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ABSTRACT: We carry out a detailed exploration of the deformations of rank-two five-
dimensional superconformal field theories (SCFTs) Tx, which are geometrically engineered
by M-theory on the space transverse to isolated toric Calabi-Yau (CY) threefold singular-
ities X. Deformations of 5d N' = 1 SCFTs can lead to “gauge-theory phases,” but also
to “non-gauge-theoretic phases,” which have no known Lagrangian interpretation. In pre-
vious work, a technique relying on fiberwise M-theory/type ITA duality was developed to
associate a type IIA background to any resolution of X which admits a suitable projection
of its toric diagram. The type IIA background consists of an A-type ALE space fibered
over the real line, with stacks of coincident D6-branes wrapping 2-cycles in the ALE res-
olution. In this work, we combine that technique with some elementary ideas from graph
theory, to analyze mass deformations of 7x when X is a isolated toric CYj3 singularity of
rank-two (that is, it has two compact divisors). We explicitly derive type IIA descriptions
of all isolated rank-two CY3 toric singularities. We also comment on the renormalization
group flows in the extended parameter spaces of these theories, which frequently relate
distinct geometries by flowing to theories with lower flavor symmetries, including those
that describe non-gauge-theoretic phases.

KeEywoORrDS: Conformal Field Theory, Field Theories in Higher Dimensions, M-Theory,
Supersymmetric Gauge Theory

ARX1v EPRINT: 1911.09574

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP04(2020)198



Contents

1 Introduction 1
2 5d N =1 theories and M-theory on a CY3 singularity 5
2.1 Review of 5d N/ = 1 gauge theories 5
2.2 The prepotential on the Coulomb branch 7
2.3 BPS objects on the Coulomb branch 9
2.4 M-theory on a CYj3 singularity 10
2.5 Graph-theoretic perspective 15

3 Rank-two isolated toric CY3 singularities 16
3.1 The E1%? singularity and SU(3)2 gauge theory 21
3.2 The E;?! singularity and SU(3); gauge theory 25
3.3 The E;%0 singularity and SU(3) gauge theory 28
3.4 The EQQ’% singularity and SU(3)s Nf =1 gauge theory 30

2

3.4.1 Sample slicings of the E227% moduli space 42

3.4.2 Probing the Coulomb branch of the 5d SCFT 42

3.5 The Ey23 singularity and SU(3)1 Nf = 1 gauge theory 44

2

3.6 The E3%*! singularity and SU(3); N; = 2 gauge theory 55
3.7 The E3%0 singularity and SU(3)g N; = 2 gauge theory 64

A Field theory prepotentials and instanton masses 65
B Triple-intersection numbers of the E3%! geometry 67
C M-theory prepotentials of the E3%! geometry 72

1 Introduction

Five-dimensional N' = 1 supersymmetric gauge theories are curious entities in the landscape
of string/M-theory compactifications, interpolating between their more extensively-studied
four- and six- dimensional cousins. Being non-renormalizable, they are intrinsically ill-
defined as quantum field theories, and yet, they are interesting systems to study as they
have well-defined ultraviolet (UV) completions via string/M-theory [1-3]. The basic tool for
studying them in the context of this paper is geometric engineering in M-theory [4-7]. (For
reviews of geometric engineering, see [8, 9].) Specifically, five-dimensional gauge theories
with N/ = 1 supersymmetry can be geometrically engineered via the decoupling limit of
M-theory on a local Calabi-Yau (CY) threefold X. In the limit where all the K&hler moduli



of the threefold shrink to zero size, one gets a five-dimensional superconformal field theory
(SCFT) in the UV along the spacetime transverse to X:

M-theory on R x X — Tx = SCFT(X). (1.1)

The geometric engineering analysis in this paper is largely based on [10], where a program
to study the mass deformations of these SCF'Ts was initiated, focusing on the properties
away from the conformal point. See also [11-35] for recent developments. Alternative
constructions of 5d SCFTs rely on (p, ¢)-web diagrams in type IIB [2, 3, 36-40], which are
dual to the M-theory geometry when X is toric. The existence of 5d UV fixed points is
also motivated by the AdS/CFT correspondence [41-53].

Five-dimensional SCFTs are strongly coupled [54], and do not admit any marginal
deformations [55, 56], but do admit (relevant) flavor current deformations (with mass
dimension one). Therefore a deformation of the UV SCFT can lead to an infrared (IR)-
free gauge theory. In the geometric engineering approach, a relevant deformation of the 5d
N =1 SCFT Tx of (1.1) is equivalent to a crepant resolution of the singularity:

Wg:ig—)X, (1.2)

which yields a smooth (or at the very least, less singular) local CY 3-fold }ACZ. Different
crepant resolutions are related by flop transitions. Under suitable conditions satisfied by
}A([ that were spelled out in [10] for the toric case, the resulting geometry gives rise to a
five-dimensional N' = 1 supersymmetric gauge theory.

In this paper, we apply the methods developed in [10] to analyze deformations of
Tx when X is a “rank-two” isolated toric singularity. The latter refers to the fact that
X is described by a two-dimensional toric diagram with two interior points (that is, two
compact divisors). There is a well-known classification of two-dimensional convex toric
diagrams with one interior point [57, 58] (“rank-one” in this terminology). A classification
of lattice polygons with two-interior points was given by [18, 59], a subset of which describe
isolated canonical singularities of toric CY3-folds. The advantage of working with isolated
singularities is that there is a one-to-one correspondence between crepant resolutions of
these singularities and chambers of the corresponding gauge theories that they engineer.
This feature is unfortunately lost in the non-isolated case. Nevertheless, we remark that
the non-isolated case is extremely important, for instance, for engineering five-dimensional
Ty theories [39].1

In figure 1, we show a map relating the distinct gauge-theory deformations of some of
the toric singularities that appear in this paper. A recurrent theme in this paper is that
theories with large flavor symmetry can flow to theories with lower flavor symmetry, an
operation, which, in geometric engineering, can be understood as a combination of flop
transitions in the extended parameter space of the Calabi-Yau geometry, followed by the
decoupling of certain divisors in the geometry by blowing up the Kéhler volumes of certain
compact curves (thereby rendering them non-compact). As we explain in various examples,
this can be understood as a geometric version of renormalization group (RG) flow, because

LA discussion of non-isolated singularities and 5d T theories has also appeared in [10].
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Figure 1. RG flows connecting the different rank-two toric singularities discussed in this paper,
the corresponding gauge-theory phases, and their relations under parity (denoted by P). Non-
gauge-theoretic phases are not shown in the figure, but do arise as discussed in the main text.
Top: rank-two theories stemming from the E3%° (“beetle”) singularity. Bottom: rank-two theories
stemming from the F3%! singularity. There is a P-transformed version of this flow, which is not
shown here.

the operation of decoupling divisors corresponds (rather directly in gauge-theory phases)
to integrating out some massive degrees of freedom. We remark here that starting from the
two geometries on the extreme left in the two RG flows indicated in figure 1, that is, the
toric geometries labeled F32Y and E3%!, one can obtain all other isolated toric rank-two
singularities, including three singularities which have no Lagrangian description.

On the Coulomb branch, a 5d N' = 1 gauge theory is characterized by a one-loop exact
cubic prepotential [1, 6] Fg (p; ho.s, Ma), which is a function of the Coulomb branch vevs
¢, masses m, and (inverse) gauge couplings hos. In the M-theory engineering, the ge-
ometric prepotential is given by a triple intersection form on the CYg3-fold }A(g [60, 61],
denoted by Fgeo(Va, ftj), where v, and p; are Kéahler moduli of ig. In [10], the is-
sue of matching geometry to field theory after turning on generic mass parameters and
gauge couplings was discussed, such that the prepotentials in both descriptions match:



Fie (5 ho,s, Ma) = Fgeo(Va, 11j), once an appropriate map between geometry and field the-
ory is determined. Under this map, the Kéhler parameter p; are interpreted as mass
deformations of 7x, whereas the Kéhler moduli v, are, in general, some combinations of
Coulomb branch vevs and mass deformations. In [10], several rank-one examples of Tx,
and a particular rank-two example (which the authors named the “beetle geometry”) were
discussed, along with their mass deformations which lead to gauge-theory phases.

A crucial new ingredient introduced in [10] was a type ITA background for the five-
dimensional theory, obtained by a circle reduction of the M-theory setup. Specifically, this
involves the choice of an abelian subgroup U(1)3; C U(1)3 of the toric action on Xy, and a
subsequent reduction to type ITA string theory along this U(1);, treated as the “M-theory
circle” [62—-65], resulting in the duality:

M-theory on R x )A(g < Type IIA string theory on R x M, (1.3)

where the transverse five-dimensional space My = Xg /U(1) s, is, in fact, a resolved Apr—q
singularity (a hyperKéhler ALE space) fibered over the real line (parametrized by ro € R).
The ALE resolution contains exceptional P's or “2-cycles,” which are wrapped at specific
values of rg by D6-branes, which engineer gauge groups if they wrap compact 2-cycles
(with inverse gauge couplings g% = vol(P1)), and flavor groups if they wrap non-compact
2-cycles [66, 67]. However, the existence of such a type ITA description in the first place
relies on whether the toric diagram of )A(g admits a “vertical reduction.” By viewing a
toric diagram as an undirected graph as we briefly explain in this paper, this requirement
can be reinterpreted as a condition on the collapsibility of a graph under a sequence of
edge reductions. Remarkably, this criterion also distinguishes between toric diagrams that
correspond to gauge-theory phases and those that do not.

The details of the fibration, which can be recovered from the “Type IIA reduction” of
the gauged linear sigma model (GLSM) associated with the toric X [62, 68], are specified
by volumes of exceptional P's in the ALE resolution, which are piecewise linear functions
of {ro} ~ R, from which one can extract BPS masses of W-bosons, perturbative hyper-
multiplets, instantons, and tensions of monopole strings, etc. We carry out the type ITA
analysis of [10] for rank-two isolated toric singularities.

A subtle point that arises in the study of mass deformations is the parity
anomaly [69-72]. In [10] this issue was revisited in the context of 5d N/ = 1 gauge theo-
ries, and used to motivate a slightly modified version of the Coulomb-branch prepotential,
one that is consistent with the requirement of predicting only integer-quantized (mixed)
Chern-Simons levels on the Coulomb branch. This also plays a role in the analysis of this
paper, as we use the modified prepotential which is consistent with the so-called “U(1)_ 1
quantization scheme,” for the effective Chern-Simons levels [72-74]. This is a fine point
and while it may not play a role in classifying SCFTs, it is nevertheless worth emphasizing
and will be important for future studies of gauging flavor symmetries.

The number of distinct (SL(2,Z)-inequivalent) two-dimensional toric diagrams in-
creases rapidly with the rank. A natural extension will be to address higher-rank toric
singularities. We anticipate that a classification of toric diagrams of rank > 2 will be more



involved, although restricting to isolated singularities as a first-order step should make
the problem tractable. We expect graph-theoretic techniques to be even more useful in
these higher-rank cases. It might also be interesting to interpret the type IIA geometry in
terms of calibrated solutions in low-energy supergravity, potentially including orientifolds
to describe gauge theories with SO/Sp gauge groups. But this will require leaving the toric
realm, and we leave this as another avenue for future work.

This paper is organized as follows. In section 2, we give a brief review of 5d N' = 1
theories and geometric engineering, commenting on various features such as the prepoten-
tial, the parity anomaly, the BPS states on the Coulomb branch, and the M-theory and
type-IIA approaches. We also motivate the use of graph theoretic-methods for operations
such as enumerating crepant resolutions and characterizing allowed type IIA reductions. In
section 3, we discuss in detail each rank-two isolated toric singularity. For every singularity
with a gauge-theory phase, we derive the corresponding type IIA description, and use it
to match the M-theory description with the field theory description. Along the way, we
also discuss the role of walls in moduli space, and geometric transitions to non-Lagrangian
phases. We also give several examples of RG flows in the extended parameter space of
these toric geometries, which lead to geometries (theories) with fewer external vertices
(lower flavor symmetry). Finally, the appendices contain results relevant for intermediate
computations, including geometric and field-theory prepotentials, instanton masses and
triple-intersection numbers.

2 5d N = 1 theories and M-theory on a CY3 singularity

In this section, we give a lightning review of five-dimensional N' = 1 supersymmetric field
theories and geometric engineering. For more detailed reviews, see [1, 6, 10] and references
therein. In this paper, we focus on the Coulomb-branch physics. (See [75-77] for some
recent work on the Higgs branch.)

2.1 Review of 5d N = 1 gauge theories

2 We will assume that the gauge group G

These theories have eight real supercharges.
is compact and connected, and factorizable into a product of simple factors Gy, i.e.
G = ][, G;. The Lie algebra of G is g = Lie(G). The two on-shell multiplets of (rigid) 5d
N = 1 supersymmetry are:* (i) the vector multiplet V, consisting of a real scalar o, a gauge
field A, and gaugini A\ and A, all valued in the adjoint of g, and (ii) the hypermultiplet
consisting of four real scalars and their fermionic superpartners. The vector multiplet is cou-
pled to matter fields in the hypermultiplets H in some representation R of the gauge group

which is in general reducible.* The R-symmetry group in Lorentzian signature is SU(2) z.

?Recall that the minimal spinor of Spin(1,4) is a symplectic Majorana spinor.

3The tensor multiplet plays no role in our discussion, but on the Coulomb branch one can, of course,
dualize a tensor to an abelian vector.

“In this paper, since we restrict to rank-2 theories with unitary gauge groups, the gauge group will be
G = SU(3) or G = U(3), and AR will be the fundamental representation of G.



The 5d supersymmetry algebra and central charges. The most general (i.e. cen-

trally extended) N-extended Poincaré superalgebra in d = 144 dimensions has an Sp(N) =
USp(2N) R-symmetry, and has the form [78, 79]:

{Q, Q8 = (7" C)ap PP + (V'C)ag ZJAP) + Cog 2P + (117 C)apZ( 2P, (2.1)

where «, 8 here are spinor indices (only for the purposes of this equation, and not to
be confused with their use elsewhere in this paper), p,v are five-dimensional spacetime
indices, C' is the charge conjugation matrix, {2 denotes the symplectic form, and (crucially)
Z'’s denote real central charges. The indices A, B range over A,B = 1,...,2N. Here
ZE[AB} ] [AB] = 0.

is symplectic traceless: 24 BZfL
The central charges ZE[AB} and Z,(j,éB) contribute to strings and membranes, respectively,

and Z!4B] are antisymmetric, and ZE[AB
whereas Z[4P! contributes to particle states that enter (2.11) (see below). For the purposes
of this paper, since we focus on 5d SCFTs, we restrict to N/ =1 in (2.1).

Flavor symmetries. Five-dimensional gauge theories have a nontrivial global sym-
metry Gp x SU(2)gr, where the SU(2)r is the R-symmetry group introduced above,
and Gp is the “flavor” symmetry group, which in turn, can be further decomposed as
Gr =Gy x [[,U(1)z,, that is, a group (Gy) that hypermultiplets transform under, and

5

a product of “U(1) topological factors”,” one for each simple factor G in G. More precisely,

each hypermultiplet transforms under a representation of Gy x G.

5d parity anomaly, Chern-Simons terms and the U(1)_ 1 quantization scheme.
A detailed discussion of the 5d parity anomaly can be found in [10]. (See also [72, 80-83]
for original discussions in the three-dimensional setting.) Five-dimensional gauge theories
suffer from a “parity anomaly,” which is the statement that parity and gauge invariance
cannot simultaneously be preserved. Here, the term “gauge invariance” is used in a general
sense to include all potential background gauge symmetries, including flavor symmetries.
If we preserve background gauge invariance (so that a gauge field can be made dynamical),
we must accept non-conservation of parity.

There are three sources of parity violation: the first is an explicit Chern-Simons term
in the low-energy effective action, which for a U(1) gauge field A, in five dimensions, is of
the form,

ik

SCS—W/M5(A/\F/\F+-~), (2.2)

on an oriented Riemannian five-manifold M3, where the integrand is understood to include
terms needed for a supersymmetric completion. Such a CS term is well-defined only if the
CS level k is integer quantized, k € Z. The second source is a parity-odd contact term
in the three-point function of the conserved current j# of a U(1) symmetry acting on a

5These are due to the “topological symmetry” which is associated with a conserved current
Jrs = S%F(S) A F®) (where F©®) = dA® —iA®) A A®)) which is conserved due to the Bianchi identity.
®Note that for any simple Lie group with a nonzero cubic index, i.e. for g; = Lie(Gs) = su(N) with

N > 2, one can have explicit non-abelian supersymmetric CS terms.



fermion 1 charged under a background U(1) gauge field.” An explicit CS (2.2) shifts the
effective CS level k to k + k. But since k is integer-quantized, only the non-integer part of
the Chern-Simons contact term, x (mod 1), is physical and it is what probes the presence
of a parity-violating term in the effective action. For a collection of Dirac fermions v with

U(1) charges Q; € Z, we find that,
1 3
h=—3 E Q7 +k, (2.3)

where the integer k£ is due to a scheme ambiguity which, in this case, corresponds simply
to adding an explicit U(1) CS term (2.2) with integer coefficient k to the action [74]. For
every Dirac fermion in the gauge theory, we should specify a “quantization scheme” that
is consistent with gauge invariance: this requires specifying all the CS contact terms k, for
both dynamical and background gauge fields, which corresponds to a scheme choice for k
in (2.3), to remove the integer-valued ambiguity. One such scheme is the so-called “U(1)_

(S

quantization scheme,”® [72] which declares,

1
ky = —= , for a massless free fermion. (2.4)
2

We choose this quantization scheme for every 5d N' = 1 hypermultiplet. The final source
of parity violation is a mass term for a Dirac fermion 1 in the Lagrangian, 6L, = im1)
(for m € R), which explicitly breaks parity. In the limit [m| — oo, one can integrate out
®. As shown in [7, 84], this shifts the parity-odd contact term by ok = —%sign(m). The
generalization of (2.3) to a collection of massive Dirac fermions of masses m; € R and
charges Q; € Z is:

o = f% 3 Q¢ sign(mi) . (2.5)

The notation “G,” where G is the gauge group and k € %Z is frequently used in the
literature, and here k denotes the effective Chern-Simons level as in (2.5).

2.2 The prepotential on the Coulomb branch

We consider the low-energy effective field theory on the Coulomb branch, where vacuum
expectation values of the adjoint scalar, () = diag(pa) = (1, - - -, () break the gauge
group G down to a maximal torus H times the Weyl group:

rk(G)
G—HxWg, H=z=]J[ U1, (2.6)
a=1

Here, ¢ = (p,) denotes the set of low-energy Coulomb-branch scalars which reside in
abelian vector multiplets V,, and pu = (m, hg) denotes the set of real flavor masses and
inverse gauge couplings.

"This term is of the form 24&%5#1#2#3#4#5?#4(1#5 C {Jur (P)Jins (@) Jus (—p — @))-
8 Any other quantization scheme is related to this one by a shift of x by an integer.



s : index ranging over the simple gauge group factors

a,b,c : indices ranging over tk(G), i.e. 1 < a < 1k(G)

ho.s = 8;2 inverse gauge coupling for gauge group factor Gy

Kab :  Killing forms of the simple factors gs

dabe : cubic Casimir of g,

kebe = [ dobe :  Chern-Simons coefficient in the prepotential

a=(a) : a typical root of g

A : set of nonzero roots (adjoint weights) of g

a(p) = ap, :  natural pairing between Coulomb vevs and adjoint weights
w® flavor weights (weights of the repn.(Gy))

w(m) = w*m, : natural pairing between hyper masses and flavor weights
p° . gauge weights (weights of repn.(G) that the hyper transforms under)
p(p) = pPpq : natural pairing between Coulomb vevs and gauge weights

Table 1. Notation for symbols appearing in the prepotential.

The low-energy effective field theory on the Coulomb branch is an A/ = 1 supersym-
metric gauge theory that is completely determined by a one-loop exact cubic prepotential
F(e,p) [1, 6, 60, 61]. The one-loop contribution arises from integrating out W-bosons
and massive hypermultiplets at a generic point on the Coulomb branch. The widely preva-
lent expression for the prepotential is due to [6]; we refer to it as the “IMS prepotential.”
However, this prepotential can lead to non-integer mixed flavor-gauge effective CS lev-
els. To cure this discrepancy, the authors of [10] proposed an alternate expression for the
prepotential which corrects the IMS expression essentially by adding explicit “half-integer
CS levels” on the Coulomb branch in order to cancel the parity anomalies by restoring
background gauge invariance under the flavor group. The prepotential proposed in [10] is:

kabc
6

puppet 5 3 O (ale)) (a(9)’
a€cA

— 235" 0le) +wlm) (pl) +wm)? (2.7)

w peER

1
‘7:(903/1') = ihO,sKngOaSDb +

where a sum over repeated indices (s, and a, b, ¢) is understood, and our notation is
summarized in table 1.
By contrast, the IMS prepotential reads:

1 kage 1
Frus(e: ) = 5o K o + =0 pagproe + 15 D ole)[?
acA
1
- LSS ol + wlmf? (238)

w pER

The function ©(x) appearing in (2.7) is the Heaviside step function defined by:

1.ifz >0
Q) =14 T =Y 2.9
(z) {O,iffv<0. (2.9)



The prepotential (2.7) yields the correct result for a hypermultiplet in the “U(l)_% quan-
tization,” that was introduced above. For a single hypermultiplet coupled to a U(1)
vector multiplet containing the real scalar ¢, the contribution to the prepotential is
Fu = —30(p)¢®. A U(1) Chern-Simons term at level k contributes, on the other hand,
}'U(l)k(cp) = %@3. Therefore the hypermultiplet contribution F% reproduces the correct
decoupling limits for both signs of the real mass ¢. Comparing (2.7) and (2.8), one
finds that terms of order ¢? are the same once one correctly maps the CS levels, via
kggc = kabe — %Z o p*pPp¢, but there is a difference in the lower-order terms (i.e. terms
of order ¢? and ¢). Specifically, at a generic point on the Coulomb branch, the theory is
gapped and therefore the Chern-Simons contact terms x should all be integer-quantized.
This must be true not just for the gauge CS levels, but also for mixed (gauge)?-flavor,
(gauge)-(flavor)? and (flavor)® CS levels, etc. More explicitly, all the following Chern-
Simons levels must be integer quantized at a generic point on the Coulomb branch:

jcabe _ B9, 03y 05, F b — Dy 05y O F » KB = 00 O Omy F
(abs — apa 89017 aho,sf7 HoLss' _ 8<Pa 8ho7sah0,slf’ KOBY — Om., 8mg 8mw.7-',
Kaﬁs = 8ma amﬁ aho,s]:, IQOCSS/ = 8ma aho,sﬁhoys,f, I@SS,SH = aho’sahoysl ahoysu ]:7
KA = acpa 8ma aho,s]:

€Z. (2.10)

One finds that (2.7) indeed produces integer-quantized effective CS levels but (2.8) does
not. For a detailed discussion, including a derivation of (2.7), see [10]. Henceforth, we will
work exclusively with (2.7).

2.3 BPS objects on the Coulomb branch

On the Coulomb branch of 5d N' = 1 gauge theories, there are half-BPS particles and
strings, which saturate suitable BPS bounds relating their masses (or tensions) to central
charges in the supersymmetry algebra.

BPS particles. The masses of BPS particles are given by the absolute value of the (real)
central charge of the 5d N/ = 1 Poincaré superalgebra (2.1):

M = |Qa90a + Q%ma + Q%h0,8| , (2.11)

where Q are gauge charges, Q% are the Gy flavor charges and Q% are U(1)r, instanton
charges. All charges are integer-quantized. (Also see table 1.) The three categories of BPS
particles of interest here are:

o W-bosons W, associated with the roots o € g of the gauge algebra, with masses:

M(Wa) = ale). (2.12)

o Hypermultiplets H, ., transforming in a representation of G x Gy with gauge charges
Q* = p® and flavor charges Q% = w®, with masses:

MHpw) = p(e) +w(m). (2.13)



e Instantonic particles: these are BPS particles charged under topological symmetries
such that Q% # 0 in (2.11). They are really solitonic particles in five dimensions,
being uplifts of four-dimensional G-instantons. The procedure to compute the in-
stanton masses is outlined in appendix A. The results of these computations appear
in tables 5 and 7 for the models discussed in this paper.

BPS monopole strings. The 5d A/ = 1 gauge theory has real codimension-3 objects
which are BPS monopole strings, which are five-dimensional uplifts of 4d N' = 2 monopoles.
The tension of a monopole string is given by the first derivative of the prepotential with
respect to the Coulomb modulus [1]:

oF
0pa’

To(p, p) = for a=1,...,1k(G). (2.14)

2.4 M-theory on a CY3 singularity

In this paper, we consider geometric engineering of 5d AN = 1 theories that live on the
spacetime transverse to M-theory on a local Calabi-Yau three-fold (CY3) X, an isolated
canonical singularity. This is motivated by the conjectured correspondence,

M-theory on RM x X +— 7y SCFT on R . (2.15)

We give a brief recap of some relevant terminology from singularity theory.” For an irre-
ducible variety X, a resolution of singularities of X is a proper morphism 7 : X — X such
that X is smooth and irreducible, and 7 induces an isomorphism of varieties 71 (X/ )A() =
X/ X. A projective normal variety X such that its canonical class Kx is Q-Cartier has the
property that K¢ = 7" Kx + ) ; a;E; where the sum (over i) is over irreducible exceptional
divisors, and the a;’s are rational numbers called the discrepancies. Such a variety is called
Q-Gorenstein. The singular variety X is said to have canonical singularities if a; > 0 for
all i, in which case it is called a Gorenstein canonical singularity.'”
In the case of a generic CYj3 singularity X, a crepant resolution exists:

X — X, T Kx = Kg , (2.16)

yielding a smooth local CY threefold X1 A B5d N =1 field theory can be obtained
in the decoupling limit of an M-theory compactification on a compact CY 3 threefold Y,
by scaling the volume of Y to infinity, while keeping finite the volumes of a collection of
holomorphic 2-cycles and holomorphic 4-cycles which intersect within Y. This makes the
five-dimensional Planck mass infinitely large, thereby decoupling gravity. The requirement

of intersecting 2- and 4-cycles ensures that we get an interacting SCFT from the local
model X.

9We refer the mathematically inclined reader to [18, 85-88] and references therein.

0The case of strict equality a; > 0 for all i is called a terminal singularity, in which case the variety
X is called a Gorenstein terminal singularity. Terminal singularities imply that any subsequent resolution
changes the canonical class.

1A singular Calabi-Yau is always Gorenstein. Its singularities are either Gorenstein canonical or Q-
factorial Gorenstein terminal. See, for example, [89].
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Recall that divisors are complex codimension-1 hypersurfaces (elements of H4()A(, 7)),
whereas compact curves are complex dimension-1 hypersurfaces (elements of HQ()A(,Z)).
The exceptional set m~1(0) (with 0 € X denoting the isolated singularity) contains a certain
number, say ny = r > 0 of compact divisors, called the “rank” of X. This number is the
rank of the SCF'T Coulomb branch, that is, 7 = dim M%{. In addition to compact divisors,
the resolved space X contains compact curves which may intersect the exceptional divisors
non-trivially. Let C? be a basis of compact holomorphic 2-cycles in Ho (X, Z). Note that the
two-cycles C? are Poincaré dual to either compact divisors (in the exceptional set) or to non-
compact divisors. Let no = r+ f = dim Hg(f\(, Z), with f > 0 being a nonnegative integer.
Then, r is the number of compact divisors and f is the number of non-compact divisors.

Let Dy denote a typical divisor (compact or noncompact). We choose some basis of ng
divisors {Dy},2, and collect the intersection numbers of divisors and curves in a (square)
matrix denoted by Q?:

Q*,=C*-D;, detQ+#£0. (2.17)

Let J denote the Kihler form of X (a representative of the cohomology class H (X)) and
let S denote the Poincaré dual Kiahler class,' which can be written as a linear combination
of divisors over R:

ng f r
S=> MDy=> wD;+> v'E, . (2.18)
k=1 j=1 a=1

Here we have decomposed {Dy};2, into a set of  compact divisors denoted by E, (where
a=1,...,r),and f non-compact divisors, denoted by D; (where j = 1,..., f). The Kéhler
volumes of a compact curve C?® in X are given by:

& (p,v) = / J=0*S=Q\N'=Q%u/ + Q21" >0. (2.19)

Incidentally, the inequalities of the form (2.19) for all basis curves are also sometimes called
the Nef conditions [18] in the literature. The curves C? generators of the Mori cone. It
is clear that the parameters p* € R and v* € R in (2.18) are, respectively, the Kéhler
moduli of two-cycles dual to non-compact four-cycles and compact four-cycles. They play
an important role in developing the geometry-field-theory dictionary. In particular, u’s
are mass parameters and couplings (which we collectively refer to as “Kéahler parameters,”
for they are nondynamical), whereas v’s involve a combination of dynamical fields (the
Coulomb branch scalar vevs, i.e. ¢’s) and in general, also the masses and couplings.'3
The low-energy 5d N = 1 field theory, for generic values of the Kihler parameters,
is an abelian theory with gauge group U(1)" = HQ(X,R)/H2(§, Z). In the geometric
engineering picture, the U(1) gauge fields arise from periods of the M-theory 3-form C3)

over the curves C* dual to compact divisors, i.e. Agz()l) = fca C(3) (wherea =1,...,r). The

2As X is local, invoking Poincaré duality entails the use of cohomology with compact support [90].
13The important basis-independent feature is that the ;’s never depend on Coulomb branch scalars.
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exact prepotential for this abelian gauge theory can be computed from the geometry using

the following expression:'4

1 1

The prepotential involves triple-intersection numbers of }A(, specifically those of the form
(dropping the dot for brevity) D;D;E,, D;E,E,, E,EE., and D;D;Dy. But since
X is noncompact, the triple-intersection numbers involving three noncompact divisors
(D;iD;Dy) are not well-defined. In subsequent computations of the geometric prepoten-
tial (2.20), we ignore such contributions to the prepotential, and we refer to the result as
the “compact part” of the prepotential. We refer the reader to appendix B of [10] for a

more detailed discussion of this point.

BPS states from geometry. The BPS states from geometric engineering are:

e Electrically charged BPS particles, from M2-branes wrapping holomorphic (compact)
2-cycles C*. These have masses given by the Kéhler volumes (2.19), and

e (Dual) magnetically charged BPS monopole strings, from M5-branes wrapping holo-
morphic surfaces (compact 4-cycles) E,. These have tensions by the Kahler volumes
of the compact divisors:

1
To(p,v) = =0y F(pu,v) = 2/ JNJ =vol(E,) . (2.21)
Eq

The extended parameter space. Given an isolated canonical CY3 singularity X, there
can be several birationally equivalent resolutions m, : X, — X, each of which is a local
Calabi-Yau 3-fold with the same singular limit. The collection of all such X, constitutes,
for a given singularity X, the set of all crepant resolutions. For a particular X, the Kéahler
cone is given by the set of all positive Kahler forms:

K(X\X) = {[J] e HY'(X)NH*(X,,R) | / J=S8-C>0V hol. curves C € Xg} (2.22)
C

The parameter space of all massive deformations of 5d SCFTs obtained from M-theory
is given by the extended Kéhler cone, which is the closure of the union of all compatible
Kaéhler cones: Pry = K(X) = {Ul K <)A(5\X> }C. Pairs of Kéhler cones — corresponding
to birationally equivalent pairs of Calabi-Yau spaces — are glued along common faces in
the interior of K(X). The boundaries of K(X) are of the following type [7]:

e Boundaries of Kéahler cones of individual crepant resolutions: these are boundaries
of IC()AQ\X), where the threefold X, becomes singular. This happens when a 2-cycle
in )A(g shrinks to zero size and grows to negative volume in a birational Kahler cone,
signaling a flop transition. This corresponds to a BPS particle becoming massless.
At such points, the prepotential (2.20) becomes non-smooth.

e Exterior boundaries of IG(X) where a 4-cycle E, can collapse to either (i) a 2-cycle,
or (ii) a point.

4The minus sign is simply a matter of convention, chosen in [10].
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The “origin of moduli space” is the origin of IE(X), which is also the SCFT point. It
corresponds to the singular geometry X, and is given by the connected union of 4-cycles
(divisors) collapsing to a point.

Toric geometry and type ITA reduction. In this paper, we will further assume that
the isolated canonical singularity X is also toric. This allows us to exploit the computa-
tional machinery of toric geometry (see [57, 58, 87, 89, 91-94] for useful reviews). This
restriction admittedly ignores many interesting cases by confining attention to a small
subset of singularities. We leave a study of non-toric singularities for future work.

In particular this implies that a resolution X of such a singularity is described by a
two-dimensional toric diagram. This is specified as the convex hull of a set of lattice points
w; = (wf,wy) € 72 (here i = 1,...,n, where n is the number of vertices), which contains
a number r > 0 of internal points, denoting compact divisors. The np = n — r external
points denote noncompact divisors. Edges in the toric diagram connecting two vertices
denote curves in the geometry.

The toric variety X can be described using a gauged linear sigma model (GLSM) [68].
The key idea here is to realize the toric variety as the moduli space of vacua of a certain
2d N' = (2,2) supersymmetric gauge theory. The defining data for this construction is
(i) a set of U(1) charges Q% (where i = 1,...,n, and a = 1,...,n — 3 labels a set of
linearly independent compact curves — the Mori cone generators), and (ii) a set of Fayet-
Hiopololous (FI) parameters {{a} for the auxiliary gauge groups U(1)s. Then, the toric
CY3 variety is defined as a Kahler quotient,

X = /U = {Zi eCn

@l = §a}/U(1)”3 ,  n=ng+r, (223)

which we recognize as the familiar quotienting of a set of “D-term equations” by some U(1)
actions. Different resolutions of the singularity — which are related by flop transitions —
differ in their sets of U(1) charges Q%, which always obey the “Calabi-Yau condition,”
namely, > " Q2 = 0V a = 1,...,n — 3. Arranged as a matrix of charges, the CY
condition implies that the sum all charges in any row vanishes.

Assuming that the 2d toric diagram satisfies certain conditions (which we will revisit
below), it is possible to collapse or project it down to a 1d toric diagram for the correspond-
ing geometry in type ITA string theory. This is known as a “vertical reduction,” which was
discussed in [10], which we refer the interested reader to.!> The idea behind this method
is to use a U(1)y C U(1)3 isometry of X as an M-theory circle to view the X as a circle
fibration over a five-dimensional base M5 (that is, U(1)a; — X — Ms5), such that the
base itself is a fibration of an ALE space over the real line parametrized by r:

~

Y(To) — My — R {T’g} . (2.24)

The complex two-dimensional space ?(ro), being toric, is the resolution of an A-type toric
singularity, a hyperKéhler ALE space. The volumes of exceptional P's in the resolution,

15 This method relies on a technique that was originally introduced in [62] and developed in [63-65, 95, 96]
for M-theory on Calabi-Yau fourfold singularities.
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denoted by xs(ro), are piecewise-linear functions of rg, the slopes of which jump at the
locations of gauge- and flavor- D6-branes. The slope of xs(r9) jumps by 2 when we cross
a gauge D6-brane, and by 1 when we cross a flavor D6-brane. We refer to these functions
as the “ITA profiles”. From plots of these functions, one can infer various properties of the
field theory and geometry. Let us briefly recall the dictionary developed in [10]:'6

o Effective Chern-Simons levels: due to the presence of a Wess-Zumino term on the
worldvolume of gauge D6-branes [62], there is an effective 5d Chern-Simons level kg
for a probe D6-brane wrapping an exceptional PL. This can be computed directly
from the slope of the ITA profile [10, 65] xs(ro) as follows. First, for every exceptional
curve P!, define the asymptotic slopes,

r . /
Xsx = lm 3(ro) - (2.25)
Then the effective Chern-Simons level k, o is given as the negative average of the
asymptotic slopes:

1
Fo.eft = =5 (X~ + Xo.4) - (2.26)

This “effective CS level” is in general half-integer, and equals the contact term &
including half-integer contributions from matter fields, consistent with (2.5).

o W-bosons of the SU(ns) gauge group, given by open strings stretched between two
gauge D6-branes at ro = & (q,) and 79 = & (4,), have masses:

M(WSU'J) = |§s,(ai) - fs,(aj)| . (2.27)
e Fundamental hypermultiplets, given by open strings stretched between a gauge D6-

brane wrapping a compact 2-cycle at ro = &, (4;,) and a flavor D6-brane wrapping a
non-compact 2-cycle at ro = &, (r), have masses:

M(Hs;i,ﬂavor) = ‘gs,(ai) - gs,(f)| : (228)

e Tension of monopole strings, given by the area under the ITA profile between the
locations of two adjacent gauge D6-branes,

gs,(a+1)
Ts,(a) = / dro X(TO) ) (229)
s,(a)

which must match the first-derivatives of the gauge theory prepotential (2.14) in the
field-theory description.

16Tn addition, there are bifundamental hypermultiplets for quiver gauge theories realized by open strings
stretched between two gauge D6-branes that wrap adjacent exceptional curves, but we do not encounter
them in this paper.
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~

(a) Allowed. (b) Disallowed.

Figure 2. Left: an example of an allowed vertical reduction of a 2d toric diagram, which gives
rise to a resolved A; singularity visualized by the 1d toric diagram below. Right: an example of a
disallowed vertical reduction, due to the presence of an edge that would collide with either one of
the vertices along the vertical direction under such a reduction.

2.5 Graph-theoretic perspective

The setting described in the previous subsection, especially the criterion in figure 2, strongly
motivates the use of graph-theoretic techniques to study these geometries. In this work, we
implement the idea of associating a graph to a toric diagram under study, with the aim of
exploiting well-known notions and algorithms in the graph-theory literature. We introduce
the relevant terminology briefly in this section, for readers unfamiliar with graph theory,
but we focus only on the few features that are relevant to toric geometry. For comprehensive
reviews and applications, we refer the reader to [97-99] and references therein.

A 2d toric diagram can be represented as an undirected graph (with no loops) in Z2.
A graph G = (V,E) is specified by a set V containing vertices and a set E containing
edges. An edge e € E connecting vertices i, j € V can be specified as a tuple e = (i, j) of
vertices. For an undirected graph, the set of tuples is unordered, i.e. the tuples (7, j) and
(7,4) are considered to be equivalent. Therefore, for an undirected graph, the adjacency
matrix, which is a map from Ag: V x V — {0, 1}, defined by

1,if Jedge e = (i,j) € E

2.30
0, otherwise, ( )

Aa(i,j) = {
is symmetric. The no loops condition further implies that all diagonal entries are 0, so
it is sufficient to work with the upper (or lower) triangular part of the matrix, which is
specified by |V|(|[V| —1)/2 entries. The adjacency matrix is typically sparse. The spectral
properties of the adjacency matrix contain useful information about the graph. One can
show that the number of edges is given by,

IE| = %tr(A%). (2.31)

This counts all edges, including the non-compact curves that make up the toric skeleton
(that is, the boundary of the convex hull of V'). A cycle in a graph is defined as a non-empty
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path in which only the first and last path repeat. The number of triangles (3-cycles) in the
toric diagram is given by [100],

Na = %u(Ag). (2.32)

Clearly, a simplex in a toric diagram is a cycle of length 3, but not every cycle of length
3 is a simplex. (Recall that a simplex in toric geometry must have a minimal simplical
volume of %)

In graph theory, the “shape” of a graph usually does not matter, only the connectivity
does. However, in toric geometry, the “shape” (up to SL(2,Z) equivalence) does matter,
since the locations of the divisors (vertices) critically dictate whether a given toric diagram
corresponds to a crepant resolution, and also whether or not some curves can flop. In the
previous section, we discussed the “vertical reduction” of the toric diagram. This has a
natural interpretation in graph theory, where different ways of reducing the toric diagram
can be viewed as different instances of an edge reduction. This takes two vertices connected
by an edge and eliminates the edge by mapping both vertices to a third vertex (which can
be regarded as the fusion of the two vertices). Formally, if Ag(u,v) = 1 for a pair of
vertices u,v € V' (so that they are connected by an edge) and given a third vertex w € V,
we define a function f: V — V via its action on the vertices of V' by,

xz, x € V\ {u,v},

2.33
w, if Ag(u,v) =1 and z € {u,v}. (2:33)

f w,v,W (x) = {
In this language, the allowed vertical reduction of figure 2 corresponds to a sequence of
(vertical) edge reductions such that at each step there is no obstruction due to an internal
edge crossing an internal vertex. This systematizes the study of toric graphs and generalizes
well to higher-rank examples.

A related motivation for viewing a toric diagram as a graph is the fact that different
crepant resolutions (related by flops) differ only in their connectivities and so a combina-
torial enumeration of crepant resolutions translates to a similar enumeration problem for
graphs. The number of crepant resolutions grows very quickly with the rank, and although
we restrict our attention in this paper — for reasons of simplicity and brevity — only to
1solated toric singularities at rank-two, a graph-based enumeration algorithm works even
for nonisolated singularities at rank > 2. It might also be interesting to relate other ideas
from spectral graph theory [98] to toric geometry in the context of studying 5d SCFTs.
These are possible avenues for future work. In the remainder of this paper, we focus on
the isolated toric rank-two case.

3 Rank-two isolated toric CY3 singularities

An exhaustive list of rank-2 toric diagrams, i.e. toric diagrams with 2 interior points, was
given by Xie and Yau in [18], based on earlier work by Wei and Ding [59] which classified
convex polygons with two interior points. Their list consists of 45 singularities, of which
only 10 describe isolated toric singularities, i.e. toric diagrams with no lattice point on the
boundary (except if it is a vertex). These 10 cases are listed in figure 3.
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(h) E22,NL (l) E32,1

Figure 3. The 10 SL(2,Z)-inequivalent isolated toric rank-2 singularities.

The rank-2 singularities X are labeled as:
Ep2rett (3.1)

where f = E — 3 denotes the rank of the flavor symmetry'” of the theory 7x (here E is
the number of external points in the toric diagram), the first superscript (2) denotes the
rank of the singularity (the number of internal points), and the second superscript Keg is
the effective Chern-Simons level when a gauge-theory description exists or is ‘NL’ when
the theory admits no Lagrangian interpretation.

In the remainder of this section, we consider each singularity that admits a gauge the-
ory description, and examine its crepant resolutions, comparing the geometric description
(using the M-theory and the type IIA interpretations) with the gauge-theory description.
Along the way, we comment on various features of each model, including the BPS states
and walls in moduli space, and also remark on resolutions that admit no gauge-theory
interpretation. We use M-theory/type ITA duality to characterize the existence or non-
existence of a “gauge-theory phase” of the resolved toric Calabi-Yau geometry based on

17At the UV fixed point, the flavor symmetry G is sometimes enhanced to a larger global symmetry
group. However, it is not obvious how the enhanced global symmetry group can be inferred from the
singular geometry X in this approach. However, see footnote 19 for recent work in this direction.
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Gauge-theory phase | JKVZ [23] | HKLY [25] (p,q)-web | here
SU(3), FsUdPy figure 119 E%2
SU(3)1 Fy UF, figure 123 E 21
SU(3)o F1UdPy figure 124 E 20

SU(3)s Np =1 Fy U dP figure 118 By3
2

X, 51

SUB3)1 Ne=1 Fi U dP; figure 122 Ey*2
2

SU(3); N¢ = FiUdP; figure 117 B3t

X
SU@3)y Ny=2 | BLF, U dP, figure 121 E520

Table 2. Geometries considered in this paper and their descriptions in references [23] and [25].
Here F,, denotes the n*® Hirzebruch surface, a degree (—n) fibration of P! x P!, dP, denotes the
n*™ del Pezzo surface, and Blj, denotes the blow-up in k points. We refer the reader to section
3 of JKVZ [23] and appendices therein, for explanations of the gluing terminology in the second
column. The figure numbers in the third column are (p, g)-web diagrams in [25] corresponding to
the geometries in figure 11, listed in the fourth column.

whether or not the toric diagram admits a vertical reduction as explained in the previous

section.!®

Comparison with the literature. As explained below, the resolutions of seven of the
ten rank-2 isolated toric singularities of figure 3 describe the Coulomb branches of rank-2
five-dimensional gauge theories with gauge group SU(3) and varying Chern-Simons lev-
els and flavors. The models we consider here have appeared in the literature on five-
dimensional dualities, notably in [23] (referred to as JKVZ below) and [25] (referred to
as HKLY below). Additionally, [31-35] have focused on the classification of 5d SCFTs
treating the gauge theory phases as relevant deformations of the UV fixed point, with a
view to connect 5d SCFTs to 6d SCFTs described by F-theory compactifications. Our goal
here is not to classify SCFTs but to apply the methods developed in [10] to study the mass
deformations of a subset of models which are described by isolated toric CY3 singularities.

As a guide to the reader, table 2 translates between our terminology for the geometries
in this paper and the terminology of JKVZ, and the corresponding five-brane web diagrams
in HKLY. Since the CY3 geometries we consider are toric, we study the mass deformations
in geometry by using toric diagrams for the resolved CY3 singularities, rather than (p, q)-
web diagrams. However, a large number of geometries considered in [23, 25, 31-35] are
non-toric. Whenever a Type IIB brane picture consisting of (p, q) five-branes exists, (p, q)-
webs are still good descriptions as used in HKLY [25], but it is not immediately obvious
what the “dual diagram” of such a (non-toric) web might be. We leave this question for
future work. Another caveat is that even within the toric realm, we focus on isolated

'8 Another approach [6, 23] is to find a ruling of the exceptional set 7~ *(0) C )/i, that is, a set of surfaces
E which have the form of a fibration of P! over a curve C (i.e. P < E — C), such that M2-branes wrapping
C are identified with W-bosons.
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singularities because for such singularities, the number of crepant resolutions is equal to
the number of gauge-theory chambers (whenever a gauge-theory interpretation exists).
This is why table 2 has only seven entries. Recall from section 2.4 that the Type ITA
interpretation of an M-theory Calabi-Yau geometry exists as long as the Calabi-Yau has
(at least) a U(1) isometry [10]. So, we can indeed still apply the techniques of this paper
to study non-isolated toric singularities and obtain their Type IIA descriptions, but we
will have to contend with relinquishing the one-to-one correspondence between gauge-
theory chambers and crepant resolutions in that case. Some discussion of nonisolated
singularities using these techniques already appeared in [10], so we will not revisit those
issues here. But it is worth mentioning that [32, 33] do examine models that could be
engineered using resolutions of nonisolated singularities. Their approach is based on an
object called the Combined Fiber Diagram (also a graph, albeit a different kind than
the toric graph of this paper), which among other things, also encodes the superconformal
flavor symmetry. In their approach, transitions between such diagrams contain information
about mass deformations that trigger flows between 5d SCFTs.

The focus of the present work by contrast, is to analyze all mass deformations (which
may or may not admit a gauge-theory interpretation) of a 5d SCFT engineered by a given
rank-2 isolated toric singularity, and discuss RG flows between different mass deformations
(crepant resolutions) and also between crepant resolutions of different singularities (i.e.
between mass deformations of different parent UV SCEFTs). The restriction to isolated toric
singularities confines us generically to quiver gauge theories with SU gauge groups, which is
admittedly a limited class of examples. To this end, we are interested in the regime in which
all mass deformations (dynamical Kahler moduli and non-dynamical Kéhler deformations)
are turned on, so that the prepotential is a function of not just the Coulomb vevs but
of all mass deformations. In other words, we are rarely probing the conformal point and
are mostly interested in physics away from it. In [10] this motivated the need to slightly
modify the IMS prepotential, as also discussed in section 2.2 of this paper. As explained
there, this modifies the parametrization between geometry and field theory. However, in
probing the Coulomb branch of the SCFT from the perspective of geometry, one sets all
mass deformations to zero, so the SCFT Coulomb branch prepotential — which enters the
analysis in [23, 26, 27, 34, 35] — is unaffected, since terms in the cubic prepotential that
are quadratic in Coulomb vevs necessarily involve linear powers of mass deformations, and
such terms are killed on flowing to the SCFT Coulomb branch. Therefore, the classification
program of 5d SCFTs as outlined in these papers is unaffected by such considerations. On

the other hand, here we follow [10] and work with the full cubic polynomial prepotential.?

Non-gauge-theoretic singularities. Before proceeding, let us comment on the non-
gauge-theoretic singularities E,>NY for ¢ = 0, 1,2, which admit no vertical reduction. Let

YA few weeks after this paper appeared on the arXiv, HKLY uploaded their work [101], where a “com-
plete” prepotential for 5d ' = 1 SCFTs is proposed, based on the modified prepotential introduced in [10].
In this approach, one can read off the enhanced global symmetry by writing the prepotential in terms of
certain invariant Coulomb branch parameters. It will be interesting to extend their analysis to higher-rank
theories.
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€ (EZQ’NL) denote the set of crepant resolutions of E,>NY, with a typical crepant resolution
denoted by R,V € €'(E,2N). Also, let ‘Kégr)t be the space of all rank-2 crepant resolutions
that admit a vertical reduction. There is a natural action of g € SL(2,Z) action on every
Re, denoted by g-Ry (this simply applies an SL(2, Z) transformation given by g on the toric
vertices of Ry). The fact that these singularities are non-gauge-theoretic is equivalent to
saying that there exists no SL(2,Z) transformation that yields a resolution with a vertical
reduction:

V g €SL(2,Z) and ¥V RNV € €(E2NY) | g RN ¢ €2

vert?

for (=0,1,2. (3.2)

The FEy>Nt and E33 N singularities each admit an interpretation as a gauge theory coupled
to a “non-Lagrangian sector,” due to the existence of a ruling (see footnote 18). But Ey>N:
does not admit such a ruling. (In this case, a ruling is equivalent to having a line with three
points.) In fact, resolutions of these non-gauge-theoretic singularities can be arrived at by
starting from resolutions of gauge-theoretic singularities E,>"<f (that is, the singularities
whose crepant resolutions do admit a gauge theory interpretation) by a combination of
flop transitions followed by decoupling divisors in the geometry by sending the volumes
of certain compact curves to infinity. We interpret this as a “generalized renormalization
group (RG) flow,” in the extended parameter space of the Calabi-Yau geometry.

Parity. Parity P acts on the toric diagram by the application of the central element
Co = S% € SL(2,Z). If the effective Chern-Simons level keg of a gauge-theory phase
vanishes, the toric diagram is P-invariant. In figure 1, this action of parity on the gauge-
theory phases is indicated by arrows relating various geometries. Note that parity flips the
sign of the effective Chern-Simons level k.

RG flows at rank-two. As we remark in more detail in various examples below and as
also mentioned in the introduction, there are many RG flows that relate different geometries
and field theories. The crucial point to note here is that stating from the two singularities
labeled F3%' and F3*9 one can recover all isolated toric singularities of rank-two shown
in figure 3, by a combination of flops and divisor decouplings, which we refer to as RG
flow. For example, figure 1 already shows how the various rank-2 gauge-theory phases arise
starting from these bigger geometries.

Vertical reductions. For every toric rank-two singularity of figure 3 that admits a
crepant resolution with a vertical reduction (that is, whenever a gauge-theory phase exists),
the type IIA geometry takes the form of a resolved A; singularity fibered over the 22 = rq
direction, with a set of D6-branes wrapping the exceptional P's in the resolution. The
fibration, as discussed in section 2.4, is characterized by a piecewise linear function x(rg),
the precise form of which depends on the specific details of the resolution. We refer to this
function loosely as the “ITA profile”. For a review of the vertical reduction method, see [10].
Recall that the vertical reduction is defined by the choice of an auxiliary “U(1),/ line” in
the GLSM charge matrix, which specifies a redundant parametrization of the GLSM. The
integer charges QM (i = 1,...,n, where n is the number of toric vertices) of this line are
required to satisfy > QM =0 and > w/QM =1 where w = (w?,w!) € Z? are the
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Dy

2,2

Figure 4. The two crepant resolutions of the FE;## singularity. Resolution (a) admits a vertical

reduction.

coordinates of the toric vertices. In all the geometries considered in this paper, the nonzero
U(1)ar charges satisfying these conditions are given by Q]]f:/[l = —1 and Q%/[Q =1 (and
Qﬁ\/l =0 for i # E1, Ey), where E 5 denote the two compact divisors in any rank-two toric
diagram (which are the two interior points). In every case, we begin by briefly outlining
the toric geometry, listing the linear relations among divisors and curve classes, the GLSM
charge matrix, the intersection numbers, and the geometric prepotential, followed by an
analysis of the ITA profile leading to a map between geometry and field theory parameters.
To keep the discussion brief, we spell out only the relevant details.

3.1 The E;2?2 singularity and SU(3), gauge theory

In this section, we consider the E;%? singularity of figure 3(b). There are two crepant res-
olutions, shown in figure 4, related by a flop of the curve Cy4. Let us focus on resolution (a).
There are four non-compact toric divisors D; (i = 1,...,4), and two compact toric diviors
E; and E, with the following linear relations:

Dy ~ Dy, Ei ~Dy—-3Dy—2Dj3, Eo~—-2Dy+ Dy + Dg. (33)
The curves C are given as intersections of pairs of divisors according to:

Ci=Ex-Dy, Ca=E;-Dy, C3=E3-Dy, C4=E; D3,

(3.4)
C;=E1-Dy, Co=Ez-Dy, Cr=Ez-E;.
The linear relations among curve classes are
C1 ~2Cy+3C3+Cq, C5=Cy, Cog~C3, C7r~Co+Cy. (3.5)
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We may take {C2,Cs,C4} as generators of the Mori cone. Thus, the GLSM charge matrix is:

D\ Dy, D3 Dy E; E,|vol(C)
Cs 0 0 1 0 -2 1| &
Cs 1 0 0 0 1 -2| & (3.6)
Cy 0 1 -1 1 -1 0| &
Uy | 0O 0 0 0 -1 1| nr

The FI terms & > 0, &3 > 0, and &4 > 0 are, respectively, the volumes of the compact
curves Co, C3 and C4. In (3.6) we have shown also the last line (“U(1) line”) which defines
the GLSM of the vertical reduction, which we shall describe shortly.

Geometric prepotential. The geometric prepotential can be computed from M-theory
as follows. The Kéhler cone can be parametrized by

S = /L4D4 + 11E] +vEs. (37)
By (2.19) the parameters (i, v1,v2) are related to the FI parameters as:
o= 211 +12 >0, §3=1v1 -2, >0, §a=pg—1120. (3.8)

Using the charge matrix (the entries of which immediately give the intersection numbers be-
tween divisors and curves) and the linear equivalences among divisors, it is straightforward
to compute the relevant triple-intersection numbers:

D,EEy; =1, D?E, =0, D?Ey;=0, D,E?=-2, DE2=-2,

3.9
E?E, = -3, E{E3=1, E} =8, E}=38. (3.9)

The value of D3, the triple-intersection number for the noncompact divisor is ambiguous
and regulator-dependent. Its coefficient, pu4, does not depend on Coulomb moduli (and
thus its value does not affect subsequent analysis of BPS states), so we may as well drop
this term.?’ The compact part of the prepotential (i.e. D}-independent part) is determined
to be:

1 4 3 1
F(vi,v9; pua) = _653 = —g(’/% +u3) + 51/%7/2 - 5’/1V22 — paivy + pa(Vi +13) . (3.10)

To relate to the non-abelian gauge theory description, we need to discuss the type-IIA
string theory reduction of this geometry.

Type ITA reduction and gauge theory description. The vertical reduction of the
toric diagram of figure 4(a) is represented in the GLSM approach via the U(1),; charges in
the last line of (3.6). The type ITA string background is a resolved A; singularity fibered
over the 2° = rq direction. The four vertical points in the toric diagram give rise to three
D6-branes wrapping the exceptional P! in the resolved A singularity. This yields an SU(3)
gauge theory, as we explain below.

20The regulator dependence was explored and discussed in some detail in [10], where a method based on
the Jeffrey-Kirwan residue was proposed to compute it.

- 292 —



X("n)

&o+38+E8

S \/
S

To

Figure 5. Resolution (a) of the E1?%? singularity and its vertical reduction.

The volume of the exceptional P! varies as a function of o, and is denoted by x(ro).
This is a piecewise-linear function, which is determined to be:

—5rg + & — 263 + &4, for rog < &3

—3rg + &2 + &4, for =& <19 <0
x(ro) =9 (3.11)
ro + &2 + &4, for 0 <7p < &
+ro — &2 + &4, for ro > &a.

From a sketch of this function, shown in figure 5(b), we can infer several features of the
geometry. First of all, at each of the three kinks of the function where the slope changes
by 2, namely, at rg = —&3, ro = 0 and ro = +&2, there is a gauge D6-brane. When & and
&3 are zero, the three wrapped D6-branes realize a 5d SU(3) gauge group at rg = 0. The
inverse coupling of the SU(3) gauge group is given by the size of the P! at ro = 0, which is
ho = &4 when & = & = 0. The effective Chern-Simons level is given by (2.26), which yields:

1
Foe = —5(1 = 5) = +2. (3.12)
Using (A.3), the gauge theory prepotential for SU(3)x—2 gauge theory is given by:
1 3 4
Fsu(@)_a = ho(PT +¢3 = 0192) + 50192 — 50193 + 5 (91 + 92) - (3.13)

Finite FI parameters (i.e. finite volumes of the compact curves in the toric diagram) cor-
respond to separating the D6-branes along the rg direction, which is equivalent to flowing
onto the Coulomb branch. Open strings stretched between the gauge D6-branes yield W-
bosons and their superpartners. In this case, the simple root W-bosons have masses given
by (2.27), which yields,

M(W1) = 2p2 — o1 = &2, M(W2) =2¢1 — o2 =&3. (3.14)

We note the appearance of the Cartan matrix of su(3) in the field-theoretic expressions for
the W-boson masses, consistent with (2.12).
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Instantons are engineered by D2-branes wrapping the gauge D6-branes, i.e. D2-branes
wrapping the D6-branes at rg = —&3, 19 = 0 and rg = &. These states have masses given
by the volumes of the exceptional Ps at these values of 7q:

M(Z)) =ho+ p2 =&,
M(Zy) = ho — 1 +3p2 =& + &, (3.15)
M(Z3) = ho+ 501 =& + 363+ &4

The field-theoretic expressions for the instanton masses can be obtained using (A.1). We
note that Z; is the instanton state of lowest mass, whereas the other instanton states can
be viewed as bound states of this “elementary instanton” with other perturbative particles,
e.g. M(IQ) = M(Il) + M(W2)7 M(I3) = M(Il) + M(Wl) + M(WQ), etc.

Using the expressions for the Kéahler volumes of the curves in terms of the FI terms (3.8)
and the expressions for the W-boson and instanton masses, we can complete the map
between geometric quantities and field theory quantities. Specifically, we find:

u1 = —3hg, vy = —hy — @2, vy = —2hg — 1 . (3.16)

Plugging (3.16) into (3.10), we find that the geometric prepotential (3.10) indeed matches
the field theory prepotential (3.13).
As a final consistency check, we can compute the monopole string tensions from field

theory via the first derivatives of the prepotential with respect to the Coulomb moduli
(cf. (2.14)). Using (3.13), these are:

0Fsu(3) 33

T g = 5 2 = 2hgp1 + 4t — howa + P12 — =2, (3.17)
1 2
0Fsu(s 1
Ty = T;)Q = —hopr + 57 + 2hops — Bp1pr + 405, (3.18)

whereas from geometry, these are given by the area under the x(rg) curve between the
locations of gauge D6-branes (cf. (2.29)):

0 &2
Tl,geo = /_g. X(TO)dTO 253 <3§3+§2+§4> > T2,geo :/O X(To)d?"() :fg (;fz+f4> . (3.19)

Using the map & = 292 — @1, £&3 = 21 — w2 and & = ho + @2, we find that T; geo = T 1t
fori=1,2.

Magnetic walls. The tensions vanish at the loci defined by:
3 1
0 @ =0 u{ja+era=0f maun: @=0ju{ja+a—of. @)

The loci {{3 = 0} C (1) and {& = 0} C (II), respectively correspond to hard walls along
which the W-bosons W5 and W; become massles. The loci {2&3 + & + & = 0} C (I) and
{3& + & = 0} C (II) are not part of the Kihler chamber of this resolution. So there are
no magnetic walls. But away from hard walls, the BPS instanton Z; can become massless
at & = 0 (corresponding to a flop of the curve Cy), resulting in a traversable instantonic
wall. In this case, the theory flows to a chamber (resolution (b)) that does not have a
gauge theory interpretation.
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Figure 6. Decoupling the divisor D3 leads to the unique crepant resolution of the Ej singularity.
Parity. Since the effective Chern-Simons level (3.12) is nonvanishing, the theory breaks

parity. This is consistent with the fact that the toric diagram of E;%? is not invariant
under Cp = S?, the central element of SL(2,7Z).

Resolution (b) and RG flow. Resolution (b) of the E;?? singularity, shown in
figure 4(b), can be obtained by a flop of the instantonic curve C4 in resolution (a). It
does not admit a vertical reduction. This is consistent with the fact that the SU(3)4 gauge
theory has only one chamber that is geometrically engineered by resolution (a). However,
note that in this resolution, one can decouple the divisor D3 by sending the volume of the
curve Cy4 to infinity as shown in figure 6. This leads to the SL(2, Z)-transformed version

ZNL gingularity (see figure 3(a)). We interpret

of the unique crepant singularity of the FEjy
this decoupling as a generalized renormalization group (RG) flow in the extended param-
eter space of the geometry. Physically, this amounts to sending the mass of the instanton
particle Z; in the gauge theory description of resolution (a) to zero (signaling a flop of Cy)
and then blowing it up (in the opposite direction) in the Kéhler cone of resolution (b), by
sending the coupling to infinity. As we will see in subsequent examples, such a generalized
RG flow, which involves some combination of flops (which are reversible operations) and
decouplings (which are not reversible), frequently relates theories obtained by resolutions
of distinct isolated toric singularities. In terms of geometry, one can “flow” to a toric dia-
gram with fewer external points. Since the rank of the flavor symmetry is f = F — 3 where
FE is the number of external points, such a flow reduces the flavor symmetry of the theory.

This parallels the field-theoretic operation of integrating out massive degrees of freedom.

3.2 The E;?! singularity and SU(3); gauge theory

This geometry has exactly one crepant resolution, shown in figure 7. The linear relations
among divisors are:

Dy~ Dy, E; ~Dy—-2Dy —2Dj3, Eo ~ —-2Dy+ Ds. (321)
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Figure 7. The unique crepant resolution of the £;%! singularity. This admits a vertical reduction.

The compact curves C are given by the intersection pairings of the divisors they connect in
the toric diagram (for example, C; = Eq - D1, C; = Ey - E; etc.), and can be read off from
the toric diagram. The linear relations among curve classes are:

Cr =22C3+Cy, C5~=Cy, C4=C3, C7r=C4. (3.22)

We take {C2,C3,C4} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 E1 Eg VOI(C)
Co o 0 1 0 -2 1 &
Cs 1 0 0 0 1 -2| & (3.23)
Cs o 1 0 1 -2 0| &
Uy | 0O 0 0 0 -1 1 ro

Geometric prepotential. We parametrize the Kahler cone by S = us Dy +v1E1 +15E,.
The parameters (u4, 1, v2) are related to the FI parameters as:

o ="2v141w >0, &=v1—-21,>0, & =us—211>0. (324)
The relevant triple-intersection numbers are:

DiEE; =1, D3E; =0, D?Ey=0, D,E?=-2, DE%= -2,

3.25
EE, = -2, EEi=0, E} =8, E}=38. (3.25)
So the compact part of the prepotential is:
) N T S B 2 2 2
F(v1,v0; puq) = 65’ =—3U gt + vive + g (Vi + v5 — 1in). (3.26)
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Figure 8. Resolution (a) of the E1?! singularity and its vertical reduction.

Type ITA reduction and gauge theory description. The type ITA profile is:

—4’1”0 — 253 + 54, for ro < —{3
—2rg + &4, for —&3<rp <0
&4, for 0 <rg < &
+2rg — 282 + &4, for rg > &o.

This function is sketched in figure 8(b). At the points rg = —&3, ro = 0 and ro = &o,
there are gauge D6-branes wrapping exceptional P'’s. When & = &3 = 0, the three gauged

x(ro) = (3.27)

D6-branes wrapping the exceptional P! at 7o = 0 engineer an SU(3) gauge theory with
gauge coupling hyg = &. The effective CS level is given by kg eq = —%(—4 +2) = +1.
Using (A.3), the prepotential for the SU(3),—1 gauge theory is given by:

Fsu@)y = hol@l + 95 — e102) — 01905 + g(@‘i’ +¢5). (3.28)
The simple-root W-bosons have masses given by:
MWi)=2p2 —p1 =&,  MWa) =201 —p2=¢, (3.29)
whereas the instantons have masses given by:
M(Th) = ho+4p1 =283+ &, M(Zz) = M(Z3) = ho +2p2 = &4 (3.30)

From the Kéhler volumes (3.24) and the masses of W-bosons and instantons, we find:

pa=nho, vi=—p2, V2=—p1. (3.31)

Plugging (3.31) into (3.26), we recover the field theory prepotential (3.28).
The monopole string tensions from field theory are given by:

Ty g = P 403 + ho(2p1 — 92) — 2192, (3.32)
0Fsu
Ty g, = Tf’)l = 4¢3 + ho(2p2 — 1) — 3, (3.33)
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Figure 9. The two resolutions of the E12? singularity. Resolution (a) admits a vertical reduction.

whereas from geometry, they are given by:

&2

0
T geo = /5 X(ro) dro = £3(&3 +&4) , Togeo = /0 X(ro) dro = &284 - (3.34)

Using the map & = 2p2 — @1, & = 291 — @2 and & = hg + 2p2, we find that indeed
T}.geo = Tj gy for i = 1,2. The tensions vanish along hard-walls where the W-bosons W; or
Wy become massless, or along the hard instanton wall £, = 0 where the instanton Zs would
become massless, which is not possible in this Kéhler chamber (the corresponding curve Cy4
cannot flop in this geometry). There are no walls in this geometry, except the hard walls
along the boundary of the Kahler cone.

3.3 The E;2° singularity and SU(3) gauge theory

This geometry has two crepant resolutions, shown in figure 9, related by a flop of the curve
C7. Only resolution (a) admits a vertical reduction, so we consider it first. The linear

relations among divisors are:
Dy~Dy, Ei>~Dy—Dy—2D3, Eo~—-2D1— Ds+ Ds. (3.35)
The linear relations among curve classes are:
Ci~C3+Cr, C4=Co+Cr, C5~Cy, Cg=~Cs. (3.36)

We take {C2,C3,C7} as generators of the Mori cone. The GLSM charge matrix is:

Dy Dy D3 Dy E; E,|vol(C)
Cs 0 0 1 0 -2 1] &
Cs 1 0 0 0 1 -2| & (3.37)
Cr o 1 0 1 -1 -1| &
Uy | 0O 0 0 0 -1 1] n
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Figure 10. Resolution (a) of the E;%° singularity and its vertical reduction.

Geometric prepotential. We parameterize the Kéhler cone by S = pusDs+11E1+15Es.
The parameters (4, v1, v2) are related to the FI parameters by

Eo=-2v1410>0, &=v1—-21,2>0, & =pu—v—122>0. (338)
The relevant triple-intersection numbers are:

DsE\E; =1, D2E; =0, D3E;=0, DE}=-2, D,F3=-2,

3.39
E2Ey = -1, E\E3=-1, E}=8, E3=38. (3.39)

Therefore, the compact part of the prepotential is determined to be:

1 4 1
F(v1,v9;pu4) = _653 = —g(y% + Vg’) + 5(1/121/2 + 1/11/22) + ,u4(1/% + 1/22 —uve).  (3.40)

Type ITA reduction and gauge theory description. The ITA profile function is:

—3rg — 2§3 + &7, for rg < =3
— for — &3 < <0

x(rg) ={ TOTET or —& <10 < (3.41)
+ro + &7, for 0 <rp < &

+3rg — 262 + &7, forrg > &o.

This function is sketched in figure 10, where we have chosen & > &3 without loss of
generality to plot the function. At the points ro = —&3, 19 = 0 and rg = &», there are
gauge D6-branes wrapping exceptional P'’s in the resolution of the singularity. When
& = & =0, an SU(3) gauge theory is realized with gauge coupling hg = &7. The effective
Chern-Simons level now vanishes: kg eg = —%(—3 +3) = 0. Using (A.3), the prepotential
for the SU(3)x=o gauge theory is given by:

4 1
Fsu@), = g(sﬁ’ +¢3) — 5(9@?@2 + ©103) + ho(0] + 5 — p1e02) - (3.42)
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The simple-root W-bosons have massses given by:
M(Wi) =20 — 1 =&, M(Ws) =201 — 2 =&3, (3.43)
whereas the instantons have masses given by:

M(Zy) =ho+ o1+ 92 =E& ,M(Zs) = ho+3p2 =&+ &, M(Z3) = ho + 301 = &3+ &7 .
(3.44)

From the Kahler volumes (3.38) of the compact curves and the masses of W-bosons and
instantons, the map between geometry and field theory is determined to be:

pa=ho, vi=-—p2, v2=—¢p1. (3.45)

Plugging (3.45) into (3.40), we recover the field theory prepotential (3.42), up to ¢-
independent terms.
The monopole string tensions in field theory are given by:

8]:SU(3) 1

Ty = Tlo = 4%0% + ho(2¢1 — @2) — 192 — 5@%7 (3.46)
0Fsu(3
To g = T;)O = 4<P§ + ho(2p2 — 901) — P1¥2, (3~47)

whereas from geometry, they are given by:

&2

0
T geo = /_6 x(ro) dro = %53(53 +2&7), Togeo = /0 X(ro) dro = %52(52 +267). (3.48)

Using the map & = 2¢2 — 1, & = 291 — @2 and & = hg + @1 + 2, we find that
Ti geo = Ti g, for i = 1,2. The vanishing tension loci {xi3 = 0} and {xis = 0} respectively
correspond to hard walls where the W-bosons Ws and W; become massless, whereas the
loci {&3 + 2&7 = 0} and {& + 27 = 0} do not belong to the Kéhler chamber of this
resolution. Away from any hard wall, the instanton particle Z; can become massless at
&7 = 0 (signaling a flop of the curve C7). This is a traversable instantonic wall, crossing
which leads to a non-gauge-theoretic chamber (resolution (b)).

Parity. The effective Chern-Simons level vanishes, as observed above, and so the theory
conserves parity. This is reflected by the symmetry of the toric diagram under the central
element Cy = S? C SL(2,Z).

Resolution (b). We remark that resolution (b) of the E12°, upon an SL(2,Z) transfor-
mation, is seen to represent a coupling of two rank-1 Ey non-Lagrangian singularities [1, 10]
(cf. the discussion around figure 27).

3.4 The E»%3 singularity and SU(3)s Nf = 1 gauge theory
2

The Ey%2 singularity (figure 3(f)) admits 7 crepant resolutions, shown in figures 11. The
first four resolutions, figure 11(a)-11(d), admit vertical reductions to type IIA, which corre-
spond to chambers of the SU(3) 3 Nt =1 gauge theory, as we illustrate below. Resolutions
(e), (f), and (g) do not admit a gauge-theory interpretation.

— 30 —



() () (8)

Figure 11. The 7 crepant singularities of the E,22 singularity. The first four, (a)-(d) admit a
vertical reduction, corresponding to chambers of the SU(3) 3 Np =1 gauge theory.
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Figure 12. Resolution (a) of the E,%% singularity and its vertical reduction.

Resolution (a). Consider the crepant resolution of figure 11(a), with curves and divisors
shown in figure 12(a). There are five non-compact toric divisors D; (i =1,...,5), and two
compact toric divisors E; and Eo with the following linear relations:

Di~D3s+ Dy, Ei~Dy—2D3—3Dy—2D5, Eo~—2Dy+ Dy+ Ds. (349)
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The linear relations among curve classes are:
Ci=Cs4+Cq, C3=20+4+Cs5+C7, C5~=Cs. (3.50)

We take {Cq,Cy4,Cg,C7} as generators of the Mori cone.
The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 VOI(C)
Cy 0 1 0 0 0 1 =2 &
Cy 0 0o -1 1 0o -1 1 &4 (3.51)
Cs o 0 1 -1 1 -1 0 &6 '
Cy 1 0 -1 -1 0 &7
Ul)ar | O 0 0 0o -1 1 ro
Geometric prepotential. We parametrize the Kéhler cone by:
S = 1Dy + peDo + v1E; + 1nE, . (352)

The parameters (u1, p2, V1, v2) are related to the FI parameters by:
So=p2+v1 —2102>20, &G=-v1+1.>0, {=-1v1>0, &=um—v1>0. (3.53)
The relevant triple-intersection numbers are:

D1E1E2 = 17 D2E1E2 - O, D1D2E1 = 07 D1D2E2 = 17
DiE}=-2, D,E}=0, DE}=-2, DyE3=-4,

3.54
D?E; =0, D?E; =0, D3E; =0, D3E; =2, (3:54)
E2E; = -2, E,E3 =0, E} =7, E3=38.
Therefore, the compact part of the prepotential is:
1 7 4
Flay (Vi va; s p2) = _653 = —gi’ - 31/5’ + Vv 4+ pvf — mive + (u + 2p2)v3
— p3va — p1pavs . (3.55)

Type ITA reduction and gauge theory description. The type IIA background is
a resolved A; singularity fibered over the 2° = r( direction. There are three D6-branes
wrapping the exceptional P! in the resolved A; singularity, resulting in an SU(3) gauge
theory. There is also a D6-brane wrapping a noncompact divisor in the resolved ALK
space, which corresponds to one fundamental flavor. The volume of the exceptional P! is
given by the following piecewise linear function:

—drg — 2§ + &6 + &7, for rop < =&
—2rg + &6 + &7, for —& <rp <0

x(ro) = § & + &7, for 0 <rg <& (3.56)
—ro+ &+ 8 +&, for &g <rog < &u+ &
+ro— & — & +&7, forrg > &4+ &
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This function is sketched in figure 12(b). At the points rg = —&2, 179 = 0 and ro = &4 + &6,
there are gauge D6-branes wrapping P!’s in the resolution of the singularity. When & =
& =& = 0, an SU(3) gauge theory is realized with coupling hy = &;. There is a flavor
D6-brane at 79 = 4. The effective Chern-Simons level is given by kg o = —%(—4+ 1) = %,
which is interpreted as a bare CS level of 2 plus the contribution —% due to the single
hypermultiplet (cf. (2.5)). The simple-root W-bosons have masses given by:

M(Wi) =& =201 —pa, MW)=E+ & =292 — ¢1. (3.57)

This resolution corresponds to gauge theory chamber 3 (cf. table 5 and (A.7)), with in-
stanton masses given by:

M(Z1) = x(ro = —&2) = 2§ + &6 + & = ho + 41 —m,
M(Zy) = x(ro = 0) = & + &7 = ho + 22 —m, (3.58)
M(Z3) = x(ro =& + &) = & = ho + 2.

The masses of hypermultiplets (due to open strings stretched between gauge and flavor
branes) are:

MHi) =& =p2—m, M(H2) =& =—p1+p2+m, M(Hz) =& + & =1 +m.
(3.59)

From the Kéahler volumes (3.53) of the compact curves and masses of W-bosons and in-
stantons, the map between geometry and field theory variables is determined to be:

wr=ho+m, p2=3m, vi=—pa+m, vy=—p1+2m. (3.60)

Plugging (3.60) into (3.55), we recover the field theory prepotential,

2

m
—p1, (3.61)

Fchamber 3 4 3 7 (h 5

SU(3)2,Ni=1 = 3¥1 + 05 — 195 +

m
5 0= 20) ¢+ how} — howren —

2

up to ¢-independent terms (i.e. terms independent of ¢ and @3, as discussed in previous
examples). From field theory, the monopole string tensions are given by:

o Jrchamber 3

SU(3)2, Np=1
T = # = 4¢3 +2(ho — m)p1 + (m — ho)p2 — ¢35, (3.62)
aJT_‘chamber 3 7 2
SU(3)2, N;=1 m
Ty = # = §<p% + (m — ho)p1 + (2hg — m)pa — 2@1902—7 ; (3.63)

whereas from geometry, they are given by:

0

T geo = /5 X(ro) dro = &2(&2 + &6 + &7) (3.64)
€a+E6 52

T2geo = /0 x(ro) dro = 56 + &6 + 687 + Ealr - (3.65)
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Using the map & = 21 — @2, &4 = —1 + w2 + M, £ = w2 — m and &7 = hg + @2, we find
that T; ¢ = T} geo for i = 1,2. The tensions vanish at loci given by:

2
(I):{&=0}U{&+ &+ & =0}, and (II):{é-26+§4§6+§6§7+§4§7=0}. (3.66)

The loci {€2 = 0} C (I) coincides with the boundary of the Weyl chamber where the W-
boson W) becomes massless, indicating a hard wall. The component {£3+&+E&7 = 0} C (1)
is not part of the Kéhler chamber of resolution (a). As for the second component (I7), the
solutions of the quadratic equation for &, defining the vanishing locus are:

Ty Sy (3.67)

which always lead to negative values of & in resolution (a) (for both sign choices), which
is unphysical in this Kahler chamber, and are hence rejected. Note that away from any
hard wall, the BPS perturbative hypermultiplets H; or Ha can become massless at &g = 0
or & = 0 respectively (signaling flops of the curves Cg or C4). These are traversable walls
that lead, respectively to gauge theory resolutions (c) and (b) respectively. Also away from
any hard wall, the BPS instanton Z3 can become massless at {7 = 0 (signaling a flop of
C7), which corresponds to a traversable instantonic wall that leads to a non-gauge-theoretic
chamber (resolution (e)).

Parity. Since the effective Chern-Simons level is nonvanishing, this theory breaks parity.
In geometry, this is reflected by the non-invariance of the toric diagram under the central
element Cy = S? of SL(2,7Z). This is true, of course, of all the crepant resolutions of E22’%
as the CS level does not change under flops.

Resolution (b). Consider the crepant resolution of figure 11(b), with curves and divi-
sors shown in figure 13(a). The linear equivalances among divisors remain unchanged, as
in (3.49). The linear relations among curve classes are:

Co~Cs4+C5, C3~=C1+3C4+2C5+C7, Cg~Cy, Cg~Ci+Cr. (3.68)

We take {C1,C4,C5,Cr} as generators of the Mori cone. The GLSM charge matrix is

D1 _D2 D3 D4 D5 E1 E2 VOI(C)
C1 0 0 0 0 1 -2 1 &
Cy 0 0 1 -1 0 1 -1 &4 (3.69)
Cs 0 1 -1 1 0 0 -1 &
Cr 1 0 0 1 -1 -1 o0 &
Ul | 0 0 0 0 -1 1| ro

The Kéhler cone is parametrized by (3.52). The parameters (j1, p2, 1, v2) are now related
to the FI parameters by:

L ="2+1n>0, G=v—-—1nr>0, &L=uw—1n>0, &=w—v >0. (3.70)
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Figure 13. Resolution (b) of the E,23 singularity and its vertical reduction.

The relevant triple-intersection numbers are:
DIE\E; =1, DoEE;=0, DiDE; =0, DiDyEy=1,
DE- 2. DEi-0, DE -2 DE- 1

3.71
D?E; =0, D?E; =0, D3E; =0, D3E; =2, (3.71)
E’E, = -3, FEE3=1, E} =38, E3=7.
Therefore, the compact part of the prepotential is:
1 4 7 3 1
Foy(vi, vo; pa,s pi2) = —653 = —gl/f - 6”3 + §V12V2 — §V1V§ + pvf + (1 + 2p2)v3
— pvive — ngg — b1 ol (3.72)
The type ITA profile is:
—drg + &1 — &4 — 265+ &7, forrg < =& — &5
=219+ &1 + &+ &7, for — & — & <ro < &
X(T’Q) = —3rg + fl + 57, for — §4 <rg<0 (3.73)
—ro + &1 + &7, for 0 <rp <&
+ro — &1 + &7, for rg > &;.

This function is sketched in figure 13(b). At the points 1o = —&4 — &5, ro = 0 and r9 = &1,
there are gauge D6-branes wrapping P'’s in the resolution of the singularity. There is a
flavor D6-brane at rg = —&4. The simple-root W-bosons have masses given by:

MW) =& +6& =201 —@2, M(Wi)=E& =202 — 1. (3.74)

This resolution corresponds to gauge theory chamber 2 (cf. table 5 and (A.6)) with instan-
ton masses given by:

M(Zy) = x(ro = —& — &) = &1 + 364 + 285 + & = ho + 41 —m,
M(Zz) = x(ro = 0) = &1+ &7 = ho — 1 + 32, (3.75)
M(Z3) = x(ro =§&1) =& = ho + 2.
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The masses of hypermultiplets are:

MHi1)=86=p1—p2—m, M(Ho) =& =1 +m, M(H3) =& + & = w2 —m.
(3.76)

One can verify that the map (3.56) still holds, and plugging it into (3.72), we recover the
field theory prepotential,

mber 7 4 1 3 m
FSU)eNe=t = 690? * §(p§ TPl - peent (ho N 5> o1 hos
2
m
— hop1ps — 7()01 : (3.77)

up to p-independent terms. The monopole string tensions are given from y(rg) by:

0 3¢1

Tiawo= [ X0)dro =+ 606 +60) 16 6+ &) 16 (G E) BT
&1 2

T5,geo = /0 x(ro) dro = %1 + &7 (3.79)

One can verify, using the map &1 = 202 —@1, &4 = 1 —wa—m, & = p1+m and & = ho+ 2,
that T; ¢ = T} geo for i = 1,2. The tensions vanish at loci given by:

(I): {& =0}u{& +267 =0}, and ,

3, (3.80)
(1) : 58 +&aBG+&) +&a @+ &) +6 (& +E&) =0,

Along the submanifold {{; = 0} C (I), the W-boson Wy becomes massless, signaling a
hard wall. Also {&; + 2&7 = 0} is not part of the Kéhler chamber of resolution (b). As for
the condition (I1), the solutions to the quadratic equation for &, are:

4= —& — % <£1 térE \/(51 +&)2 + 3g§> : (3.81)

Both sign choices lead to a negative value of &4, which is inconsistent in this Kéhler chamber.
Also note that the curve Cs5 cannot flop in this chamber, so &5 cannot vanish.

Away from any hard wall, the perturbative BPS hypermultiplet H; can become mass-
less at & = 0 (signaling a flop of Cy4), indicating a traversable wall that leads back to
gauge theory resolution (a). Alternatively, the BPS instanton Z3 can become massless at
& = 0 (signaling a flop of Cr), corresponding to a traversable instantonic wall that leads
to non-gauge-theoretic resolution (f).

Resolution (c). Consider the crepant resolution of figure 11(c), with curves and divisors
shown in figure 14(a). The linear relations among curve classes are:

C3~2C,+C7, C4~Cy, C5~=Cy, Cg~=Cr. (3.82)
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Figure 14. Resolution (c) of the E,22 singularity and its vertical reduction.

We take {C1,Cs,Cs,C7} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 Dg D4 D5 E1 EQ VOI(C)
Cy o 0 0 0 1 -2 1 3
Co 0 1 0 0 0 1 -2| &
Co 0O 0 -1 1 -1 1 0 &6
Cr 1 0 0 0 -2 0 &
ULy | 0 0 0 0 0 -1 1|

The parameters (u1, p2, V1, v2) are related to the FI parameters by:
§1=—"2v14+12>0, S=po+v1—212>0, §=11>0, &{r=m—2112>0.
The relevant triple-intersection numbers are:
DiE1Es =1, DyEEy=0, DiDE; =0, DiDEy=1,
DiE}=-2, DE}=0, DE(=-2, DyE3=—4,
D?E; =0, D?E; =0, D3E; =0, D3E; =2,
EiE, = -2, EE3=0, E} =38, ES =38.

Therefore, the compact part of the prepotential is:

1 4
Floywiyvos s o) = =28% = =2 (] +13) + vive + v + (1 + 2p2)v3

6 3
— pvive — p2(pn + p2)va .
The type IIA profile is:
—4rg — 26 + &, forrg < =&
—2ro + &7, for —& <rg <0
x(ro) = 9 &, for 0 <rp <&
+2rg — 26 + &7, for & <19 <& + &6
+ro — &1+ & + &7, forrg > & + &6
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This function is sketched in figure 14(b). At the points ro = —&a2, ro = 0 and ¢ = &1, there
are gauge D6-branes wrapping P!’s in the resolution of the singularity. There is a flavor
D6-brane at rg = &1 + &g. The simple-root W-bosons have masses given by:

MW1) =& =201 —p2, M(Ws)=§& =202 —¢1. (3.88)

This resolution corresponds to gauge theory chamber 4 (cf. table 5 and (A.8)), with in-
stanton masses given by:

M(Ty1) = x(ro = —&2) =286 + & = ho + 41 —m,
M(Zs) = x(ro = 0) = & = ho + 2¢2 — m, (3.89)
M(Z3) = x(ro =&1) =& = ho+ 2p2 —m .

The masses of hypermultiplets are:

M(H1) =& = —p2 +m,
M(Ha) =& + & = —p1 +p2 +m, (3.90)
M(Hs) =& + &+ & =91 +m.

Plugging the map between (v, u) parameters and field-theory parameters given by (3.60),
into (3.86), we recover the field theory prepotential,

chamber 4
Fni = 5 (21 + 93) = @198 + (ho = m)@d + (ho — m)g3 + (m — ho)prpa, (3.91)

up to g-independent terms. The monopole string tensions from x(rg) are given by:

&1

0
Tiawo= [ X dn =66 +6), T = [“xtw)dn =66 (392)
—e2

Using the map &1 = 292 — @1, {2 = 201 — 2, {6 = —p2 + m and {7 = hg + 2¢2 — m, one
can verify that T; ¢ = Tj geo for i = 1,2. It is easy to see that subloci of vanishing tension
lie along hard walls where either W-boson becomes massless, or along hard walls that are
not in this Kahler chamber. Away from a hard wall, 1 can become massless signaling a
flop of Cg leading back to resolution (a).

Resolution (d). Consider the crepant resolution of figure 11(d), with curves and divisors
shown in figure 15(a). The linear relations among curve classes are:

C3~C1+3C+C7, Cy4=Cy, Co~=Cp, Cg~Ci+Cr. (3.93)

We take {C1,C2,C5,Cr} as generators of the Mori cone. The GLSM charge matrix is:

Dy D, Dy Dy Ds E; E,|vol(C)
G o 0 0 0 1 -2 1 3
Co o 1 0 0 0 1 =-2| & (3.94)
Cs 0o -1 1 -1 0 0 1 &5
Cr 1 0 1 -1 -1 0| &
Uy | 0 0o 0 0 -1 1 ro
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Figure 15. Resolution (d) of the E,23 singularity and its vertical reduction.

The parameters (u1, p2, V1, v2) are related to the FI parameters by:

Sl="2n+1>0, SL=p+r—-21b>0, &=—p+1rr>0, &=pn—v >0.

(3.95)
The relevant triple-intersection numbers are:
DiE\E; =1, DyEE; =0, DiD:E;1 =0, DiDEs=1,
DiE}=-2, DE}=0, DE}=-2, DyE3=-5, (3.96)
D’E; =0, D?E, =0, D2E, =0, D2E, =3, '
E2E,; = -3, E\E3=1, E} =8, E3 =38.

Therefore, the compact part of the prepotential is:

1 4 3 1
Fay(v1,v2; i1, p2) = —653 = —g(Vf +v3) + §Vf1/2 - §V11/22 + i — pviv

5 3
+ <M1 + 2M2> 1/% + <2u§ — ,ulug) Vs . (3.97)
The ITA profile is:

—drg+& — &+ &+ &7, forrg < =& — &5
—brg + &1 — 26 + &7, for —& —& <1rp < —&

x(ro) = ¢ —3ro +& + &7, for —& <79 <0 (3.98)
—ro+ & + &7, for & <rp < &
+ro — &1 + &7, for rog > & .

This function is sketched in figure 15(b). At the points rg = —&a, ro = 0 and ¢ = &7, there
are gauge D6-branes wrapping P!’s in the resolution of the singularity. There is a flavor
D6-brane at rg = —€2 — &5. The simple-root W-bosons have masses given by:

M(Wy) =& =201 —pa, M(W2) =& =2p2 — 1. (3.99)
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This resolution corresponds to gauge theory chamber 1 (cf. table 5 and (A.5)), with in-
stanton masses given by:

M(Z1) = x(ro = —&2) = &1 +3& + & = ho + 51,
M(Zs) = x(ro = 0) = & + & = ho — 1 + 32, (3.100)
M(Z3) = x(ro =&) =& = ho + ¢2.
The masses of hypermultiplets are:
M(Hi) =& =—p1—m,
M(H2) =&+ & =p1—p2—m, (3.101)
M(Hs) =& +&+86=p2—m.
Plugging (3.60) into (3.97), we recover the field theory prepotential,

chamber 4
FSUni=2 = 521+ ¢8) = @168 + (ho — m)@l + (ho — m)¢3 + (m — ho)pripa, (3.102)

up to g-independent terms. The tensions from x(rg) are given by:

0 &1
T geo = /_€ x(ro) dro = &2 <g§2 + &+ f?) s Togeo = /0 x(ro) dro = %51(51 +2&7) .
(3.103)

Using the map & = 2909 — @1, &2 = 2p01 — 2, & = —p1 — m and & = hg + 2, we find
that T ¢ = T geo for ¢ = 1,2. It is easy to check that in this case too, loci of vanishing
tension are either hard walls where W-bosons become massless, or walls that do not lie in
this Kéhler chamber. There is a perturbative wall corresponding to a flop of C5 (when H;
becomes massless), but also a traversible instantonic wall at leading to non-gauge theory
resolution (g).

Resolutions (e), (f), (g) and RG flow. As noted above, the crepant resolutions in
figures 11(e)-11(g) do not admit vertical reductions. Nevertheless, they have interesting
roles to play in the Kéhler moduli space of the EQQ’% singularity. In resolution (e), one can
send the volume of the curve C7 to infinity, thereby decoupling the divisor D5. This leads to

2,NL

a crepant resolution of the non-Lagrangian E; singularity (see figure 16).2! Similarly in

resolution (f), one can decouple D5 by sending vol(C7) to infinity. This results in yet another

crepant resolution of the E;2NE

singularity, as shown in figure 17. Finally in resolution (g),
one can decouple D3 and Dj by sending both vol(Cs) and vol(C7) to infinity as shown in
figure 18. This leads to the unique crepant resolution of the SL(2,Z)-transformed version
of the Ey>NL singularity, which as we stated above, is also non-Lagrangian.

In summary, starting from the non-Lagrangian deformations of the E22’% singularity,
one can obtain the non-Lagrangian deformations of Eo?>N' and E;?>N' via RG flow in
parameter space. A careful analysis of the phase boundaries — carried out in the next
section — reveals that resolutions (e), (f) and (g) do not survive the limit in which the

mass deformations are set to zero (that is, the Coulomb branch of the SCFT).

“'More precisely, an SL(2,Z) transformation (using, for instance an S*T'STS™? transformation) of the
toric diagram on the right in figure 16 brings it into crepant resolution of Fy*™" of figure 3(e).
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Figure 16. Decoupling a divisor from F»23 resolution (e) yields an SL(2, Z)-transformed version

of a crepant resolution of the E;%N singularity.

Figure 17. Decoupling a divisor from E»22 resolution (f) yields an SL(2, Z)-transformed version
of a crepant resolution of the F;?NF singularity.

RG flow

vol(Cs)—o0
vol(Cr7)—00

"D

Figure 18. Decoupling two divisors from E,%% resolution (g) yields an SL(2,Z)-transformed

2,NL

version of the unique crepant resolution of the Ejy singularity.
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(@) | {pa+vi—210 >0} N{ra—vy >0} N {—11 >0} N {p1 —1n >0}

D) | {ra—21 >0} N{v1 —12 >0} N {pe —12 >0} N {1 —v1 >0}

c) | {ra—2v1 >0} N{pe+v1—2v2 >0} N {ry >0} N {u — 21 >0}

) | {va—2v1 >0} N {pe+v1 —2v0 >0} N {re —pu2 >0} N {ps —v1 >0}

) {I/Q—UlZO}ﬂ{,U,g—}—I/l—QVQZO}ﬂ{ul—Ql/lZO}ﬂ{Vl—,ulzo}
f) {u1—31/1—|—l/220}ﬂ{yl—1/220}Q{MQ—VQZO}Q{I/l—Mlzo}
) | {1 =31+ >0} N {ue+v1 —210 >0} N {ra —p2 >0} N {v) — 1 >0}

Table 3. Geometric inequalities (“Nef conditions”) defining the Kéhler chambers of the 7 resolu-
tions of the Ey2? geometry.

3.4.1 Sample slicings of the E22’% moduli space

In figure 19, we show some sample slices of the moduli space of the E227% geometry.
The phase diagram of this geometry, parametrized by (v;u) = (v1,v2; 1, u2) is a four-
dimensional region, given by the disjoint union of the regions described by the defining
inequalities of 7 K&ahler chambers, which are listed in table 3.

The phase diagram can be visualized by taking slices at different values of (1, u2),
which reveal different chambers. For some values of (v; p) some regions vanish altogether
while other regions collapse to real codimension-one walls in this parameter space (along
which flops may occur). The origin (vq,v2) = (0,0) is denoted by a red dot on the top
right of each plot. To make the plots readable, we only highlight chambers that have a
finite area in parameter space in the slices that are considered. When p # 0, the origin
v1 = vy = 0 is generally not the origin of the Coulomb branch of the gauge theory (when
such a description exists), since the map (3.60) between vy, v9 and @1, @2 for SU(3) Ny = 2
involves a contribution from the real mass m. The slicings of figure 19 can also be used to
highlight some geometric features. For instance, resolution (b) is obtained from resolution
(a) by flopping curve C4. This corresponds to the volume vol(C4) = & = —v1 + 19 shrinking
to zero size in the Kéhler chamber defining resolution (a), before it grows in the birational
Kéhler chamber of resolution (b). The real codimension-1 wall separating phases (a) and
(b) is clearly visible in figure 19(i). In order to reach resolution (c), one just needs to flop
curve Cg which has volume vol(Cs) = & = —ry. This vanishes along the vertical line v; =0
indicating a wall separating regions (a) and (c) in figure 19(ii). On the other hand, to reach
chamber (c) from chamber (b), one needs to perform two flops, which necessitates going
through the origin, as is also clear from the figure.

Finally, turning on generic mass deformations reveals non-gauge theoretic phases, and,
as is clear from figure 19(iii) and figure 19(iv), these phases — which also admit no type
ITA reduction — are not compatible with the SCFT Coulomb branch. This is consistent
with the results of [10].

3.4.2 Probing the Coulomb branch of the 5d SCFT

To probe the Coulomb branch of the 5d SCFT, we set the mass parameters to zero.
From (3.60), this implies that 14 = —¢y and 9 = —p;. On the field theory side, we
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+00.8
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(i): phases: (a), (b)
p=(0,0)

v,
01.0 0o.8 00.6 0o.4 00.2 0.0

(iii): phases: (a), (b), (d)
= (—0.25,0.25)

Figure 19. Sample slices of the moduli space of the Ey23 geometry. Turning on different mass
deformations reveals more SU(3) N = 1 phases such as (c) in (ii) and (d) in (iii), but also non-gauge

theoretic phases such as (e) and (f) in (iv).

observe that only chambers 2 and 3 of the SU(3)

in this limit, and they are given by:

®1 207
_Q02+S02<0,
_@2<03

chamber 2 :

01.0

—10.0

—00.2

+00.4

-00.6

+00.8

—401.0

(ii): phases: (a), (b), (c)
p = (—0.15,0.55)

v,
fo.8 0o.6 0o.4 0o.2 0.0
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® 00
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(iv): phases: (a), (b), (e), (f)
p = (—0.45, —0.25)

3
2
®Y1 203
chamber 3: ¢ —p2+ 2 >0,
—p2 < 0.

v,

v,

Nt =1 theory (see appendix A) survive

(3.104)
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Figure 20. The 6 crepant singularities of the E,22 singularity. The first four, (a)-(d) admit a
vertical reduction, corresponding to chambers of the SU(3); Ny = 1 gauge theory.

One can also verify from the Nef conditions in table 3 that only resolutions (a) and (b)
survive in this limit. The Coulomb branch of the SCFT is sketched in figure 19(i). The
red dot on the right in the figure is the conformal point.

3.5 The E22’% singularity and SU(3): N¢ = 1 gauge theory
2

The E22’% singularity (figure 3(g)) admits 6 crepant resolutions shown in figure 20. The
first four resolutions, figures 20(a)-20(d), admit vertical reductions to type IIA, which
correspond to chambers of the SU(3); Nt = 1 gauge thoery, as we illustrate below. Phases
(e) and (f) do not admit a Lagrangian description.

Resolution (a). Consider the crepant resolution of figure 20(a), with curves and divisors
shown in figure 21(a). There are five non-compact toric divisors D; (i =1,...,5), and two
compact toric divisors E; and Eo with the following linear relations:

Di>~Ds+Dy, Ei~Dy—D3—2Dy—2D5, Es>~—-D;—2Dys+ Ds+ Ds5. (3.105)
The compact curves C are:

Ci=Ei-Dy, Ca=E3s-Dy, C3=Ez-Dy, C4=E1-Ds,

(3.106)
Cs=E2-D3, C¢6=E1-Dy, Cr=E1-Ds, Cg=Es-E;.

The linear relations among curve classes are:

C3~—-Ci+Co+Cs+C7r, Ci~Ci—Cq, C5=Co Cg~-—C+Cs5+Cr. (3.107)
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Figure 21. Resolution (a) of the E,%7 singularity and its vertical reduction.

We take {C1,Cq,Cs,C7} as generators of the Mori cone. The requirement the compact
curves Cs3, C4 and Cg have non-negative volume imposes the following additional conditions
on the FI parameters in this chamber:

& +&+E&%6+E6 20, G -62>20, —&+8&+&=0. (3.108)

The GLSM charge matrix is:

D1 DQ D3 D4 D5 E1 EQ VOI(C)
C1 0 0 0 0 1 -2 1 &
C 0 1 0 0 0 1 -2
2 &2 (3.109)
Cs 0 0 1 -1 1 -1 0 &
Cy 1 0 0 0 -2 0 &7
U | O 0 0 0 0o -1 1 70
Geometric prepotential. We parametrize the Kéhler cone by:
S = 1Dy + poDo + v1E; 4+ 1nE, . (3.110)

The parameters (u1, p2, V1, v2) are related to the FI parameters by:

=211 +122>20, S=p+v—21,>0, E=-11>0, &=pu —2v1>0.

(3.111)
The relevant triple-intersection numbers are:
D1E1E2 = 1, D2E1E2 = 0, D1D2E1 = O, D1D2E2 = 1,
DiE}=-2, DE}=0, D\E2=-2, DyE}=-3, 5.112)
D%E1:O7 l)%:EQ:O7 D%:El:o7 D%EQZ]_, ’
EE;, = -1, E\E2=-1, B} =7, E3=38.
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Therefore, the compact part of the prepotential is:

1 7 1
Flay (v s o) = =% = =il = ovg + S (vive + vivg) + i — s

3 1
+ <M1 + 2#2) V22 — (,Uq,uz + 2#%) Vo . (3.113)

Type ITA reduction and gauge theory description. The type IIA background is
again resolved A; singularity fibered over the z° = rq direction. There are three D6-branes
wrapping the exceptional P! in the resolved A; singularity, resulting in an SU(3) gauge
theory. There is also a D6-brane wrapping a noncompact divisor in the resolved ALE
space, which corresponds to one fundamental flavor. The volume of the exceptional P! is
given by the following piecewise linear function:

—3rg — &1 — 26 + & + &7, for rg < =&

—ro — &1+ &6 + &7, for —& <rg <0

x(ro) = +ro — &+ & + &7, for 0 <rg <& — &6 (3.114)
&7, for & — & <19 < &1
+2rg — 261 + &7, for ro > &1

This function is sketched in figure 21(b). At the points ro = —&a2, ro = 0 and ¢ = &1, there
are gauge D6-branes wrapping P!'’s in the resolution of the singularity. When & = & = 0,
an SU(3) gauge theory is realized with coupling hy = & + &7. There is a flavor D6-brane
at o = &1 — &6 The effective Chern-Simons level is given by k.4 = —%(—3 +2) = %,
which is interpreted as a bare CS level of 1 plus the contribution —% due to the single
hypermultiplet (cf. (2.5)). The simple-root W-bosons have masses:

MWh) =& =201 — 2, M(W2)=¢& =202 — 1. (3.115)

From the instanton masses, one can identify that this resolution corresponds to gauge
theory chamber 3 (cf. table 5 and (A.7)):

M(Zy) = x(ro=—&) =& + &+ & + & = ho+ 301 —m,
M(Zy) = x(ro = 0) = =& + & + &7 = ho + @1 + 2 —m, (3.116)
M(Z3) = x(ro=&1) = & = ho + 2¢2.

The masses of hypermultiplets are:

M(Hl):£6:gp2—m,
M(H2) =& — & = —p1+ @2 +m, (3.117)
M(Hs) =& +& — & =91 +m.

From the Kahler volumes (3.111) of the compact curves and masses of W-bosons and
instantons, the map between geometry and field theory variables is determined to be:

i =ho+2m, pe=3m, vi=—pa+m, vo=—p+2m. (3.118)
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Plugging (3.118) into (3.113), we recover the field theory prepotential,

4 7 1 m
TR = 301+ g8 = 5(eter + 1) + (ho —m)gt + (o = )
2
m
+(m = ho)prpz — -2, (3.119)

up to p-independent terms. The monopole string tensions from x(rg) are given by:

0 1

T geo = /5 X(ro) dro = &2 <—£1 + 552 + &6 + §7> , (3.120)
&1 2 2

T ge0 = /0 x(ro) dro = —% + 8661 + &7&1 — %3 . (3.121)

Using the map &1 = 292 — ¢1, {2 = 201 — 2, {6 = p2 — m and & = hg + 22, one can
verify that indeed T; ¢ = T} geo for i = 1,2. The tensions vanishes at loci given by:

0 =0tu{-a+lararea—of, ad.

& &
(I1): 2+€6€1+§751 2—0 .

(3.122)

Along the submanifold {2 = 0} C (I), the W-boson W; becomes massless, signaling a hard
wall. The submanifold {—¢§; + %52 + &6+ &7 = 0} is not part of the Kéhler chamber of reso-
lution (a). Solving the quadratic equation in (I7), we get two solutions: &g = &1 + /26 &7.
Both sign choices are inconsistent with (3.108), and are hence rejected. Note that away
from any hard wall, the perturbative hypermultiplet 71 can become massless at £ = 0
(signaling a flop of Cg), leading to gauge theory resolution (c), or the hypermultiplet Ho
can become massless along the locus £, = £1—&¢ = 0 (signaling a flop of Cy), leading to
gauge theory resolution (b). Note that the intersection of the loci (1) above with the loci
{& = &} is £&1&7 = 0, is inconsistent in this Kéhler chamber, as neither the W-boson Wy
(with mass £;) can become massless (except at the hard wall) nor can the curve C; flop in
this chamber. This is a reassuring consistency check.

Resolution (b). Consider the crepant resolution of figure 20(b), with curves and divisors
shown in figure 22(a). The linear relations among the toric divisors are still given by (3.105).
The compact curves C can be read off the toric diagram. The linear relations among curve
classes are:

Co~Cs4+Cs, C3=2C4+C5+C7, Cg~Cy, Cg~Cr. (3.123)
We take {C1,C4,C5,Cr} as generators of the Mori cone. The GLSM charge matrix is:

D, D, Dy Dy Ds E; E,|vol(C)
Cy o 0 o0 o0 1 -2 1 3
Cy 0 0 1 -1 0 1 -1| & (3.124)
Cs 0 1 -1 1 0 0 -1]| &
Cr 1 0 0 -2 0| &
ULy | 0 O 0 0 -1 1 ro
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Figure 22. Resolution (b) of the E,%7 singularity and its vertical reduction.

The Kéhler cone is parametrized by (3.110). The parameters (u1, po, v1, v2) are related to
the FI parameters by:

1= 211+ >0, &G=v1-102>0, E=p—122>0, & =p —2v1>0.

(3.125)
The relevant triple-intersection numbers are:
DiE\E; =1, DE1E; =0, DiD:E1 =0, DiDEy=1,
D\E? = -2, DyE? =0, D\E3 = -2, DyE2 = -3, (3.126)
DE; =0, D?E, =0, D2E, =0, D3E; =1, ’
EE, =2, EE3=0, E? =8, E3=7.
Therefore, the compact part of the prepotential is:
1 4 7 3
Fuoon v ) = 8" = 30 = i+ -t ot + (s S ) o4
1
— g ve — (,ul/,tg + 2,u§> vy (3.127)
The type ITA profile is:
—3rg — & — 285+ &7, forrg < 61— &5
=10+ & + &7, for =& —& <rp < —&
x(ro) = ¢ —2r0 + &7, for —& <rp <0 (3.128)
&7, for 0 <rg <&
+2rg — 261 + &7, for ro > & .

This function is sketched in figure 22(b). At the points g = —&4 — &5, ro = 0 and r9 = &1,
there are gauge D6-branes wrapping P'’s in the resolution of the singularity. There is a
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flavor D6-brane at rg = —&4. The effective Chern-Simons level is, of course, still %, as for
resolution (a). The simple-root W-bosons have masses given by:

MWi) =8 +& =201 —p2,  MW2) =& =202 — 1. (3.129)

This resolution corresponds to gauge theory chamber 2 (cf. table 5 and (A.6)), with in-
stanton masses given by:

M(Zy) = x(ro = =84 — &) =284 + &5 + &7 = ho + 3p1 —m,

X(ro = 0) = & = ho + 22, (3.130)
M(Z3) = x(ro =&1) = & = ho + 2¢2.

=
S
I

The masses of hypermultiplets are:

M(Hy) =& =¢1+m,
M(Hz) =& =1 —p2 —m, (3.131)
M(H3) =&+ & =@ —m.

The map between geometry and field theory variables is still given by (3.118), and plugging
it into (3.127), we recover the field theory prepotential,

2

" s (313

7 4
hamber 2 3 3 2
]:é:Ua(gl);g,Nfﬂ — 591 + 3¥2 " P12 + <h0 -

m

5 ) @1 + hows — hop1ps —

up to g-independent terms. The monopole string tensions from x(r) are given by:

0

T1,geo = /g . x(ro) dro = &§ + (265 + &7) €4 + %55 (& +267) , (3.133)
€1

Ty ge0 = /0 x(ro) dro = &&7. (3.134)

Using the map &1 = 2¢2 — @1, {4 = 01 — w2 —m, & = o1 +m and {7 = ho + 22, we find
that T; f;, = T geo for i = 1,2. The tensions vanish at loci given by:

(1) : {&% + (265 +&7) S + %§5 (& +267) = 0} ; and (I7) : {& = 0t U {&7 = 0}. (3.135)

The solution to the quadratic equation from (I) is & = %(—255 — & £ /262 + €2). Both
sign choices lead to a negative value for £, in this chamber, and are hence rejected. The
loci {& =0} € (1) and {& = 0} C (I1) coincide with hard walls, which are, respectively,
loci along which the W-boson W5 becomes massless and the instanton particles Zo, Z3
become massless. These are both non-traversible walls. Away from the hard wall, either
hypermultiplet H; can become massless at {5 = 0 (signaling a flop of Cs), leading to gauge
theory resolution (d), or hypermultiplet o can become massless at £, = 0 (signaling a flop
of C4) leading to back to gauge theory resolution (a).
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Figure 23. Resolution (c) of the E227% singularity and its vertical reduction.

Resolution (c). Consider the crepant resolution of figure 20(c), with curves and divisors
shown in figure 23(a).

The linear relations among curve classes are:
C3~C5+Cs, Cy4=C1, C5~=Cy, C7r~C+Csg. (3.136)

We take {C1,C2,Cs,Cs} as generators of the Mori cone. The GLSM charge matrix is:

Dy D, Dy Dy Ds E; E,|vol(C)
C o 0 o0 0 1 -2 1| &
Cs 0 1 0 0 0 1 =-2| & (313
Ce 0 0 -1 1 -1 1 0] &
Cs 1 0 1 0 0 -1 —1| &
ULy | 0O 0 0 0 -1 1]

The Kéhler cone is parametrized by (3.110). The parameters (u1, p2, v1, v2) are related to
the FI parameters by

S ="2v+1>0, L=p+r1—-21L>0, &=11>0, &L=u—v—1rr>0.

(3.138)
The relevant triple-intersection numbers are:
D1E1Ey; = 1, DyE1Ey = 0, D1DsE, = O, D1DsEy = 1,
DIE}=—-2, Dy;E}=0, D\E2=-2, D,E}=-3, (3.1
D?E; =0, D?E; =0, D3E; =0, D3Ey =1, '
EE;, = -1, E\E2=-1, E =8, E3=38.
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Therefore, the compact part of the prepotential is:

1 4 . 4 1 3
Floywi, va; pa, po) = —653 = —gi - g’/g + 5(’/12’/2 +v113) + i + (Ml + 2M2> Vi
1
— pivve — <u1u2 + 2,u%> V. (3.140)
The ITA profile is:

—3ro — 262 + &g, for 1o < =&
-1 + &s, for —& <rog <0

X(ro) =< ro+&s, for0<rg <& (3.141)
3ro — 281 + &s, for & <ro <& + &6

+2rg — &1+ &6 + &g, for rg > &1+ &6

This function is sketched in figure 23(b). At the points rg = —&2, 19 = 0 and ro = &1, there
are gauge D6-branes wrapping P!’s in the resolution of the singularity. There is a flavor
D6-brane at rq = &1 + . The effective Chern-Simons level is still % The simple-root
W-bosons have masses given by:

M(W1) = &2 = 201 — p2, M(Ws) =& =2p2 — 1. (3.142)

This resolution corresponds to gauge theory chamber 4 (cf. table 5 and (A.8)), with in-
stanton masses given by:

M(Zy) = x(ro = —&2) = & + &8 = ho + 3p1 —m,
M(Zz) = x(ro = 0) = s = ho + 1 + 2 —m, (3.143)
M(Z3) = x(ro=§&1) =& + & = ho + 302 —m.

The masses of hypermultiplets are:

(Hl) 256 = —p2 +m)

(H2) =&+ & =—p1+p2+m, (3.144)
M(Hs3) =& +&+E& =¢1+m.

S =

The map between geometry and field theory variables is given by (3.118). Plugging (3.118)
into (3.140), we recover the field theory prepotential,

m T 4 4 1
PR i = et k= g(eten t ored) + (o =i+ (o =i}
+ (m— ho)orn. (3.145)

up to ¢-independent terms. The monopole string tensions from x(ro) are:

0 1 & 1
Ti,ge0 = /5 X(ro) dro = 56 (&2 +2s) s Tageo = /0 X(ro) dro = 5&1 (&1 + 285) - (3.146)

Using the map &1 = 22 — @1, &2 = 2¢01 — 2, £ = —w2+m and &g = hg + p1 + Y2 —m, one
can verify that T i = T} geo for 2 = 1,2. The loci {; = and & = 0 correspond, respectively,
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Figure 24. Decoupling the divisor D, leads to a crepant resolution of the £ singularity.

to hard walls along which the W-bosons W5 and W; become massless, whereas the loci
{& +2¢s = 0} and {& + 2€g = 0} are both not part of the Kahler chamber of resolution
(c). Away from any hard wall, the BPS instanton particle Zo can become massless at
&g = 0 (signaling a flop of Cg), indicating a traversable instantonic wall which leads to a
non-gauge-theoretic chamber (f). Alternatively, away from any hard wall, the perturbative
hypermultiplet H; can become massless at £ = 0 (signaling a flop of Cg), leading back to
gauge theory resolution (a).

RG flow and decoupling limits. In this resolution, we can decouple divisor D, by
sending the volume of the curve Cg to infinity. As M(H1) = { = —¢2 + m, this is
equivalent to taking the limit m — 400, i.e. integrating out the massive fermion, which
results in an SU(3)o pure gauge theory. From the perspective of geometry, this leads to an
SL(2, Z)-transformed version of a resolution of the £;2? singularity, as shown in figure 24.
For example, one can apply a (7'S)?7~1S~! transformation to the toric diagram on the
right in figure 24 to get to resolution (a) of the £;%? singularity.

Resolution (d). Consider the crepant resolution of figure 20(d), with curves and divisors
shown in figure 25(a). The linear relations among curve classes are:

C3~2C4+C;, Cy~Coy, Cg~C;, Cg~=Cr. (3.147)

We take {C1,Cs,Cs,C7} as generators of the Mori cone. The GLSM charge matrix is:

D\ D, Dy Dy Ds E; E,|vol(C)
Cy o 0 0 0 1 -2 1| &
Cs o0 1 0 0 0 1 =-2| & (3.148)
Cs 0 -1 1 -1 0 0 &
Cr 1 0 0 -2 0| &
Uy | 0 0 0 0 -1 11| no
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Figure 25. Resolution (d) of the E,%7 singularity and its vertical reduction.

The Kéhler cone is parametrized by (3.110). The parameters (u1, p2, V1, v2) are related to

the FI parameters by:

S1=21+1r>0, L=pu+rv—21,>0, &=—pu+vr>0, & =p —2v1>0.

The relevant triple-intersection numbers are:

DIEE; =1, DyEE;=0, DiDsE; =0, D DEy=1,
DiE?=-2, DE}=0, DE3=-2, DyE3=—4,
DiE; =0, DiE; =0, D3E; =0, D3E; =2,
ElE, = -2, EEZ=0, E}=38, E3=38.

Therefore, the compact part of the prepotential is:

4 3

1 4
Fay(vi,v2; pa, p2) = —=8% = — v — Svs 4+ vive + v + (i + 2u) 13

6 3 3
— mvive — (pape + p3)ve .

The ITA profile is:

—3rg — 2§ + &5 + &7, for rg < —&o — &5

—dro — 28 + &7, for —&3—& <19 < =&
x(ro) = —2ro + &7, for —& <rp <0

&7, for 0 <rg < &1

+2rg — 281 + &7, for 7o > &1 .

(3.149)

(3.150)

(3.151)

(3.152)

This function is sketched in figure 25(b). At the points rg = —&a2, ro = 0 and ¢ = &7, there
are gauge D6-branes wrapping P!’s in the resolution of the singularity. There is a flavor
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D6-brane at rg = —& — &5. The effective Chern-Simons level is still % The simple-root
W-bosons have masses given by:

M(W1) = &2 = 201 — @2, M(Ws) =& =23 — 1. (3.153)

This resolution corresponds to gauge theory chamber 1 (cf. table 5 and (A.5)), with in-
stanton masses given by:

M(Ty) = x(ro = —&) = 252 + & = ho + 41,
M(Zy) = x(ro = 0) = & = ho + 22, (3.154)
M(Z3) = x(ro =&1) = & = ho + 2¢2.

The masses of hypermultiplets are:

M(H1) =& =—p1—m,
M(Ha) =&+ & =1 —p2 —m, (3.155)
M(Hz) =& +&+E& =92 —m.

Plugging (3.118) into (3.151), we recover the field theory prepotential,

. 4, 4
FSUGhara M=t = 391 + 395 — @10 + ho(pl + 65 — p199), (3.156)

up to y-independent terms. The monopole string tensions from x(ro) are given by:

&1

0
Tiawo = [ 0o =& &+ &), Tho= [ X0 =g&. (2157
—Q2

Using the map & = 292 — ¢1, &2 = 201 — 92, & = —¢p1 — m and {7 = ho + 22, one
can verify that T; i = Tj geo for i = 1,2. The loci §&, = 0 and & = 0 are both hard walls,
being the boundaries of the Weyl chamber where either W-boson becomes massless. The
loci {& + & = 0} € (1) and {& = 0} C (II) are both not part of the Kéhler chamber
of resolution (d) (the curve C; cannot flop). Away from any hard wall, the perturbative
hypermultiplet H; can become massless at {5 = 0 (signaling a flop of Cs), leading back to
gauge theory resolution (a).

RG flow and decoupling limits. In this resolution, we can decouple divisor D3 by
sending the volume of the curve Cs to infinity. As M(H1) = & = —p2 — m, this is
equivalent to taking the limit m — —oo, which results in an SU(3); pure gauge theory.
On the geometry side, this leads to an SL(2,Z)-transformed version of a resolution of
the E3%! singularity, as shown in figure 26. For instance, one can apply a (T.9)*T-15~!
transformation to the figure on the right in figure 26 to get to resolution (a) of the F;*!
singularity.

Resolutions (e) and (f). These are non-gauge-theoretic resolutions, related to each
other by a flop of a single curve (Cg). In resolution (f), the divisor Dy can be decoupled,
which leads to an SL(2,Z)-transformed version of resolution (b) of the E;% singularity.
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Figure 27. Decoupling the divisor D, leads to a crepant resolution of the F;%! singularity.

For example, one such transformation is (7°S)?T~'S~!, which leads precisely to resolution
(b) of the F1%0 singularity discussed above.

We remark that the resolutions (e) and (f) represent the coupling of a rank-1 E
singularity with a rank-1 non-Lagrangian Fj singularity [1-3]. In the RG flow shown in
figure 27, we end up with a pair of coupled Ej theories, as is evident from the shape of the
final toric diagram.

3.6 The E3?! singularity and SU(3); Nf = 2 gauge theory

The E3%! singularity (figure 3(i)) admits 30 crepant resolutions shown in figure 28. The first
16 resolutions, figures 28(a)—28(p), admit vertical reductions to type ITA, which correspond
to chambers of the SU(3)y Nt = 2 gauge theory, as we illustrate below.

Resolution (a). Consider the crepant resolution of figure 28(a), with curves and divisors
shown in figure 29(a). There are six non-compact toric divisors D; (i = 1,...,6), and two
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(Ch:s)

(d14)

Figure 28. The 30 crepant singularities of the E3*! singularity. The first 16, (a)-(p) admit a
vertical reduction, corresponding to chambers of the SU(3)s Ny = 2 gauge theory.
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Figure 29. Resolution (a) of the E3?! singularity and its vertical reduction.

compact toric divisors E; and Eo with the following linear relations:

Ds>~D1+Dy—Dy, Ei~-3D1—2Ds+D3+Dys—2Dg, Eo~D—2D3— D4+ Dg.

The compact curves C are given by:

Ci=Ei-Dy, Ca=E;-Dy, C3=Ez-Dy, C4=Ey-Ds,
Cs=E1-Dy, C6=Eg-Dy, Cr=E;-D5, Cg=Ez -E;.

The linear relations among curve classes are:

Ci~C3+Cy, Co~=C3, Cr~=Ci+Cy—C5, Cg=—Ci+C5+Cy.

We take {C1,C3,C3,C5,Co} as Mori cone generators. The GLSM charge matrix is:

Dy D, Dy Dy Ds Ds E, E, | vol(C)
C -1 1 0 0 0 1 -1 0] &
Cs 1 -1 0 0 0 0 -1 1 &
Cs 0O 0 L 0 0 0 1 -2| &
Cs o 0 o0 -1 1 0 -1 1 &5
Co O 1 0 1 0 0 -1 —1]| &
ULm| 0 0 0 0 0 0 -1 1 o

(3.158)

(3.159)

(3.160)

(3.161)

where the last line defines the vertical reduction of the 2d GLSM. The nonnegative FI
terms & >0, & >0, & >0, & > 0 and & > 0 are, respectively, the volumes of compact

curves C1, Ca, C3, C5 and Cy. Note that the requirement that the curves C; and Cy have

non-negative volume translates to the following conditions on the FI terms in this chamber:

§1+86—-862>20, —G+86+8>0.
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Geometric prepotential. We parametrize the Kéhler cone by:
S =1 D1+ paDo + usDsvi E) + 1nEs . (3163)
The parameters (u1, p2, u3, V1, v2) are related to the FI parameters by

S =—p1+pe—v120, S=pu1—po—v1+1v2>0, E=puz+v1—212>0,

(3.164)
§s=—v1+12>0, §o=p2—11—1v22>0.
The relevant triple-intersection numbers are:
E3=6, E3=8, DEE;=0, DyEE;=1, D3EE;=0,
E2E;=—1, E\E3=-1, DE;=-1, D!Ey=0, DiD:E;=1,
DiDsE;=0, DiDsE;=0, D;DsEy=0, D3E; =1, D3E, =0,
DyDsE; =0, DyD3E;=1, D3E; =0, D3Ey =1, D\E2=-1,
DiE2=0, DyE?=—1, DyEZ=—-2, DsE2=0, DsE2=-3.
(3.165)
Therefore, the compact part of the prepotential is:
3 4 3 1 2 2 1 2 3 2
Flay(V1,v2; pa, po, p3) = =15 — 372 + 5(’/1’/2 +11v3) + 5(#1 + p2)vi + | p2 + oH3 | V2
1 2 1 2
— porive + 5(#1 — p2) v — | pou3 + oHs | va- (3.166)

Type IIA reduction and gauge theory description. The type IIA background is
a resolved A singularity fibered over the 2° = r( direction. There are three D6-branes
wrapping the exceptional P! in the resolved A; singularity, resulting in an SU(3) gauge
theory. There are two D6-branes wrapping the two noncompact divisors in the resolved
ALE space, which give rise to the two fundamental flavors. The volume of the exceptional
P! in type IIA is given by the following piecewise linear function,

—3rg — 283 + o, for ro < —&3
—1"0-|-£9, fOI“ —§3§T0§0
+7o + &9, for 0 <rg <&
= 3.167
x(ro) & + o, for & <rg < & ( )
—ro + &2 + &5 + o, for & <rp <& + &
+ro— 2§ — &+ &5+ &, forrg > &6+ &

This function is sketched in figure 29(b) (where we have chosen &3 > &5 for convenience
of plotting). At the points rg = —&3, 79 = 0 and 79 = & + &9, there are gauge D6-
branes wrapping P!’s in the resolution of the singularity (we denote them by Gy, Go and G3
respectively). When & = & = &3 = 0, an SU(3) gauge theory is realized (at ro = 0) with
inverse coupling hg = £9. There are two flavor D6-branes at rg = &5 and rg = &2, denoted
by F1 and F; respectively. In the evaluation of x(rg), we have assumed without loss of
generality that £ > &5, which is of course consistent with (3.162).
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The effective Chern-Simons level is given by:

1
Kseff = —5(—3 +1)=1, (3.168)
which is interpreted as a bare CS level of 2 plus the contribution —% — 5 = —1 due to

the two hypermultiplets (cf. (2.5)). The simple-root W-bosons have masses given by the
separation between adjacent gauge D6-branes:

M(Wi) =& =2p1 —p2,  M(Wa) =& +E& =202 — 1. (3.169)

From the instanton masses, one can identify that this resolution corresponds to gauge
theory chamber 11 (cf. table 7 and (A.10)):

M(Zy) = x(ro = —&3) = &3+ & = ho — m1 — ma + 3¢1,

M(Zs) = x(ro = 0) = & = ho —m1 — ma + 1 + 2, (3.170)
M(Zz) = x(ro =&+ &) =& + &+ = ho+ 2.

The masses of hypermultiplets (due to open strings stretched between gauge and flavor
branes) are:

M(H1) = M(G1F1) =&+ & = o1 +ma,

M(Hz2) = M(GoF1) =& = —p1 + 2 +mu

M(Hz) = M(GsF1) =& + 6§ — & = p2 —ma, (3.171)
M(Hq) = M(G1F2) =& + &3 = o1+ ma,

M(Hs) = M(GaFa) = §2 = —p1 + p2 + ma,

M(He) = M(G3F2) = &1 = 02 —ma.

Note that the choice & > &5 made above while computing x(r) therefore implies that
mg > my in this chamber. From the K&hler volumes (3.164) of the compact curves and
masses of W-bosons and instantons, the map between geometry and field theory variables
is determined to be:

p1 = ho +ma,
po = ho + 2my — mao,

F3%1 geometry : w3 = 3my, (3.172)
Vv = —p2 +mi,

vy = —p1+2my.
Plugging (3.172) into (3.166), we recover the field theory prepotential

4 1
TS0 G2 = 391+ 03— 5 (Pla+91908) +(—ho+ma+ma) g1

mi +m2> 9

1
5 @2—§(m%+m§)¢2—§(m:{’+m%).

(3.173)

+(h0—m1—m2)(p%+ (ho—
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up to p-independent terms. From field theory, the monopole string tensions are given by:

o f‘chamber 11

SU(3)2,N¢=2 1
Ty = # = 4o} — Q12 — 5@% +2(ho —m1 —ma)p1
+ (=ho +m1 +m2)p2, (3.174)
8]:chamber 11 1
SU(3)a, N;=2
Tog = % = —549% — 102 + 303 + (—ho +m1 +ma)p1
1
+ (2h0 —mi — TrLQ)(,OQ — §(m% + m%) , (3.175)

whereas from geometry, they are given by:

0 2

Ti,geo = / . x(ro) dro = %3 + 8983, (3.176)
&1+&2 5% gg

T2,geo = /0 x(ro) dro = -5t §581 + 081 + §285 + §26o — o (3.177)

Using the map,

§1 =2 —ma,
§2 = —p1 + @2 +ma,
Resolution (a) : &3 =2p1 — @2, (3.178)
§5 = —p1 + @2 +my,
§9 =ho+ 1+ g2 —mi —ma,

we find that T iy = Tj geo for i = 1, 2.

Magnetic walls. The tensions vanish at loci given by:

(I):{&=0}U {;{s +§9:0} , and ,
. (3.179)
(1) : {5155 - 5(5% +€3) + E1&o + E2&5 + Loy = 0} :

Along the submanifold {&3 = 0} C (I), the W-boson W in this chamber becomes mass-
less. So this submanifold coincides with the hard wall which is the boundary of the Weyl
chamber. The submanifold {%53 + &9} = 0 is not part of the Kéhler chamber of resolution
(1). So the locus (/) contributes no magnetic walls.

The locus defined by (I7) is more intricate. The condition (/1) has two solutions:

&1 @ & +&+ \/(55 +&9)? + 262(& + &) — &3 (3.180)

Since (3.162) requires that {g = —&1 + & + & in this chamber, only the negative sign
in (3.180) is acceptable. However, in this chamber, recall that £ > &5. So the quantity
265(E5 + &g) — €2 = 2608y + &5(262 — &5) is always non-negative in this chamber. Therefore,
the square root in (3.180) is > &5 + &, which implies that the right-hand-side of (3.180)
is negative, which is unphysical in the Kéhler chamber of resolution (a). This implies that
there are no magnetic walls in resolution (a) of the E3%*! singularity.
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Figure 30. Resolution (b) of the E3?! singularity and its vertical reduction.

Away from any hard wall, any one of a number of perturbative hypermultiplets, namely
Ha, Hs, Hs and Hg, can become massless, respectively at & = 0, & = 0, & = 0 and
& = 0, signaling flops of the corresponding compact curves Cs, C7, Co and C;. These
lead, respectively, to gauge theory phases described by resolutions (d), (e), (c) and (b).
Alternatively, away from the hard wall, the BPS instanton particles Z, or Z3 can become
massless, respectively, at £y = 0 (signaling a flop of Cg) or g = —&1 + &5 + &9 = 0 (signaling
a flop of Cg). These correspond to traversable instantonic wall, which lead, respectively to
non-gauge-theoretic resolutions (qs2) or (qi).

Resolution (b). Consider the crepant resolution of figure 28(b), with curves and divisors
shown in figure 30(a). This resolution can be obtained by a flop of the curve C; in resolution
(a). The linear equivalences among divisors are given by (3.158). The compact curves C
can be read off the toric diagram. The linear relations among curve classes are:

Co=C5+C7, Cy4=C3+Cy, Cg~C3, Cg=Cs5+Cy. (3.181)

We take {C1,Cs,Cs,C7,Co} as Mori cone generators. The GLSM charge matrix is:

Dy Dy D3 Dy Ds Dg E; E,|vol(C)
G 1 -1 0 0 0 -1 1 0] &
Cs 0O 0 1 0 0 0 1 -2| &
Cs o 0 0 -1 1 0 -1 1 &5 (3.182)
Cr o 0 0 1 -1 1 -1 0/ &
Co 0 1 0 0 -1 —1]| &
ULy | 0 0 0 0 0 -1 1 ro
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The Kéhler cone is parametrized by (3.163). The parameters (u1, po, p3, V1, v2) are related
to the FI parameters by

Sl=m—p2+v1 >0, =puzs+v1—21,>0, &=—-v1+12,>0,

(3.183)
§r=-1v1 20, So=p2—v1—1v2>0.
The relevant triple-intersection numbers are:
E3=7, E3=8, DE\Ey=0, D)EE;=1, D3EEy=0,
EE;=—1, EEi=-1, DIE; =0, D?Ey=0, D1DyE;=0,
DiDsE;=0, DiDsE;=0, D;{DsE,=0, D3E; =0, D3E, =0,
DyDsE; =0, DyD3E;=1, D3E; =0, D3Ey=1, D1E? =0,
DiE3=0, DyE? = -2, DyE3=—-2, DsE2 =0, DsE2=-3.
(3.184)

Therefore, the compact part of the prepotential is:

7T, 4.4 1 3
Fy (w1, vo; pin, pg, p3) = — vy — —vs + = (Vive + 1103) + psvi — povive + (uz + u3> Vi

6 3 2 2
1 5
= | Hems + 53 (3.185)
The ITA profile is:
—3rg — 283 + &, for ro < =3
—ro + &9, for —& <rg <0
for 0 < <
X(TO) _ +7ﬂ0 + 597 or =To > §5 (3186)
&5 + &o, for & < 1o < & + &7
+2rg — &5 — 267 + &g, for &5+ &7 <o <&+ &6+ &
+ro+& — &+ &, forrg>& +&6+6&7.

This function is sketched in figure 30(b) (where we have chosen & > &5 for convenience
of plotting). At the points rg = —&3, 19 = 0 and rg = &5 + &7, there are gauge D6-
branes wrapping P!’s in the resolution of the singularity (we denote them by Gi, Go and
Gs respectively). When &3 = & = £ = 0, an SU(3) gauge theory is realized (at rog = 0)
with inverse coupling hg = £. There are two flavor D6-branes at rg = &5 and rg = & + &7,
denoted by F; and JF» respectively.

The effective Chern-Simons level is, of course, still 1. The simple-root W-bosons have
masses given by:

M(Wy) =& =201 —p2, M(W2) =& +& =202 — 1. (3.187)
This resolution can be identified with gauge theory chamber 12 (cf. table 7 and (A.10)),
with instanton masses given by:
M(Zy) = x(ro = —€3) = &3+ & = ho — m1 — ma + 3¢1,
M(Z) = x(ro = 0) = & = ho — m1 — m2 + 1 + 2 (3.188)
M(Z3) = x(ro = & + &7) = & + o = ho —ma + 2.
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The masses of hypermultiplets are:

M(Hi) = M(Gi1F1) =&+ & = o1+ ma,

M(Hz) = M(GoF1) =& = —p1 + 2 +mu

M(H3) = M(GsF1) = &7 = p2 —ma, (3.189)
M(Hy) = M(Gi1F2) =& + & + &5+ &7 = @1 +ma,

M(Hs) = M(GaFa) = &1+ &5+ 857 = —p1 + p2 +ma,

M(He) = M(G3F2) =& = —p2 +ma.

It is easy to verify that the map between geometry and field theory variables is the
still (3.172), as it must be. Plugging (3.172) into (3.185), we recover the field theory
prepotential:

4 7 1
TSN = 291+ =98+ 5 (9T pa+198) + (ho—m1 —ma) gt +(—ho+mi+ma) 12

3 6 2
1 2 1 o
+{ ho—gmi—ma | o3 —omies, (3.190)
up to p-independent terms. The monopole string tensions from the ITA profile are:
0 2
Thgeo = / x(ro) dro = %3 + &3, (3.191)
—&3
&s+&7 552)
T3ge0 = / x(ro) dro = o + &80 + &7 (65 + o) - (3.192)
0

Using the map,

§1 = —p2 +ma,
§3 =2p1 — 2,
Resolution (b) : & = —p1+ 2 +m, (3.193)
§r=—p2+mi,
§9 = ho —m1 —ma + @1+ 2,

we find that T g = T geo for i = 1,2. The tensions vanish at loci given by:

(1): (& = 0} U {;@ fg = o} and (II): {525 sk + & (6 4 ) = o}. (3.104)

Along the locus {{3 = 0} C (I), the W-boson W in this chamber becomes massless. So
this submanifold coincides with the hard wall which is the boundary of the Weyl chamber.
The locus {1&; + & = 0} C (I) is not part of the Kihler chamber of resolution (1). The
quadratic condition (I7) has two solutions: & = —& — &g £ /&2 + £3. Both sign choices
yield a negative value of &5, which is inconsistent in this Kéhler chamber. This implies that
there are no magnetic walls in resolution (b) of the E3?! singularity.

Away from any hard wall in this chamber, one of the three perturbative hypermultiplets
Ha, Hz or Hg can become massless, respectively, at &5 = 0, & = 0 or &, = 0. These to
flops of Cs, C7 or Ci, which lead, respectively to gauge-theory resolutions (f), (g) or (a).
Alternatively, away from any hard wall, the BPS instanton particle Zo can become massless
at & = 0 (signaling a flop of Cy), indicating a traversible insantonic wall which leads to
non-gauge-theoretic resolution (qs).
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Resolution | Chamber | ¢o14+m; | —p1+we+my | —pa+my | p1+me | —p1+pa+me | —p2+ms
(a) 11 >0 >0 <0 >0 >0 <0
(b) 12 >0 >0 <0 >0 >0 >0
(c) 10 >0 >0 <0 >0 <0 <0
(d) 7 >0 <0 <0 >0 >0 <0
(e) 15 >0 >0 >0 >0 >0 <0
() 8 >0 <0 <0 >0 >0 >0
(2) 16 >0 >0 >0 >0 >0 >0
(h) 9 >0 >0 <0 <0 <0 <0
(1) 6 >0 <0 <0 >0 <0 <0
) 14 >0 >0 >0 >0 <0 <0
(k) 3 <0 <0 <0 >0 >0 <0
1) 4 <0 <0 <0 >0 >0 >0
(m) 5 >0 <0 <0 <0 <0 <0
(n) 13 >0 >0 >0 <0 <0 <0
(0) 2 <0 <0 <0 >0 <0 <0
(p) 1 <0 <0 <0 <0 <0 <0

Table 4. The map between the 16 crepant resolutions of the E3%! singularity that admit a vertical
reduction, and the 16 chambers of the SU(3)y Ny = 2 field theory, with field theory chamber
definitions expressed as inequalities.

RG flow. In this resolution, one can decouple the divisor Dy by sending the volume of
the curve C; to infinity, which is equivalent to sending the mass ms to +00. It is easy to see
that this yields resolution (a) of the By23 singularity shown in figure 12. This is consistent
with the fact that the effective Chern-Simons level changes from keg = 1 to keg = 1 —% = %
(recall (2.5)). An inspection of figure 28 suggests that many such transitions are possible,

including those involving non-gauge-theoretic phases.

The geometry <> field theory map. We can repeat the above analysis for the re-
maining fourteen resolutions that admit vertical reductions, and match each of them to
chambers of SU(3)2 N¢ = 2 field theory (see table 6). To do so, one may exploit the fact
that map (3.172) is constant across all resolutions. The result of this matching is outlined
in table 4.

The triple-intersection numbers of all 30 crepant resolutions (including the 14 which
are non-gauge-theoretic phases) are listed in appendix B, and the expressions for the cor-
responding M-theory prepotentials are listed in appendix C.

3.7 The E3?° singularity and SU(3)¢ N; = 2 gauge theory

The E329 singularity of figure 3(j) admits 24 crepant resolutions. However, an SL(2,7Z)
transformation — for example, by ST~1S? — transforms this singularity to the “beetle
singularity” that was extensively analyzed in [10]. An interesting feature of the beetle
singularity is that there are both horizontal as well as vertical reductions, and these describe
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either the SU(2) x SU(2) theory, or the SU(3)g Nt = 2 theory. As we have remarked before,
this geometry can lead to a number of smaller geometries (see, for instance, figure 1),
including, in particular the Egi% geometries, and the E;%¢ geometries for ¢ = —1,0,1, but
also geometries corresponding to non-gauge-theoretic phases. We refer the reader to [10]
for details.
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A Field theory prepotentials and instanton masses

In this section, we list the expressions for the field theory prepotential (2.7) evaluated for
the models that we have analyzed in this paper, and also the instanton masses in each
chamber. We begin by describing the procedure used to compute the instanton masses in
field theory.

For the special case of G = [[, SU(n;), we follow [10, 24] and consider an auxiliary
gauge group G’ = [], U(n;) obtained by replacing each SU(n;) gauge group factor with
U(n;). Let us denote the U(n;) Coulomb branch vevs by &; (1), @i (2) - - - Pi,(n,)- Then for
each such gauge group U(n;) there are n; “instanton states” with masses given by the
second derivatives of the prepotential:

M(I(k) 0*F

99 k) U(n;)—SU(n;)

fork=1,...,n;. (A.1)

Here the notation U(n;) — SU(n;) refers to the operation of imposing the “traceless condi-
tion,” to transform to SU(n;) variables, after computing the second derivative. This entails
the following substitution for every U(n;) factor in G':

Gia = Pia — Pia—1, a=1,...,n5  With @40 = @an; =0. (A.2)

Here we have denoted the Coulomb vevs of SU(n;) by @i 1,...,%in,—1. The leading term is

M(Z) = hg+- - - corresponding to the familiar fact that instanton masses scale as hg = 89%2.

U(3)y field theory. The fundamental Weyl chamber is defined by ¢1 > ¢2 > ¢3. The
gauge theory prepotential (2.7) for pure 5d U(3); gauge theory is:

k
Fu), = %ho<¢%+¢§+¢§>+g(¢i’+¢§+¢§>+é [($1=62)"+(d2—03)"+(d1—¢2)°] . (A3)
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o1 +m P2 +m ¢3+m
# or or or M(Z,) M (Zs) M(Z3)
p1+m —p1t+pa+m —p2t+m
ho+(1 = k)¢
1 <0 <0 <0 ho+(k+ 3 ho+(3 —k
0+( )P1 (14 K)o o+( )2
ho— ho+ (1 —k
2| >0 <0 <0 o= L S S
+(k+2)p1 +(1 4 k)p2
ho—m
3 >0 >0 <0 fo—m +(2—-k)p ho+(3—k)p
= +(k’+2)¥71 1 0 2
+l€(p2
h fig—m h
4 >0 >0 >0 o= m 12—k 0—m
- +(k+2)p1 ( Jer +(4 - k)p2
+l€(p2

Table 5. Chamber definitions of the U(3),,, or SU(3)k., gauge theory with Ny = 1 and the
corresponding instanton masses. The variables (¢1, @2, ¢3) denote U(3) vevs, while the variables
(¢1,p2) denote SU(3) vevs.

SU3)k.s + Ne = 1 field theory. The U(3);, Nt = 1 field theory is specified by
3 Coulomb vevs (¢1, p2, ¢3), one inverse gauge coupling hg, and one real mass m € R.
There are 4 chambers inside the fundamental Weyl chamber given by ¢1 > ¢o > ¢s.
These are defined by the allowed ranges of the arguments of the © functions in (2.7).
The instanton masses in various chambers, computed using (A.1), are listed in table 5 to
facilitate calculations in the main text. Here k denotes the bare CS level, given in terms
of the effective CS level kg for Ny =1 by

k= kbare = k;eff + % ) (A4)
in the U(l)fé quantization scheme (cf. (2.4)). The SU(3)x_, Nt = 1 theory is specified by 2
Coulomb vevs 1, s, one inverse coupling hg and one real mass m € R. The fundamental
Weyl chamber is given by {2¢1—¢2 > 0}N{—p2+2¢2 > 0}. Below we list the prepotentials
in the four field theory chambers.

chamber 4 4 k—1 E+1
fs%(:a)t; Nfl =3 o + 3% o5+ ( 5 )80%902 ! 5 )801<P§ + ho(p] + 05 — p1p2) . (A.5)
7, 4., (k-1 (k+1) m
chamber 2 __ 3 3 2 2 2 2
FSU), N=1  g*1 + 3%2 + 5 1Yz T T P1vs + <h0 - 5) 1 + hows
m2 m3
— hop1p2 — 7901 T 6 (A.6)
4 7 (k—2) k m
chamber 3  __ 3 3 2 2 2 2
75 SU(3)k, Np=1 —§¢1+6 ¥o + 5 @1@2—5901902—1—(/50—771)(,014—(h0—5)4p2
m2 m3
+ (m — ho)p1p2 — 52T 3 (A.7)

SU(3)k, Ny 1_3('0

C ambper 4 4 k; 2 k
m3
+ (m — ho)p1p2 — DN (A-8)
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¢1 +my $2 +my ¢3 +my ¢1+m2 ¢2 + ma ¢3 + ma
Chamber or or or or or or

p1+my —p1t+p2+m —p2+my p1+ma —@P1t+p2+ma —p2t+ma
1 <0 <0 <0 <0 <0 <0
2 <0 <0 <0 >0 <0 <0
3 <0 <0 <0 >0 >0 <0
4 <0 <0 <0 >0 >0 >0
5 >0 <0 <0 <0 <0 <0
6 >0 <0 <0 >0 <0 <0
7 >0 <0 <0 >0 >0 <0
8 >0 <0 <0 >0 >0 >0
9 >0 >0 <0 <0 <0 <0
10 >0 >0 <0 >0 <0 <0
11 >0 >0 <0 >0 >0 <0
12 >0 >0 <0 >0 >0 >0
13 >0 >0 >0 <0 <0 <0
14 >0 >0 >0 >0 <0 <0
15 >0 >0 >0 >0 >0 <0
16 >0 >0 >0 >0 >0 >0

Table 6. Chamber definitions of the U(3)x,, or SU(3)x,, gauge theory with Ny = 2 flavors. The

variables (¢1, @2, ¢3) denote U(3) vevs, while the variables (1, 2) denote SU(3) vevs.

SU(3)k.s + N¢ = 2 field theory. The SU(3);, Nf = 2 theory is likewise specified by
2 Coulomb vevs (¢1, ¢2), one gauge coupling hg and two real masses my,my € R. Table 6
lists the 16 chambers of the theory, while table 7 lists the elementary instanton masses in
the 16 chambers.

Note that in table 7, the symbol k£ denotes the bare CS level, which in this case is
related to the effective CS level kg by,

k = kpare = keg + 1, (AQ)
in the U(l)fé quantization scheme (cf. (2.4)).
The prepotential (2.7) of the SU(3); , Nt = 2 theory is given by:

4 1
Fsu@)eNe=2 = ho(@T — w21 + ©3) + 5(80? +¢5) + 5((13 — 1)pir — (k+ 1)p193)

2

1
t3 Z [0 (p1 +my) (91 + M) + O (=1 + @2 +my) (—p1 + 2 +my)°
i—1

+0 (g2 +mi) (02 +mi)’ | (A.10)

The arguments of the © functions define various chambers, and are listed in table 6.

B Triple-intersection numbers of the E3*! geometry

Using the GLSM approach, it is straightforward to compute triple-intersection numbers
involving at least one compact divisor, as discussed in the main text. The results are listed
below.

— 67 —



# M(Zy) M(Z) M(Zs)

1 ho+(k:+3)g01 ho + (1 = k)1 + (k + 1) 2 ho + (3 — k)2

2 ho + (k +2)p1 — ho + (1 = k)1 + (k + L)p2 ho + (3 — K)o

3 ho + (k + 2)p1 ho+ (2 — k)p1 + kpa — moy ho + (3 — k)p2

4 ho + (k +2)p1 — ma ho + (2 = k)1 + kpa — ma ho + (4 — k)p2 — mo
5 ho + (k+2)p1 — ho + (1 — k)1 + (k+1)¢2 ho + (3 —k)p2

6 | ho+ (k+1)p1 —mg —me ho + (1 k)<p1+(k:+1)<p2 ho + (3 — k)2

7T | ho+ (k+1)p1 —mp —mg ho+ (2 —k)p1 + koo — ho + (3 —k)pa

8 | ho+ (k+1)p1 —my —ma ho+ (2 —k)p1 +k<p2—m2 ho 4+ (4 — k)pa — ma
9 ho + (k +2)p1 —my ho + (2 — k)1 + kpa —my ho + (3 — k)2
10 | ho+ (k4 1)p1 — m1 —ma ho+ (2 — k)p1 + kpa — my ho 4+ (3 — k)2

11| ho+ (k+ 1)1 —mi —ma | ho+ (3 —k)p1 + (k — 1)p2 —m1 — ma ho + (3 — k)2
12 | ho+ (k+1)p1—m1—ma | ho+ (3 —=k)p1 + (k—1)pa —mq —mao ho + (4 — k)2 —me
13 ho + (k +2)p1 —my ho + (2 = k)p1 + kpa —my ho+ (4 — k)2 —ma
14 | ho+ (k+1)p1 —m1 —me ho + (2 —k)p1 + kpa —my ho + (4 — k)pa — my
15 | ho+ (k+ 1)1 —mi —ma | ho+ (3 —k)p1 + (k — 1)p2 —m1 —ma ho + (4 — k)2 —mq
16 | ho+ (k+ 1)1 —mi —ma | ho+ (3 = k)1 + (k= 1)p2 —ma1 —ma | ho+ (5 — k)p2 —my —ma

Table 7. Instanton masses in the 16 chambers of the SU(3)y,_,, Nf = 2 field theory.

Resolutions that have a vertical reduction. Resolutions (a)-(p) (see figure 28) have
an allowed vertical reduction. The relevant triple-intersection numbers are:

( E}{=6 , E3}=8 ,DiEE;=0,D;EE;=1, DsE{E;=0,
EEy=-1, EfE3=—-1, DIE;=-1, D?Ey=0 , D1D;E; =1,
(a):{ D1D3Ey=0, D1D3E; =0, D1D3Ey=0, D3E;=—1, D2E;=0 |, (B.1)

DyD3E1 =0, DyD3sEy=1, DZE;=0 , D?E;=1 , DiE?=-1,
DiE3=0 , D:Ei=-1, DyE3=-2, D3E{=0 , DsE3=-3,

E}=7 , E3}=8 |, DE\E;=0, D:EEy=1, D3E;E;=0,
E2Ey=-1, E\E3=-1, D?E;=0 , D}E;=0 , D;1DE;=0,
(b):{ D1D3Ey=0, D1D3E1 =0, D1D3E;=0, D3E;=0 , D3E;=0 , (B.2)

D2D3E1:0’D2D3E2:17 D?Q)EIZO ) D?Q)E2:1 5 DlE%:O )
| DiE2=0 , DoE2=—2, DyE2=—2, D3E?=0 , D3E2=-3,

E$=7 , E3=7 ,DEEx=1, D;EEy=0, D;E;E;=0,
E2Ey=-2, EiE3=0 , D?E;=0 , D?Ey=-1, D1D;E; =0,
(c):{ D1D3Ey=1, D1D3E; =0, D1D3E2=0, D3E;=0 , D?Ey=—1, (B.3)

DyD3E; =0, DyDsEy=1, D2E;=0 , D?E;=1 , DiE?=-2,
DiE2=-1, DE?=0 , D;E3=-1, D3E2=0 , DsE2=-3,

( E}=7 , E3=7 | D/E\Ey=0, DyEEy=1, D3E;E;=0,
EE;=-2, E1E3=0 , DJE;=-1, D?Ey=0 , D;D;E; =1,
(d):{ D1D3Ey=0, D1D3E; =0, D1D3E2=0, D3E;=—-1, D3Ey=0 , (B.4)

DyD3E; =0, DeD3Ey =1, D3E1=0 , DiEy=1 , DiEf=—-1,
DlE%:O , DyE2=—1, DyE2=-2 D3E%:O , D3E2:—3,
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(k):

E}=7 , E3=8 |, DEE;=0, D:E\Ey=1, D3E;E;=0,
E!E;=-1, EjEZ=-1, DIE;=—-1, D?Ey=0 , DiD;E; =1,
D1D3Ey=0, D1D3E; =0, D1D3E;=0, D3E;=—1, D3E;=0 , (B.5)
DyD3sE; =0, DyD3sEy=1, D3E;=0 , D3E;=1 , DiE{=—-1,
D1E3=0 , DoE2=-1, D;E2=-2, D3E?=0 , DsEZ=-3,

E}=8 , Ej=7 ,DEE;=0, D;:E|Ey=1, D3E;E;=0,
EE;=-2, EE3=0 , DE; =0 , D?Ey=0 , D;D;E; =0,
D1DsE3=0, D1D3sE; =0, D1D3sE;=0, D3E; =0 , D3E;=0 |, (B.6)

D;:DsE1 =0, D;D3E;=1, D3E;=0 , DiE;=1, DE{=0 ,
DlE%:O ) D2E2:_27 D2E2:_27 D3E%:O s D3E2:—37

E$=8 , E3=8 |, DiEiEy;=0, D;E{Es=1, D3E;E;=0,
E!E;=-1, EE3=-1, DIE;=0 , D?Ey;=0 , D1D;E; =0,
D1DsEy=0, D1D3E; =0, D1D3E2=0, D3E;=0 , D3Ey;=0 , (B.7)

DyD3E; =0, DyD3Ey =1, D3E;1=0 , D3Ey=1, DiE7=0 ,
DIE2=0 , D;E2=—2, DoE2=—2, DsE2=0 , DsE3=-3,

E}=7 , E3}=8 |, DEEy=1, D;EEy=0, D3E;E;=0,
E2Ey=-2, EiE(=0 , D?E;=0 , D?E;=0 , D;1D;E;=0,
D1D3Es =0, D1D3sE; =0, D1D3Ey=1, D3E;=0 , D3Es=0 |, (B.8)

DyD3E1 =0, DyD3Ey=0, D3E;=0 , D3E;=2 , DiE}=-2,
DiE3=-2, DE}=0 , D9E(=0 , D3sE?=0 , DsE3=—4,

E}=8 , E3=6 ,DEEx=1, D;EEy;=0, D3E;E;=0,
EE;=-3, EiEi=1 , D?E; =0 , D3Ey=-1, D1DyE; =0,
D1DyEy=1, D1D3E1 =0, D1D3E;=0, D3E;=0 , D?Ey=—1, (B.9)

D;D3E1 =0, DoDsEy =1, DJE =0 , DiE;=1 , D\E}=—-2,
DiE3=—1, D;E}=0 , DyE}=—1, DsE?=0 , DyE}=-3,

( E{=8 , E}=7 ,DE\E;=1, D;E\E;=0, DsE\E;=0,
E!E;=-2, EE3=0 , D?E;=0 , D?Ey=-1, D;D;E; =0,
D1DsEy=1, D1D3sE; =0, D1D3E;=0, D3E;=0 , D}Ey=—1, (B.10)

DyD3sE; =0, DyD3sEy=1, D3E;=0 , D?E;=1 , DiE3=-2,

| Di1E3=-1, D;E?=0 , D2Ei=-1, D3E?=0 , DsE3=-3,

E}=7 , E3=8 |, DEE;=0, D;EEy=1, D;E;E;=0,
E!E;=-2, E1E3=0 , DJE;=-1, D?Ey=0 , DiD;E; =1,
D1D3Ey=0, D1D3E; =0, D1D3E2=0, D3E;=—-1, D3E;=0 , (B.11)

DyDsE =0, DyDsEy=1, D3E;=0 , DiEy=2 , DiE?=-1,
DiE2=0 , D3E?=—-1, D:E2=-2, D3E?=0 , D3E3=—4,
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E}=8 , E3=8 |, DEEx=0, D;EEy=1, D;E;Ex=0,
EE;=-2, EE3=0 , D?E;=0 , D?Ey=0 , D;D;E; =0,

(1):{ D1D3Ey=0, D1D3E1 =0, D1D3E2=0, D3E;=0 , D3Ey;=0 , (B.12)
DyDsE; =0, DaDsEy=1, D3E; =0 , D3E;=2 , DiE?=0 |,
DiE2=0 , DoE?=-2, DoE2=-2, D3E?=0 , D3Ei=—4,

E}=8 , E3=7 |, DiEiEy=1, D;E{Es=0, DsE;E;=0,
E{E;=-3, EE3=1 , D?E;=0 , D?Ey=0 , D;DyE; =0,
(m):{ D1D3Ey=0, D1D3E1 =0, D1D3Ex=1, D3E;=0 , D3Ey;=0 , (B.13)

DyDsE1 =0, D;DsEy =0, DiE1=0 , DjE;=2 , DiEj=-2,

E3=8 , E}=8 ,DiEiEy=1, D;E{Ex=0, D3sE;E;=0,
EE;=-2, EE2=0 , D?E;=0 , D}Ey;=0 , DiD;E; =0,
(n):< D1D3Ey=0, D1D3sE1 =0, D1D3Es=1, D3E;=0 , D3Ey=0 , (B.14)

DyD3E; =0, DyD3Ey=0, D3E;=0 , D3E;=2 , DiE3=-2,
(| D1E3=-2, D;E?=0 , D3E3=0 , D3E?=0 , DsE3=—4,

E}=8 , E3=7 ,DiEiEx=1, D;EE;=0, D3E;E;=0,
E?E;=-3, E1E3=1 , D?E;=0 , D?Ey=—1, D1D;E; =0,
(0):{ D1D3Es=1, D1D3E; =0, D1D3E;=0, D3E;=0 , D3Es=—1, (B.15)

DyDsE; =0, DyDsEy=1, DZE;=0 , D?E;=2 , DiE?=-2,
| Di1E3=-1, D;E?=0 , D:E3=-1, D3E?=0 , D3sE3=—4,

E}=8 , E3}=8 |, DEEx=1, D;EEy=0, D3E;E;=0,
E2Ey;=-3, EiEi=1, D?E;=0 , D}E;=0 , D1D;E;=0,
(p):{ Di1D:Ey=0, D1D3E1=0, DiDsEy=1, D3E;=0 , D3E;=0, (B.16)

D2D3E1:07D2D3E2:07 D%EI:O ) D§E2:3 ) DIE%:_2a
. D1E2:—2, D2E2:O , D2E2:0 , D3E%:O , D3E2:—5.

Resolutions without a gauge theory phase. Resolutions (qi)-(qi4) (see figure 28)
do not admit vertical reductions, and thus have no gauge theory phases. For the sake of
completeness, their triple-intersection numbers are listed below.

E}=7 , E3=8 |, DEEx=0, DyEEy=1, D;E;Ex=0,
EE;=-1, EjE2=-1, D?E;=0 , D?Ey=0 , DiDE; =1,
(ql): DlDQEQZO,DngEl :O,DngEQZO, D%Elz—l, D%EQZO y (B17)
DyDsE; =0, DaDsEy=1, D3E;=0 , D3Ey;=1 , DiE?=-2,

D1E2=0 , DoE?=—-1, DsE2=-2, D3E?=0 , D3sEi=-3,
E}=7 , E3=9 |, DEE;=0, D;EEy=0, D;E{E;=0,
E!E;=1 , E\E2=1 , D’E;=-1, D?Ey;=0 , D1D:E;=1,
(q2):{ D1D2Ey=0, D1D3E; =0, D1DsEy=0, D3E;=0 , D3E;=1 , (B.18)
DyDsEy =0, DaDsEy=1, D2E;=0 , D3E;=1 , DiE3=—1,

D1E2=0 , DoE?=-2, D:E2=-3, D3E?=0 , D3Ei=-3,
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(q10):

;

,

\

;

E}=8 , E3=9 |, DEEx=0, DyEEy=0, D;E;E;=0,
EE;=1 , E/E2=1 , DIE;=0 , D?Ey;=0 , D1DsE; =0,
D1D3E;=0, D1D3E; =0, D1D3E2=0, D3E;=1 , D3Ey=1 ,
DyDsE; =0, DaDsEy=1, DE;=0 , D3Ey;=1, DiE?=0 |,
D1E2=0 , DsE?=-3, DsE2=-3, D3E?=0 , D3Ei=-3,

E}=8 , E3=7 ,DEEx=1, DyEEy=0, D;E;E;=0,
EE;=-2, E1E3=0 , D?E;=1 , D?Ey=—-1, D;D;E; =0,
D1D3Ey=1, D1D3E; =0, D1D3E2=0, D3E;=0 , D3Ey=—1,
DyD3sE; =0, DyD3sEs=1, D3E;=0 , D3E;=1 , DiE3=-3,
DiE2=-1, DE?=0 , D;E3=-1, D3sE?=0 , DsE2=-3,

E}=8 ., E3=7 |, DiEE;=0, D;EEy=1, D3E;E;=0,
EEy;=-2, EiE3=0 , D?E =0, D?Ey=0 , D1D;E;=1,
D1D3Ey =0, D1D3E1 =0, D1D3E;=0, D3E;=—-1, D3E;=0 ,
DyD3E; =0, DyD3Ex=1, D3E;=0 , D3Es=1 , DiE3=-2,
D1E3=0 , DsE}=-1, DsE2=-2, D3E}=0 , D3sE3=-3,

E}=8 , E3=9 |, DiEiE;=0, DoEEs=0, D3sE;Ey=0,
EE;=1 , E/E3=1 , D’E;=-1, D?Ey;=0 , D1D:E; =1,
D1D3Ey=0, D1D3E; =0, D1D3Ey=0, D3E;=0 , D3E;=1 |,
DyD3E; =0, DaD3Es=1, D3E;=0 , D3Es=1 , DiE3=-1,
D1E23=0 , DoE?=-2, DsE2=-3, D3E?=0 , D3sEi=-3,

E}=8 , E3=9 |, DEE;=0, DyEEy=0, D;E;E;=0,
EE;=1 , EE2=1 , DIE;=0 , D?Ey;=0 , D1D:E;=1,
D1D3E;=0, D1D3E; =0, D1D3E2=0, D3E;=0 , D3E;=1 ,
DyDsE; =0, DsDsEy=1, D3E;=0 , D3Ey;=1 , DiE?=-2,
D1E2=0 , DoE?=-2, DoE2=-3, D3E?=0 , D3Ei=-3,

E}=9 , E3=9 |, DEE;=0, D;EEy=0, D3E{E;=0,
E?E;=1 , EiE2=1 , DIE;=0 , D?E;=0 , D1D:E; =0,
D1D3E;=0, D1D3E; =0, D1D3E2=0, D3E;=1 , D3E;=1 ,
DyD3sE;1 =0, DyD3Ey=1, D3E;=0 , D3E;=1, DiE?=0 |,
DiE3=0 , D:E2=-3, DsE2=-3, D3E?=0 , D3Ei=-3,

E}=8 , E3=8 |, DiEjEx=1, D;EEy;=0, D3E;E;=0,
EE;=-2, EiE3=0 , D?E =1, D?Ey=0 , D1DyE; =0,
D1D3Ey =0, D1D3E1 =0, D1D3E;=1, D2E;=0 , D3E;=0 ,
DyD3E; =0, DyD3Ey=0, D3E;=0 , D3E;=2 , D{E3=-3,
DiE3=-2, DE?=0 , DE3=0 , DsE3=0 , DsE3=—4,

E$=9 , E3=6 ,DiEiEy=1, D;E{Ey=0, DsE;E;=0,
E{E;=-3, EE3=1 , D?E;=1 , DiEy=-1, D;D;E; =0,
D1DsEy=1, D1D3sE; =0, D1D3E;=0, D3E;=0 , D}Ey=—1,
DyD3E; =0, DyD3Ey=1, D3E;=0 , D3Es=1 , DiE3=-3,
DiE3=-1, DE}=0 , Do3E3=—-1, D3E?2=0 , D3E3=-3,
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(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)



E}=8 , E3=8 |, DEJE;=0, D;EEy=1, D3E;E;=0,
E!E;=-2, E1E3=0 , D?E;=0 , D?Ey=0 , DiD;E; =1,
(@11):{ D1DsEs=0, D1 D3sE; =0, D1D3Ey=0, D3E;=-1, D3E;=0 |,
DyDsE; =0, DyD3sEy=1, D3E;=0 , D3E;=2 , DiE{=-2,
D1E3=0 , DoE2=-1, D;E2=-2, D3E?=0 , DsE2=—-4,

( E3=9 |, E3=7 ,DiEiEy=1, DsE|Ey=0, DsEEy;=0,
E!E;=-3, EE3=1, D?E;=1, D?Ey;=0 , D;D;E; =0,
(q12):{ D1D3Ey=0, D1D3sE; =0, D1D3sEy=1, D3E;=0 , D3E;=0 |,
DyD3E; =0, DyD3sEy=0, D32E;=0 , D?E;=2 , DiE3=-3,
| D1E2=-2, DyE2=0 , DyE3=0 , D3E?=0 , D3E3=—4,

( E3=9 |, E3=7 |, DiEiEy=1, D3E|E;=0, DsEE;=0,
E!E;=-3, EiE3=1 , D?E;=1 , D}Ey=-1, D1DyE; =0,
(q13): D1D2E2:1, D1D3E1:0,D1D3E2:O, D%Elzo s D%Egz—l,
DyD3E1 =0, DyD3Es=1, D3E;=0 , D3E;=2 , DiE{=-3,
| D1E2=-1, D;E?=0 , D2E(=-1, D3E?=0 , DsE3=—4,

E$=9 , E3=8 |, DiEiEy=1, DyEEy=0, DsE1E;=0,
E{E;=-3, EiE3=1 , D?E;=1 , D?Ey=0 , D;D;E; =0,
(@14):{ D1DsEy=0, D1D3sE; =0, D1D3sEy=1, D2E;=0 , D3Ey=0,
DyD3E1 =0, DyD3E;=0, D3E;=0 , D3E;=3 , D\E3=-3,
D1E3=-2, DE}=0 , D9E2=0 , D3E?=0 , D3E3=-5.

C M-theory prepotentials of the E3*! geometry

(B.27)

(B.28)

(B.29)

(B.30)

In this appendix, we list the geometric prepotentials for all the crepant resolutions of the
E3%! singularity (see figure 28), using (3.163), (2.20), and the triple-intersection numbers

from appendix B.

Resolutions that have a vertical reduction. (Resolutions (a)-(p) in figure 28.)

2 2
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Resolutions without a gauge theory phase. (Resolutions (qi)-(qi4) in figure 28.)
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