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by M-theory on the space transverse to isolated toric Calabi-Yau (CY) threefold singular-

ities X. Deformations of 5d N = 1 SCFTs can lead to “gauge-theory phases,” but also

to “non-gauge-theoretic phases,” which have no known Lagrangian interpretation. In pre-

vious work, a technique relying on fiberwise M-theory/type IIA duality was developed to

associate a type IIA background to any resolution of X which admits a suitable projection

of its toric diagram. The type IIA background consists of an A-type ALE space fibered

over the real line, with stacks of coincident D6-branes wrapping 2-cycles in the ALE res-

olution. In this work, we combine that technique with some elementary ideas from graph

theory, to analyze mass deformations of TX when X is a isolated toric CY3 singularity of

rank-two (that is, it has two compact divisors). We explicitly derive type IIA descriptions

of all isolated rank-two CY3 toric singularities. We also comment on the renormalization

group flows in the extended parameter spaces of these theories, which frequently relate

distinct geometries by flowing to theories with lower flavor symmetries, including those

that describe non-gauge-theoretic phases.
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1 Introduction

Five-dimensionalN = 1 supersymmetric gauge theories are curious entities in the landscape

of string/M-theory compactifications, interpolating between their more extensively-studied

four- and six- dimensional cousins. Being non-renormalizable, they are intrinsically ill-

defined as quantum field theories, and yet, they are interesting systems to study as they

have well-defined ultraviolet (UV) completions via string/M-theory [1–3]. The basic tool for

studying them in the context of this paper is geometric engineering in M-theory [4–7]. (For

reviews of geometric engineering, see [8, 9].) Specifically, five-dimensional gauge theories

with N = 1 supersymmetry can be geometrically engineered via the decoupling limit of

M-theory on a local Calabi-Yau (CY) threefold X. In the limit where all the Kähler moduli
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of the threefold shrink to zero size, one gets a five-dimensional superconformal field theory

(SCFT) in the UV along the spacetime transverse to X:

M-theory on R1,4 ×X ←→ TX ≡ SCFT(X) . (1.1)

The geometric engineering analysis in this paper is largely based on [10], where a program

to study the mass deformations of these SCFTs was initiated, focusing on the properties

away from the conformal point. See also [11–35] for recent developments. Alternative

constructions of 5d SCFTs rely on (p, q)-web diagrams in type IIB [2, 3, 36–40], which are

dual to the M-theory geometry when X is toric. The existence of 5d UV fixed points is

also motivated by the AdS/CFT correspondence [41–53].

Five-dimensional SCFTs are strongly coupled [54], and do not admit any marginal

deformations [55, 56], but do admit (relevant) flavor current deformations (with mass

dimension one). Therefore a deformation of the UV SCFT can lead to an infrared (IR)-

free gauge theory. In the geometric engineering approach, a relevant deformation of the 5d

N = 1 SCFT TX of (1.1) is equivalent to a crepant resolution of the singularity:

πℓ : X̂ℓ −→ X , (1.2)

which yields a smooth (or at the very least, less singular) local CY3-fold X̂ℓ. Different

crepant resolutions are related by flop transitions. Under suitable conditions satisfied by

X̂ℓ that were spelled out in [10] for the toric case, the resulting geometry gives rise to a

five-dimensional N = 1 supersymmetric gauge theory.

In this paper, we apply the methods developed in [10] to analyze deformations of

TX when X is a “rank-two” isolated toric singularity. The latter refers to the fact that

X is described by a two-dimensional toric diagram with two interior points (that is, two

compact divisors). There is a well-known classification of two-dimensional convex toric

diagrams with one interior point [57, 58] (“rank-one” in this terminology). A classification

of lattice polygons with two-interior points was given by [18, 59], a subset of which describe

isolated canonical singularities of toric CY3-folds. The advantage of working with isolated

singularities is that there is a one-to-one correspondence between crepant resolutions of

these singularities and chambers of the corresponding gauge theories that they engineer.

This feature is unfortunately lost in the non-isolated case. Nevertheless, we remark that

the non-isolated case is extremely important, for instance, for engineering five-dimensional

TN theories [39].1

In figure 1, we show a map relating the distinct gauge-theory deformations of some of

the toric singularities that appear in this paper. A recurrent theme in this paper is that

theories with large flavor symmetry can flow to theories with lower flavor symmetry, an

operation, which, in geometric engineering, can be understood as a combination of flop

transitions in the extended parameter space of the Calabi-Yau geometry, followed by the

decoupling of certain divisors in the geometry by blowing up the Kähler volumes of certain

compact curves (thereby rendering them non-compact). As we explain in various examples,

this can be understood as a geometric version of renormalization group (RG) flow, because

1A discussion of non-isolated singularities and 5d TN theories has also appeared in [10].
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Figure 1. RG flows connecting the different rank-two toric singularities discussed in this paper,
the corresponding gauge-theory phases, and their relations under parity (denoted by P). Non-
gauge-theoretic phases are not shown in the figure, but do arise as discussed in the main text.
Top: rank-two theories stemming from the E3

2,0 (“beetle”) singularity. Bottom: rank-two theories
stemming from the E3

2,1 singularity. There is a P-transformed version of this flow, which is not
shown here.

the operation of decoupling divisors corresponds (rather directly in gauge-theory phases)

to integrating out some massive degrees of freedom. We remark here that starting from the

two geometries on the extreme left in the two RG flows indicated in figure 1, that is, the

toric geometries labeled E3
2,0 and E3

2,1, one can obtain all other isolated toric rank-two

singularities, including three singularities which have no Lagrangian description.

On the Coulomb branch, a 5d N = 1 gauge theory is characterized by a one-loop exact

cubic prepotential [1, 6] Fft(ϕ;h0,s,mα), which is a function of the Coulomb branch vevs

ϕ, masses mα and (inverse) gauge couplings h0,s. In the M-theory engineering, the ge-

ometric prepotential is given by a triple intersection form on the CY3-fold X̂ℓ [60, 61],

denoted by Fgeo(νa, µj), where νa and µj are Kähler moduli of X̂ℓ. In [10], the is-

sue of matching geometry to field theory after turning on generic mass parameters and

gauge couplings was discussed, such that the prepotentials in both descriptions match:
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Fft(ϕ;h0,s,mα) = Fgeo(νa, µj), once an appropriate map between geometry and field the-

ory is determined. Under this map, the Kähler parameter µj are interpreted as mass

deformations of TX, whereas the Kähler moduli νa are, in general, some combinations of

Coulomb branch vevs and mass deformations. In [10], several rank-one examples of TX,

and a particular rank-two example (which the authors named the “beetle geometry”) were

discussed, along with their mass deformations which lead to gauge-theory phases.

A crucial new ingredient introduced in [10] was a type IIA background for the five-

dimensional theory, obtained by a circle reduction of the M-theory setup. Specifically, this

involves the choice of an abelian subgroup U(1)M ⊂ U(1)3 of the toric action on X̂ℓ, and a

subsequent reduction to type IIA string theory along this U(1)M , treated as the “M-theory

circle” [62–65], resulting in the duality:

M-theory on R1,4 × X̂ℓ ←→ Type IIA string theory on R1,4 ×M5 , (1.3)

where the transverse five-dimensional space M5
∼= X̂ℓ/U(1)M , is, in fact, a resolved AM−1

singularity (a hyperKähler ALE space) fibered over the real line (parametrized by r0 ∈ R).
The ALE resolution contains exceptional P1s or “2-cycles,” which are wrapped at specific

values of r0 by D6-branes, which engineer gauge groups if they wrap compact 2-cycles

(with inverse gauge couplings 1
g2 = vol(P1)), and flavor groups if they wrap non-compact

2-cycles [66, 67]. However, the existence of such a type IIA description in the first place

relies on whether the toric diagram of X̂ℓ admits a “vertical reduction.” By viewing a

toric diagram as an undirected graph as we briefly explain in this paper, this requirement

can be reinterpreted as a condition on the collapsibility of a graph under a sequence of

edge reductions. Remarkably, this criterion also distinguishes between toric diagrams that

correspond to gauge-theory phases and those that do not.

The details of the fibration, which can be recovered from the “Type IIA reduction” of

the gauged linear sigma model (GLSM) associated with the toric X̂ [62, 68], are specified

by volumes of exceptional P1s in the ALE resolution, which are piecewise linear functions

of {r0} ≃ R, from which one can extract BPS masses of W-bosons, perturbative hyper-

multiplets, instantons, and tensions of monopole strings, etc. We carry out the type IIA

analysis of [10] for rank-two isolated toric singularities.

A subtle point that arises in the study of mass deformations is the parity

anomaly [69–72]. In [10] this issue was revisited in the context of 5d N = 1 gauge theo-

ries, and used to motivate a slightly modified version of the Coulomb-branch prepotential,

one that is consistent with the requirement of predicting only integer-quantized (mixed)

Chern-Simons levels on the Coulomb branch. This also plays a role in the analysis of this

paper, as we use the modified prepotential which is consistent with the so-called “U(1)− 1
2

quantization scheme,” for the effective Chern-Simons levels [72–74]. This is a fine point

and while it may not play a role in classifying SCFTs, it is nevertheless worth emphasizing

and will be important for future studies of gauging flavor symmetries.

The number of distinct (SL(2,Z)-inequivalent) two-dimensional toric diagrams in-

creases rapidly with the rank. A natural extension will be to address higher-rank toric

singularities. We anticipate that a classification of toric diagrams of rank > 2 will be more
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involved, although restricting to isolated singularities as a first-order step should make

the problem tractable. We expect graph-theoretic techniques to be even more useful in

these higher-rank cases. It might also be interesting to interpret the type IIA geometry in

terms of calibrated solutions in low-energy supergravity, potentially including orientifolds

to describe gauge theories with SO/Sp gauge groups. But this will require leaving the toric

realm, and we leave this as another avenue for future work.

This paper is organized as follows. In section 2, we give a brief review of 5d N = 1

theories and geometric engineering, commenting on various features such as the prepoten-

tial, the parity anomaly, the BPS states on the Coulomb branch, and the M-theory and

type-IIA approaches. We also motivate the use of graph theoretic-methods for operations

such as enumerating crepant resolutions and characterizing allowed type IIA reductions. In

section 3, we discuss in detail each rank-two isolated toric singularity. For every singularity

with a gauge-theory phase, we derive the corresponding type IIA description, and use it

to match the M-theory description with the field theory description. Along the way, we

also discuss the role of walls in moduli space, and geometric transitions to non-Lagrangian

phases. We also give several examples of RG flows in the extended parameter space of

these toric geometries, which lead to geometries (theories) with fewer external vertices

(lower flavor symmetry). Finally, the appendices contain results relevant for intermediate

computations, including geometric and field-theory prepotentials, instanton masses and

triple-intersection numbers.

2 5d N = 1 theories and M-theory on a CY3 singularity

In this section, we give a lightning review of five-dimensional N = 1 supersymmetric field

theories and geometric engineering. For more detailed reviews, see [1, 6, 10] and references

therein. In this paper, we focus on the Coulomb-branch physics. (See [75–77] for some

recent work on the Higgs branch.)

2.1 Review of 5d N = 1 gauge theories

These theories have eight real supercharges.2 We will assume that the gauge group G

is compact and connected, and factorizable into a product of simple factors Gs, i.e.

G =
∏

sGs. The Lie algebra of G is g = Lie(G). The two on-shell multiplets of (rigid) 5d

N = 1 supersymmetry are:3 (i) the vector multiplet V, consisting of a real scalar ϕ, a gauge

field Aµ, and gaugini λ and λ̃, all valued in the adjoint of g, and (ii) the hypermultiplet

consisting of four real scalars and their fermionic superpartners. The vector multiplet is cou-

pled to matter fields in the hypermultiplets H in some representation R of the gauge group

which is in general reducible.4 The R-symmetry group in Lorentzian signature is SU(2)R.

2Recall that the minimal spinor of Spin(1, 4) is a symplectic Majorana spinor.
3The tensor multiplet plays no role in our discussion, but on the Coulomb branch one can, of course,

dualize a tensor to an abelian vector.
4In this paper, since we restrict to rank-2 theories with unitary gauge groups, the gauge group will be

G = SU(3) or G = U(3), and R will be the fundamental representation of G.
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The 5d supersymmetry algebra and central charges. The most general (i.e. cen-

trally extended) N -extended Poincaré superalgebra in d = 1+4 dimensions has an Sp(N ) ∼=
USp(2N ) R-symmetry, and has the form [78, 79]:

{QA
α , Q

B
β } = (γµC)αβPµΩ

AB + (γµC)αβZ
◦[AB]
µ + CαβZ

[AB] + (γµνC)αβZ
(AB)
µν , (2.1)

where α,β here are spinor indices (only for the purposes of this equation, and not to

be confused with their use elsewhere in this paper), µ, ν are five-dimensional spacetime

indices, C is the charge conjugation matrix, Ω denotes the symplectic form, and (crucially)

Z’s denote real central charges. The indices A,B range over A,B = 1, . . . , 2N . Here

Z◦[AB]
µ and Z [AB] are antisymmetric, and Z◦[AB]

µ is symplectic traceless: ΩABZ
◦[AB]
µ = 0.

The central charges Z◦[AB]
µ and Z(AB)

µν contribute to strings and membranes, respectively,

whereas Z [AB] contributes to particle states that enter (2.11) (see below). For the purposes

of this paper, since we focus on 5d SCFTs, we restrict to N = 1 in (2.1).

Flavor symmetries. Five-dimensional gauge theories have a nontrivial global sym-

metry GF × SU(2)R, where the SU(2)R is the R-symmetry group introduced above,

and GF is the “flavor” symmetry group, which in turn, can be further decomposed as

GF = GH ×
∏

sU(1)Ts , that is, a group (GH) that hypermultiplets transform under, and

a product of “U(1) topological factors”,5 one for each simple factorGs inG. More precisely,

each hypermultiplet transforms under a representation of GH ×G.

5d parity anomaly, Chern-Simons terms and the U(1)−1
2
quantization scheme.

A detailed discussion of the 5d parity anomaly can be found in [10]. (See also [72, 80–83]

for original discussions in the three-dimensional setting.) Five-dimensional gauge theories

suffer from a “parity anomaly,” which is the statement that parity and gauge invariance

cannot simultaneously be preserved. Here, the term “gauge invariance” is used in a general

sense to include all potential background gauge symmetries, including flavor symmetries.

If we preserve background gauge invariance (so that a gauge field can be made dynamical),

we must accept non-conservation of parity.

There are three sources of parity violation: the first is an explicit Chern-Simons term

in the low-energy effective action, which for a U(1) gauge field Aµ in five dimensions, is of

the form,

SCS =
ik

24π2

∫

M5

(A ∧ F ∧ F + · · · ) , (2.2)

on an oriented Riemannian five-manifold M5, where the integrand is understood to include

terms needed for a supersymmetric completion. Such a CS term is well-defined only if the

CS level k is integer quantized, k ∈ Z.6 The second source is a parity-odd contact term

in the three-point function of the conserved current jµ of a U(1) symmetry acting on a

5These are due to the “topological symmetry” which is associated with a conserved current

jTs = 1
8π2F

(s) ∧ F (s) (where F (s) = dA(s) − iA(s) ∧A(s)), which is conserved due to the Bianchi identity.
6Note that for any simple Lie group with a nonzero cubic index, i.e. for gs = Lie(Gs) = su(N) with

N > 2, one can have explicit non-abelian supersymmetric CS terms.
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fermion ψ charged under a background U(1) gauge field.7 An explicit CS (2.2) shifts the

effective CS level κ to κ+ k. But since k is integer-quantized, only the non-integer part of

the Chern-Simons contact term, κ (mod 1), is physical and it is what probes the presence

of a parity-violating term in the effective action. For a collection of Dirac fermions ψi with

U(1) charges Qi ∈ Z, we find that,

κ = −1

2

∑

i

Q3
i + k , (2.3)

where the integer k is due to a scheme ambiguity which, in this case, corresponds simply

to adding an explicit U(1) CS term (2.2) with integer coefficient k to the action [74]. For

every Dirac fermion in the gauge theory, we should specify a “quantization scheme” that

is consistent with gauge invariance: this requires specifying all the CS contact terms κ, for

both dynamical and background gauge fields, which corresponds to a scheme choice for k

in (2.3), to remove the integer-valued ambiguity. One such scheme is the so-called “U(1)− 1
2

quantization scheme,”8 [72] which declares,

κψ = −1

2
, for a massless free fermion. (2.4)

We choose this quantization scheme for every 5d N = 1 hypermultiplet. The final source

of parity violation is a mass term for a Dirac fermion ψ in the Lagrangian, δLm = imψψ

(for m ∈ R), which explicitly breaks parity. In the limit |m| → ∞, one can integrate out

ψ. As shown in [7, 84], this shifts the parity-odd contact term by δκ = −1
2sign(m). The

generalization of (2.3) to a collection of massive Dirac fermions of masses mi ∈ R and

charges Qi ∈ Z is:

κψ = −1

2

∑

i

Q3
i sign(mi) . (2.5)

The notation “Gκ” where G is the gauge group and κ ∈ 1
2Z is frequently used in the

literature, and here κ denotes the effective Chern-Simons level as in (2.5).

2.2 The prepotential on the Coulomb branch

We consider the low-energy effective field theory on the Coulomb branch, where vacuum

expectation values of the adjoint scalar, ⟨ϕ⟩ = diag(ϕa) = (ϕ1, . . . ,ϕrk(G)) break the gauge

group G down to a maximal torus H times the Weyl group:

G −→ H!WG , H ∼=
rk(G)∏

a=1

U(1)a . (2.6)

Here, ϕ = (ϕa) denotes the set of low-energy Coulomb-branch scalars which reside in

abelian vector multiplets Va, and µ = (m,h0) denotes the set of real flavor masses and

inverse gauge couplings.

7This term is of the form iκ
24π2 ϵµ1µ2µ3µ4µ5p

µ4qµ5 ⊂ ⟨jµ1(p)jµ2(q)jµ3(−p− q)⟩.
8Any other quantization scheme is related to this one by a shift of κ by an integer.
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s : index ranging over the simple gauge group factors

a, b, c : indices ranging over rk(G), i.e. 1 ≤ a ≤ rk(G)

h0,s =
8π2

gs
: inverse gauge coupling for gauge group factor Gs

Kab
s : Killing forms of the simple factors gs

dabcs : cubic Casimir of gs
kabc = ksdabcs : Chern-Simons coefficient in the prepotential

α = (αa) : a typical root of g

∆ : set of nonzero roots (adjoint weights) of g

α(ϕ) = αaϕa : natural pairing between Coulomb vevs and adjoint weights

ωα : flavor weights (weights of the repn.(GH))

ω(m) = ωαmα : natural pairing between hyper masses and flavor weights

ρa : gauge weights (weights of repn.(G) that the hyper transforms under)

ρ(ϕ) = ρaϕa : natural pairing between Coulomb vevs and gauge weights

Table 1. Notation for symbols appearing in the prepotential.

The low-energy effective field theory on the Coulomb branch is an N = 1 supersym-

metric gauge theory that is completely determined by a one-loop exact cubic prepotential

F(ϕ,µ) [1, 6, 60, 61]. The one-loop contribution arises from integrating out W-bosons

and massive hypermultiplets at a generic point on the Coulomb branch. The widely preva-

lent expression for the prepotential is due to [6]; we refer to it as the “IMS prepotential.”

However, this prepotential can lead to non-integer mixed flavor-gauge effective CS lev-

els. To cure this discrepancy, the authors of [10] proposed an alternate expression for the

prepotential which corrects the IMS expression essentially by adding explicit “half-integer

CS levels” on the Coulomb branch in order to cancel the parity anomalies by restoring

background gauge invariance under the flavor group. The prepotential proposed in [10] is:

F(ϕ,µ) =
1

2
h0,sK

ab
s ϕaϕb +

kabc

6
ϕaϕbϕc +

1

6

∑

α∈∆
Θ (α(ϕ)) (α(ϕ))3

− 1

6

∑

ω

∑

ρ∈R
Θ (ρ(ϕ) + ω(m)) (ρ(ϕ) + ω(m))3 , (2.7)

where a sum over repeated indices (s, and a, b, c) is understood, and our notation is

summarized in table 1.

By contrast, the IMS prepotential reads:

FIMS(ϕ,µ) =
1

2
h0,sK

ab
s ϕaϕb +

kabceff

6
ϕaϕbϕc +

1

12

∑

α∈∆
|α(ϕ)|3

− 1

12

∑

ω

∑

ρ∈R
|ρ(ϕ) + ω(m)|3 . (2.8)

The function Θ(x) appearing in (2.7) is the Heaviside step function defined by:

Θ(x) =

{
1, if x ≥ 0 ,

0, if x < 0 .
(2.9)
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The prepotential (2.7) yields the correct result for a hypermultiplet in the “U(1)− 1
2
quan-

tization,” that was introduced above. For a single hypermultiplet coupled to a U(1)

vector multiplet containing the real scalar ϕ, the contribution to the prepotential is

FH = −1
6Θ(ϕ)ϕ3. A U(1) Chern-Simons term at level k contributes, on the other hand,

FU(1)k(ϕ) = k
6ϕ

3. Therefore the hypermultiplet contribution FH reproduces the correct

decoupling limits for both signs of the real mass ϕ. Comparing (2.7) and (2.8), one

finds that terms of order ϕ3 are the same once one correctly maps the CS levels, via

kabceff = kabc − 1
2

∑
ρ,ω ρaρbρc, but there is a difference in the lower-order terms (i.e. terms

of order ϕ2 and ϕ). Specifically, at a generic point on the Coulomb branch, the theory is

gapped and therefore the Chern-Simons contact terms κ should all be integer-quantized.

This must be true not just for the gauge CS levels, but also for mixed (gauge)2-flavor,

(gauge)-(flavor)2 and (flavor)3 CS levels, etc. More explicitly, all the following Chern-

Simons levels must be integer quantized at a generic point on the Coulomb branch:

κabc= ∂ϕa∂ϕb∂ϕcF , κabα= ∂ϕa∂ϕb∂mαF , κaαβ = ∂ϕa∂mα∂mβF ,

κabs= ∂ϕa∂ϕb∂h0,sF , κass
′
= ∂ϕa∂h0,s∂h0,s′F , καβγ = ∂mα∂mβ∂mγF ,

καβs= ∂mα∂mβ∂h0,sF , καss
′
= ∂mα∂h0,s∂h0,s′F , κss

′s′′ = ∂h0,s∂h0,s′∂h0,s′′F ,

κaαs= ∂ϕa∂mα∂h0,sF

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∈Z . (2.10)

One finds that (2.7) indeed produces integer-quantized effective CS levels but (2.8) does

not. For a detailed discussion, including a derivation of (2.7), see [10]. Henceforth, we will

work exclusively with (2.7).

2.3 BPS objects on the Coulomb branch

On the Coulomb branch of 5d N = 1 gauge theories, there are half-BPS particles and

strings, which saturate suitable BPS bounds relating their masses (or tensions) to central

charges in the supersymmetry algebra.

BPS particles. The masses of BPS particles are given by the absolute value of the (real)

central charge of the 5d N = 1 Poincaré superalgebra (2.1):

M = |Qaϕa +Qα
Fmα +Qs

Fh0,s| , (2.11)

where Qa are gauge charges, Qα
F are the GH flavor charges and Qs

F are U(1)Ts instanton

charges. All charges are integer-quantized. (Also see table 1.) The three categories of BPS

particles of interest here are:

• W-bosons Wα, associated with the roots α ∈ g of the gauge algebra, with masses:

M(Wα) = α(ϕ) . (2.12)

• Hypermultiplets Hρ,ω, transforming in a representation of G×GH with gauge charges

Qa = ρa and flavor charges Qα
F = ωα, with masses:

M(Hρ,ω) = ρ(ϕ) + ω(m) . (2.13)
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• Instantonic particles : these are BPS particles charged under topological symmetries

such that Qs
F ̸= 0 in (2.11). They are really solitonic particles in five dimensions,

being uplifts of four-dimensional G-instantons. The procedure to compute the in-

stanton masses is outlined in appendix A. The results of these computations appear

in tables 5 and 7 for the models discussed in this paper.

BPS monopole strings. The 5d N = 1 gauge theory has real codimension-3 objects

which are BPS monopole strings, which are five-dimensional uplifts of 4d N = 2 monopoles.

The tension of a monopole string is given by the first derivative of the prepotential with

respect to the Coulomb modulus [1]:

Ta(ϕ,µ) =
∂F
∂ϕa

, for a = 1, . . . , rk(G) . (2.14)

2.4 M-theory on a CY3 singularity

In this paper, we consider geometric engineering of 5d N = 1 theories that live on the

spacetime transverse to M-theory on a local Calabi-Yau three-fold (CY3) X, an isolated

canonical singularity. This is motivated by the conjectured correspondence,

M-theory on R1,4 ×X ←→ TX SCFT on R1,4 . (2.15)

We give a brief recap of some relevant terminology from singularity theory.9 For an irre-

ducible variety X, a resolution of singularities of X is a proper morphism π : X̂ → X such

that X̂ is smooth and irreducible, and π induces an isomorphism of varieties π−1(X/X̂) =

X/X̂. A projective normal variety X such that its canonical class KX is Q-Cartier has the

property that KX̂ = π∗KX+
∑

i aiEi where the sum (over i) is over irreducible exceptional

divisors, and the ai’s are rational numbers called the discrepancies. Such a variety is called

Q-Gorenstein. The singular variety X is said to have canonical singularities if ai ≥ 0 for

all i, in which case it is called a Gorenstein canonical singularity.10

In the case of a generic CY3 singularity X, a crepant resolution exists:

π : X̂ −→ X, π∗KX = KX̂ , (2.16)

yielding a smooth local CY threefold X̂.11 A 5d N = 1 field theory can be obtained

in the decoupling limit of an M-theory compactification on a compact CY 3 threefold Y ,

by scaling the volume of Y to infinity, while keeping finite the volumes of a collection of

holomorphic 2-cycles and holomorphic 4-cycles which intersect within Y . This makes the

five-dimensional Planck mass infinitely large, thereby decoupling gravity. The requirement

of intersecting 2- and 4-cycles ensures that we get an interacting SCFT from the local

model X̂.
9We refer the mathematically inclined reader to [18, 85–88] and references therein.

10The case of strict equality ai > 0 for all i is called a terminal singularity, in which case the variety

X is called a Gorenstein terminal singularity. Terminal singularities imply that any subsequent resolution

changes the canonical class.
11A singular Calabi-Yau is always Gorenstein. Its singularities are either Gorenstein canonical or Q-

factorial Gorenstein terminal. See, for example, [89].
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Recall that divisors are complex codimension-1 hypersurfaces (elements of H4(X̂,Z)),
whereas compact curves are complex dimension-1 hypersurfaces (elements of H2(X̂,Z)).
The exceptional set π−1(0) (with 0 ∈ X denoting the isolated singularity) contains a certain

number, say n4 ≡ r ≥ 0 of compact divisors, called the “rank” of X. This number is the

rank of the SCFT Coulomb branch, that is, r = dimMC
TX . In addition to compact divisors,

the resolved space X̂ contains compact curves which may intersect the exceptional divisors

non-trivially. Let Ca be a basis of compact holomorphic 2-cycles in H2(X̂,Z). Note that the
two-cycles Ca are Poincaré dual to either compact divisors (in the exceptional set) or to non-

compact divisors. Let n2 ≡ r+ f = dimH2(X̂,Z), with f ≥ 0 being a nonnegative integer.

Then, r is the number of compact divisors and f is the number of non-compact divisors.

Let Dk denote a typical divisor (compact or noncompact). We choose some basis of n2

divisors {Dk}n2
k=1 and collect the intersection numbers of divisors and curves in a (square)

matrix denoted by Qa
k:

Qa
k ≡ Ca ·Dk , detQ ̸= 0 . (2.17)

Let J denote the Kähler form of X̂ (a representative of the cohomology class H1,1(X̂)) and

let S denote the Poincaré dual Kähler class,12 which can be written as a linear combination

of divisors over R:

S =
n2∑

k=1

λkDk =
f∑

j=1

µjDj +
r∑

a=1

νaEa . (2.18)

Here we have decomposed {Dk}n2
k=1 into a set of r compact divisors denoted by Ea (where

a = 1, . . . , r), and f non-compact divisors, denoted by Dj (where j = 1, . . . , f). The Kähler

volumes of a compact curve Ca in X̂ are given by:

ξa(µ, ν) =

∫

Ca
J = Ca · S = Qa

kλ
k = Qa

jµ
j +Qa

aν
a ≥ 0 . (2.19)

Incidentally, the inequalities of the form (2.19) for all basis curves are also sometimes called

the Nef conditions [18] in the literature. The curves Ca generators of the Mori cone. It

is clear that the parameters µk ∈ R and νa ∈ R in (2.18) are, respectively, the Kähler

moduli of two-cycles dual to non-compact four-cycles and compact four-cycles. They play

an important role in developing the geometry-field-theory dictionary. In particular, µ’s

are mass parameters and couplings (which we collectively refer to as “Kähler parameters,”

for they are nondynamical), whereas ν’s involve a combination of dynamical fields (the

Coulomb branch scalar vevs, i.e. ϕ’s) and in general, also the masses and couplings.13

The low-energy 5d N = 1 field theory, for generic values of the Kähler parameters,

is an abelian theory with gauge group U(1)r ∼= H2(X̂,R)/H2(X̂,Z). In the geometric

engineering picture, the U(1) gauge fields arise from periods of the M-theory 3-form C(3)

over the curves Ca dual to compact divisors, i.e. A(a)
U(1) =

∫
Ca C(3) (where a = 1, . . . , r). The

12As X̂ is local, invoking Poincaré duality entails the use of cohomology with compact support [90].
13The important basis-independent feature is that the µ’s never depend on Coulomb branch scalars.
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exact prepotential for this abelian gauge theory can be computed from the geometry using

the following expression:14

F(µ, ν) = −1

6

∫

X̂
J ∧ J ∧ J = −1

6
S · S · S . (2.20)

The prepotential involves triple-intersection numbers of X̂, specifically those of the form

(dropping the dot for brevity) DiDjEa, DiEaEb, EaEbEc, and DiDjDk. But since

X̂ is noncompact, the triple-intersection numbers involving three noncompact divisors

(DiDjDk) are not well-defined. In subsequent computations of the geometric prepoten-

tial (2.20), we ignore such contributions to the prepotential, and we refer to the result as

the “compact part” of the prepotential. We refer the reader to appendix B of [10] for a

more detailed discussion of this point.

BPS states from geometry. The BPS states from geometric engineering are:

• Electrically charged BPS particles, from M2-branes wrapping holomorphic (compact)

2-cycles Ca. These have masses given by the Kähler volumes (2.19), and

• (Dual) magnetically charged BPS monopole strings, from M5-branes wrapping holo-

morphic surfaces (compact 4-cycles) Ea. These have tensions by the Kähler volumes

of the compact divisors:

Ta(µ, ν) ≡ −∂νaF(µ, ν) =
1

2

∫

Ea

J ∧ J = vol(Ea) . (2.21)

The extended parameter space. Given an isolated canonical CY3 singularity X, there

can be several birationally equivalent resolutions πℓ : X̂ℓ → X, each of which is a local

Calabi-Yau 3-fold with the same singular limit. The collection of all such X̂ℓ constitutes,

for a given singularity X, the set of all crepant resolutions. For a particular X̂ℓ, the Kähler

cone is given by the set of all positive Kähler forms:

K(X̂ℓ\X)=

{
[J ]∈H1,1(X̂ℓ)∩H2(X̂ℓ,R) |

∫

C
J =S ·C> 0 ∀ hol. curves C ∈ X̂ℓ

}
(2.22)

The parameter space of all massive deformations of 5d SCFTs obtained from M-theory

is given by the extended Kähler cone, which is the closure of the union of all compatible

Kähler cones: PTX = K̂(X) =
{⋃

l K
(
X̂ℓ\X

)}c
. Pairs of Kähler cones — corresponding

to birationally equivalent pairs of Calabi-Yau spaces — are glued along common faces in

the interior of K̂(X). The boundaries of K̂(X) are of the following type [7]:

• Boundaries of Kähler cones of individual crepant resolutions: these are boundaries

of K(X̂ℓ\X), where the threefold X̂ℓ becomes singular. This happens when a 2-cycle

in X̂ℓ shrinks to zero size and grows to negative volume in a birational Kähler cone,

signaling a flop transition. This corresponds to a BPS particle becoming massless.

At such points, the prepotential (2.20) becomes non-smooth.

• Exterior boundaries of K̂(X) where a 4-cycle Ea can collapse to either (i) a 2-cycle,

or (ii) a point.

14The minus sign is simply a matter of convention, chosen in [10].
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The “origin of moduli space” is the origin of K̂(X), which is also the SCFT point. It

corresponds to the singular geometry X, and is given by the connected union of 4-cycles

(divisors) collapsing to a point.

Toric geometry and type IIA reduction. In this paper, we will further assume that

the isolated canonical singularity X is also toric. This allows us to exploit the computa-

tional machinery of toric geometry (see [57, 58, 87, 89, 91–94] for useful reviews). This

restriction admittedly ignores many interesting cases by confining attention to a small

subset of singularities. We leave a study of non-toric singularities for future work.

In particular this implies that a resolution X̂ of such a singularity is described by a

two-dimensional toric diagram. This is specified as the convex hull of a set of lattice points

wi = (wx
i , w

y
i ) ∈ Z2 (here i = 1, . . . , n, where n is the number of vertices), which contains

a number r ≥ 0 of internal points, denoting compact divisors. The nE ≡ n − r external

points denote noncompact divisors. Edges in the toric diagram connecting two vertices

denote curves in the geometry.

The toric variety X̂ can be described using a gauged linear sigma model (GLSM) [68].

The key idea here is to realize the toric variety as the moduli space of vacua of a certain

2d N = (2, 2) supersymmetric gauge theory. The defining data for this construction is

(i) a set of U(1) charges Qa
i (where i = 1, . . . , n, and a = 1, . . . , n − 3 labels a set of

linearly independent compact curves — the Mori cone generators), and (ii) a set of Fayet-

Iliopololous (FI) parameters {ξa} for the auxiliary gauge groups U(1)a. Then, the toric

CY3 variety is defined as a Kähler quotient,

X̂ ∼= Cn//ξU(1)
n−3 =

{
zi ∈ Cn

∣∣∣∣
∑

i

Qa
i |zi|2 = ξa

}/
U(1)n−3 , n ≡ nE + r , (2.23)

which we recognize as the familiar quotienting of a set of “D-term equations” by some U(1)

actions. Different resolutions of the singularity — which are related by flop transitions —

differ in their sets of U(1) charges Qa
i , which always obey the “Calabi-Yau condition,”

namely,
∑n

i=1Q
a
i = 0 ∀ a = 1, . . . , n − 3. Arranged as a matrix of charges, the CY

condition implies that the sum all charges in any row vanishes.

Assuming that the 2d toric diagram satisfies certain conditions (which we will revisit

below), it is possible to collapse or project it down to a 1d toric diagram for the correspond-

ing geometry in type IIA string theory. This is known as a “vertical reduction,” which was

discussed in [10], which we refer the interested reader to.15 The idea behind this method

is to use a U(1)M ⊂ U(1)3 isometry of X as an M-theory circle to view the X̂ as a circle

fibration over a five-dimensional base M5 (that is, U(1)M ↪→ X̂ −→ M5), such that the

base itself is a fibration of an ALE space over the real line parametrized by r0:

Ŷ(r0) −→ M5 −→ R ∼= {r0} . (2.24)

The complex two-dimensional space Ŷ(r0), being toric, is the resolution of an A-type toric

singularity, a hyperKähler ALE space. The volumes of exceptional P1s in the resolution,

15This method relies on a technique that was originally introduced in [62] and developed in [63–65, 95, 96]

for M-theory on Calabi-Yau fourfold singularities.
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denoted by χs(r0), are piecewise-linear functions of r0, the slopes of which jump at the

locations of gauge- and flavor- D6-branes. The slope of χs(r0) jumps by 2 when we cross

a gauge D6-brane, and by 1 when we cross a flavor D6-brane. We refer to these functions

as the “IIA profiles”. From plots of these functions, one can infer various properties of the

field theory and geometry. Let us briefly recall the dictionary developed in [10]:16

• Effective Chern-Simons levels : due to the presence of a Wess-Zumino term on the

worldvolume of gauge D6-branes [62], there is an effective 5d Chern-Simons level ks
for a probe D6-brane wrapping an exceptional P1

s. This can be computed directly

from the slope of the IIA profile [10, 65] χs(r0) as follows. First, for every exceptional

curve P1
s, define the asymptotic slopes,

χ′
s,± = lim

r0→±∞
χ′
s(r0) . (2.25)

Then the effective Chern-Simons level ks,eff is given as the negative average of the

asymptotic slopes:

ks,eff = −1

2
(χ′

s,− + χ′
s,+) . (2.26)

This “effective CS level” is in general half-integer, and equals the contact term κ

including half-integer contributions from matter fields, consistent with (2.5).

• W-bosons of the SU(ns) gauge group, given by open strings stretched between two

gauge D6-branes at r0 = ξs,(ai) and r0 = ξs,(aj), have masses:

M(Ws;i,j) = |ξs,(ai) − ξs,(aj)| . (2.27)

• Fundamental hypermultiplets, given by open strings stretched between a gauge D6-

brane wrapping a compact 2-cycle at r0 = ξs,(ai) and a flavor D6-brane wrapping a

non-compact 2-cycle at r0 = ξs,(f), have masses:

M(Hs;i,flavor) = |ξs,(ai) − ξs,(f)| . (2.28)

• Tension of monopole strings, given by the area under the IIA profile between the

locations of two adjacent gauge D6-branes,

Ts,(a) =

∫ ξs,(a+1)

ξs,(a)

dr0 χ(r0) , (2.29)

which must match the first-derivatives of the gauge theory prepotential (2.14) in the

field-theory description.

16In addition, there are bifundamental hypermultiplets for quiver gauge theories realized by open strings

stretched between two gauge D6-branes that wrap adjacent exceptional curves, but we do not encounter

them in this paper.

– 14 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
8

(a) Allowed. (b) Disallowed.

Figure 2. Left: an example of an allowed vertical reduction of a 2d toric diagram, which gives
rise to a resolved A1 singularity visualized by the 1d toric diagram below. Right: an example of a
disallowed vertical reduction, due to the presence of an edge that would collide with either one of
the vertices along the vertical direction under such a reduction.

2.5 Graph-theoretic perspective

The setting described in the previous subsection, especially the criterion in figure 2, strongly

motivates the use of graph-theoretic techniques to study these geometries. In this work, we

implement the idea of associating a graph to a toric diagram under study, with the aim of

exploiting well-known notions and algorithms in the graph-theory literature. We introduce

the relevant terminology briefly in this section, for readers unfamiliar with graph theory,

but we focus only on the few features that are relevant to toric geometry. For comprehensive

reviews and applications, we refer the reader to [97–99] and references therein.

A 2d toric diagram can be represented as an undirected graph (with no loops) in Z2.

A graph G = (V,E) is specified by a set V containing vertices and a set E containing

edges. An edge e ∈ E connecting vertices i, j ∈ V can be specified as a tuple e = (i, j) of

vertices. For an undirected graph, the set of tuples is unordered, i.e. the tuples (i, j) and

(j, i) are considered to be equivalent. Therefore, for an undirected graph, the adjacency

matrix, which is a map from AG : V × V → {0, 1}, defined by

AG(i, j) =

{
1, if ∃ edge e = (i, j) ∈ E

0, otherwise ,
(2.30)

is symmetric. The no loops condition further implies that all diagonal entries are 0, so

it is sufficient to work with the upper (or lower) triangular part of the matrix, which is

specified by |V |(|V |− 1)/2 entries. The adjacency matrix is typically sparse. The spectral

properties of the adjacency matrix contain useful information about the graph. One can

show that the number of edges is given by,

|E| = 1

2
tr(A2

G) . (2.31)

This counts all edges, including the non-compact curves that make up the toric skeleton

(that is, the boundary of the convex hull of V ). A cycle in a graph is defined as a non-empty
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path in which only the first and last path repeat. The number of triangles (3-cycles) in the

toric diagram is given by [100],

N∆ =
1

6
tr(A3

G) . (2.32)

Clearly, a simplex in a toric diagram is a cycle of length 3, but not every cycle of length

3 is a simplex. (Recall that a simplex in toric geometry must have a minimal simplical

volume of 1
2 .)

In graph theory, the “shape” of a graph usually does not matter, only the connectivity

does. However, in toric geometry, the “shape” (up to SL(2,Z) equivalence) does matter,

since the locations of the divisors (vertices) critically dictate whether a given toric diagram

corresponds to a crepant resolution, and also whether or not some curves can flop. In the

previous section, we discussed the “vertical reduction” of the toric diagram. This has a

natural interpretation in graph theory, where different ways of reducing the toric diagram

can be viewed as different instances of an edge reduction. This takes two vertices connected

by an edge and eliminates the edge by mapping both vertices to a third vertex (which can

be regarded as the fusion of the two vertices). Formally, if AG(u, v) = 1 for a pair of

vertices u, v ∈ V (so that they are connected by an edge) and given a third vertex w ∈ V ,

we define a function f : V → V via its action on the vertices of V by,

fu,v,w(x) =

{
x, x ∈ V \ {u, v},
w, if AG(u, v) = 1 and x ∈ {u, v} .

(2.33)

In this language, the allowed vertical reduction of figure 2 corresponds to a sequence of

(vertical) edge reductions such that at each step there is no obstruction due to an internal

edge crossing an internal vertex. This systematizes the study of toric graphs and generalizes

well to higher-rank examples.

A related motivation for viewing a toric diagram as a graph is the fact that different

crepant resolutions (related by flops) differ only in their connectivities and so a combina-

torial enumeration of crepant resolutions translates to a similar enumeration problem for

graphs. The number of crepant resolutions grows very quickly with the rank, and although

we restrict our attention in this paper — for reasons of simplicity and brevity — only to

isolated toric singularities at rank-two, a graph-based enumeration algorithm works even

for nonisolated singularities at rank > 2. It might also be interesting to relate other ideas

from spectral graph theory [98] to toric geometry in the context of studying 5d SCFTs.

These are possible avenues for future work. In the remainder of this paper, we focus on

the isolated toric rank-two case.

3 Rank-two isolated toric CY3 singularities

An exhaustive list of rank-2 toric diagrams, i.e. toric diagrams with 2 interior points, was

given by Xie and Yau in [18], based on earlier work by Wei and Ding [59] which classified

convex polygons with two interior points. Their list consists of 45 singularities, of which

only 10 describe isolated toric singularities, i.e. toric diagrams with no lattice point on the

boundary (except if it is a vertex). These 10 cases are listed in figure 3.
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(a) E0
2,NL (b) E1

2,2 (c) E1
2,1 (d) E1

2,0 (e) E1
2,NL

(f) E2
2, 32 (g) E2

2, 12 (h) E2
2,NL (i) E3

2,1 (j) E3
2,0

Figure 3. The 10 SL(2,Z)-inequivalent isolated toric rank-2 singularities.

The rank-2 singularities X are labeled as:

Ef
2,κeff , (3.1)

where f ≡ E − 3 denotes the rank of the flavor symmetry17 of the theory TX (here E is

the number of external points in the toric diagram), the first superscript (2) denotes the

rank of the singularity (the number of internal points), and the second superscript κeff is

the effective Chern-Simons level when a gauge-theory description exists or is ‘NL’ when

the theory admits no Lagrangian interpretation.

In the remainder of this section, we consider each singularity that admits a gauge the-

ory description, and examine its crepant resolutions, comparing the geometric description

(using the M-theory and the type IIA interpretations) with the gauge-theory description.

Along the way, we comment on various features of each model, including the BPS states

and walls in moduli space, and also remark on resolutions that admit no gauge-theory

interpretation. We use M-theory/type IIA duality to characterize the existence or non-

existence of a “gauge-theory phase” of the resolved toric Calabi-Yau geometry based on

17At the UV fixed point, the flavor symmetry GF is sometimes enhanced to a larger global symmetry

group. However, it is not obvious how the enhanced global symmetry group can be inferred from the

singular geometry X in this approach. However, see footnote 19 for recent work in this direction.
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Gauge-theory phase JKVZ [23] HKLY [25] (p, q)-web here

SU(3)2 F3 ∪ dP1 figure 119 E1
2,2

SU(3)1 F2 ∪ F0 figure 123 E1
2,1

SU(3)0 F1 ∪ dP1 figure 124 E1
2,0

SU(3) 3
2
Nf = 1 F2 ∪ dP2 figure 118 E2

2, 32

SU(3) 1
2
Nf = 1 F1

X1∪ dP2 figure 122 E2
2, 12

SU(3)1 Nf = 2 F1 ∪ dP3 figure 117 E3
2,1

SU(3)0 Nf = 2 Bl1F1
X1∪ dP2 figure 121 E3

2,0

Table 2. Geometries considered in this paper and their descriptions in references [23] and [25].
Here Fn denotes the nth Hirzebruch surface, a degree (−n) fibration of P1 × P1, dPn denotes the
nth del Pezzo surface, and Blk denotes the blow-up in k points. We refer the reader to section
3 of JKVZ [23] and appendices therein, for explanations of the gluing terminology in the second
column. The figure numbers in the third column are (p, q)-web diagrams in [25] corresponding to
the geometries in figure 11, listed in the fourth column.

whether or not the toric diagram admits a vertical reduction as explained in the previous

section.18

Comparison with the literature. As explained below, the resolutions of seven of the

ten rank-2 isolated toric singularities of figure 3 describe the Coulomb branches of rank-2

five-dimensional gauge theories with gauge group SU(3) and varying Chern-Simons lev-

els and flavors. The models we consider here have appeared in the literature on five-

dimensional dualities, notably in [23] (referred to as JKVZ below) and [25] (referred to

as HKLY below). Additionally, [31–35] have focused on the classification of 5d SCFTs

treating the gauge theory phases as relevant deformations of the UV fixed point, with a

view to connect 5d SCFTs to 6d SCFTs described by F-theory compactifications. Our goal

here is not to classify SCFTs but to apply the methods developed in [10] to study the mass

deformations of a subset of models which are described by isolated toric CY3 singularities.

As a guide to the reader, table 2 translates between our terminology for the geometries

in this paper and the terminology of JKVZ, and the corresponding five-brane web diagrams

in HKLY. Since the CY3 geometries we consider are toric, we study the mass deformations

in geometry by using toric diagrams for the resolved CY3 singularities, rather than (p, q)-

web diagrams. However, a large number of geometries considered in [23, 25, 31–35] are

non-toric. Whenever a Type IIB brane picture consisting of (p, q) five-branes exists, (p, q)-

webs are still good descriptions as used in HKLY [25], but it is not immediately obvious

what the “dual diagram” of such a (non-toric) web might be. We leave this question for

future work. Another caveat is that even within the toric realm, we focus on isolated

18Another approach [6, 23] is to find a ruling of the exceptional set π−1(0) ⊂ X̂, that is, a set of surfaces

E which have the form of a fibration of P1 over a curve C (i.e. P1 ↪→ E → C), such that M2-branes wrapping

C are identified with W-bosons.
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singularities because for such singularities, the number of crepant resolutions is equal to

the number of gauge-theory chambers (whenever a gauge-theory interpretation exists).

This is why table 2 has only seven entries. Recall from section 2.4 that the Type IIA

interpretation of an M-theory Calabi-Yau geometry exists as long as the Calabi-Yau has

(at least) a U(1) isometry [10]. So, we can indeed still apply the techniques of this paper

to study non-isolated toric singularities and obtain their Type IIA descriptions, but we

will have to contend with relinquishing the one-to-one correspondence between gauge-

theory chambers and crepant resolutions in that case. Some discussion of nonisolated

singularities using these techniques already appeared in [10], so we will not revisit those

issues here. But it is worth mentioning that [32, 33] do examine models that could be

engineered using resolutions of nonisolated singularities. Their approach is based on an

object called the Combined Fiber Diagram (also a graph, albeit a different kind than

the toric graph of this paper), which among other things, also encodes the superconformal

flavor symmetry. In their approach, transitions between such diagrams contain information

about mass deformations that trigger flows between 5d SCFTs.

The focus of the present work by contrast, is to analyze all mass deformations (which

may or may not admit a gauge-theory interpretation) of a 5d SCFT engineered by a given

rank-2 isolated toric singularity, and discuss RG flows between different mass deformations

(crepant resolutions) and also between crepant resolutions of different singularities (i.e.

between mass deformations of different parent UV SCFTs). The restriction to isolated toric

singularities confines us generically to quiver gauge theories with SU gauge groups, which is

admittedly a limited class of examples. To this end, we are interested in the regime in which

all mass deformations (dynamical Kähler moduli and non-dynamical Kähler deformations)

are turned on, so that the prepotential is a function of not just the Coulomb vevs but

of all mass deformations. In other words, we are rarely probing the conformal point and

are mostly interested in physics away from it. In [10] this motivated the need to slightly

modify the IMS prepotential, as also discussed in section 2.2 of this paper. As explained

there, this modifies the parametrization between geometry and field theory. However, in

probing the Coulomb branch of the SCFT from the perspective of geometry, one sets all

mass deformations to zero, so the SCFT Coulomb branch prepotential — which enters the

analysis in [23, 26, 27, 34, 35] — is unaffected, since terms in the cubic prepotential that

are quadratic in Coulomb vevs necessarily involve linear powers of mass deformations, and

such terms are killed on flowing to the SCFT Coulomb branch. Therefore, the classification

program of 5d SCFTs as outlined in these papers is unaffected by such considerations. On

the other hand, here we follow [10] and work with the full cubic polynomial prepotential.19

Non-gauge-theoretic singularities. Before proceeding, let us comment on the non-

gauge-theoretic singularities Eℓ
2,NL for ℓ = 0, 1, 2, which admit no vertical reduction. Let

19A few weeks after this paper appeared on the arXiv, HKLY uploaded their work [101], where a “com-

plete” prepotential for 5d N = 1 SCFTs is proposed, based on the modified prepotential introduced in [10].

In this approach, one can read off the enhanced global symmetry by writing the prepotential in terms of

certain invariant Coulomb branch parameters. It will be interesting to extend their analysis to higher-rank

theories.
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C (Eℓ
2,NL) denote the set of crepant resolutions of Eℓ

2,NL, with a typical crepant resolution

denoted by Rℓ
NL ∈ C (Eℓ

2,NL). Also, let C (2)
vert be the space of all rank-2 crepant resolutions

that admit a vertical reduction. There is a natural action of g ∈ SL(2,Z) action on every

Rℓ, denoted by g ·Rℓ (this simply applies an SL(2,Z) transformation given by g on the toric

vertices of Rℓ). The fact that these singularities are non-gauge-theoretic is equivalent to

saying that there exists no SL(2,Z) transformation that yields a resolution with a vertical

reduction:

∀ g ∈ SL(2,Z) and ∀ Rℓ
NL ∈ C (Eℓ

2,NL) , g · Rℓ
NL /∈ C (2)

vert, for ℓ = 0, 1, 2 . (3.2)

The E2
2,NL and E3

3,NL singularities each admit an interpretation as a gauge theory coupled

to a “non-Lagrangian sector,” due to the existence of a ruling (see footnote 18). But E0
2,NL

does not admit such a ruling. (In this case, a ruling is equivalent to having a line with three

points.) In fact, resolutions of these non-gauge-theoretic singularities can be arrived at by

starting from resolutions of gauge-theoretic singularities Eℓ
2,κeff (that is, the singularities

whose crepant resolutions do admit a gauge theory interpretation) by a combination of

flop transitions followed by decoupling divisors in the geometry by sending the volumes

of certain compact curves to infinity. We interpret this as a “generalized renormalization

group (RG) flow,” in the extended parameter space of the Calabi-Yau geometry.

Parity. Parity P acts on the toric diagram by the application of the central element

C0 = S2 ∈ SL(2,Z). If the effective Chern-Simons level keff of a gauge-theory phase

vanishes, the toric diagram is P-invariant. In figure 1, this action of parity on the gauge-

theory phases is indicated by arrows relating various geometries. Note that parity flips the

sign of the effective Chern-Simons level keff.

RG flows at rank-two. As we remark in more detail in various examples below and as

also mentioned in the introduction, there are many RG flows that relate different geometries

and field theories. The crucial point to note here is that stating from the two singularities

labeled E3
2,1 and E3

2,0 one can recover all isolated toric singularities of rank-two shown

in figure 3, by a combination of flops and divisor decouplings, which we refer to as RG

flow. For example, figure 1 already shows how the various rank-2 gauge-theory phases arise

starting from these bigger geometries.

Vertical reductions. For every toric rank-two singularity of figure 3 that admits a

crepant resolution with a vertical reduction (that is, whenever a gauge-theory phase exists),

the type IIA geometry takes the form of a resolved A1 singularity fibered over the x9 = r0
direction, with a set of D6-branes wrapping the exceptional P1s in the resolution. The

fibration, as discussed in section 2.4, is characterized by a piecewise linear function χ(r0),

the precise form of which depends on the specific details of the resolution. We refer to this

function loosely as the “IIA profile”. For a review of the vertical reduction method, see [10].

Recall that the vertical reduction is defined by the choice of an auxiliary “U(1)M line” in

the GLSM charge matrix, which specifies a redundant parametrization of the GLSM. The

integer charges QM
i (i = 1, . . . , n, where n is the number of toric vertices) of this line are

required to satisfy
∑n

i=1Q
M
i = 0 and

∑n
i=1w

y
i Q

M
i = 1 where w = (wx

i , w
y
i ) ∈ Z2 are the

– 20 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
8

E1

E2

D3

D2

D1

D4

C2

C5 C4

C3

C1

C6

C7

(a)

E1

E2

D3

D2

D1

D4

C2

C5 C4

C3

C1

C6

C7

(b)

Figure 4. The two crepant resolutions of the E1
2,2 singularity. Resolution (a) admits a vertical

reduction.

coordinates of the toric vertices. In all the geometries considered in this paper, the nonzero

U(1)M charges satisfying these conditions are given by QM
E1

= −1 and QM
E2

= 1 (and

QM
i = 0 for i ̸= E1,E2), where E1,2 denote the two compact divisors in any rank-two toric

diagram (which are the two interior points). In every case, we begin by briefly outlining

the toric geometry, listing the linear relations among divisors and curve classes, the GLSM

charge matrix, the intersection numbers, and the geometric prepotential, followed by an

analysis of the IIA profile leading to a map between geometry and field theory parameters.

To keep the discussion brief, we spell out only the relevant details.

3.1 The E1
2,2 singularity and SU(3)2 gauge theory

In this section, we consider the E1
2,2 singularity of figure 3(b). There are two crepant res-

olutions, shown in figure 4, related by a flop of the curve C4. Let us focus on resolution (a).

There are four non-compact toric divisors Di (i = 1, . . . , 4), and two compact toric diviors

E1 and E2 with the following linear relations:

D2 ≃ D4 , E1 ≃ D1 − 3D2 − 2D3 , E2 ≃ −2D1 +D2 +D3 . (3.3)

The curves C are given as intersections of pairs of divisors according to:

C1 = E2 ·D1 , C2 = E1 ·D2 , C3 = E2 ·D2 , C4 = E1 ·D3 ,

C5 = E1 ·D4 , C6 = E2 ·D4 , C7 = E2 ·E1 .
(3.4)

The linear relations among curve classes are

C1 ≃ C2 + 3C3 + C4 , C5 ≃ C2 , C6 ≃ C3 , C7 ≃ C2 + C4 . (3.5)
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We may take {C2, C3, C4} as generators of the Mori cone. Thus, the GLSM charge matrix is:

D1 D2 D3 D4 E1 E2 vol(C)
C2 0 0 1 0 −2 1 ξ2
C3 1 0 0 0 1 −2 ξ3
C4 0 1 −1 1 −1 0 ξ4

U(1)M 0 0 0 0 −1 1 r0

(3.6)

The FI terms ξ2 ≥ 0, ξ3 ≥ 0, and ξ4 ≥ 0 are, respectively, the volumes of the compact

curves C2, C3 and C4. In (3.6) we have shown also the last line (“U(1)M line”) which defines

the GLSM of the vertical reduction, which we shall describe shortly.

Geometric prepotential. The geometric prepotential can be computed from M-theory

as follows. The Kähler cone can be parametrized by

S = µ4D4 + ν1E1 + νE2 . (3.7)

By (2.19) the parameters (µ1, ν1, ν2) are related to the FI parameters as:

ξ2 = −2ν1 + ν2 ≥ 0 , ξ3 = ν1 − 2ν2 ≥ 0 , ξ4 = µ4 − ν1 ≥ 0 . (3.8)

Using the charge matrix (the entries of which immediately give the intersection numbers be-

tween divisors and curves) and the linear equivalences among divisors, it is straightforward

to compute the relevant triple-intersection numbers:

D4E1E2 = 1 , D2
4E1 = 0 , D2

4E2 = 0 , D4E
2
1 = −2 , D4E

2
2 = −2 ,

E2
1E2 = −3 , E1E

2
2 = 1 , E3

1 = 8 , E3
2 = 8 .

(3.9)

The value of D3
4, the triple-intersection number for the noncompact divisor is ambiguous

and regulator-dependent. Its coefficient, µ4, does not depend on Coulomb moduli (and

thus its value does not affect subsequent analysis of BPS states), so we may as well drop

this term.20 The compact part of the prepotential (i.e. D3
4-independent part) is determined

to be:

F(ν1, ν2;µ4) = −1

6
S3 = −4

3
(ν31 + ν32) +

3

2
ν21ν2 −

1

2
ν1ν

2
2 − µ4ν1ν2 + µ4(ν

2
1 + ν22) . (3.10)

To relate to the non-abelian gauge theory description, we need to discuss the type-IIA

string theory reduction of this geometry.

Type IIA reduction and gauge theory description. The vertical reduction of the

toric diagram of figure 4(a) is represented in the GLSM approach via the U(1)M charges in

the last line of (3.6). The type IIA string background is a resolved A1 singularity fibered

over the x9 = r0 direction. The four vertical points in the toric diagram give rise to three

D6-branes wrapping the exceptional P1 in the resolved A1 singularity. This yields an SU(3)

gauge theory, as we explain below.

20The regulator dependence was explored and discussed in some detail in [10], where a method based on

the Jeffrey-Kirwan residue was proposed to compute it.
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Figure 5. Resolution (a) of the E1
2,2 singularity and its vertical reduction.

The volume of the exceptional P1 varies as a function of r0, and is denoted by χ(r0).

This is a piecewise-linear function, which is determined to be:

χ(r0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−5r0 + ξ2 − 2ξ3 + ξ4, for r0 ≤ −ξ3
−3r0 + ξ2 + ξ4, for − ξ3 ≤ r0 ≤ 0

−r0 + ξ2 + ξ4, for 0 ≤ r0 ≤ ξ2
+r0 − ξ2 + ξ4, for r0 ≥ ξ2 .

(3.11)

From a sketch of this function, shown in figure 5(b), we can infer several features of the

geometry. First of all, at each of the three kinks of the function where the slope changes

by 2, namely, at r0 = −ξ3, r0 = 0 and r0 = +ξ2, there is a gauge D6-brane. When ξ2 and

ξ3 are zero, the three wrapped D6-branes realize a 5d SU(3) gauge group at r0 = 0. The

inverse coupling of the SU(3) gauge group is given by the size of the P1 at r0 = 0, which is

h0 = ξ4 when ξ2 = ξ3 = 0. The effective Chern-Simons level is given by (2.26), which yields:

κs,eff = −1

2
(1− 5) = +2 . (3.12)

Using (A.3), the gauge theory prepotential for SU(3)k=2 gauge theory is given by:

FSU(3)k=2
= h0(ϕ

2
1 + ϕ2

2 − ϕ1ϕ2) +
1

2
ϕ2
1ϕ2 −

3

2
ϕ1ϕ

2
2 +

4

3
(ϕ3

1 + ϕ3
2) . (3.13)

Finite FI parameters (i.e. finite volumes of the compact curves in the toric diagram) cor-

respond to separating the D6-branes along the r0 direction, which is equivalent to flowing

onto the Coulomb branch. Open strings stretched between the gauge D6-branes yield W-

bosons and their superpartners. In this case, the simple root W-bosons have masses given

by (2.27), which yields,

M(W1) = 2ϕ2 − ϕ1 = ξ2 , M(W2) = 2ϕ1 − ϕ2 = ξ3 . (3.14)

We note the appearance of the Cartan matrix of su(3) in the field-theoretic expressions for

the W-boson masses, consistent with (2.12).
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Instantons are engineered by D2-branes wrapping the gauge D6-branes, i.e. D2-branes

wrapping the D6-branes at r0 = −ξ3, r0 = 0 and r0 = ξ2. These states have masses given

by the volumes of the exceptional P1’s at these values of r0:

M(I1) = h0 + ϕ2 = ξ4 ,

M(I2) = h0 − ϕ1 + 3ϕ2 = ξ2 + ξ4 ,

M(I3) = h0 + 5ϕ1 = ξ2 + 3ξ3 + ξ4 .

(3.15)

The field-theoretic expressions for the instanton masses can be obtained using (A.1). We

note that I1 is the instanton state of lowest mass, whereas the other instanton states can

be viewed as bound states of this “elementary instanton” with other perturbative particles,

e.g. M(I2) = M(I1) +M(W2), M(I3) = M(I1) +M(W1) +M(W2), etc.

Using the expressions for the Kähler volumes of the curves in terms of the FI terms (3.8)

and the expressions for the W-boson and instanton masses, we can complete the map

between geometric quantities and field theory quantities. Specifically, we find:

µ1 = −3h0 , ν1 = −h0 − ϕ2 , ν2 = −2h0 − ϕ1 . (3.16)

Plugging (3.16) into (3.10), we find that the geometric prepotential (3.10) indeed matches

the field theory prepotential (3.13).

As a final consistency check, we can compute the monopole string tensions from field

theory via the first derivatives of the prepotential with respect to the Coulomb moduli

(cf. (2.14)). Using (3.13), these are:

T1,ft =
∂FSU(3)2

∂ϕ1
= 2h0ϕ1 + 4ϕ2

1 − h0ϕ2 + ϕ1ϕ2 −
3ϕ2

2

2
, (3.17)

T2,ft =
∂FSU(3)2

∂ϕ2
= −h0ϕ1 +

1

2
ϕ2
1 + 2h0ϕ2 − 3ϕ1ϕ2 + 4ϕ2

2 , (3.18)

whereas from geometry, these are given by the area under the χ(r0) curve between the

locations of gauge D6-branes (cf. (2.29)):

T1,geo=

∫ 0

−ξ3

χ(r0)dr0= ξ3

(
3

2
ξ3+ξ2+ξ4

)
, T2,geo=

∫ ξ2

0
χ(r0)dr0= ξ2

(
1

2
ξ2+ξ4

)
. (3.19)

Using the map ξ2 = 2ϕ2 − ϕ1, ξ3 = 2ϕ1 − ϕ2 and ξ4 = h0 + ϕ2, we find that Ti,geo = Ti,ft

for i = 1, 2.

Magnetic walls. The tensions vanish at the loci defined by:

(I) : {ξ3 = 0} ∪
{
3

2
ξ3 + ξ2 + ξ4 = 0

}
, and, (II) : {ξ2 = 0} ∪

{
1

2
ξ2 + ξ4 = 0

}
. (3.20)

The loci {ξ3 = 0} ⊂ (I) and {ξ2 = 0} ⊂ (II), respectively correspond to hard walls along

which the W-bosons W2 and W1 become massles. The loci {3
2ξ3 + ξ2 + ξ4 = 0} ⊂ (I) and

{1
2ξ2 + ξ4 = 0} ⊂ (II) are not part of the Kähler chamber of this resolution. So there are

no magnetic walls. But away from hard walls, the BPS instanton I1 can become massless

at ξ4 = 0 (corresponding to a flop of the curve C4), resulting in a traversable instantonic

wall. In this case, the theory flows to a chamber (resolution (b)) that does not have a

gauge theory interpretation.
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Figure 6. Decoupling the divisorD3 leads to the unique crepant resolution of the E0
2,NL singularity.

Parity. Since the effective Chern-Simons level (3.12) is nonvanishing, the theory breaks

parity. This is consistent with the fact that the toric diagram of E1
2,2 is not invariant

under C0 = S2, the central element of SL(2,Z).

Resolution (b) and RG flow. Resolution (b) of the E1
2,2 singularity, shown in

figure 4(b), can be obtained by a flop of the instantonic curve C4 in resolution (a). It

does not admit a vertical reduction. This is consistent with the fact that the SU(3)2 gauge

theory has only one chamber that is geometrically engineered by resolution (a). However,

note that in this resolution, one can decouple the divisor D3 by sending the volume of the

curve C4 to infinity as shown in figure 6. This leads to the SL(2,Z)-transformed version

of the unique crepant singularity of the E0
2,NL singularity (see figure 3(a)). We interpret

this decoupling as a generalized renormalization group (RG) flow in the extended param-

eter space of the geometry. Physically, this amounts to sending the mass of the instanton

particle I1 in the gauge theory description of resolution (a) to zero (signaling a flop of C4)
and then blowing it up (in the opposite direction) in the Kähler cone of resolution (b), by

sending the coupling to infinity. As we will see in subsequent examples, such a generalized

RG flow, which involves some combination of flops (which are reversible operations) and

decouplings (which are not reversible), frequently relates theories obtained by resolutions

of distinct isolated toric singularities. In terms of geometry, one can “flow” to a toric dia-

gram with fewer external points. Since the rank of the flavor symmetry is f = E−3 where

E is the number of external points, such a flow reduces the flavor symmetry of the theory.

This parallels the field-theoretic operation of integrating out massive degrees of freedom.

3.2 The E1
2,1 singularity and SU(3)1 gauge theory

This geometry has exactly one crepant resolution, shown in figure 7. The linear relations

among divisors are:

D4 ≃ D2 , E1 ≃ D1 − 2D2 − 2D3 , E2 ≃ −2D1 +D3 . (3.21)
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Figure 7. The unique crepant resolution of the E1
2,1 singularity. This admits a vertical reduction.

The compact curves C are given by the intersection pairings of the divisors they connect in

the toric diagram (for example, C1 = E2 ·D1, C7 = E2 ·E1 etc.), and can be read off from

the toric diagram. The linear relations among curve classes are:

C1 ≃ 2C3 + C4 , C5 ≃ C2 , C6 ≃ C3 , C7 ≃ C4 . (3.22)

We take {C2, C3, C4} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 E1 E2 vol(C)
C2 0 0 1 0 −2 1 ξ2
C3 1 0 0 0 1 −2 ξ3
C4 0 1 0 1 −2 0 ξ4

U(1)M 0 0 0 0 −1 1 r0

(3.23)

Geometric prepotential. We parametrize the Kähler cone by S = µ4D4+ν1E1+ν2E2.

The parameters (µ4, ν1, ν2) are related to the FI parameters as:

ξ2 = −2ν1 + ν2 ≥ 0 , ξ3 = ν1 − 2ν2 ≥ 0 , ξ4 = µ4 − 2ν1 ≥ 0 . (3.24)

The relevant triple-intersection numbers are:

D4E1E2 = 1 , D2
4E1 = 0 , D2

4E2 = 0 , D4E
2
1 = −2 , D4E

2
2 = −2 ,

E2
1E2 = −2 , E1E

2
2 = 0 , E3

1 = 8 , E3
2 = 8 .

(3.25)

So the compact part of the prepotential is:

F(ν1, ν2;µ4) = −1

6
S3 = −4

3
ν31 − 4

3
ν32 + ν21ν2 + µ4(ν

2
1 + ν22 − ν1ν2) . (3.26)
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Figure 8. Resolution (a) of the E1
2,1 singularity and its vertical reduction.

Type IIA reduction and gauge theory description. The type IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−4r0 − 2ξ3 + ξ4, for r0 ≤ −ξ3
−2r0 + ξ4, for − ξ3 ≤ r0 ≤ 0

ξ4, for 0 ≤ r0 ≤ ξ2
+2r0 − 2ξ2 + ξ4, for r0 ≥ ξ2 .

(3.27)

This function is sketched in figure 8(b). At the points r0 = −ξ3, r0 = 0 and r0 = ξ2,

there are gauge D6-branes wrapping exceptional P1’s. When ξ2 = ξ3 = 0, the three gauged

D6-branes wrapping the exceptional P1 at r0 = 0 engineer an SU(3) gauge theory with

gauge coupling h0 = ξ4. The effective CS level is given by κs,eff = −1
2(−4 + 2) = +1.

Using (A.3), the prepotential for the SU(3)k=1 gauge theory is given by:

FSU(3)1 = h0(ϕ
2
1 + ϕ2

2 − ϕ1ϕ2)− ϕ1ϕ
2
2 +

4

3
(ϕ3

1 + ϕ3
2) . (3.28)

The simple-root W-bosons have masses given by:

M(W1) = 2ϕ2 − ϕ1 = ξ2 , M(W2) = 2ϕ1 − ϕ2 = ξ3 , (3.29)

whereas the instantons have masses given by:

M(I1) = h0 + 4ϕ1 = 2ξ3 + ξ4 , M(I2) = M(I3) = h0 + 2ϕ2 = ξ4 . (3.30)

From the Kähler volumes (3.24) and the masses of W-bosons and instantons, we find:

µ4 = h0 , ν1 = −ϕ2 , ν2 = −ϕ1 . (3.31)

Plugging (3.31) into (3.26), we recover the field theory prepotential (3.28).

The monopole string tensions from field theory are given by:

T1,ft =
∂FSU(3)1

∂ϕ1
= 4ϕ2

1 + h0(2ϕ1 − ϕ2)− 2ϕ1ϕ2 , (3.32)

T2,ft =
∂FSU(3)1

∂ϕ2
= 4ϕ2

2 + h0(2ϕ2 − ϕ1)− ϕ2
1 , (3.33)
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Figure 9. The two resolutions of the E1
2,0 singularity. Resolution (a) admits a vertical reduction.

whereas from geometry, they are given by:

T1,geo =

∫ 0

−ξ3

χ(r0) dr0 = ξ3(ξ3 + ξ4) , T2,geo =

∫ ξ2

0
χ(r0) dr0 = ξ2ξ4 . (3.34)

Using the map ξ2 = 2ϕ2 − ϕ1, ξ3 = 2ϕ1 − ϕ2 and ξ4 = h0 + 2ϕ2, we find that indeed

Ti,geo = Ti,ft for i = 1, 2. The tensions vanish along hard-walls where the W-bosons W1 or

W2 become massless, or along the hard instanton wall ξ4 = 0 where the instanton I2 would

become massless, which is not possible in this Kähler chamber (the corresponding curve C4
cannot flop in this geometry). There are no walls in this geometry, except the hard walls

along the boundary of the Kähler cone.

3.3 The E1
2,0 singularity and SU(3)0 gauge theory

This geometry has two crepant resolutions, shown in figure 9, related by a flop of the curve

C7. Only resolution (a) admits a vertical reduction, so we consider it first. The linear

relations among divisors are:

D2 ≃ D4 , E1 ≃ D1 −D2 − 2D3 , E2 ≃ −2D1 −D2 +D3 . (3.35)

The linear relations among curve classes are:

C1 ≃ C3 + C7 , C4 ≃ C2 + C7 , C5 ≃ C2 , C6 ≃ C3 . (3.36)

We take {C2, C3, C7} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 E1 E2 vol(C)
C2 0 0 1 0 −2 1 ξ2
C3 1 0 0 0 1 −2 ξ3
C7 0 1 0 1 −1 −1 ξ7

U(1)M 0 0 0 0 −1 1 r0

(3.37)
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Figure 10. Resolution (a) of the E1
2,0 singularity and its vertical reduction.

Geometric prepotential. We parameterize the Kähler cone by S = µ4D4+ν1E1+ν2E2.

The parameters (µ4, ν1, ν2) are related to the FI parameters by

ξ2 = −2ν1 + ν2 ≥ 0 , ξ3 = ν1 − 2ν2 ≥ 0 , ξ7 = µ4 − ν1 − ν2 ≥ 0 . (3.38)

The relevant triple-intersection numbers are:

D4E1E2 = 1 , D2
4E1 = 0 , D2

4E2 = 0 , D4E
2
1 = −2 , D4E

2
2 = −2 ,

E2
1E2 = −1 , E1E

2
2 = −1 , E3

1 = 8 , E3
2 = 8 .

(3.39)

Therefore, the compact part of the prepotential is determined to be:

F(ν1, ν2;µ4) = −1

6
S3 = −4

3
(ν31 + ν32) +

1

2
(ν21ν2 + ν1ν

2
2) + µ4(ν

2
1 + ν22 − ν1ν2) . (3.40)

Type IIA reduction and gauge theory description. The IIA profile function is:

χ(r0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−3r0 − 2ξ3 + ξ7, for r0 ≤ −ξ3
−r0 + ξ7, for − ξ3 ≤ r0 ≤ 0

+r0 + ξ7, for 0 ≤ r0 ≤ ξ2
+3r0 − 2ξ2 + ξ7, for r0 ≥ ξ2 .

(3.41)

This function is sketched in figure 10, where we have chosen ξ2 > ξ3 without loss of

generality to plot the function. At the points r0 = −ξ3, r0 = 0 and r0 = ξ2, there are

gauge D6-branes wrapping exceptional P1’s in the resolution of the singularity. When

ξ2 = ξ3 = 0, an SU(3) gauge theory is realized with gauge coupling h0 = ξ7. The effective

Chern-Simons level now vanishes: κs,eff = −1
2(−3 + 3) = 0. Using (A.3), the prepotential

for the SU(3)k=0 gauge theory is given by:

FSU(3)0 =
4

3
(ϕ3

1 + ϕ3
2)−

1

2
(ϕ2

1ϕ2 + ϕ1ϕ
2
2) + h0(ϕ

2
1 + ϕ2

2 − ϕ1ϕ2) . (3.42)

– 29 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
8

The simple-root W-bosons have massses given by:

M(W1) = 2ϕ2 − ϕ1 = ξ2 , M(W2) = 2ϕ1 − ϕ2 = ξ3 , (3.43)

whereas the instantons have masses given by:

M(I1) = h0 + ϕ1 + ϕ2 = ξ7 ,M(I2) = h0 + 3ϕ2 = ξ2 + ξ7 ,M(I3) = h0 + 3ϕ1 = ξ3 + ξ7 .

(3.44)

From the Kähler volumes (3.38) of the compact curves and the masses of W-bosons and

instantons, the map between geometry and field theory is determined to be:

µ4 = h0, ν1 = −ϕ2, ν2 = −ϕ1 . (3.45)

Plugging (3.45) into (3.40), we recover the field theory prepotential (3.42), up to ϕ-

independent terms.

The monopole string tensions in field theory are given by:

T1,ft =
∂FSU(3)0

∂ϕ1
= 4ϕ2

1 + h0(2ϕ1 − ϕ2)− ϕ1ϕ2 −
1

2
ϕ2
2 , (3.46)

T2,ft =
∂FSU(3)0

∂ϕ2
= 4ϕ2

2 + h0(2ϕ2 − ϕ1)− ϕ1ϕ2 , (3.47)

whereas from geometry, they are given by:

T1,geo =

∫ 0

−ξ3

χ(r0) dr0 =
1

2
ξ3(ξ3 + 2ξ7) , T2,geo =

∫ ξ2

0
χ(r0) dr0 =

1

2
ξ2(ξ2 + 2ξ7) . (3.48)

Using the map ξ2 = 2ϕ2 − ϕ1, ξ3 = 2ϕ1 − ϕ2 and ξ7 = h0 + ϕ1 + ϕ2, we find that

Ti,geo = Ti,ft for i = 1, 2. The vanishing tension loci {xi3 = 0} and {xi2 = 0} respectively

correspond to hard walls where the W-bosons W2 and W1 become massless, whereas the

loci {ξ3 + 2ξ7 = 0} and {ξ2 + 2ξ7 = 0} do not belong to the Kähler chamber of this

resolution. Away from any hard wall, the instanton particle I1 can become massless at

ξ7 = 0 (signaling a flop of the curve C7). This is a traversable instantonic wall, crossing

which leads to a non-gauge-theoretic chamber (resolution (b)).

Parity. The effective Chern-Simons level vanishes, as observed above, and so the theory

conserves parity. This is reflected by the symmetry of the toric diagram under the central

element C0 = S2 ⊂ SL(2,Z).

Resolution (b). We remark that resolution (b) of the E1
2,0, upon an SL(2,Z) transfor-

mation, is seen to represent a coupling of two rank-1 E0 non-Lagrangian singularities [1, 10]

(cf. the discussion around figure 27).

3.4 The E2
2,32 singularity and SU(3) 3

2
Nf = 1 gauge theory

The E2
2, 32 singularity (figure 3(f)) admits 7 crepant resolutions, shown in figures 11. The

first four resolutions, figure 11(a)–11(d), admit vertical reductions to type IIA, which corre-

spond to chambers of the SU(3) 3
2
Nf = 1 gauge theory, as we illustrate below. Resolutions

(e), (f), and (g) do not admit a gauge-theory interpretation.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 11. The 7 crepant singularities of the E2
2, 32 singularity. The first four, (a)-(d) admit a

vertical reduction, corresponding to chambers of the SU(3) 3
2
Nf = 1 gauge theory.
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D4D5
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D2

D1

C8

C4

C6C7

C5

C3

C2

C1

(a) (b)

Figure 12. Resolution (a) of the E2
2, 32 singularity and its vertical reduction.

Resolution (a). Consider the crepant resolution of figure 11(a), with curves and divisors

shown in figure 12(a). There are five non-compact toric divisors Di (i = 1, . . . , 5), and two

compact toric divisors E1 and E2 with the following linear relations:

D1 ≃ D3 +D4 , E1 ≃ D2 − 2D3 − 3D4 − 2D5 , E2 ≃ −2D2 +D4 +D5 . (3.49)
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The linear relations among curve classes are:

C1 ≃ C4 + C6 , C3 ≃ 2C2 + C6 + C7 , C5 ≃ C2 . (3.50)

We take {C2, C4, C6, C7} as generators of the Mori cone.

The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 vol(C)
C2 0 1 0 0 0 1 −2 ξ2
C4 0 0 −1 1 0 −1 1 ξ4
C6 0 0 1 −1 1 −1 0 ξ6
C7 1 0 0 1 −1 −1 0 ξ7

U(1)M 0 0 0 0 0 −1 1 r0

(3.51)

Geometric prepotential. We parametrize the Kähler cone by:

S = µ1D1 + µ2D2 + ν1E1 + ν2E2 . (3.52)

The parameters (µ1, µ2, ν1, ν2) are related to the FI parameters by:

ξ2 = µ2 + ν1 − 2ν2 ≥ 0, ξ4 = −ν1 + ν2 ≥ 0, ξ6 = −ν1 ≥ 0, ξ7 = µ1 − ν1 ≥ 0 . (3.53)

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −4 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 2 ,

E2
1E2 = −2 , E1E

2
2 = 0 , E3

1 = 7 , E3
2 = 8 .

(3.54)

Therefore, the compact part of the prepotential is:

F(a)(ν1, ν2;µ1, µ2) = −1

6
S3 = −7

6
ν31 − 4

3
ν32 + ν21ν2 + µ1ν

2
1 − µ1ν1ν2 + (µ1 + 2µ2)ν

2
2

− µ2
2ν2 − µ1µ2ν2 . (3.55)

Type IIA reduction and gauge theory description. The type IIA background is

a resolved A1 singularity fibered over the x9 = r0 direction. There are three D6-branes

wrapping the exceptional P1 in the resolved A1 singularity, resulting in an SU(3) gauge

theory. There is also a D6-brane wrapping a noncompact divisor in the resolved ALE

space, which corresponds to one fundamental flavor. The volume of the exceptional P1 is

given by the following piecewise linear function:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−4r0 − 2ξ2 + ξ6 + ξ7, for r0 ≤ −ξ2
−2r0 + ξ6 + ξ7, for − ξ2 ≤ r0 ≤ 0

ξ6 + ξ7, for 0 ≤ r0 ≤ ξ4
−r0 + ξ4 + ξ6 + ξ7, for ξ4 ≤ r0 ≤ ξ4 + ξ6
+r0 − ξ4 − ξ6 + ξ7, for r0 ≥ ξ4 + ξ6 .

(3.56)

– 32 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
8

This function is sketched in figure 12(b). At the points r0 = −ξ2, r0 = 0 and r0 = ξ4 + ξ6,

there are gauge D6-branes wrapping P1’s in the resolution of the singularity. When ξ2 =

ξ4 = ξ6 = 0, an SU(3) gauge theory is realized with coupling h0 = ξ7. There is a flavor

D6-brane at r0 = ξ4. The effective Chern-Simons level is given by κs,eff = −1
2(−4+1) = 3

2 ,

which is interpreted as a bare CS level of 2 plus the contribution −1
2 due to the single

hypermultiplet (cf. (2.5)). The simple-root W-bosons have masses given by:

M(W1) = ξ2 = 2ϕ1 − ϕ2 , M(W2) = ξ4 + ξ6 = 2ϕ2 − ϕ1 . (3.57)

This resolution corresponds to gauge theory chamber 3 (cf. table 5 and (A.7)), with in-

stanton masses given by:

M(I1) = χ(r0 = −ξ2) = 2ξ2 + ξ6 + ξ7 = h0 + 4ϕ1 −m,

M(I2) = χ(r0 = 0) = ξ6 + ξ7 = h0 + 2ϕ2 −m,

M(I3) = χ(r0 = ξ4 + ξ6) = ξ7 = h0 + ϕ2 .

(3.58)

The masses of hypermultiplets (due to open strings stretched between gauge and flavor

branes) are:

M(H1) = ξ6 = ϕ2 −m, M(H2) = ξ4 = −ϕ1 + ϕ2 +m, M(H3) = ξ2 + ξ4 = ϕ1 +m.

(3.59)

From the Kähler volumes (3.53) of the compact curves and masses of W-bosons and in-

stantons, the map between geometry and field theory variables is determined to be:

µ1 = h0 +m, µ2 = 3m, ν1 = −ϕ2 +m, ν2 = −ϕ1 + 2m. (3.60)

Plugging (3.60) into (3.55), we recover the field theory prepotential,

Fchamber 3
SU(3)2,Nf=1 =

4

3
ϕ3
1 +

7

6
ϕ3
2 − ϕ1ϕ

2
2 +

(
h0 −

m

2

)
ϕ2
1 + h0ϕ

2
2 − h0ϕ1ϕ2 −

m2

2
ϕ1 , (3.61)

up to ϕ-independent terms (i.e. terms independent of ϕ1 and ϕ2, as discussed in previous

examples). From field theory, the monopole string tensions are given by:

T1,ft =
∂Fchamber 3

SU(3)2,Nf=1

∂ϕ1
= 4ϕ2

1 + 2(h0 −m)ϕ1 + (m− h0)ϕ2 − ϕ2
2 , (3.62)

T2,ft =
∂Fchamber 3

SU(3)2,Nf=1

∂ϕ2
=

7

2
ϕ2
2 + (m− h0)ϕ1 + (2h0 −m)ϕ2 − 2ϕ1ϕ2−

m2

2
, (3.63)

whereas from geometry, they are given by:

T1,geo =

∫ 0

−ξ2

χ(r0) dr0 = ξ2(ξ2 + ξ6 + ξ7) , (3.64)

T2,geo =

∫ ξ4+ξ6

0
χ(r0) dr0 =

ξ26
2

+ ξ4ξ6 + ξ6ξ7 + ξ4ξ7 . (3.65)
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Using the map ξ2 = 2ϕ1 − ϕ2, ξ4 = −ϕ1 + ϕ2 +m, ξ6 = ϕ2 −m and ξ7 = h0 + ϕ2, we find

that Ti,ft = Ti,geo for i = 1, 2. The tensions vanish at loci given by:

(I) : {ξ2 = 0} ∪ {ξ2 + ξ6 + ξ7 = 0}, and (II) :

{
ξ26
2

+ ξ4ξ6 + ξ6ξ7 + ξ4ξ7 = 0

}
. (3.66)

The loci {ξ2 = 0} ⊂ (I) coincides with the boundary of the Weyl chamber where the W-

bosonW1 becomes massless, indicating a hard wall. The component {ξ2+ξ6+ξ7 = 0} ⊂ (I)

is not part of the Kähler chamber of resolution (a). As for the second component (II), the

solutions of the quadratic equation for ξ6, defining the vanishing locus are:

ξ6
(II)
= −ξ4 − ξ7 ±

√
ξ24 + ξ27 , (3.67)

which always lead to negative values of ξ6 in resolution (a) (for both sign choices), which

is unphysical in this Kähler chamber, and are hence rejected. Note that away from any

hard wall, the BPS perturbative hypermultiplets H1 or H2 can become massless at ξ6 = 0

or ξ4 = 0 respectively (signaling flops of the curves C6 or C4). These are traversable walls

that lead, respectively to gauge theory resolutions (c) and (b) respectively. Also away from

any hard wall, the BPS instanton I3 can become massless at ξ7 = 0 (signaling a flop of

C7), which corresponds to a traversable instantonic wall that leads to a non-gauge-theoretic

chamber (resolution (e)).

Parity. Since the effective Chern-Simons level is nonvanishing, this theory breaks parity.

In geometry, this is reflected by the non-invariance of the toric diagram under the central

element C0 = S2 of SL(2,Z). This is true, of course, of all the crepant resolutions of E2
2, 32

as the CS level does not change under flops.

Resolution (b). Consider the crepant resolution of figure 11(b), with curves and divi-

sors shown in figure 13(a). The linear equivalances among divisors remain unchanged, as

in (3.49). The linear relations among curve classes are:

C2 ≃ C4 + C5 , C3 ≃ C1 + 3C4 + 2C5 + C7 , C6 ≃ C1 , C8 ≃ C1 + C7 . (3.68)

We take {C1, C4, C5, C7} as generators of the Mori cone. The GLSM charge matrix is

D1 D2 D3 D4 D5 E1 E2 vol(C)
C1 0 0 0 0 1 −2 1 ξ1
C4 0 0 1 −1 0 1 −1 ξ4
C5 0 1 −1 1 0 0 −1 ξ5
C7 1 0 0 1 −1 −1 0 ξ7

U(1)M 0 0 0 0 0 −1 1 r0

(3.69)

The Kähler cone is parametrized by (3.52). The parameters (µ1, µ2, ν1, ν2) are now related

to the FI parameters by:

ξ1 = −2ν1 + ν2 ≥ 0 , ξ4 = ν1 − ν2 ≥ 0 , ξ5 = µ2 − ν2 ≥ 0 , ξ7 = µ1 − ν1 ≥ 0 . (3.70)
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Figure 13. Resolution (b) of the E2
2, 32 singularity and its vertical reduction.

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −4 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 2 ,

E2
1E2 = −3 , E1E

2
2 = 1 , E3

1 = 8 , E3
2 = 7 .

(3.71)

Therefore, the compact part of the prepotential is:

F(b)(ν1, ν2;µ1, µ2) = −1

6
S3 = −4

3
ν31 − 7

6
ν32 +

3

2
ν21ν2 −

1

2
ν1ν

2
2 + µ1ν

2
1 + (µ1 + 2µ2)ν

2
2 ,

− µ1ν1ν2 − µ2
2ν2 − µ1µ2ν2 . (3.72)

The type IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−4r0 + ξ1 − ξ4 − 2ξ5 + ξ7, for r0 ≤ −ξ4 − ξ5
−2r0 + ξ1 + ξ4 + ξ7, for − ξ4 − ξ5 ≤ r0 ≤ −ξ4
−3r0 + ξ1 + ξ7, for − ξ4 ≤ r0 ≤ 0

−r0 + ξ1 + ξ7, for 0 ≤ r0 ≤ ξ1
+r0 − ξ1 + ξ7, for r0 ≥ ξ1 .

(3.73)

This function is sketched in figure 13(b). At the points r0 = −ξ4 − ξ5, r0 = 0 and r0 = ξ1,

there are gauge D6-branes wrapping P1’s in the resolution of the singularity. There is a

flavor D6-brane at r0 = −ξ4. The simple-root W-bosons have masses given by:

M(W1) = ξ4 + ξ5 = 2ϕ1 − ϕ2 , M(W2) = ξ1 = 2ϕ2 − ϕ1 . (3.74)

This resolution corresponds to gauge theory chamber 2 (cf. table 5 and (A.6)) with instan-

ton masses given by:

M(I1) = χ(r0 = −ξ4 − ξ6) = ξ1 + 3ξ4 + 2ξ5 + ξ7 = h0 + 4ϕ1 −m,

M(I2) = χ(r0 = 0) = ξ1 + ξ7 = h0 − ϕ1 + 3ϕ2 ,

M(I3) = χ(r0 = ξ1) = ξ7 = h0 + ϕ2 .

(3.75)
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The masses of hypermultiplets are:

M(H1) = ξ4 = ϕ1 − ϕ2 −m, M(H2) = ξ5 = ϕ1 +m, M(H3) = ξ1 + ξ4 = ϕ2 −m.

(3.76)

One can verify that the map (3.56) still holds, and plugging it into (3.72), we recover the

field theory prepotential,

Fchamber 2
SU(3)2,Nf=1 =

7

6
ϕ3
1 +

4

3
ϕ3
2 +

1

2
ϕ2
1ϕ2 −

3

2
ϕ1ϕ

2
2 +

(
h0 −

m

2

)
ϕ2
1 + h0ϕ

2
2

− h0ϕ1ϕ2 −
m2

2
ϕ1 , (3.77)

up to ϕ-independent terms. The monopole string tensions are given from χ(r0) by:

T1,geo =

∫ 0

−ξ4−ξ5

χ(r0) dr0 =
3ξ24
2

+ ξ4 (3ξ5 + ξ7) + ξ1 (ξ4 + ξ5) + ξ5 (ξ5 + ξ7) , (3.78)

T2,geo =

∫ ξ1

0
χ(r0) dr0 =

ξ21
2

+ ξ1ξ7 . (3.79)

One can verify, using the map ξ1 = 2ϕ2−ϕ1, ξ4 = ϕ1−ϕ2−m, ξ5 = ϕ1+m and ξ7 = h0+ϕ2,

that Ti,ft = Ti,geo for i = 1, 2. The tensions vanish at loci given by:

(I) : {ξ1 = 0} ∪ {ξ1 + 2ξ7 = 0} , and ,

(II) :

{
3

2
ξ24 + ξ4 (3ξ5 + ξ7) + ξ1 (ξ4 + ξ5) + ξ5 (ξ5 + ξ7) = 0

}
.

(3.80)

Along the submanifold {ξ1 = 0} ⊂ (I), the W-boson W2 becomes massless, signaling a

hard wall. Also {ξ1 + 2ξ7 = 0} is not part of the Kähler chamber of resolution (b). As for

the condition (II), the solutions to the quadratic equation for ξ4 are:

ξ4 = −ξ5 −
1

3

(
ξ1 + ξ7 ±

√
(ξ1 + ξ7)2 + 3ξ25

)
. (3.81)

Both sign choices lead to a negative value of ξ4, which is inconsistent in this Kähler chamber.

Also note that the curve C5 cannot flop in this chamber, so ξ5 cannot vanish.

Away from any hard wall, the perturbative BPS hypermultiplet H1 can become mass-

less at ξ4 = 0 (signaling a flop of C4), indicating a traversable wall that leads back to

gauge theory resolution (a). Alternatively, the BPS instanton I3 can become massless at

ξ7 = 0 (signaling a flop of C7), corresponding to a traversable instantonic wall that leads

to non-gauge-theoretic resolution (f).

Resolution (c). Consider the crepant resolution of figure 11(c), with curves and divisors

shown in figure 14(a). The linear relations among curve classes are:

C3 ≃ 2C2 + C7 , C4 ≃ C1 , C5 ≃ C2 , C8 ≃ C7 . (3.82)
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Figure 14. Resolution (c) of the E2
2, 32 singularity and its vertical reduction.

We take {C1, C2, C6, C7} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 vol(C)
C1 0 0 0 0 1 −2 1 ξ1
C2 0 1 0 0 0 1 −2 ξ2
C6 0 0 −1 1 −1 1 0 ξ6
C7 1 0 1 0 0 −2 0 ξ7

U(1)M 0 0 0 0 0 −1 1 r0

(3.83)

The parameters (µ1, µ2, ν1, ν2) are related to the FI parameters by:

ξ1=−2ν1+ν2≥ 0 , ξ2=µ2+ν1−2ν2≥ 0 , ξ6= ν1≥ 0 , ξ7=µ1−2ν1≥ 0 . (3.84)

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −4 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 2 ,

E2
1E2 = −2 , E1E

2
2 = 0 , E3

1 = 8 , E3
2 = 8 .

(3.85)

Therefore, the compact part of the prepotential is:

F(c)(ν1, ν2;µ1, µ2) = −1

6
S3 = −4

3
(ν31 + ν32) + ν21ν2 + µ1ν

2
1 + (µ1 + 2µ2)ν

2
2

− µ1ν1ν2 − µ2(µ1 + µ2)ν2 . (3.86)

The type IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−4r0 − 2ξ2 + ξ7, for r0 ≤ −ξ2
−2r0 + ξ7, for − ξ2 ≤ r0 ≤ 0

ξ7, for 0 ≤ r0 ≤ ξ1
+2r0 − 2ξ1 + ξ7, for ξ1 ≤ r0 ≤ ξ1 + ξ6
+r0 − ξ1 + ξ6 + ξ7, for r0 ≥ ξ1 + ξ6 .

(3.87)
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This function is sketched in figure 14(b). At the points r0 = −ξ2, r0 = 0 and r0 = ξ1, there

are gauge D6-branes wrapping P1’s in the resolution of the singularity. There is a flavor

D6-brane at r0 = ξ1 + ξ6. The simple-root W-bosons have masses given by:

M(W1) = ξ2 = 2ϕ1 − ϕ2 , M(W2) = ξ1 = 2ϕ2 − ϕ1 . (3.88)

This resolution corresponds to gauge theory chamber 4 (cf. table 5 and (A.8)), with in-

stanton masses given by:

M(I1) = χ(r0 = −ξ2) = 2ξ2 + ξ7 = h0 + 4ϕ1 −m,

M(I2) = χ(r0 = 0) = ξ7 = h0 + 2ϕ2 −m,

M(I3) = χ(r0 = ξ1) = ξ7 = h0 + 2ϕ2 −m.

(3.89)

The masses of hypermultiplets are:

M(H1) = ξ6 = −ϕ2 +m,

M(H2) = ξ1 + ξ6 = −ϕ1 + ϕ2 +m,

M(H3) = ξ1 + ξ2 + ξ6 = ϕ1 +m.

(3.90)

Plugging the map between (ν,µ) parameters and field-theory parameters given by (3.60),

into (3.86), we recover the field theory prepotential,

Fchamber 4
SU(3)2,Nf=1 =

4

3
(ϕ3

1 + ϕ3
2)− ϕ1ϕ

2
2 + (h0 −m)ϕ2

1 + (h0 −m)ϕ2
2 + (m− h0)ϕ1ϕ2 , (3.91)

up to ϕ-independent terms. The monopole string tensions from χ(r0) are given by:

T1,geo =

∫ 0

−ξ2

χ(r0) dr0 = ξ2(ξ2 + ξ7) , T2,geo =

∫ ξ1

0
χ(r0) dr0 = ξ1ξ7 . (3.92)

Using the map ξ1 = 2ϕ2 − ϕ1, ξ2 = 2ϕ1 − ϕ2, ξ6 = −ϕ2 +m and ξ7 = h0 + 2ϕ2 −m, one

can verify that Ti,ft = Ti,geo for i = 1, 2. It is easy to see that subloci of vanishing tension

lie along hard walls where either W-boson becomes massless, or along hard walls that are

not in this Kähler chamber. Away from a hard wall, H1 can become massless signaling a

flop of C6 leading back to resolution (a).

Resolution (d). Consider the crepant resolution of figure 11(d), with curves and divisors

shown in figure 15(a). The linear relations among curve classes are:

C3 ≃ C1 + 3C2 + C7 , C4 ≃ C2 , C6 ≃ C1 , C8 ≃ C1 + C7 . (3.93)

We take {C1, C2, C5, C7} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 vol(C)
C1 0 0 0 0 1 −2 1 ξ1
C2 0 1 0 0 0 1 −2 ξ2
C5 0 −1 1 −1 0 0 1 ξ5
C7 1 0 0 1 −1 −1 0 ξ7

U(1)M 0 0 0 0 0 −1 1 r0

(3.94)
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Figure 15. Resolution (d) of the E2
2, 32 singularity and its vertical reduction.

The parameters (µ1, µ2, ν1, ν2) are related to the FI parameters by:

ξ1 = −2ν1 + ν2 ≥ 0 , ξ2 = µ2 + ν1 − 2ν2 ≥ 0 , ξ5 = −µ2 + ν2 ≥ 0 , ξ7 = µ1 − ν1 ≥ 0 .

(3.95)

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −5 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 3 ,

E2
1E2 = −3 , E1E

2
2 = 1 , E3

1 = 8 , E3
2 = 8 .

(3.96)

Therefore, the compact part of the prepotential is:

F(d)(ν1, ν2;µ1, µ2) = −1

6
S3 = −4

3
(ν31 + ν32) +

3

2
ν21ν2 −

1

2
ν1ν

2
2 + µ1ν

2
1 − µ1ν1ν2

+

(
µ1 +

5

2
µ2

)
ν22 +

(
3

2
µ2
2 − µ1µ2

)
ν2 . (3.97)

The IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−4r0 + ξ1 − ξ2 + ξ5 + ξ7, for r0 ≤ −ξ2 − ξ5
−5r0 + ξ1 − 2ξ2 + ξ7, for − ξ2 − ξ5 ≤ r0 ≤ −ξ2
−3r0 + ξ1 + ξ7, for − ξ2 ≤ r0 ≤ 0

−r0 + ξ1 + ξ7, for ξ1 ≤ r0 ≤ ξ1
+r0 − ξ1 + ξ7, for r0 ≥ ξ1 .

(3.98)

This function is sketched in figure 15(b). At the points r0 = −ξ2, r0 = 0 and r0 = ξ1, there

are gauge D6-branes wrapping P1’s in the resolution of the singularity. There is a flavor

D6-brane at r0 = −ξ2 − ξ5. The simple-root W-bosons have masses given by:

M(W1) = ξ2 = 2ϕ1 − ϕ2 , M(W2) = ξ1 = 2ϕ2 − ϕ1 . (3.99)
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This resolution corresponds to gauge theory chamber 1 (cf. table 5 and (A.5)), with in-

stanton masses given by:

M(I1) = χ(r0 = −ξ2) = ξ1 + 3ξ2 + ξ7 = h0 + 5ϕ1 ,

M(I2) = χ(r0 = 0) = ξ1 + ξ7 = h0 − ϕ1 + 3ϕ2 ,

M(I3) = χ(r0 = ξ1) = ξ7 = h0 + ϕ2 .

(3.100)

The masses of hypermultiplets are:

M(H1) = ξ5 = −ϕ1 −m,

M(H2) = ξ2 + ξ5 = ϕ1 − ϕ2 −m,

M(H3) = ξ1 + ξ2 + ξ5 = ϕ2 −m.

(3.101)

Plugging (3.60) into (3.97), we recover the field theory prepotential,

Fchamber 1
SU(3)2,Nf=2 =

4

3
(ϕ3

1 + ϕ3
2)− ϕ1ϕ

2
2 + (h0 −m)ϕ2

1 + (h0 −m)ϕ2
2 + (m− h0)ϕ1ϕ2 , (3.102)

up to ϕ-independent terms. The tensions from χ(r0) are given by:

T1,geo =

∫ 0

−ξ2

χ(r0) dr0 = ξ2

(
3

2
ξ2 + ξ1 + ξ7

)
, T2,geo =

∫ ξ1

0
χ(r0) dr0 =

1

2
ξ1(ξ1 + 2ξ7) .

(3.103)

Using the map ξ1 = 2ϕ2 − ϕ1, ξ2 = 2ϕ1 − ϕ2, ξ5 = −ϕ1 − m and ξ7 = h0 + ϕ2, we find

that Ti,ft = Ti,geo for i = 1, 2. It is easy to check that in this case too, loci of vanishing

tension are either hard walls where W-bosons become massless, or walls that do not lie in

this Kähler chamber. There is a perturbative wall corresponding to a flop of C5 (when H1

becomes massless), but also a traversible instantonic wall at leading to non-gauge theory

resolution (g).

Resolutions (e), (f), (g) and RG flow. As noted above, the crepant resolutions in

figures 11(e)–11(g) do not admit vertical reductions. Nevertheless, they have interesting

roles to play in the Kähler moduli space of the E2
2, 32 singularity. In resolution (e), one can

send the volume of the curve C7 to infinity, thereby decoupling the divisor D5. This leads to

a crepant resolution of the non-Lagrangian E1
2,NL singularity (see figure 16).21 Similarly in

resolution (f), one can decoupleD5 by sending vol(C7) to infinity. This results in yet another

crepant resolution of the E1
2,NL singularity, as shown in figure 17. Finally in resolution (g),

one can decouple D3 and D5 by sending both vol(C5) and vol(C7) to infinity as shown in

figure 18. This leads to the unique crepant resolution of the SL(2,Z)-transformed version

of the E0
2,NL singularity, which as we stated above, is also non-Lagrangian.

In summary, starting from the non-Lagrangian deformations of the E2
2, 32 singularity,

one can obtain the non-Lagrangian deformations of E0
2,NL and E1

2,NL via RG flow in

parameter space. A careful analysis of the phase boundaries — carried out in the next

section — reveals that resolutions (e), (f) and (g) do not survive the limit in which the

mass deformations are set to zero (that is, the Coulomb branch of the SCFT).

21More precisely, an SL(2,Z) transformation (using, for instance an S2TSTS−2 transformation) of the

toric diagram on the right in figure 16 brings it into crepant resolution of E1
2,NL of figure 3(e).
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Figure 16. Decoupling a divisor from E2
2, 32 resolution (e) yields an SL(2,Z)-transformed version

of a crepant resolution of the E1
2,NL singularity.
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Figure 17. Decoupling a divisor from E2
2, 32 resolution (f) yields an SL(2,Z)-transformed version

of a crepant resolution of the E1
2,NL singularity.
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Figure 18. Decoupling two divisors from E2
2, 32 resolution (g) yields an SL(2,Z)-transformed

version of the unique crepant resolution of the E0
2,NL singularity.
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(a) {µ2 + ν1 − 2ν2 ≥ 0} ∩ {ν2 − ν1 ≥ 0} ∩ {−ν1 ≥ 0} ∩ {µ1 − ν1 ≥ 0}
(b) {ν2 − 2ν1 ≥ 0} ∩ {ν1 − ν2 ≥ 0} ∩ {µ2 − ν2 ≥ 0} ∩ {µ1 − ν1 ≥ 0}
(c) {ν2 − 2ν1 ≥ 0} ∩ {µ2 + ν1 − 2ν2 ≥ 0} ∩ {ν1 ≥ 0} ∩ {µ1 − 2ν1 ≥ 0}
(d) {ν2 − 2ν1 ≥ 0} ∩ {µ2 + ν1 − 2ν2 ≥ 0} ∩ {ν2 − µ2 ≥ 0} ∩ {µ1 − ν1 ≥ 0}
(e) {ν2 − ν1 ≥ 0} ∩ {µ2 + ν1 − 2ν2 ≥ 0} ∩ {µ1 − 2ν1 ≥ 0} ∩ {ν1 − µ1 ≥ 0}
(f) {µ1 − 3ν1 + ν2 ≥ 0} ∩ {ν1 − ν2 ≥ 0} ∩ {µ2 − ν2 ≥ 0} ∩ {ν1 − µ1 ≥ 0}
(g) {µ1 − 3ν1 + ν2 ≥ 0} ∩ {µ2 + ν1 − 2ν2 ≥ 0} ∩ {ν2 − µ2 ≥ 0} ∩ {ν1 − µ1 ≥ 0}

Table 3. Geometric inequalities (“Nef conditions”) defining the Kähler chambers of the 7 resolu-
tions of the E2

2, 32 geometry.

3.4.1 Sample slicings of the E2
2,32 moduli space

In figure 19, we show some sample slices of the moduli space of the E2
2, 32 geometry.

The phase diagram of this geometry, parametrized by (ν;µ) ≡ (ν1, ν2;µ1, µ2) is a four-

dimensional region, given by the disjoint union of the regions described by the defining

inequalities of 7 Kähler chambers, which are listed in table 3.

The phase diagram can be visualized by taking slices at different values of (µ1, µ2),

which reveal different chambers. For some values of (ν;µ) some regions vanish altogether

while other regions collapse to real codimension-one walls in this parameter space (along

which flops may occur). The origin (ν1, ν2) = (0, 0) is denoted by a red dot on the top

right of each plot. To make the plots readable, we only highlight chambers that have a

finite area in parameter space in the slices that are considered. When µ ̸= 0, the origin

ν1 = ν2 = 0 is generally not the origin of the Coulomb branch of the gauge theory (when

such a description exists), since the map (3.60) between ν1, ν2 and ϕ1,ϕ2 for SU(3) Nf = 2

involves a contribution from the real mass m. The slicings of figure 19 can also be used to

highlight some geometric features. For instance, resolution (b) is obtained from resolution

(a) by flopping curve C4. This corresponds to the volume vol(C4) = ξ4 = −ν1+ν2 shrinking

to zero size in the Kähler chamber defining resolution (a), before it grows in the birational

Kähler chamber of resolution (b). The real codimension-1 wall separating phases (a) and

(b) is clearly visible in figure 19(i). In order to reach resolution (c), one just needs to flop

curve C6 which has volume vol(C6) = ξ6 = −ν1. This vanishes along the vertical line ν1 = 0

indicating a wall separating regions (a) and (c) in figure 19(ii). On the other hand, to reach

chamber (c) from chamber (b), one needs to perform two flops, which necessitates going

through the origin, as is also clear from the figure.

Finally, turning on generic mass deformations reveals non-gauge theoretic phases, and,

as is clear from figure 19(iii) and figure 19(iv), these phases — which also admit no type

IIA reduction — are not compatible with the SCFT Coulomb branch. This is consistent

with the results of [10].

3.4.2 Probing the Coulomb branch of the 5d SCFT

To probe the Coulomb branch of the 5d SCFT, we set the mass parameters to zero.

From (3.60), this implies that ν1 = −ϕ2 and ν2 = −ϕ1. On the field theory side, we
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Figure 19. Sample slices of the moduli space of the E2
2, 32 geometry. Turning on different mass

deformations reveals more SU(3) Nf = 1 phases such as (c) in (ii) and (d) in (iii), but also non-gauge
theoretic phases such as (e) and (f) in (iv).

observe that only chambers 2 and 3 of the SU(3) 3
2
Nf = 1 theory (see appendix A) survive

in this limit, and they are given by:

chamber 2 :

⎧
⎪⎨

⎪⎩

ϕ1 ≥ 0 ,

−ϕ2 + ϕ2 < 0 ,

−ϕ2 < 0 ,

chamber 3 :

⎧
⎪⎨

⎪⎩

ϕ1 ≥ 0 ,

−ϕ2 + ϕ2 ≥ 0 ,

−ϕ2 < 0 .

(3.104)
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(a) (b) (c) (d)

(e) (f)

Figure 20. The 6 crepant singularities of the E2
2, 12 singularity. The first four, (a)-(d) admit a

vertical reduction, corresponding to chambers of the SU(3)1 Nf = 1 gauge theory.

One can also verify from the Nef conditions in table 3 that only resolutions (a) and (b)

survive in this limit. The Coulomb branch of the SCFT is sketched in figure 19(i). The

red dot on the right in the figure is the conformal point.

3.5 The E2
2,12 singularity and SU(3) 1

2
Nf = 1 gauge theory

The E2
2, 12 singularity (figure 3(g)) admits 6 crepant resolutions shown in figure 20. The

first four resolutions, figures 20(a)–20(d), admit vertical reductions to type IIA, which

correspond to chambers of the SU(3)1 Nf = 1 gauge thoery, as we illustrate below. Phases

(e) and (f) do not admit a Lagrangian description.

Resolution (a). Consider the crepant resolution of figure 20(a), with curves and divisors

shown in figure 21(a). There are five non-compact toric divisors Di (i = 1, . . . , 5), and two

compact toric divisors E1 and E2 with the following linear relations:

D1 ≃ D3 +D4 , E1 ≃ D2 −D3 − 2D4 − 2D5 , E2 ≃ −D1 − 2D2 +D4 +D5 . (3.105)

The compact curves C are:

C1 = E1 ·D1 , C2 = E2 ·D1 , C3 = E2 ·D2 , C4 = E1 ·D3 ,

C5 = E2 ·D3 , C6 = E1 ·D4 , C7 = E1 ·D5 , C8 = E2 ·E1 .
(3.106)

The linear relations among curve classes are:

C3 ≃ −C1 + C2 + C6 + C7 , C4 ≃ C1 − C6, C5 ≃ C2, C8 ≃ −C1 + C6 + C7 . (3.107)
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Figure 21. Resolution (a) of the E2
2, 12 singularity and its vertical reduction.

We take {C1, C2, C6, C7} as generators of the Mori cone. The requirement the compact

curves C3, C4 and C8 have non-negative volume imposes the following additional conditions

on the FI parameters in this chamber:

−ξ1 + ξ2 + ξ6 + ξ7 ≥ 0 , ξ1 − ξ6 ≥ 0 , −ξ1 + ξ6 + ξ7 ≥ 0 . (3.108)

The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 vol(C)
C1 0 0 0 0 1 −2 1 ξ1
C2 0 1 0 0 0 1 −2 ξ2
C6 0 0 1 −1 1 −1 0 ξ6
C7 1 0 0 1 0 −2 0 ξ7

U(1)M 0 0 0 0 0 −1 1 r0

(3.109)

Geometric prepotential. We parametrize the Kähler cone by:

S = µ1D1 + µ2D2 + ν1E1 + ν2E2 . (3.110)

The parameters (µ1, µ2, ν1, ν2) are related to the FI parameters by:

ξ1 = −2ν1 + ν2 ≥ 0 , ξ2 = µ2 + ν1 − 2ν2 ≥ 0 , ξ6 = −ν1 ≥ 0 , ξ7 = µ1 − 2ν1 ≥ 0 .

(3.111)

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −3 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 1 ,

E2
1E2 = −1 , E1E

2
2 = −1 , E3

1 = 7 , E3
2 = 8 .

(3.112)
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Therefore, the compact part of the prepotential is:

F(a)(ν1, ν2;µ1, µ2) = −1

6
S3 = −7

6
ν31 − 4

3
ν32 +

1

2
(ν21ν2 + ν1ν

2
2) + µ1ν

2
1 − µ1ν1ν2

+

(
µ1 +

3

2
µ2

)
ν22 −

(
µ1µ2 +

1

2
µ2
2

)
ν2 . (3.113)

Type IIA reduction and gauge theory description. The type IIA background is

again resolved A1 singularity fibered over the x9 = r0 direction. There are three D6-branes

wrapping the exceptional P1 in the resolved A1 singularity, resulting in an SU(3) gauge

theory. There is also a D6-brane wrapping a noncompact divisor in the resolved ALE

space, which corresponds to one fundamental flavor. The volume of the exceptional P1 is

given by the following piecewise linear function:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−3r0 − ξ1 − 2ξ2 + ξ6 + ξ7, for r0 ≤ −ξ2
−r0 − ξ1 + ξ6 + ξ7, for − ξ2 ≤ r0 ≤ 0

+r0 − ξ1 + ξ6 + ξ7, for 0 ≤ r0 ≤ ξ1 − ξ6
ξ7, for ξ1 − ξ6 ≤ r0 ≤ ξ1
+2r0 − 2ξ1 + ξ7, for r0 ≥ ξ1 .

(3.114)

This function is sketched in figure 21(b). At the points r0 = −ξ2, r0 = 0 and r0 = ξ1, there

are gauge D6-branes wrapping P1’s in the resolution of the singularity. When ξ1 = ξ2 = 0,

an SU(3) gauge theory is realized with coupling h0 = ξ6 + ξ7. There is a flavor D6-brane

at r0 = ξ1 − ξ6. The effective Chern-Simons level is given by κs,eff = −1
2(−3 + 2) = 1

2 ,

which is interpreted as a bare CS level of 1 plus the contribution −1
2 due to the single

hypermultiplet (cf. (2.5)). The simple-root W-bosons have masses:

M(W1) = ξ2 = 2ϕ1 − ϕ2 , M(W2) = ξ1 = 2ϕ2 − ϕ1 . (3.115)

From the instanton masses, one can identify that this resolution corresponds to gauge

theory chamber 3 (cf. table 5 and (A.7)):

M(I1) = χ(r0 = −ξ2) = −ξ1 + ξ2 + ξ6 + ξ7 = h0 + 3ϕ1 −m,

M(I2) = χ(r0 = 0) = −ξ1 + ξ6 + ξ7 = h0 + ϕ1 + ϕ2 −m,

M(I3) = χ(r0 = ξ1) = ξ7 = h0 + 2ϕ2 .

(3.116)

The masses of hypermultiplets are:

M(H1) = ξ6 = ϕ2 −m,

M(H2) = ξ1 − ξ6 = −ϕ1 + ϕ2 +m,

M(H3) = ξ1 + ξ2 − ξ6 = ϕ1 +m.

(3.117)

From the Kähler volumes (3.111) of the compact curves and masses of W-bosons and

instantons, the map between geometry and field theory variables is determined to be:

µ1 = h0 + 2m, µ2 = 3m, ν1 = −ϕ2 +m, ν2 = −ϕ1 + 2m. (3.118)
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Plugging (3.118) into (3.113), we recover the field theory prepotential,

Fchamber 3
SU(3) 1

2
,Nf=1 =

4

3
ϕ3
1 +

7

6
ϕ3
2 −

1

2
(ϕ2

1ϕ2 + ϕ1ϕ
2
2) + (h0 −m)ϕ2

1 +
(
h0 −

m

2

)
ϕ2
2

+ (m− h0)ϕ1ϕ2 −
m2

2
ϕ2 , (3.119)

up to ϕ-independent terms. The monopole string tensions from χ(r0) are given by:

T1,geo =

∫ 0

−ξ2

χ(r0) dr0 = ξ2

(
−ξ1 +

1

2
ξ2 + ξ6 + ξ7

)
, (3.120)

T2,geo =

∫ ξ1

0
χ(r0) dr0 = −ξ21

2
+ ξ6ξ1 + ξ7ξ1 −

ξ26
2
. (3.121)

Using the map ξ1 = 2ϕ2 − ϕ1, ξ2 = 2ϕ1 − ϕ2, ξ6 = ϕ2 − m and ξ7 = h0 + 2ϕ2, one can

verify that indeed Ti,ft = Ti,geo for i = 1, 2. The tensions vanishes at loci given by:

(I) : {ξ2 = 0} ∪
{
−ξ1 +

1

2
ξ2 + ξ6 + ξ7 = 0

}
, and ,

(II) :

{
−ξ21

2
+ ξ6ξ1 + ξ7ξ1 −

ξ26
2

= 0

}
.

(3.122)

Along the submanifold {ξ2 = 0} ⊂ (I), the W-boson W1 becomes massless, signaling a hard

wall. The submanifold {−ξ1+
1
2ξ2+ ξ6+ ξ7 = 0} is not part of the Kähler chamber of reso-

lution (a). Solving the quadratic equation in (II), we get two solutions: ξ6 = ξ1 ±
√
2ξ1ξ7.

Both sign choices are inconsistent with (3.108), and are hence rejected. Note that away

from any hard wall, the perturbative hypermultiplet H1 can become massless at ξ6 = 0

(signaling a flop of C6), leading to gauge theory resolution (c), or the hypermultiplet H2

can become massless along the locus ξ4 = ξ1−ξ6 = 0 (signaling a flop of C4), leading to

gauge theory resolution (b). Note that the intersection of the loci (II) above with the loci

{ξ1 = ξ6} is ξ1ξ7 = 0, is inconsistent in this Kähler chamber, as neither the W-boson W2

(with mass ξ1) can become massless (except at the hard wall) nor can the curve C7 flop in

this chamber. This is a reassuring consistency check.

Resolution (b). Consider the crepant resolution of figure 20(b), with curves and divisors

shown in figure 22(a). The linear relations among the toric divisors are still given by (3.105).

The compact curves C can be read off the toric diagram. The linear relations among curve

classes are:

C2 ≃ C4 + C5 , C3 ≃ 2C4 + C5 + C7 , C6 ≃ C1 , C8 ≃ C7 . (3.123)

We take {C1, C4, C5, C7} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 vol(C)
C1 0 0 0 0 1 −2 1 ξ1
C4 0 0 1 −1 0 1 −1 ξ4
C5 0 1 −1 1 0 0 −1 ξ5
C7 1 0 0 1 0 −2 0 ξ7

U(1)M 0 0 0 0 0 −1 1 r0

(3.124)

– 47 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
8

E1

E2

D4D5

D3

D2

D1

C8

C4

C6

C7

C5

C3

C2

C1

(a) (b)

Figure 22. Resolution (b) of the E2
2, 12 singularity and its vertical reduction.

The Kähler cone is parametrized by (3.110). The parameters (µ1, µ2, ν1, ν2) are related to

the FI parameters by:

ξ1 = −2ν1 + ν2 ≥ 0 , ξ4 = ν1 − ν2 ≥ 0 , ξ5 = µ2 − ν2 ≥ 0 , ξ7 = µ1 − 2ν1 ≥ 0 .

(3.125)

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −3 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 1 ,

E2
1E2 = −2 , E1E

2
2 = 0 , E3

1 = 8 , E3
2 = 7 .

(3.126)

Therefore, the compact part of the prepotential is:

F(b)(ν1, ν2;µ1, µ2) = −1

6
S3 = −4

3
ν31 − 7

6
ν32 + ν21ν2 + µ1ν

2
1 +

(
µ1 +

3

2
µ2

)
ν22

− µ1ν1ν2 −
(
µ1µ2 +

1

2
µ2
2

)
ν2 . (3.127)

The type IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−3r0 − ξ4 − 2ξ5 + ξ7, for r0 ≤ −ξ4 − ξ5
−r0 + ξ4 + ξ7, for − ξ4 − ξ5 ≤ r0 ≤ −ξ4
−2r0 + ξ7, for − ξ4 ≤ r0 ≤ 0

ξ7, for 0 ≤ r0 ≤ ξ1
+2r0 − 2ξ1 + ξ7, for r0 ≥ ξ1 .

(3.128)

This function is sketched in figure 22(b). At the points r0 = −ξ4 − ξ5, r0 = 0 and r0 = ξ1,

there are gauge D6-branes wrapping P1’s in the resolution of the singularity. There is a
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flavor D6-brane at r0 = −ξ4. The effective Chern-Simons level is, of course, still 1
2 , as for

resolution (a). The simple-root W-bosons have masses given by:

M(W1) = ξ4 + ξ5 = 2ϕ1 − ϕ2 , M(W2) = ξ1 = 2ϕ2 − ϕ1 . (3.129)

This resolution corresponds to gauge theory chamber 2 (cf. table 5 and (A.6)), with in-

stanton masses given by:

M(I1) = χ(r0 = −ξ4 − ξ5) = 2ξ4 + ξ5 + ξ7 = h0 + 3ϕ1 −m,

M(I2) = χ(r0 = 0) = ξ7 = h0 + 2ϕ2 ,

M(I3) = χ(r0 = ξ1) = ξ7 = h0 + 2ϕ2 .

(3.130)

The masses of hypermultiplets are:

M(H1) = ξ5 = ϕ1 +m,

M(H2) = ξ4 = ϕ1 − ϕ2 −m,

M(H3) = ξ1 + ξ4 = ϕ2 −m.

(3.131)

The map between geometry and field theory variables is still given by (3.118), and plugging

it into (3.127), we recover the field theory prepotential,

Fchamber 2
SU(3)3/2,Nf=1 =

7

6
ϕ3
1 +

4

3
ϕ3
2 − ϕ1ϕ

2
2 +

(
h0 −

m

2

)
ϕ2
1 + h0ϕ

2
2 − h0ϕ1ϕ2 −

m2

2
ϕ2 , (3.132)

up to ϕ-independent terms. The monopole string tensions from χ(r0) are given by:

T1,geo =

∫ 0

−ξ4−ξ5

χ(r0) dr0 = ξ24 + (2ξ5 + ξ7) ξ4 +
1

2
ξ5 (ξ5 + 2ξ7) , (3.133)

T2,geo =

∫ ξ1

0
χ(r0) dr0 = ξ1ξ7 . (3.134)

Using the map ξ1 = 2ϕ2 − ϕ1, ξ4 = ϕ1 − ϕ2 −m, ξ5 = ϕ1 +m and ξ7 = h0 + 2ϕ2, we find

that Ti,ft = Ti,geo for i = 1, 2. The tensions vanish at loci given by:

(I) :

{
ξ24 + (2ξ5 + ξ7) ξ4 +

1

2
ξ5 (ξ5 + 2ξ7) = 0

}
, and (II) : {ξ1 = 0} ∪ {ξ7 = 0} . (3.135)

The solution to the quadratic equation from (I) is ξ4 = 1
2(−2ξ5 − ξ7 ±

√
2ξ25 + ξ27). Both

sign choices lead to a negative value for ξ4 in this chamber, and are hence rejected. The

loci {ξ1 = 0} ⊂ (II) and {ξ7 = 0} ⊂ (II) coincide with hard walls, which are, respectively,

loci along which the W-boson W2 becomes massless and the instanton particles I2, I3
become massless. These are both non-traversible walls. Away from the hard wall, either

hypermultiplet H1 can become massless at ξ5 = 0 (signaling a flop of C5), leading to gauge

theory resolution (d), or hypermultiplet H2 can become massless at ξ4 = 0 (signaling a flop

of C4) leading to back to gauge theory resolution (a).
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Figure 23. Resolution (c) of the E2
2, 12 singularity and its vertical reduction.

Resolution (c). Consider the crepant resolution of figure 20(c), with curves and divisors

shown in figure 23(a).

The linear relations among curve classes are:

C3 ≃ C5 + C8 , C4 ≃ C1 , C5 ≃ C2 , C7 ≃ C1 + C8 . (3.136)

We take {C1, C2, C6, C8} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 vol(C)
C1 0 0 0 0 1 −2 1 ξ1
C2 0 1 0 0 0 1 −2 ξ2
C6 0 0 −1 1 −1 1 0 ξ6
C8 1 0 1 0 0 −1 −1 ξ8

U(1)M 0 0 0 0 0 −1 1 r0

(3.137)

The Kähler cone is parametrized by (3.110). The parameters (µ1, µ2, ν1, ν2) are related to

the FI parameters by

ξ1 = −2ν1 + ν2 ≥ 0 , ξ2 = µ2 + ν1 − 2ν2 ≥ 0 , ξ6 = ν1 ≥ 0 , ξ8 = µ1 − ν1 − ν2 ≥ 0 .

(3.138)

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −3 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 1 ,

E2
1E2 = −1 , E1E

2
2 = −1 , E3

1 = 8 , E3
2 = 8 .

(3.139)
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Therefore, the compact part of the prepotential is:

F(c)(ν1, ν2;µ1, µ2) = −1

6
S3 = −4

3
ν31 − 4

3
ν32 +

1

2
(ν21ν2 + ν1ν

2
2) + µ1ν

2
1 +

(
µ1 +

3

2
µ2

)
ν22

− µ1ν1ν2 −
(
µ1µ2 +

1

2
µ2
2

)
ν2 . (3.140)

The IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−3r0 − 2ξ2 + ξ8, for r0 ≤ −ξ2
−r0 + ξ8, for − ξ2 ≤ r0 ≤ 0

r0 + ξ8, for 0 ≤ r0 ≤ ξ1
3r0 − 2ξ1 + ξ8, for ξ1 ≤ r0 ≤ ξ1 + ξ6
+2r0 − ξ1 + ξ6 + ξ8, for r0 ≥ ξ1 + ξ6 .

(3.141)

This function is sketched in figure 23(b). At the points r0 = −ξ2, r0 = 0 and r0 = ξ1, there

are gauge D6-branes wrapping P1’s in the resolution of the singularity. There is a flavor

D6-brane at r0 = ξ1 + ξ6. The effective Chern-Simons level is still 1
2 . The simple-root

W-bosons have masses given by:

M(W1) = ξ2 = 2ϕ1 − ϕ2 , M(W2) = ξ1 = 2ϕ2 − ϕ1 . (3.142)

This resolution corresponds to gauge theory chamber 4 (cf. table 5 and (A.8)), with in-

stanton masses given by:

M(I1) = χ(r0 = −ξ2) = ξ2 + ξ8 = h0 + 3ϕ1 −m,

M(I2) = χ(r0 = 0) = ξ8 = h0 + ϕ1 + ϕ2 −m,

M(I3) = χ(r0 = ξ1) = ξ1 + ξ8 = h0 + 3ϕ2 −m.

(3.143)

The masses of hypermultiplets are:

M(H1) = ξ6 = −ϕ2 +m,

M(H2) = ξ1 + ξ6 = −ϕ1 + ϕ2 +m,

M(H3) = ξ1 + ξ2 + ξ6 = ϕ1 +m.

(3.144)

The map between geometry and field theory variables is given by (3.118). Plugging (3.118)

into (3.140), we recover the field theory prepotential,

Fchamber 4
SU(3)3/2,Nf=1 =

4

3
ϕ3
1 +

4

3
ϕ3
2 −

1

2
(ϕ2

1ϕ2 + ϕ1ϕ
2
2) + (h0 −m)ϕ2

1 + (h0 −m)ϕ2
2

+ (m− h0)ϕ1ϕ2 , (3.145)

up to ϕ-independent terms. The monopole string tensions from χ(r0) are:

T1,geo =

∫ 0

−ξ2

χ(r0) dr0 =
1

2
ξ2 (ξ2 + 2ξ8) , T2,geo =

∫ ξ1

0
χ(r0) dr0 =

1

2
ξ1 (ξ1 + 2ξ8) . (3.146)

Using the map ξ1 = 2ϕ2−ϕ1, ξ2 = 2ϕ1−ϕ2, ξ6 = −ϕ2+m and ξ8 = h0+ϕ1+ϕ2−m, one

can verify that Ti,ft = Ti,geo for i = 1, 2. The loci ξ1 = and ξ2 = 0 correspond, respectively,
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Figure 24. Decoupling the divisor D4 leads to a crepant resolution of the E1
2,0 singularity.

to hard walls along which the W-bosons W2 and W1 become massless, whereas the loci

{ξ2 + 2ξ8 = 0} and {ξ1 + 2ξ8 = 0} are both not part of the Kähler chamber of resolution

(c). Away from any hard wall, the BPS instanton particle I2 can become massless at

ξ8 = 0 (signaling a flop of C8), indicating a traversable instantonic wall which leads to a

non-gauge-theoretic chamber (f). Alternatively, away from any hard wall, the perturbative

hypermultiplet H1 can become massless at ξ6 = 0 (signaling a flop of C6), leading back to

gauge theory resolution (a).

RG flow and decoupling limits. In this resolution, we can decouple divisor D4 by

sending the volume of the curve C6 to infinity. As M(H1) = ξ6 = −ϕ2 + m, this is

equivalent to taking the limit m → +∞, i.e. integrating out the massive fermion, which

results in an SU(3)0 pure gauge theory. From the perspective of geometry, this leads to an

SL(2,Z)-transformed version of a resolution of the E1
2,0 singularity, as shown in figure 24.

For example, one can apply a (TS)2T−1S−1 transformation to the toric diagram on the

right in figure 24 to get to resolution (a) of the E1
2,0 singularity.

Resolution (d). Consider the crepant resolution of figure 20(d), with curves and divisors

shown in figure 25(a). The linear relations among curve classes are:

C3 ≃ 2C4 + C7 , C4 ≃ C2 , C6 ≃ C1, C8 ≃ C7 . (3.147)

We take {C1, C2, C5, C7} as generators of the Mori cone. The GLSM charge matrix is:

D1 D2 D3 D4 D5 E1 E2 vol(C)
C1 0 0 0 0 1 −2 1 ξ1
C2 0 1 0 0 0 1 −2 ξ2
C5 0 −1 1 −1 0 0 1 ξ5
C7 1 0 0 1 0 −2 0 ξ7

U(1)M 0 0 0 0 0 −1 1 r0

(3.148)
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Figure 25. Resolution (d) of the E2
2, 12 singularity and its vertical reduction.

The Kähler cone is parametrized by (3.110). The parameters (µ1, µ2, ν1, ν2) are related to

the FI parameters by:

ξ1 = −2ν1 + ν2 ≥ 0 , ξ2 = µ2 + ν1 − 2ν2 ≥ 0 , ξ5 = −µ2 + ν2 ≥ 0 , ξ7 = µ1 − 2ν1 ≥ 0 .

(3.149)

The relevant triple-intersection numbers are:

D1E1E2 = 1 , D2E1E2 = 0 , D1D2E1 = 0 , D1D2E2 = 1 ,

D1E
2
1 = −2 , D2E

2
1 = 0 , D1E

2
2 = −2 , D2E

2
2 = −4 ,

D2
1E1 = 0 , D2

1E2 = 0 , D2
2E1 = 0 , D2

2E2 = 2 ,

E2
1E2 = −2 , E1E

2
2 = 0 , E3

1 = 8 , E3
2 = 8 .

(3.150)

Therefore, the compact part of the prepotential is:

F(d)(ν1, ν2;µ1, µ2) = −1

6
S3 = −4

3
ν31 − 4

3
ν32 + ν21ν2 + µ1ν

2
1 + (µ1 + 2µ2) ν

2
2

− µ1ν1ν2 − (µ1µ2 + µ2
2)ν2 . (3.151)

The IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−3r0 − 2ξ2 + ξ5 + ξ7, for r0 ≤ −ξ2 − ξ5
−4r0 − 2ξ2 + ξ7, for − ξ3 − ξ5 ≤ r0 ≤ −ξ2
−2r0 + ξ7, for − ξ2 ≤ r0 ≤ 0

ξ7, for 0 ≤ r0 ≤ ξ1
+2r0 − 2ξ1 + ξ7, for r0 ≥ ξ1 .

(3.152)

This function is sketched in figure 25(b). At the points r0 = −ξ2, r0 = 0 and r0 = ξ1, there

are gauge D6-branes wrapping P1’s in the resolution of the singularity. There is a flavor
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D6-brane at r0 = −ξ2 − ξ5. The effective Chern-Simons level is still 1
2 . The simple-root

W-bosons have masses given by:

M(W1) = ξ2 = 2ϕ1 − ϕ2 , M(W2) = ξ1 = 2ϕ2 − ϕ1 . (3.153)

This resolution corresponds to gauge theory chamber 1 (cf. table 5 and (A.5)), with in-

stanton masses given by:

M(I1) = χ(r0 = −ξ2) = 2ξ2 + ξ7 = h0 + 4ϕ1 ,

M(I2) = χ(r0 = 0) = ξ7 = h0 + 2ϕ2 ,

M(I3) = χ(r0 = ξ1) = ξ7 = h0 + 2ϕ2 .

(3.154)

The masses of hypermultiplets are:

M(H1) = ξ5 = −ϕ1 −m,

M(H2) = ξ2 + ξ5 = ϕ1 − ϕ2 −m,

M(H3) = ξ1 + ξ2 + ξ5 = ϕ2 −m.

(3.155)

Plugging (3.118) into (3.151), we recover the field theory prepotential,

Fchamber 1
SU(3)3/2,Nf=1 =

4

3
ϕ3
1 +

4

3
ϕ3
2 − ϕ2

1ϕ2 + h0(ϕ
2
1 + ϕ2

2 − ϕ1ϕ2) , (3.156)

up to ϕ-independent terms. The monopole string tensions from χ(r0) are given by:

T1,geo =

∫ 0

−ξ2

χ(r0) dr0 = ξ2 (ξ2 + ξ7) , T2,geo =

∫ ξ1

0
χ(r0) dr0 = ξ1ξ7 . (3.157)

Using the map ξ1 = 2ϕ2 − ϕ1, ξ2 = 2ϕ1 − ϕ2, ξ5 = −ϕ1 − m and ξ7 = h0 + 2ϕ2, one

can verify that Ti,ft = Ti,geo for i = 1, 2. The loci ξ2 = 0 and ξ1 = 0 are both hard walls,

being the boundaries of the Weyl chamber where either W-boson becomes massless. The

loci {ξ2 + ξ7 = 0} ⊂ (I) and {ξ7 = 0} ⊂ (II) are both not part of the Kähler chamber

of resolution (d) (the curve C7 cannot flop). Away from any hard wall, the perturbative

hypermultiplet H1 can become massless at ξ5 = 0 (signaling a flop of C5), leading back to

gauge theory resolution (a).

RG flow and decoupling limits. In this resolution, we can decouple divisor D3 by

sending the volume of the curve C5 to infinity. As M(H1) = ξ5 = −ϕ2 − m, this is

equivalent to taking the limit m → −∞, which results in an SU(3)1 pure gauge theory.

On the geometry side, this leads to an SL(2,Z)-transformed version of a resolution of

the E1
2,1 singularity, as shown in figure 26. For instance, one can apply a (TS)2T−1S−1

transformation to the figure on the right in figure 26 to get to resolution (a) of the E1
2,1

singularity.

Resolutions (e) and (f). These are non-gauge-theoretic resolutions, related to each

other by a flop of a single curve (C6). In resolution (f), the divisor D4 can be decoupled,

which leads to an SL(2,Z)-transformed version of resolution (b) of the E1
2,0 singularity.
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Figure 26. Decoupling the divisor D3 leads to a crepant resolution of the E1
2,1 singularity.
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Figure 27. Decoupling the divisor D4 leads to a crepant resolution of the E1
2,1 singularity.

For example, one such transformation is (TS)2T−1S−1, which leads precisely to resolution

(b) of the E1
2,0 singularity discussed above.

We remark that the resolutions (e) and (f) represent the coupling of a rank-1 E1

singularity with a rank-1 non-Lagrangian E0 singularity [1–3]. In the RG flow shown in

figure 27, we end up with a pair of coupled E0 theories, as is evident from the shape of the

final toric diagram.

3.6 The E3
2,1 singularity and SU(3)1 Nf = 2 gauge theory

The E3
2,1 singularity (figure 3(i)) admits 30 crepant resolutions shown in figure 28. The first

16 resolutions, figures 28(a)–28(p), admit vertical reductions to type IIA, which correspond

to chambers of the SU(3)2 Nf = 2 gauge theory, as we illustrate below.

Resolution (a). Consider the crepant resolution of figure 28(a), with curves and divisors

shown in figure 29(a). There are six non-compact toric divisors Di (i = 1, . . . , 6), and two
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q1) (q2) (q3) (q4) (q5)

(q6) (q7) (q8) (q9) (q10) (q11) (q12)

(q13) (q14)

Figure 28. The 30 crepant singularities of the E3
2,1 singularity. The first 16, (a)-(p) admit a

vertical reduction, corresponding to chambers of the SU(3)2 Nf = 2 gauge theory.
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E1

E2

D5D6

D4

D3

D2

D1

C9

C5

C7C8

C6

C4

C3

C2

C1

(a) (b)

Figure 29. Resolution (a) of the E3
2,1 singularity and its vertical reduction.

compact toric divisors E1 and E2 with the following linear relations:

D5≃D1+D2−D4 , E1≃−3D1−2D2+D3+D4−2D6 , E2≃D1−2D3−D4+D6 .

(3.158)

The compact curves C are given by:

C1 = E1 ·D1 , C2 = E1 ·D2 , C3 = E2 ·D2 , C4 = E2 ·D3 ,

C5 = E1 ·D4 , C6 = E2 ·D4 , C7 = E1 ·D5 , C8 = E2 ·E1 .
(3.159)

The linear relations among curve classes are:

C4 ≃ C3 + C9 , C6 ≃ C3 , C7 ≃ C1 + C2 − C5 , C8 ≃ −C1 + C5 + C9 . (3.160)

We take {C1, C2, C3, C5, C9} as Mori cone generators. The GLSM charge matrix is:

D1 D2 D3 D4 D5 D6 E1 E2 vol(C)
C1 −1 1 0 0 0 1 −1 0 ξ1
C2 1 −1 0 0 0 0 −1 1 ξ2
C3 0 0 1 0 0 0 1 −2 ξ3
C5 0 0 0 −1 1 0 −1 1 ξ5
C9 0 1 0 1 0 0 −1 −1 ξ9

U(1)M 0 0 0 0 0 0 −1 1 r0

(3.161)

where the last line defines the vertical reduction of the 2d GLSM. The nonnegative FI

terms ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0, ξ5 ≥ 0 and ξ9 ≥ 0 are, respectively, the volumes of compact

curves C1, C2, C3, C5 and C9. Note that the requirement that the curves C7 and C9 have

non-negative volume translates to the following conditions on the FI terms in this chamber:

ξ1 + ξ2 − ξ5 ≥ 0 , − ξ1 + ξ5 + ξ9 ≥ 0 . (3.162)
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Geometric prepotential. We parametrize the Kähler cone by:

S = µ1D1 + µ2D2 + µ3D3ν1E1 + ν2E2 . (3.163)

The parameters (µ1, µ2, µ3, ν1, ν2) are related to the FI parameters by

ξ1=−µ1+µ2−ν1≥ 0 , ξ2=µ1−µ2−ν1+ν2≥ 0 , ξ3=µ3+ν1−2ν2≥ 0 ,

ξ5=−ν1+ν2≥ 0 , ξ9=µ2−ν1−ν2≥ 0 .
(3.164)

The relevant triple-intersection numbers are:

E3
1=6 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−1 , E1E

2
2=−1 , D2

1E1=−1 , D2
1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E
2
1=−1 ,

D1E
2
2=0 , D2E

2
1=−1 , D2E

2
2=−2 , D3E

2
1=0 , D3E

2
2=−3 .

(3.165)

Therefore, the compact part of the prepotential is:

F(a)(ν1, ν2;µ1, µ2, µ3) = −ν31 − 4

3
ν32 +

1

2
(ν21ν2 + ν1ν

2
2) +

1

2
(µ1 + µ2)ν

2
1 +

(
µ2 +

3

2
µ3

)
ν22

− µ2ν1ν2 +
1

2
(µ1 − µ2)

2ν1 −
(
µ2µ3 +

1

2
µ2
3

)
ν2 . (3.166)

Type IIA reduction and gauge theory description. The type IIA background is

a resolved A1 singularity fibered over the x9 = r0 direction. There are three D6-branes

wrapping the exceptional P1 in the resolved A1 singularity, resulting in an SU(3) gauge

theory. There are two D6-branes wrapping the two noncompact divisors in the resolved

ALE space, which give rise to the two fundamental flavors. The volume of the exceptional

P1 in type IIA is given by the following piecewise linear function,

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−3r0 − 2ξ3 + ξ9, for r0 ≤ −ξ3
−r0 + ξ9, for − ξ3 ≤ r0 ≤ 0

+r0 + ξ9, for 0 ≤ r0 ≤ ξ5
ξ5 + ξ9, for ξ5 ≤ r0 ≤ ξ2
−r0 + ξ2 + ξ5 + ξ9, for ξ2 ≤ r0 ≤ ξ1 + ξ2
+r0 − 2ξ1 − ξ2 + ξ5 + ξ9, for r0 ≥ ξ1 + ξ2 .

(3.167)

This function is sketched in figure 29(b) (where we have chosen ξ3 > ξ5 for convenience

of plotting). At the points r0 = −ξ3, r0 = 0 and r0 = ξ1 + ξ2, there are gauge D6-

branes wrapping P1’s in the resolution of the singularity (we denote them by G1, G2 and G3

respectively). When ξ1 = ξ2 = ξ3 = 0, an SU(3) gauge theory is realized (at r0 = 0) with

inverse coupling h0 = ξ9. There are two flavor D6-branes at r0 = ξ5 and r0 = ξ2, denoted

by F1 and F2 respectively. In the evaluation of χ(r0), we have assumed without loss of

generality that ξ2 ≥ ξ5, which is of course consistent with (3.162).
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The effective Chern-Simons level is given by:

κs,eff = −1

2
(−3 + 1) = 1 , (3.168)

which is interpreted as a bare CS level of 2 plus the contribution −1
2 − 1

2 = −1 due to

the two hypermultiplets (cf. (2.5)). The simple-root W-bosons have masses given by the

separation between adjacent gauge D6-branes:

M(W1) = ξ3 = 2ϕ1 − ϕ2 , M(W2) = ξ1 + ξ2 = 2ϕ2 − ϕ1 . (3.169)

From the instanton masses, one can identify that this resolution corresponds to gauge

theory chamber 11 (cf. table 7 and (A.10)):

M(I1) = χ(r0 = −ξ3) = ξ3 + ξ9 = h0 −m1 −m2 + 3ϕ1 ,

M(I2) = χ(r0 = 0) = ξ9 = h0 −m1 −m2 + ϕ1 + ϕ2 ,

M(I3) = χ(r0 = ξ1 + ξ2) = −ξ1 + ξ5 + ξ9 = h0 + ϕ2 .

(3.170)

The masses of hypermultiplets (due to open strings stretched between gauge and flavor

branes) are:

M(H1) = M(G1F1) = ξ3 + ξ5 = ϕ1 +m1 ,

M(H2) = M(G2F1) = ξ5 = −ϕ1 + ϕ2 +m1 ,

M(H3) = M(G3F1) = ξ1 + ξ2 − ξ5 = ϕ2 −m1 ,

M(H4) = M(G1F2) = ξ2 + ξ3 = ϕ1 +m2 ,

M(H5) = M(G2F2) = ξ2 = −ϕ1 + ϕ2 +m2 ,

M(H6) = M(G3F2) = ξ1 = ϕ2 −m2 .

(3.171)

Note that the choice ξ2 ≥ ξ5 made above while computing χ(r0) therefore implies that

m2 ≥ m1 in this chamber. From the Kähler volumes (3.164) of the compact curves and

masses of W-bosons and instantons, the map between geometry and field theory variables

is determined to be:

E3
2,1 geometry :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

µ1 = h0 +m1,

µ2 = h0 + 2m1 −m2,

µ3 = 3m1,

ν1 = −ϕ2 +m1,

ν2 = −ϕ1 + 2m1 .

(3.172)

Plugging (3.172) into (3.166), we recover the field theory prepotential

Fchamber 11
SU(3)2,Nf=2=

4

3
ϕ3
1+ϕ3

2−
1

2
(ϕ2

1ϕ2+ϕ1ϕ
2
2)+(−h0+m1+m2)ϕ1ϕ2

+(h0−m1−m2)ϕ
2
1+

(
h0−

m1+m2

2

)
ϕ2
2−

1

2
(m2

1+m2
2)ϕ2−

1

3
(m3

1+m3
2) .

(3.173)
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up to ϕ-independent terms. From field theory, the monopole string tensions are given by:

T1,ft =
∂Fchamber 11

SU(3)2,Nf=2

∂ϕ1
= 4ϕ2

1 − ϕ1ϕ2 −
1

2
ϕ2
2 + 2(h0 −m1 −m2)ϕ1

+ (−h0 +m1 +m2)ϕ2 , (3.174)

T2,ft =
∂Fchamber 11

SU(3)2,Nf=2

∂ϕ2
= −1

2
ϕ2
1 − ϕ1ϕ2 + 3ϕ2

2 + (−h0 +m1 +m2)ϕ1

+ (2h0 −m1 −m2)ϕ2 −
1

2
(m2

1 +m2
2) , (3.175)

whereas from geometry, they are given by:

T1,geo =

∫ 0

−ξ3

χ(r0) dr0 =
ξ23
2

+ ξ9ξ3 , (3.176)

T2,geo =

∫ ξ1+ξ2

0
χ(r0) dr0 = −ξ21

2
+ ξ5ξ1 + ξ9ξ1 + ξ2ξ5 + ξ2ξ9 −

ξ25
2
. (3.177)

Using the map,

Resolution (a) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ1 = ϕ2 −m2 ,

ξ2 = −ϕ1 + ϕ2 +m2 ,

ξ3 = 2ϕ1 − ϕ2 ,

ξ5 = −ϕ1 + ϕ2 +m1 ,

ξ9 = h0 + ϕ1 + ϕ2 −m1 −m2 ,

(3.178)

we find that Ti,ft = Ti,geo for i = 1, 2.

Magnetic walls. The tensions vanish at loci given by:

(I) : {ξ3 = 0} ∪
{
1

2
ξ3 + ξ9 = 0

}
, and ,

(II) :

{
ξ1ξ5 −

1

2
(ξ21 + ξ25) + ξ1ξ9 + ξ2ξ5 + ξ2ξ9 = 0

}
.

(3.179)

Along the submanifold {ξ3 = 0} ⊂ (I), the W-boson W1 in this chamber becomes mass-

less. So this submanifold coincides with the hard wall which is the boundary of the Weyl

chamber. The submanifold {1
2ξ3 + ξ9} = 0 is not part of the Kähler chamber of resolution

(1). So the locus (I) contributes no magnetic walls.

The locus defined by (II) is more intricate. The condition (II) has two solutions:

ξ1
(II)
= ξ5 + ξ9 ±

√
(ξ5 + ξ9)2 + 2ξ2(ξ5 + ξ9)− ξ25 . (3.180)

Since (3.162) requires that ξ8 = −ξ1 + ξ5 + ξ9 in this chamber, only the negative sign

in (3.180) is acceptable. However, in this chamber, recall that ξ2 ≥ ξ5. So the quantity

2ξ2(ξ5 + ξ9)− ξ25 = 2ξ2ξ9 + ξ5(2ξ2 − ξ5) is always non-negative in this chamber. Therefore,

the square root in (3.180) is ≥ ξ5 + ξ9, which implies that the right-hand-side of (3.180)

is negative, which is unphysical in the Kähler chamber of resolution (a). This implies that

there are no magnetic walls in resolution (a) of the E3
2,1 singularity.
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(a) (b)

Figure 30. Resolution (b) of the E3
2,1 singularity and its vertical reduction.

Away from any hard wall, any one of a number of perturbative hypermultiplets, namely

H2, H3, H5 and H6, can become massless, respectively at ξ5 = 0, ξ7 = 0, ξ2 = 0 and

ξ1 = 0, signaling flops of the corresponding compact curves C5, C7, C2 and C1. These

lead, respectively, to gauge theory phases described by resolutions (d), (e), (c) and (b).

Alternatively, away from the hard wall, the BPS instanton particles I2 or I3 can become

massless, respectively, at ξ9 = 0 (signaling a flop of C9) or ξ8 = −ξ1+ ξ5+ ξ9 = 0 (signaling

a flop of C8). These correspond to traversable instantonic wall, which lead, respectively to

non-gauge-theoretic resolutions (q2) or (q1).

Resolution (b). Consider the crepant resolution of figure 28(b), with curves and divisors

shown in figure 30(a). This resolution can be obtained by a flop of the curve C1 in resolution

(a). The linear equivalences among divisors are given by (3.158). The compact curves C
can be read off the toric diagram. The linear relations among curve classes are:

C2 = C5 + C7 , C4 ≃ C3 + C9 , C6 ≃ C3 , C8 = C5 + C9 . (3.181)

We take {C1, C3, C5, C7, C9} as Mori cone generators. The GLSM charge matrix is:

D1 D2 D3 D4 D5 D6 E1 E2 vol(C)
C1 1 −1 0 0 0 −1 1 0 ξ1
C3 0 0 1 0 0 0 1 −2 ξ3
C5 0 0 0 −1 1 0 −1 1 ξ5
C7 0 0 0 1 −1 1 −1 0 ξ7
C9 0 1 0 1 0 0 −1 −1 ξ9

U(1)M 0 0 0 0 0 0 −1 1 r0

(3.182)
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The Kähler cone is parametrized by (3.163). The parameters (µ1, µ2, µ3, ν1, ν2) are related

to the FI parameters by

ξ1 = µ1 − µ2 + ν1 ≥ 0 , ξ3 = µ3 + ν1 − 2ν2 ≥ 0 , ξ5 = −ν1 + ν2 ≥ 0 ,

ξ7 = −ν1 ≥ 0 , ξ9 = µ2 − ν1 − ν2 ≥ 0 .
(3.183)

The relevant triple-intersection numbers are:

E3
1=7 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−1 , E1E

2
2=−1 , D2

1E1=0 , D2
1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E
2
1=0 ,

D1E
2
2=0 , D2E

2
1=−2 , D2E

2
2=−2 , D3E

2
1=0 , D3E

2
2=−3 .

(3.184)

Therefore, the compact part of the prepotential is:

F(b)(ν1, ν2;µ1, µ2, µ3) = −7

6
ν31 − 4

3
ν32 +

1

2
(ν21ν2 + ν1ν

2
2) + µ2

2ν
2
1 − µ2ν1ν2 +

(
µ2 +

3

2
µ3

)
ν22

−
(
µ2µ3 +

1

2
µ2
3

)
(3.185)

The IIA profile is:

χ(r0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−3r0 − 2ξ3 + ξ9, for r0 ≤ −ξ3
−r0 + ξ9, for − ξ3 ≤ r0 ≤ 0

+r0 + ξ9, for 0 ≤ r0 ≤ ξ5
ξ5 + ξ9, for ξ5 ≤ r0 ≤ ξ5 + ξ7
+2r0 − ξ5 − 2ξ7 + ξ9, for ξ5 + ξ7 ≤ r0 ≤ ξ1 + ξ5 + ξ7
+r0 + ξ1 − ξ7 + ξ9, for r0 ≥ ξ1 + ξ5 + ξ7 .

(3.186)

This function is sketched in figure 30(b) (where we have chosen ξ3 > ξ5 for convenience

of plotting). At the points r0 = −ξ3, r0 = 0 and r0 = ξ5 + ξ7, there are gauge D6-

branes wrapping P1’s in the resolution of the singularity (we denote them by G1, G2 and

G3 respectively). When ξ3 = ξ5 = ξ7 = 0, an SU(3) gauge theory is realized (at r0 = 0)

with inverse coupling h0 = ξ9. There are two flavor D6-branes at r0 = ξ5 and r0 = ξ5 + ξ7,

denoted by F1 and F2 respectively.

The effective Chern-Simons level is, of course, still 1. The simple-root W-bosons have

masses given by:

M(W1) = ξ3 = 2ϕ1 − ϕ2 , M(W2) = ξ5 + ξ7 = 2ϕ2 − ϕ1 . (3.187)

This resolution can be identified with gauge theory chamber 12 (cf. table 7 and (A.10)),

with instanton masses given by:

M(I1) = χ(r0 = −ξ3) = ξ3 + ξ9 = h0 −m1 −m2 + 3ϕ1 ,

M(I2) = χ(r0 = 0) = ξ9 = h0 −m1 −m2 + ϕ1 + ϕ2

M(I3) = χ(r0 = ξ5 + ξ7) = ξ5 + ξ9 = h0 −m2 + 2ϕ2 .

(3.188)
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The masses of hypermultiplets are:

M(H1) = M(G1F1) = ξ3 + ξ5 = ϕ1 +m1 ,

M(H2) = M(G2F1) = ξ5 = −ϕ1 + ϕ2 +m1 ,

M(H3) = M(G3F1) = ξ7 = ϕ2 −m1 ,

M(H4) = M(G1F2) = ξ1 + ξ3 + ξ5 + ξ7 = ϕ1 +m2 ,

M(H5) = M(G2F2) = ξ1 + ξ5 + ξ7 = −ϕ1 + ϕ2 +m2 ,

M(H6) = M(G3F2) = ξ1 = −ϕ2 +m2 .

(3.189)

It is easy to verify that the map between geometry and field theory variables is the

still (3.172), as it must be. Plugging (3.172) into (3.185), we recover the field theory

prepotential:

Fchamber 12
SU(3)2,Nf=2=

4

3
ϕ3
1+

7

6
ϕ3
2+

1

2
(ϕ2

1ϕ2+ϕ1ϕ
2
2)+(h0−m1−m2)ϕ

2
1+(−h0+m1+m2)ϕ1ϕ2

+

(
h0−

1

2
m1−m2

)
ϕ2
2−

1

2
m2

1ϕ2 , (3.190)

up to ϕ-independent terms. The monopole string tensions from the IIA profile are:

T1,geo =

∫ 0

−ξ3

χ(r0) dr0 =
ξ23
2

+ ξ3ξ9 , (3.191)

T2,geo =

∫ ξ5+ξ7

0
χ(r0) dr0 =

ξ25
2

+ ξ5ξ9 + ξ7 (ξ5 + ξ9) . (3.192)

Using the map,

Resolution (b) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ1 = −ϕ2 +m2 ,

ξ3 = 2ϕ1 − ϕ2 ,

ξ5 = −ϕ1 + ϕ2 +m1 ,

ξ7 = −ϕ2 +m1 ,

ξ9 = h0 −m1 −m2 + ϕ1 + ϕ2 ,

(3.193)

we find that Ti,ft = Ti,geo for i = 1, 2. The tensions vanish at loci given by:

(I) : {ξ3 = 0} ∪
{
1

2
ξ3 + ξ9 = 0

}
, and (II) :

{
ξ25
2

+ ξ5ξ9 + ξ7 (ξ5 + ξ9) = 0

}
. (3.194)

Along the locus {ξ3 = 0} ⊂ (I), the W-boson W1 in this chamber becomes massless. So

this submanifold coincides with the hard wall which is the boundary of the Weyl chamber.

The locus {1
2ξ3 + ξ9 = 0} ⊂ (I) is not part of the Kähler chamber of resolution (1). The

quadratic condition (II) has two solutions: ξ5 = −ξ7 − ξ9 ±
√
ξ27 + ξ29 . Both sign choices

yield a negative value of ξ5, which is inconsistent in this Kähler chamber. This implies that

there are no magnetic walls in resolution (b) of the E3
2,1 singularity.

Away from any hard wall in this chamber, one of the three perturbative hypermultiplets

H2, H3 or H6 can become massless, respectively, at ξ5 = 0, ξ7 = 0 or ξ1 = 0. These to

flops of C5, C7 or C1, which lead, respectively to gauge-theory resolutions (f), (g) or (a).

Alternatively, away from any hard wall, the BPS instanton particle I2 can become massless

at ξ9 = 0 (signaling a flop of C9), indicating a traversible insantonic wall which leads to

non-gauge-theoretic resolution (q3).
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Resolution Chamber ϕ1+m1 −ϕ1+ϕ2+m1 −ϕ2+m1 ϕ1+m2 −ϕ1+ϕ2+m2 −ϕ2+m2

(a) 11 ≥ 0 ≥ 0 < 0 ≥ 0 ≥ 0 < 0

(b) 12 ≥ 0 ≥ 0 < 0 ≥ 0 ≥ 0 ≥ 0

(c) 10 ≥ 0 ≥ 0 < 0 ≥ 0 < 0 < 0

(d) 7 ≥ 0 < 0 < 0 ≥ 0 ≥ 0 < 0

(e) 15 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 < 0

(f) 8 ≥ 0 < 0 < 0 ≥ 0 ≥ 0 ≥ 0

(g) 16 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

(h) 9 ≥ 0 ≥ 0 < 0 < 0 < 0 < 0

(i) 6 ≥ 0 < 0 < 0 ≥ 0 < 0 < 0

(j) 14 ≥ 0 ≥ 0 ≥ 0 ≥ 0 < 0 < 0

(k) 3 < 0 < 0 < 0 ≥ 0 ≥ 0 < 0

(l) 4 < 0 < 0 < 0 ≥ 0 ≥ 0 ≥ 0

(m) 5 ≥ 0 < 0 < 0 < 0 < 0 < 0

(n) 13 ≥ 0 ≥ 0 ≥ 0 < 0 < 0 < 0

(o) 2 < 0 < 0 < 0 ≥ 0 < 0 < 0

(p) 1 < 0 < 0 < 0 < 0 < 0 < 0

Table 4. The map between the 16 crepant resolutions of the E3
2,1 singularity that admit a vertical

reduction, and the 16 chambers of the SU(3)2 Nf = 2 field theory, with field theory chamber
definitions expressed as inequalities.

RG flow. In this resolution, one can decouple the divisor D1 by sending the volume of

the curve C1 to infinity, which is equivalent to sending the mass m2 to +∞. It is easy to see

that this yields resolution (a) of the E2
2, 12 singularity shown in figure 12. This is consistent

with the fact that the effective Chern-Simons level changes from keff = 1 to keff = 1− 1
2 = 1

2

(recall (2.5)). An inspection of figure 28 suggests that many such transitions are possible,

including those involving non-gauge-theoretic phases.

The geometry ↔ field theory map. We can repeat the above analysis for the re-

maining fourteen resolutions that admit vertical reductions, and match each of them to

chambers of SU(3)2 Nf = 2 field theory (see table 6). To do so, one may exploit the fact

that map (3.172) is constant across all resolutions. The result of this matching is outlined

in table 4.

The triple-intersection numbers of all 30 crepant resolutions (including the 14 which

are non-gauge-theoretic phases) are listed in appendix B, and the expressions for the cor-

responding M-theory prepotentials are listed in appendix C.

3.7 The E3
2,0 singularity and SU(3)0 Nf = 2 gauge theory

The E3
2,0 singularity of figure 3(j) admits 24 crepant resolutions. However, an SL(2,Z)

transformation — for example, by ST−1S2 — transforms this singularity to the “beetle

singularity” that was extensively analyzed in [10]. An interesting feature of the beetle

singularity is that there are both horizontal as well as vertical reductions, and these describe

– 64 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
8

either the SU(2)×SU(2) theory, or the SU(3)0 Nf = 2 theory. As we have remarked before,

this geometry can lead to a number of smaller geometries (see, for instance, figure 1),

including, in particular the E2
± 1

2 geometries, and the E1
2,ℓ geometries for ℓ = −1, 0, 1, but

also geometries corresponding to non-gauge-theoretic phases. We refer the reader to [10]

for details.
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A Field theory prepotentials and instanton masses

In this section, we list the expressions for the field theory prepotential (2.7) evaluated for

the models that we have analyzed in this paper, and also the instanton masses in each

chamber. We begin by describing the procedure used to compute the instanton masses in

field theory.

For the special case of G =
∏

i SU(ni), we follow [10, 24] and consider an auxiliary

gauge group G′ =
∏

iU(ni) obtained by replacing each SU(ni) gauge group factor with

U(ni). Let us denote the U(ni) Coulomb branch vevs by φi,(1),φi,(2), . . . ,φi,(ni). Then for

each such gauge group U(ni) there are ni “instanton states” with masses given by the

second derivatives of the prepotential:

M(I(k)
U(ni)

) =
∂2F
∂φ2

i,(k)

∣∣∣∣∣
U(ni)→SU(ni)

, for k = 1, . . . , ni . (A.1)

Here the notation U(ni) → SU(ni) refers to the operation of imposing the “traceless condi-

tion,” to transform to SU(ni) variables, after computing the second derivative. This entails

the following substitution for every U(ni) factor in G′:

φi,a = ϕi,a − ϕi,a−1, a = 1, . . . , ni, with ϕa,0 = ϕa,ni = 0 . (A.2)

Here we have denoted the Coulomb vevs of SU(ni) by ϕi,1, . . . ,ϕi,ni−1. The leading term is

M(I) = h0+· · · corresponding to the familiar fact that instanton masses scale as h0 =
8π2

g2 .

U(3)k field theory. The fundamental Weyl chamber is defined by φ1 ≥ φ2 ≥ φ3. The

gauge theory prepotential (2.7) for pure 5d U(3)k gauge theory is:

FU(3)k =
1

2
h0(φ

2
1+φ2

2+φ2
3)+

k

6
(φ3

1+φ3
2+φ2

3)+
1

6

[
(φ1−φ2)

3+(φ2−φ3)
3+(φ1−φ3)

3
]
. (A.3)
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#

φ1 +m

or

ϕ1+m

φ2 +m

or

−ϕ1+ϕ2+m

φ3 +m

or

−ϕ2+m

M(I1) M(I2) M(I3)

1 < 0 < 0 < 0 h0+(k + 3)ϕ1
h0+(1− k)ϕ1

+(1 + k)ϕ2
h0+(3− k)ϕ2

2 ≥ 0 < 0 < 0
h0−m

+(k+2)ϕ1

h0 + (1− k)ϕ1

+(1 + k)ϕ2
h0+(3− k)ϕ2

3 ≥ 0 ≥ 0 < 0
h0−m

+(k+2)ϕ1

h0−m

+(2− k)ϕ1

+kϕ2

h0+(3− k)ϕ2

4 ≥ 0 ≥ 0 ≥ 0
h0−m

+(k+2)ϕ1

h0−m

+(2− k)ϕ1

+kϕ2

h0−m

+(4− k)ϕ2

Table 5. Chamber definitions of the U(3)keff or SU(3)keff gauge theory with Nf = 1 and the
corresponding instanton masses. The variables (φ1,φ2,φ3) denote U(3) vevs, while the variables
(ϕ1,ϕ2) denote SU(3) vevs.

SU(3)keff + Nf = 1 field theory. The U(3)keff Nf = 1 field theory is specified by

3 Coulomb vevs (φ1,φ2,φ3), one inverse gauge coupling h0, and one real mass m ∈ R.
There are 4 chambers inside the fundamental Weyl chamber given by φ1 ≥ φ2 ≥ φ3.

These are defined by the allowed ranges of the arguments of the Θ functions in (2.7).

The instanton masses in various chambers, computed using (A.1), are listed in table 5 to

facilitate calculations in the main text. Here k denotes the bare CS level, given in terms

of the effective CS level keff for Nf = 1 by

k ≡ kbare = keff +
1

2
, (A.4)

in the U(1)− 1
2
quantization scheme (cf. (2.4)). The SU(3)keff Nf = 1 theory is specified by 2

Coulomb vevs ϕ1,ϕ2, one inverse coupling h0 and one real mass m ∈ R. The fundamental

Weyl chamber is given by {2ϕ1−ϕ2 ≥ 0}∩{−ϕ2+2ϕ2 ≥ 0}. Below we list the prepotentials

in the four field theory chambers.

Fchamber 1
SU(3)k,Nf=1

=
4

3
ϕ3
1 +

4

3
ϕ3
2 +

(k − 1)

2
ϕ2
1ϕ2 −

(k + 1)

2
ϕ1ϕ

2
2 + h0(ϕ

2
1 + ϕ2

2 − ϕ1ϕ2) . (A.5)

Fchamber 2
SU(3)k,Nf=1

=
7

6
ϕ3
1 +

4

3
ϕ3
2 +

(k − 1)

2
ϕ2
1ϕ2 −

(k + 1)

2
ϕ1ϕ

2
2 +

(
h0 −

m

2

)
ϕ2
1 + h0ϕ

2
2

− h0ϕ1ϕ2 −
m2

2
ϕ1 −

m3

6
. (A.6)

Fchamber 3
SU(3)k,Nf=1

=
4

3
ϕ3
1 +

7

6
ϕ3
2 +

(k − 2)

2
ϕ2
1ϕ2 −

k

2
ϕ1ϕ

2
2 + (h0 −m)ϕ2

1 +
(
h0 −

m

2

)
ϕ2
2

+ (m− h0)ϕ1ϕ2 −
m2

2
ϕ2 −

m3

3
. (A.7)

Fchamber 4
SU(3)k,Nf=1

=
4

3
ϕ3
1 +

4

3
ϕ3
2 +

(k − 2)

2
ϕ2
1ϕ2 −

k

2
ϕ1ϕ

2
2 + (h0 −m)ϕ2

1 + (h0 −m)ϕ2
2

+ (m− h0)ϕ1ϕ2 −
m3

2
. (A.8)
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Chamber

φ1 +m1

or

ϕ1+m1

φ2 +m1

or

−ϕ1+ϕ2+m1

φ3 +m1

or

−ϕ2+m1

φ1 +m2

or

ϕ1+m2

φ2 +m2

or

−ϕ1+ϕ2+m2

φ3 +m2

or

−ϕ2+m2

1 < 0 < 0 < 0 < 0 < 0 < 0

2 < 0 < 0 < 0 ≥ 0 < 0 < 0

3 < 0 < 0 < 0 ≥ 0 ≥ 0 < 0

4 < 0 < 0 < 0 ≥ 0 ≥ 0 ≥ 0

5 ≥ 0 < 0 < 0 < 0 < 0 < 0

6 ≥ 0 < 0 < 0 ≥ 0 < 0 < 0

7 ≥ 0 < 0 < 0 ≥ 0 ≥ 0 < 0

8 ≥ 0 < 0 < 0 ≥ 0 ≥ 0 ≥ 0

9 ≥ 0 ≥ 0 < 0 < 0 < 0 < 0

10 ≥ 0 ≥ 0 < 0 ≥ 0 < 0 < 0

11 ≥ 0 ≥ 0 < 0 ≥ 0 ≥ 0 < 0

12 ≥ 0 ≥ 0 < 0 ≥ 0 ≥ 0 ≥ 0

13 ≥ 0 ≥ 0 ≥ 0 < 0 < 0 < 0

14 ≥ 0 ≥ 0 ≥ 0 ≥ 0 < 0 < 0

15 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 < 0

16 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

Table 6. Chamber definitions of the U(3)keff or SU(3)keff gauge theory with Nf = 2 flavors. The
variables (φ1,φ2,φ3) denote U(3) vevs, while the variables (ϕ1,ϕ2) denote SU(3) vevs.

SU(3)keff + Nf = 2 field theory. The SU(3)keff Nf = 2 theory is likewise specified by

2 Coulomb vevs (ϕ1,ϕ2), one gauge coupling h0 and two real masses m1,m2 ∈ R. Table 6

lists the 16 chambers of the theory, while table 7 lists the elementary instanton masses in

the 16 chambers.

Note that in table 7, the symbol k denotes the bare CS level, which in this case is

related to the effective CS level keff by,

k ≡ kbare = keff + 1 , (A.9)

in the U(1)− 1
2
quantization scheme (cf. (2.4)).

The prepotential (2.7) of the SU(3)keff Nf = 2 theory is given by:

FSU(3)k,Nf=2 = h0(ϕ
2
1 − ϕ2ϕ1 + ϕ2

2) +
4

3
(ϕ3

1 + ϕ3
2) +

1

2
((k − 1)ϕ2

1ϕ2 − (k + 1)ϕ1ϕ
2
2)

+
1

6

2∑

i=1

[
Θ (ϕ1 +mi) (ϕ1 +mi)

3 +Θ (−ϕ1 + ϕ2 +mi) (−ϕ1 + ϕ2 +mi)
3

+Θ (ϕ2 +mi) (ϕ2 +mi)
3 ] . (A.10)

The arguments of the Θ functions define various chambers, and are listed in table 6.

B Triple-intersection numbers of the E3
2,1 geometry

Using the GLSM approach, it is straightforward to compute triple-intersection numbers

involving at least one compact divisor, as discussed in the main text. The results are listed

below.
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# M(I1) M(I2) M(I3)
1 h0 + (k + 3)ϕ1 h0 + (1− k)ϕ1 + (k + 1)ϕ2 h0 + (3− k)ϕ2

2 h0 + (k + 2)ϕ1 −m2 h0 + (1− k)ϕ1 + (k + 1)ϕ2 h0 + (3− k)ϕ2

3 h0 + (k + 2)ϕ1 −m2 h0 + (2− k)ϕ1 + kϕ2 −m2 h0 + (3− k)ϕ2

4 h0 + (k + 2)ϕ1 −m2 h0 + (2− k)ϕ1 + kϕ2 −m2 h0 + (4− k)ϕ2 −m2

5 h0 + (k + 2)ϕ1 −m1 h0 + (1− k)ϕ1 + (k + 1)ϕ2 h0 + (3− k)ϕ2

6 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (1− k)ϕ1 + (k + 1)ϕ2 h0 + (3− k)ϕ2

7 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (2− k)ϕ1 + kϕ2 −m2 h0 + (3− k)ϕ2

8 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (2− k)ϕ1 + kϕ2 −m2 h0 + (4− k)ϕ2 −m2

9 h0 + (k + 2)ϕ1 −m1 h0 + (2− k)ϕ1 + kϕ2 −m1 h0 + (3− k)ϕ2

10 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (2− k)ϕ1 + kϕ2 −m1 h0 + (3− k)ϕ2

11 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (3− k)ϕ1 + (k − 1)ϕ2 −m1 −m2 h0 + (3− k)ϕ2

12 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (3− k)ϕ1 + (k − 1)ϕ2 −m1 −m2 h0 + (4− k)ϕ2 −m2

13 h0 + (k + 2)ϕ1 −m1 h0 + (2− k)ϕ1 + kϕ2 −m1 h0 + (4− k)ϕ2 −m1

14 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (2− k)ϕ1 + kϕ2 −m1 h0 + (4− k)ϕ2 −m1

15 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (3− k)ϕ1 + (k − 1)ϕ2 −m1 −m2 h0 + (4− k)ϕ2 −m1

16 h0 + (k + 1)ϕ1 −m1 −m2 h0 + (3− k)ϕ1 + (k − 1)ϕ2 −m1 −m2 h0 + (5− k)ϕ2 −m1 −m2

Table 7. Instanton masses in the 16 chambers of the SU(3)keff Nf = 2 field theory.

Resolutions that have a vertical reduction. Resolutions (a)-(p) (see figure 28) have

an allowed vertical reduction. The relevant triple-intersection numbers are:

(a) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=6 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−1 , E1E2

2=−1 , D2
1E1=−1 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−1 ,

D1E2
2=0 , D2E2

1=−1 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.1)

(b) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−1 , E1E2

2=−1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=0 ,

D1E2
2=0 , D2E2

1=−2 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.2)

(c) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=7 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=−1 , D1D2E1=0 ,

D1D2E2=1 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=−1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−2 ,

D1E2
2=−1 , D2E2

1=0 , D2E2
2=−1 , D3E2

1=0 , D3E2
2=−3 ,

(B.3)

(d) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=7 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=−1 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−1 ,

D1E2
2=0 , D2E2

1=−1 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.4)
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(e) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−1 , E1E2

2=−1 , D2
1E1=−1 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−1 ,

D1E2
2=0 , D2E2

1=−1 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.5)

(f) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=7 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=0 ,

D1E2
2=0 , D2E2

1=−2 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.6)

(g) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−1 , E1E2

2=−1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=0 ,

D1E2
2=0 , D2E2

1=−2 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.7)

(h) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=8 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=1 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=0 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−2 ,

D1E2
2=−2 , D2E2

1=0 , D2E2
2=0 , D3E2

1=0 , D3E2
2=−4 ,

(B.8)

(i) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=6 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=0 , D2

1E2=−1 , D1D2E1=0 ,

D1D2E2=1 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=−1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−2 ,

D1E2
2=−1 , D2E2

1=0 , D2E2
2=−1 , D3E2

1=0 , D3E2
2=−3 ,

(B.9)

(j) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=7 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=−1 , D1D2E1=0 ,

D1D2E2=1 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=−1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−2 ,

D1E2
2=−1 , D2E2

1=0 , D2E2
2=−1 , D3E2

1=0 , D3E2
2=−3 ,

(B.10)

(k) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=−1 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−1 ,

D1E2
2=0 , D2E2

1=−1 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−4 ,

(B.11)
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(l) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=2 , D1E2
1=0 ,

D1E2
2=0 , D2E2

1=−2 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−4 ,

(B.12)

(m) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=7 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=1 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=0 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−2 ,

D1E2
2=−2 , D2E2

1=0 , D2E2
2=0 , D3E2

1=0 , D3E2
2=−4 ,

(B.13)

(n) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=8 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=1 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=0 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−2 ,

D1E2
2=−2 , D2E2

1=0 , D2E2
2=0 , D3E2

1=0 , D3E2
2=−4 ,

(B.14)

(o) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=7 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=0 , D2

1E2=−1 , D1D2E1=0 ,

D1D2E2=1 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=−1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−2 ,

D1E2
2=−1 , D2E2

1=0 , D2E2
2=−1 , D3E2

1=0 , D3E2
2=−4 ,

(B.15)

(p) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=8 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=1 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=0 , D2
3E1=0 , D2

3E2=3 , D1E2
1=−2 ,

D1E2
2=−2 , D2E2

1=0 , D2E2
2=0 , D3E2

1=0 , D3E2
2=−5 .

(B.16)

Resolutions without a gauge theory phase. Resolutions (q1)-(q14) (see figure 28)

do not admit vertical reductions, and thus have no gauge theory phases. For the sake of

completeness, their triple-intersection numbers are listed below.

(q1) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−1 , E1E2

2=−1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−2 ,

D1E2
2=0 , D2E2

1=−1 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.17)

(q2) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=7 , E3

2=9 , D1E1E2=0 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=1 , E1E2

2=1 , D2
1E1=−1 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−1 ,

D1E2
2=0 , D2E2

1=−2 , D2E2
2=−3 , D3E2

1=0 , D3E2
2=−3 ,

(B.18)
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(q3) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=9 , D1E1E2=0 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=1 , E1E2

2=1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=1 , D2

2E2=1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=0 ,

D1E2
2=0 , D2E2

1=−3 , D2E2
2=−3 , D3E2

1=0 , D3E2
2=−3 ,

(B.19)

(q4) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=7 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=1 , D2

1E2=−1 , D1D2E1=0 ,

D1D2E2=1 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=−1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−3 ,

D1E2
2=−1 , D2E2

1=0 , D2E2
2=−1 , D3E2

1=0 , D3E2
2=−3 ,

(B.20)

(q5) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=7 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−2 ,

D1E2
2=0 , D2E2

1=−1 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−3 ,

(B.21)

(q6) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=9 , D1E1E2=0 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=1 , E1E2

2=1 , D2
1E1=−1 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−1 ,

D1E2
2=0 , D2E2

1=−2 , D2E2
2=−3 , D3E2

1=0 , D3E2
2=−3 ,

(B.22)

(q7) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=9 , D1E1E2=0 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=1 , E1E2

2=1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−2 ,

D1E2
2=0 , D2E2

1=−2 , D2E2
2=−3 , D3E2

1=0 , D3E2
2=−3 ,

(B.23)

(q8) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=9 , E3

2=9 , D1E1E2=0 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=1 , E1E2

2=1 , D2
1E1=0 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=1 , D2

2E2=1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=0 ,

D1E2
2=0 , D2E2

1=−3 , D2E2
2=−3 , D3E2

1=0 , D3E2
2=−3 ,

(B.24)

(q9) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=8 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=1 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=1 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=0 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−3 ,

D1E2
2=−2 , D2E2

1=0 , D2E2
2=0 , D3E2

1=0 , D3E2
2=−4 ,

(B.25)

(q10) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=9 , E3

2=6 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=1 , D2

1E2=−1 , D1D2E1=0 ,

D1D2E2=1 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=−1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=1 , D1E2
1=−3 ,

D1E2
2=−1 , D2E2

1=0 , D2E2
2=−1 , D3E2

1=0 , D3E2
2=−3 ,

(B.26)

– 71 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
8

(q11) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=8 , E3

2=8 , D1E1E2=0 , D2E1E2=1 , D3E1E2=0 ,

E2
1E2=−2 , E1E2

2=0 , D2
1E1=0 , D2

1E2=0 , D1D2E1=1 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=0 , D2
2E1=−1 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−2 ,

D1E2
2=0 , D2E2

1=−1 , D2E2
2=−2 , D3E2

1=0 , D3E2
2=−4 ,

(B.27)

(q12) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=9 , E3

2=7 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=1 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=1 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=0 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−3 ,

D1E2
2=−2 , D2E2

1=0 , D2E2
2=0 , D3E2

1=0 , D3E2
2=−4 ,

(B.28)

(q13) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=9 , E3

2=7 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=1 , D2

1E2=−1 , D1D2E1=0 ,

D1D2E2=1 , D1D3E1=0 , D1D3E2=0 , D2
2E1=0 , D2

2E2=−1 ,

D2D3E1=0 , D2D3E2=1 , D2
3E1=0 , D2

3E2=2 , D1E2
1=−3 ,

D1E2
2=−1 , D2E2

1=0 , D2E2
2=−1 , D3E2

1=0 , D3E2
2=−4 ,

(B.29)

(q14) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
1=9 , E3

2=8 , D1E1E2=1 , D2E1E2=0 , D3E1E2=0 ,

E2
1E2=−3 , E1E2

2=1 , D2
1E1=1 , D2

1E2=0 , D1D2E1=0 ,

D1D2E2=0 , D1D3E1=0 , D1D3E2=1 , D2
2E1=0 , D2

2E2=0 ,

D2D3E1=0 , D2D3E2=0 , D2
3E1=0 , D2

3E2=3 , D1E2
1=−3 ,

D1E2
2=−2 , D2E2

1=0 , D2E2
2=0 , D3E2

1=0 , D3E2
2=−5 .

(B.30)

C M-theory prepotentials of the E3
2,1 geometry

In this appendix, we list the geometric prepotentials for all the crepant resolutions of the

E3
2,1 singularity (see figure 28), using (3.163), (2.20), and the triple-intersection numbers

from appendix B.

Resolutions that have a vertical reduction. (Resolutions (a)-(p) in figure 28.)

Fa =

(
µ2
1

2
−µ1µ2+

µ2
2

2

)
ν1+

(µ1

2
+
µ2

2

)
ν2
1−ν3

1+

(
−µ2µ3−

µ2
3

2

)
ν2−µ2ν1ν2+

1
2
ν2
1ν2

+

(
µ2+

3µ3

2

)
ν2
2+

1
2
ν1ν

2
2−

4ν3
2

3
,

Fb =µ2ν
2
1−

7ν3
1

6
+

(
−µ2µ3−

µ2
3

2

)
ν2−µ2ν1ν2+

1
2
ν2
1ν2+

(
µ2+

3µ3

2

)
ν2
2+

1
2
ν1ν

2
2−

4ν3
2

3
,

Fc =µ1ν
2
1−

7ν3
1

6
+

(
µ2
1

2
−µ1µ2+

µ2
2

2
−µ2µ3−

µ2
3

2

)
ν2−µ1ν1ν2+ν2

1ν2+

(
µ1

2
+
µ2

2
+
3µ3

2

)
ν2
2−

7ν3
2

6
,

Fd =

(
µ2
1

2
−µ1µ2+

µ2
2

2

)
ν1+

(µ1

2
+
µ2

2

)
ν2
1−

7ν3
1

6
+

(
−µ2µ3−

µ2
3

2

)
ν2−µ2ν1ν2+ν2

1ν2+

(
µ2+

3µ3

2

)
ν2
2−

7ν3
2

6
,

Fe =

(
µ2
1

2
−µ1µ2+

µ2
2

2

)
ν1+

(µ1

2
+
µ2

2

)
ν2
1−

7ν3
1

6
+

(
−µ2µ3−

µ2
3

2

)
ν2−µ2ν1ν2+

1
2
ν2
1ν2

+

(
µ2+

3µ3

2

)
ν2
2+

1
2
ν1ν

2
2−

4ν3
2

3
,

Ff =µ2ν
2
1−

4ν3
1

3
+

(
−µ2µ3−

µ2
3

2

)
ν2−µ2ν1ν2+ν2

1ν2+

(
µ2+

3µ3

2

)
ν2
2−

7ν3
2

6
,

Fg =µ2ν
2
1−

4ν3
1

3
+

(
−µ2µ3−

µ2
3

2

)
ν2−µ2ν1ν2+

1
2
ν2
1ν2+

(
µ2+

3µ3

2

)
ν2
2+

1
2
ν1ν

2
2−

4ν3
2

3
,
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Fh =µ1ν
2
1−

7ν3
1

6
+
(
−µ1µ3−µ2

3

)
ν2−µ1ν1ν2+ν2

1ν2+(µ1+2µ3)ν
2
2−

4ν3
2

3
,

Fi =µ1ν
2
1−

4ν3
1

3
+

(
µ2
1

2
−µ1µ2+

µ2
2

2
−µ2µ3−

µ2
3

2

)
ν2−µ1ν1ν2+

3
2
ν2
1ν2+

(
µ1

2
+
µ2

2
+
3µ3

2

)
ν2
2−

1
2
ν1ν

2
2−ν3

2 ,

Fj =µ1ν
2
1−

4ν3
1

3
+

(
µ2
1

2
−µ1µ2+

µ2
2

2
−µ2µ3−

µ2
3

2

)
ν2−µ1ν1ν2+ν2

1ν2+

(
µ1

2
+
µ2

2
+
3µ3

2

)
ν2
2−

7ν3
2

6
,

Fk =

(
µ2
1

2
−µ1µ2+

µ2
2

2

)
ν1+

(µ1

2
+
µ2

2

)
ν2
1−

7ν3
1

6
+
(
−µ2µ3−µ2

3

)
ν2−µ2ν1ν2+ν2

1ν2+(µ2+2µ3)ν
2
2−

4ν3
2

3
,

Fl =µ2ν
2
1−

4ν3
1

3
+
(
−µ2µ3−µ2

3

)
ν2−µ2ν1ν2+ν2

1ν2+(µ2+2µ3)ν
2
2−

4ν3
2

3
,

Fm =µ1ν
2
1−

4ν3
1

3
+
(
−µ1µ3−µ2

3

)
ν2−µ1ν1ν2+

3
2
ν2
1ν2+(µ1+2µ3)ν

2
2−

1
2
ν1ν

2
2−

7ν3
2

6
,

Fn =µ1ν
2
1−

4ν3
1

3
+
(
−µ1µ3−µ2

3

)
ν2−µ1ν1ν2+ν2

1ν2+(µ1+2µ3)ν
2
2−

4ν3
2

3
,

Fo =µ1ν
2
1−

4ν3
1

3
+

(
µ2
1

2
−µ1µ2+

µ2
2

2
−µ2µ3−µ2

3

)
ν2−µ1ν1ν2+

3
2
ν2
1ν2+

(µ1

2
+
µ2

2
+2µ3

)
ν2
2−

1
2
ν1ν

2
2−

7ν3
2

6
,

Fp =µ1ν
2
1−

4ν3
1

3
+

(
−µ1µ3−

3µ2
3

2

)
ν2−µ1ν1ν2+

3
2
ν2
1ν2+

(
µ1+

5µ3

2

)
ν2
2−

1
2
ν1ν

2
2−

4ν3
2

3
.

Resolutions without a gauge theory phase. (Resolutions (q1)-(q14) in figure 28.)

Fq1 =

(
−µ1µ2+

µ2
2

2

)
ν1+

(
µ1+

µ2

2

)
ν2
1−

7ν3
1

6
+

(
−µ2µ3−

µ2
3

2

)
ν2−µ2ν1ν2+

1

2
ν2
1ν2+

(
µ2+

3µ3

2

)
ν2
2

+
1

2
ν1ν

2
2−

4ν3
2

3
,

Fq2 =

(
µ2
1

2
−µ1µ2

)
ν1+

(
µ1

2
+µ2

)
ν2
1−

7ν3
1

6
+

(
−µ2

2

2
−µ2µ3−

µ2
3

2

)
ν2−

1

2
ν2
1ν2+

(
3µ2

2
+

3µ3

2

)
ν2
2−

1

2
ν1ν

2
2−

3ν3
2

2
,

Fq3 =− 1

2
µ2
2ν1+

3

2
µ2ν

2
1−

4ν3
1

3
+

(
−µ2

2

2
−µ2µ3−

µ2
3

2

)
ν2−

1

2
ν2
1ν2+

(
3µ2

2
+

3µ3

2

)
ν2
2−

1

2
ν1ν

2
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