups, under the relation B(bm) =bpé.

2Similarly, 8 can be thought of as the extension class ¢ € H*(B?T.,I'm) of (5.24) as higher groups,
under the relation 8(A4.) = Age.
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As an example of a theory exhibiting such an anomaly, consider the gauge group
SU(rs)/Zs, with n = 0. The one-form symmetry of the theory is the direct product of
I'e = Z, and I';, = Zs;. The generator for the magnetic symmetry is the Brauer class
by = Wi (E) € H2(M,Ty,) of the gauge bundle E associated to the sequence

0— T = Zs — SU(rs) — SU(rs)/Zs — 0 . (5.36)

To couple to the background field A, for I'c = Z,, one relaxes the SU(rs)/Zs gauge bundle
to a PSU(rs) gauge bundle, and sums over PSU(rs) bundles in the path integral with
Brauer class we(E) € H2(M,T,) associated to the sequence

0—Te=72, - SU(rs)/Zs; — PSU(rs) — 0 (5.37)

equal to the background field A.. In other words, the action of the theory coupled to A, is
1-
SPSU(’I‘S) [a] + 27T/ ;be U (we(E) - Ae) s (538)
M

where Spgy(rs)la] is the Yang-Mills action for a PSU(rs) gauge connection a, and be is a
Z,-valued two-form Lagrange multiplier field enforcing we(F) = A,.
PSU(rs) bundles have a Brauer class w € H?(M, Z,,) associated to

0 — Zys — SU(rs) — PSU(rs) — 0 (5.39)

whose mod s reduction is the class mentioned above
w(E) =we(E) (mod s). (5.40)
Meanwhile, the mod s-valued class by, = wy,(E) defined above for SU(rs)/Zs-bundles are

no longer well-defined here. Instead, we consider

b = (0e(B) ~ w(B)) (5.41)

where We(FE) € C?(M,Z,s) is some lift of we(FE). Note that the expression in brackets is
an integer multiple of 7, so (5.41) defines a Zs-valued cochain. The failure of the cocycle
condition

%;:%MMEﬁ4M%w»:A§, (5.42)

is exactly given by the Bockstein homomorphism 3 : H?(M,T) — H?’(M,f‘m) acting
on we, which can equivalently be thought of as the pullback of the extension class é €
H3(B2T,, ') of the one-form extension

0— D — Z(SU(rs)) = Te = 0 . (5.43)

Comparing this to (5.33), we see that Yang-Mills theory with gauge group SU(rs)/Zs and
1n = 0 has a mixed 't Hooft anomaly

27r/ An U AYE . (5.44)
Y
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Like in the abelian case, the spacetime manifold can couple to (Zy subgroups of) the
one-form symmetries. For example, if r is even, one could set A, = r wa(T M) /2, which
makes the fundamental electric particles fermionic. If s is even, setting Ay, = swa(TM)/2
makes the fundamental magnetic particles fermionic. In both r and s are even, turning on
both couplings to we(T' M) results in the same all-fermion anomaly

1 1
27r/ “wy USql wy = 27r/ —wWows , (5.45)
y 2 y2

as can be seen from (5.35).

5.2.4 Anomalies and T-transformation

Returning to the general setup at the beginning of section 5.2.3, consider now the addition
of a discrete theta term

o /M Py (bn) - (5.46)

Due to the anomaly (5.33), the discrete theta term is not gauge invariant. Indeed,
5S = 2 / Ae Un(bm) = 2 / n(A%e, Ubm) - (5.47)
y y

Comparing this with (5.35), observe that this gauge variation can be cancelled by shifting
the extension class e by
Ae=—-noé. (5.48)

In other words, the addition of a discrete theta term modifies the extension class e of the
one-form symmetry group by an amount proportional to the 't Hooft anomaly é.

5.2.5 Gauging one-form symmetries

The various different gauge theories with based on the same Lie algebra can be related to
one another by gauging their one-form symmetries. Indeed, we have already encountered
and implicitly used this fact starting from the theory based on the simply connected Lie
group G. The one-form symmetry group in this case is purely electric and equal to its center
Z(G). Suppose we minimally couple and dynamically gauge a subgroup I'y, C Z(G).%
According to the prescription discussed above, this is done by promoting the G bundle to
a G / 'y bundle, allowing cocycle conditions to be violated by elements in I'.. The Brauer
class w(E) € H*(M,Ty,) of the G/T'y, bundle is constrained to be equal to the gauge field
am by a Lagrange multiplier field, which is then summed over in the path integral. Clearly,
this simply yields é/fm theory with n = 0, which now has an emergent I'y, one-form
symmetry generated by the cocycle w(E).

In order to arrive at the theories with non-trivial 7, or, equivalently, non-trivial
extensions

0—Te—L—Tm—0, (5.49)

39Note that this is subtly different from coupling to a Z(é) background field and then gauging a subgroup.
There are some é/fm theories that cannot be obtained in this manner, whereas they can be reached by
coupling directly to I'm gauge fields.
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one couples non-minimally to the gauge field a,, by adding discrete theta terms of the form

o /M Po(am) (5.50)

where o is the quadratic form corresponding to the desired theory, as discussed in section 4.

We can apply the same procedure to any theory, dynamically gauge some subgroup of
its one-form symmetry L, possibly with discrete theta terms, to arrive at any other theory
with the same gauge algebra.

5.2.6 Anomalies and one-form symmetries under gauging

Gauging a subgroup of the one-form symmetry yields another theory, with the same gauge
algebra, but with the 't Hooft anomaly and group extension class exchanged. This is a
manifestation of the phenomenon described in [52].

We illustrate this by beginning with a G gauge theory, and gauge a subgroup I'y, of
its one-form symmetry group Z(G) yielding G/T'y, gauge theory. The parent G theory
has one-form symmetry group described by the extension (3.10). Let e € H3(B?T,,Te)
denote its extension class. This theory is non-anomalous, so the one-form symmetry of the
daughter G /T'm theory is a direct product I'¢ X I'sm. Meanwhile, the background gauge field
b, of the parent theory is now summed over in the daughter theory, so the failure of the
cocycle condition

by = A’e (5.51)
is now interpreted as a mixed anomaly with anomaly polynomial [52]
27r/ AfeU Ay, (5.52)
Yy

where Ae, Ay, are the two-form gauge fields for I'y and . respectively.

In order to arrive at other theories with gauge group G/Fm — whose set of line
operators L is not a direct product of electric and magnetic factors, but rather a nontrivial
extension (3.11) — we add a discrete theta term (3.14). As discussed in section 5.2.4, such
a term shifts the extension class of the one-form symmetry by the mixed anomaly

d=noe, (5.53)

where n(z,y) = o(z +y) —o(xz) — o(y) is the bilinear form corresponding to the quadratic
form used to define the Pontryagin square term in (3.14).

This discussion of the one-form symmetry gives an alternative understanding of (3.12)
in terms of its Pontryagin dual. Indeed, e € H3(B?I's,T},) is the extension class of (3.10),
while ¢ € H3(B2I,Ty) is the extension class of the Pontryagin dual of (3.11)

0Ty —=L—>Te—0. (5.54)

The relation €’ = 7 o e establishes the one-form symmetry group L as the pushout

0 s I'm L y Te 0
ﬁ ‘ (5.55)
0 y T Z(G) s Te 0

which is dual to the pullback diagram (3.12).
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A Lie algebra basis and weight lattices

We begin with a simple Lie algebra g, and choose a Cartan subalgebra t C g. Let «; € t*
denote the simple roots of g. The Cartan matrix is defined by

tr a;a;

Cij:2 1§i,j§7’ (Al)

traja;’
where tr is the Killing form on g and r is the rank of g. This does not depend on the overall
normalization of the Killing form, but following an often used convention, we normalize
it such that the length-squared of the long root(s) is 2. The simple coroots o € t are
defined by

tr ;o

(g, ) =2

) (A.2)

traja;’
which also does not depend on the overall normalization of the Killing form. The length-
squared of the short coroot(s) is 2. If we identify t with t* using the Killing form, we get

) = a;, and (tr aivajv)(tr ajo;) =4 . (A.3)
The corresponding fundamental weights are

=C;;lay, (A.4)

]

which generate the weight lattice A,, of g. Note that although Cj; has integral entries,
its inverse generally does not. An irreducible representation of g is characterized by its
highest weight

v=my;, m; el . (A.5)

Simple coroots o and fundamental coweights u) of g are defined as the dual vectors to the
fundamental weights and simple roots. They generate respectively the coroot and coweight
lattices Ao and Acw. For convenience, we list here the pairings between fundamental
weights, simple roots, fundamental coweights and simple coroots.

(i, af) = Gy, (A.6)
(vi, ) = by, (A7)
(o, ;/> = 0ij (A.8)
<V1’:U’]> = C ! (A.9)
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The coroots and fundamental coweights generate A. and Ay respectively and we have
A CAg C A, CH, (A.10)
Ao CAcg CAew C . (A.11)

Here A.g is the cocharacter lattice of G where the magnetic charges take value in, and its
dual lattice Ag := Hom(A¢g,Z) is the character lattice of G. The lattices Ag and A.g
are dual in the sense that for any v € Ag and p" € Acg, (v,p”) € Z. As explained in
section 3.2, the actual weight lattice of a theory with gauge group G is an extension of
Acc by Ag, where the extension is determined by the topological theta parameters of the
theory. In particular modding out by the (co)root lattices and projecting onto the one-form
symmetry charges, we get the extension (3.11). For weights v € Ay, and p" € Acy, we
denote the corresponding one-form symmetry charges by [v] € Ay /A; and [1Y] € Acw/Acr,
which are the projection of the weights onto Ay /A, and Ay /Ac.

B Adjoint Higgsing

In this section we perform a consistency condition of our proposal by adjoint Higgsing. We
add an adjoint scalar Higgs field to the non-abelian theories we discussed. As a result, the
theory flows in the infrared to an abelian gauge theory with gauge group T = t/A.c —
which is the maximal (Cartan) torus of G — with some topological theta term. We refer to
this infrared theory as the Coulomb phase. This abelian theory is free and as discussed in
section 2 we know its set of line operators and their spins exactly. We see how our proposal
predict the spins of these lines in the infrared.

Denoting the gauge field of the Higgsed theory as A € Q!(M,t), the gauge transfor-
mation are given by

A A+dX, for: XeQ%(M,T), (B.1)
where A : M — T is a smooth function. Every such map can be written as
A = exp(iN'RY), (B.2)
where hY, ..., h'\r/:rank(G) generate the cocharacter lattice of G,
Aeg = {mih) +---+mh) | m; €Z} . (B.3)
This lattice is the kernel of the exponential map above and we have the short exact sequence
0= Ag =t 2T 0. (B.4)

Therefore \' : M — R/Z, and each of them individually define a separate U(1) gauge
transformation. Accordingly if we expand the gauge fields as

A= ARy, where: A'c Q'(M,R), (B.5)

each of A’ is a seperate U(1) gauge field with U(1) holonomies. Upon Higgsing, the theory
flows in the infrared to

1 , ) 2] ) )
= g FPARFI 4+ g FPAFT ) B.
S M4< 262g] A % +87T2g] A > (B.6)

where g;; = trh/h}, and Fi =dA".
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Denote Q;e and Qjm as the electric and magnetic charges under A?. More precisely

1 . 1 .
Qie:f*Fla Qim:%Fla (B7)
by €Jy

(&

measure the electric and magnetic charges inside the surface ¥. By doing the Noether
procedure as in (5.2), we find the integer valued one-form symmetry charges

1 ) 0 . 1 ;
g B ) R = ¢ F° B.8
g 9137{2 <62 * 472 > ’ i 27'(?{2 ’ (B:8)

where we have the relations

1 el e
ni = gij <6Qje - WQm) ;M= Qi (B.9)
Therefore, it is easy too see that we have
Qic 9;' Qjn — Qle 95 Qim € 277, (B.10)

for any pair of dyons. This is in fact the DSZ quantization condition of this theory, which
also measures the angular momentum stored in the electromagnetic fields in the presence
of the pair of dyons. Now one could find the Wilson-’t Hooft lines which are charged under
these one-form symmetries and match them with the UV line operators. We define the
Wilson lines by integrating the gauge fields, and the 't Hooft lines can be defined as the
boundary of the surfaces which generate the electric one-form symmetries,

i . i i . 1 , o .
W*(7y) = exp <2W17£A> ,  T'(9%) =exp (27”91‘]‘/2 (eQ*F]_WFJ>) . (B.11)

We find the UV line operators that flows after Higgsing to these basic Wilson and 't Hooft
lines, by finding their corresponding weights. First we pick a basis for the character lattice
Ag of G which is dual to the chosen basis for A.g, i.e.

(hiy BY) = 65 - (B.12)

Thus in the UV weights of the form (h;, h}/) generate all the possible genuine Wilson-'t
Hooft lines. Wilson lines of the UV theory are labeled by representations of G. Define R;
as the representation whose highest weight is h;, then the corresponding UV Wilson line

is defined by

W (R:) = trr, oxp (i%A) =Y e (if@, A}) — exp (17&4) b, (B3

veER;

where the sum is over all the weights v of the representation R;. In particular, h; is such a
weight and since (h;, A) = A%, the sum includes the IR Wilson line W*. Thus we see that
the UV Wilson line, decomposes into a sum of IR Wilson lines which should all carry the
same spin as the UV line. Thus having a labeling for the UV Wilson lines, we infer the
spins of the IR lines. Similarly one could see that the UV ’t Hooft line characterized by
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the coweight ), flows in the IR into a sum including basic IR 't Hooft line T?. For these
IR lines, the angular momentum of the electromagnetic fields of two dyons with charges
(n;,m;) and (n;, m}) is given by the Dirac pairing (B.10) as

2J3 = anm; - n;mz’ = <(nihi?mih;/)a (nghivm;’hiv»

=1

p (mod2). (B.14)

Thus the Dirac pairing of the UV lines labeled by weights (n;h;, m;h;") and (n}h;, mih)),
indeed calculate the angular momentum of the electromagnetic fields in this Coulomb
phase. Thus our proposal of labeling the UV lines with spin, is consistent with the spin of
the IR lines after Higgsing.

Also note that all the 't Hooft lines of the IR theory whose weights (charges) are inside
the coroot lattice Ay, can be realized as dynamical 't Hooft-Polyakov monopole solutions
of the UV theory. This is because, the VEV of the Higgs field breaks the guage group

G down to its Cartan torus T. Thus topologically solitonic solutions are characterized by
m2(G/T). There is the long exact sequence

7T2(G) =1— WQ(G/T) — 7T1(T) = AcG — 7T1(G) = Acg/Acr — e, (B.15)

and we get mo(G/T) = Aer. Thus 't Hooft lines with charges (0,m;) such that m;h) € Aqr,
are UV completed as 't Hooft-Polyakov monopoles of the UV theory.
Furthermore, from (B.9) one could find the effect of shifting # by 27 by noting that

1 0
i = Gii | —&je — — My . B.1
i = g (10— o) (B.16)
Hence shifting 6 by 27 shifts the electric weight v = n;h; by
Av = —gijmjhi = —('mjh}/)*, (B.17)

which is consistent with the T-transformation defined in section 3.

C S and T transformations

Here we study the S and T operations defined in [27] (section 6), on the non-abelian gauge
theories discussed in the previous section. These operations are defined as a generalization
of Witten’s operation on 3d theories with global symmetries [53]. The T operation is
already discussed in section 3.3, and acts by adding a discrete theta term to the action.
Whereas the S operation acts by gauging the one-form symmetry of the theory which is
further explained in section 5. The S and T operations can be defined by their action on
the line operators as

V)s = (MV*

Ve (v —p

S:(v,p
T:(v,p
where the map * : t — t* is induced by the Killing form on t — see section 3.3. Since
different gauge theories are determined by their set of genuine line operators and their
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spins, these maps uniquely determine a map between the theories. It is straightforward
then to obtain the full SL(2,Z) orbits of these non-abelian gauge theories. We do it for
u(2) and su(4) gauge theories below.

Note that these operations, a priori, do not act on the coupling constant 7 of the
theory. But in some cases if we also change 7 we can obtain duality transformations. For
instance as was explained in section 3.3, for the T operation by shifting the #-angle of the
theory by 27, the T operation becomes a duality transformation. Furthermore, for the case
of U(1) theories by a proper action on 7 we have the full SL(2,Z) duality transformation
on the abelian theories. However, for non-abelian theories to get the full SL(2,Z) group
to act as a duality transformation, we need to look at the supersymmetric version of the
Yang-Mills theory.

N = 4 super Yang-Mills on non-spin manifolds. For the case of N' = 4 super
Yang-Mills theory, the S and T operations become duality transformations [54-56] given
the actions
S:Tr—>—i, T:7—71+1, (C.3)
ngT
on the coupling constant of the theory, where ng = 1 for simply laced Lie algebras (for
non-simply laced algebras see [40, 57]). The orbits of S-duality for non-abelian theories on
spin manifolds was obtained in [24]. Here we extend that discussion to non-spin manifolds.
As explained in [15], to define N' = 2 super Yang-Mills theory with SU(2) guage group
on non-spin manifolds, we have to define a non-abelian spin/charge relation [14, 16] because
of the adjoint fermions. In particular, we have to identify the Zy subgroup of the Lorentz
transformation generated by (—1) with the central Zy subgroup of the global R-symmetry
that the adjoint fermions are charged under. For the case of N’ = 4 supersymmetry, the
adjoint fermions transform in the fundamental representation of the SU(4) r symmetry, so
one could identify the central element —1 € SU(4) g with (—1)" of the Lorentz group. This
defines a non-abelian spin/charge relation which allows us to define the N' = 4 Yang-Mills
theory on non-spin manifolds.

C.1l g=su(2)

For the example of su(2) gauge theory on non-spin manifolds, all the theories belong to
the same orbit of S and T operations and we get the following web

o O

0(3 s SO(3)os 2 Spin-SU(2)

\ =
SO(3)1,b
(C.4)
By looking at the A" = 4 version of these theories, we can obtain extra consistency checks
for our proposal by Higgsing these theories to U(1), and match the S-duality orbits.
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For the case of ,SU(2) theory, the fundamental Wilson line has spin s which under
Higgsing becomes the fundamantal Wilson line of the U(1) theory. For the SO(3),,s theory
however, the basic Wilson line is W2 = (2,0);, which Higgses to the fundamental Wilson line
of the U(1) theory (1,0)p. The other generating line WIT = (¢, 1)s, Higgses to a line of spin
s and electric charge ¢/2 in the U(1) theory. This fractional electric charge is equivalent
to adding a theta angle of g7 to the U(1) theory. Moreover by looking at the coupling
constants of these theories, we have the relations 7V(1) = 275U(2) and 7V = 750G) /o,

Therefore after Higgsing we get

SU@2)™ : (1,0), (0,2), SO(3)7 , + (2,001, (g, 1)s
JHiggsing lHiggsing (C5)
JUMF 2 (1,0)4, (0, 1), U D2 (1,0, (0,1),

To see the consistency of the S-duality of su(2) theories with U(1), we Higgs the theories
in (C.4) and indeed we get a web of dualities for the U(1) theories as expected

U(
/
U S u) T

b
m
U

1)1£27'71)/2‘r
U 27/(1-21)
7

(1)?7_1)/27 PR-EIN (Spinc)b

(C.6)

C.2 g=su(4)

For the case of Yang-Mills theory based on the Lie algebra su(4), we get the following orbits

PSU(4)2,1,
y \T
PSU(4)1 ¢ } PSU(4)3,¢
Y e N ()
SU4) < PSU4)o,1 s [T s PSU(4)o,¢ <% Spin-SU(4)
PSU(4)3 1, } PSU(4)1,b
T~ T
PSU(4)2,f

sc SO(6)0.0 <L SO(6)0.s <> Spin-SO(6), DT Spin-SO(6), DS, T
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Interestingly for this example, different orbits have different one-form symmetry groups or
the same symmetry but different 't Hooft anomalies for that symmetry. In particular, the
theories in the orbit of SU(4) have a Z4 one-form symmetry, whereas the other theories
have a Zgy X Zy one-form symmetry. Furthermore, as explained in section 5, the theories in
the orbit of Spin-SO(6),, are anomaly free while the Spin-SO(6); theory has a gravitational
't Hooft anomaly.

D Consistency with Wu’s formula

In this appendix we perform a non-trivial check on our proposal of determining the spin
of lines in non-Ableian gauge theories. This check is based on Wu’s formula, which states
that for any Zs cohomology class z € H2(M, Zs),

%wg(TM)Um%—%a:UxEO (mod 2), (D.1)
where wy(T'M) is the second Stiefel-Whitney class of (the tangent bundle of) the manifold
M. In the examples of section 4, take x = by, as a generator of some Zo one-form symmetry.
Adding (27 times) the Lh.s. of (D.1) to the action, we get a duality since the action remains
invariant mod 2. This duality puts some constraints on the set of line operators and their
spin. To see this, note that the first term in (D.1) attaches a wy(T' M) surface to those
lines which are charged under this Zs symmetry, and hence changes their spin. Whereas
the second term attaches the surface

exp <2m' /E x) : (D.2)

to the charged line operators supported on v = 9%. But such open surfaces are not gauge
invariant, and has to be attached to a line operator with some weight which we denote by
A5 € A. Therefore, if we start with a theory that have a line operator with weight 7 € L
and spin s (mod 2) which is charged under the Zs symmetry, then the duality guarantees
that the theory should also have a line with spin s + 1 (mod 2) and weight ¥ + A%5. Now
we want to prove this requirement by using our proposal.

Let us assume that the theory has a set of lines labeled by their weights in £. Thus
the one-form symmetry charges of these lines is given by projection of their weights onto
L. This projection is given by the restriction of the projection p: A — A to £ C A. Also,
since L is the group of the charges, its Pontryaging dual L, is the symmetry group. Denote
b € H?(M,L) as the generator of this one-form symmetry, and denote the Zs one-form
symmetry subgroup by the inclusion i : Z /27 — L. The Pontryagin dual of this inclusion
defines the generator of this Zy one-form by

i(b) =z € H*(M,Z/27), (D.3)

where we have identified Zs and Zg with Z/2Z. Now take an arbitrary line operator of
the theory with weight 4 and one-form charge v = p(¥), then the Zs charge of this line is
given simply by () € Z/2Z. We conclude that adding the first term in (D.1) to the action
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change the spin of a line with weight 4 by 5(7) So it changes the spin lables s : £ — Zs
to s’ = s+ iop. Now we want to find how the weights change by adding the second term
in (D.1), i.e. finding A%. To do so note that the second coupling in (D.1) can be written as

n(b,Ub) = %i(b) Ui(b) (mod Z), (D.4)

where 7 : £ x £ — R/Z. Equivalently,  can be viewed as a homomorphism n: £L — A/L,
where we have identified £ with A/L by an isomorphism®' induced by the Dirac pairing
on A. Then similar to (3.13), n changes the Lagrangian charge lattice £ C A to3?

L'={y+Ay|ve L, Ay=2n(y) mod L}, (D.6)

and we have A% € 2p~1(n(7)), where here p is the projection A — A/L.

Putting everything together the duality sends the line with weight 4 with spin s(%) to
the line with weight 4 + A% and spin (s + io p)(7) which has to be the genuine line of the
same theory. But before the action of this duality the line with weight 4 + A% has spin
s(¥ + A%). Thus the consistency of our proposal with Wu’s formula requires these two
spins to be the same, i.e.

(3) = s(3+ A3) (mod 22)

s() +1op(¥) = s(7) + s(AY) + (AY, ¥)pirac  (mod 2Z)
%(7) =2(n(7),V)pirac  (mod 2Z)
(

i(7)i(7) = 2n(v,7) (mod 27Z)

where in the second line we have used s(A%) = 0 (mod 27Z), this is because A% is inside

(D.7)

2p~1(n(7)) and hence is twice of some weight, so according to (3.7) is bosonic. The last
line simply follows from the definition of 1 in (D.4). Thus we have shown the consistency
of our proposal with Wu’s formula.

E Normalization of theta terms

In this appendix, we discuss our normalization of the continuous theta term

A N E.1
2/Mr27r o (E.1)

We shall do so by specifying the characteristic class, as well as any numerical factor, which
multiplies the periodic parameter 6. This will unambiguously give the definition of 6,

31More precisely the Dirac pairing on A — which is the projection of the pairing (3.5) on A — gives an
isomorphism * : £L — A/L, by the relation

(9%, ¥)Dirac = {(g,7) (mod Z) for: ge £ and yeL, (D.5)

where the r.h.s. is evaluated by the natural pairing between L and £. This can be summarized in a short
exact sequence 0 — £ — A — £ = 0. Interestingly when the sequence is not split, the £ one-form
symmetry is anomalous.

32However for n given in (D.4) £’ = L, otherwise the duality would have failed.
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avoiding any niggly numerical factors, and furthermore, the integrality and multiplicity of
characteristic classes will immediately tell us the periodicity of 6.
For abelian U(1) theory, the theta term is normalized as

g /M c1(E)?, (E.2)

where ¢1(E) is the first Chern class of the U(1) bundle E. On spin manifolds, ¢} is even,
and so 6 is 2m-periodic for a spin theory. On non-spin manifolds, however, 6 is 4m-periodic.

For non-abelian theories, the story is more complicated, as there are different Lie
groups corresponding to the same Lie algebra. The fourth cohomology of a connected,
simply connected and simple Lie group G has rank one

HYBG,Z) =17, (E.3)

and let & be its generator (fixed up to sign of 6). For example, in the case G = SU(N), 7 is
the second Chern class ¢y of the N-dimensional complex bundle; for G = Sp(N), # is the
first Pontrjagin class p; of the 2/N-(complex) dimensional quaternionic bundle. The theta
term an oriented Yang-Mills theory with gauge group G is normalized as

0 /M a*7, (E.4)

where a : M — BG is the Yang-Mills connection. It follows that 6 is 27 periodic.

Now, consider a group G = G/m(G) which is not simply connected. The fourth
integral group cohomology of BG is again of rank one, and the projection map p: G — G
induces an injection

p* : HYBG,7) — H*(BG,Z) . (E.5)

Let z be a generator of H*(BG,Z). Then
P =nt (E.6)

for some nonzero integer n € Z, which we can choose to be positive by redefining x. The
theta term of an oriented Yang-Mills theory with gauge group G is normalized as

- /M a*x, (E.7)
and it follows that 6 is 27n periodic.
For example, for G = PSU(N) = SU(N)/Zn, n = N if N is odd and n = 2N if
N is even [28]. One way of computing n is to compute c2(Ad) for the associated adjoint
bundle Ad, which is a characteristic class of PSU(V), in terms of characteristic classes of
the defining N-dimensional bundle. One finds that ca(Ad) = 2Nca(N) [58]. For N even,
this class is primitive and is therefore equal to p*x (up to sign), while for N odd, this class
is divisible by 2 and so 2p*z = c2(Ad) (up to sign) [28, 59].
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G G n | Ap (mod n)
PSU(N), N even SU(N) | 2N N-1
PSU(N), N odd SU(N) N -1

PSp(N) Sp(N) 2 N
SO(N), N >5 Spin(N) 2 1
PSO(2N), N odd | Spin(2N) | 8 N
PSO(2N), N even | Spin(2N) | 8 see (4.60)
Es/Zs Es 3 1
E7/Zs E; 2 1

Figure 3. Table of gauge groups, 6 periodicities and T-transformations.

F Relation between discrete and continuous theta terms

The relation between discrete and continuous theta terms can be understood as a relation
between integral and torsion characteristic classes of the gauge G-bundle. See section 6
of [24] for a similar discussion on spin spacetime manifolds. As in appendix E, let = be a
generator of H*(BG,Z), and the positive integer n be such that the continuous theta term
is normalized as 0x /n.

When 6 is a multiple of 27, the continuous theta term can be expressed in terms of a
discrete theta term P(w), where b is the Brauer class of the G bundle corresponding to the
extension 1 — I'y — G — G — 1. This is the topological genesis of the T-transformation
described in section 3.3. The relation takes the form

x=—ApP(b) (modn). (F.1)

The values of theta period n and T-transformation Ap are tabulated in table 3. For some
gauge groups such as PSU(N) and SO(N), the relations can be found and corroborated
in the mathematics literature — see [59, 60|, as well as [24, 28] and the references therein.
For other gauge groups, we are not aware of results in the mathematics literature, and
the physical arguments in this and the earlier papers [24, 28] serve as heuristic arguments
for them.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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