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aThe Blackett Laboratory, Imperial College London,
Prince Consort Road, London SW7 2AZ, U.K.

bDepartment of Physics and Astronomy, Uppsala University,
Box 516, SE-751 20 Uppsala, Sweden

cC.N.Yang Institute for Theoretical Physics, Stony Brook University,
Stony Brook, NY 11794-3840, U.S.A.

E-mail: ulf.lindstrom@physics.uu.se, martin.rocek@stonybrook.edu

Abstract: We find a geometric description of interacting βγ-systems as a null Kac-Moody

quotient of a nonlinear sigma-model for systems with varying amounts of supersymmetry.

Keywords: Sigma Models, Superspaces, Supersymmetric Gauge Theory, Supersymmetry

and Duality

ArXiv ePrint: 2004.06544

Open Access, c⃝ The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2020)039



J
H
E
P
0
6
(
2
0
2
0
)
0
3
9

Contents

1 Introduction 1

2 Bosonic models 2

2.1 Definitions and properties 2

2.2 The bosonic geometric model 4

2.3 The minimal frame 5

2.4 Discussion 6

3 (1, 1) supersymmetry 7

3.1 The (1, 1) βγ-system 7

3.2 The (1, 1) geometric model 8

4 (1, 2) supersymmetry 10

4.1 The (1, 2) βγ-system 10

4.2 The (1, 2) geometric model 11

5 (2, 1) supersymmetry 12

5.1 The (2, 1) βγ-system 12

5.2 The (2, 1) geometric model 13

6 (2, 2) supersymmetry 14

6.1 Models with only right semichirals 14

6.2 Semichiral superfields interacting with sigma-models 15

6.2.1 Reduction to (1, 2) superspace 15

6.2.2 Reduction to (2, 1) superspace 16

6.3 The (2, 2) geometric model 16

7 Discussion 18

A Superspaces 18

A.1 (1, 1) superspace 18

A.2 (1, 2) superspace 19

A.3 (2, 1) superspace 19

A.4 (2, 2) superspace 20

B Minimal frame components 21

– i –



J
H
E
P
0
6
(
2
0
2
0
)
0
3
9

1 Introduction

Generalized βγ-systems arise in many contexts — including string theory and conformal

field-theory; many papers have explored their quantum properties — see, e.g. [1–8]. In

this paper, we explore the geometry of such systems interacting with general nonlinear

sigma-models. We restrict our attention to left-moving βγ-systems, but the extension to

include right-moving systems is straightforward. Our paper is only indirectly related to

the work on chiral bosons — see, e.g. [9–17]. After completing this work, the relevance

of [18] was pointed out to us — it studies quantum and mathematical aspects of certain

models related to the ones we describe here; our work focuses on a covariant geometric,

albeit classical, description using (supersymmetric) sigma-models.

Consider a free βγ-system, that is a system with bosonic fields with a chiral action1

Sb =

∫
d2x b∂̄c , (1.1)

which has field equations

∂̄c = 0 , ∂̄b = 0 . (1.2)

We assume that b ≡ b++ has spin one, and c is a scalar. Clearly this system in not a

sigma-model, and the target space is not a manifold in the usual sense. We can find a

geometric description of this system as follows: we reinterpret b as the gauge connection

of a Kac-Moody symmetry on a certain manifold with indefinite signature. We start with

Ŝ =

∫
d2x ∂q̂∂̄c , (1.3)

which is a sigma-model with target space R1,1. This has a (right-moving) Kac-Moody

symmetry2

δq̂ = λ , ∂λ = 0 (1.4)

(Clearly, it also has a left-moving Kac-Moody symmetry, but we are not interested in it).

If we gauge this Kac-Moody symmetry by introducing a connection b

∂q̂ → ∇q̂ := ∂q̂ + b , (1.5)

we can choose a gauge q̂ = 0, and the gauged version of (1.3) reduces to (1.1). We thus have

found a geometric interpretation of our βγ-system: it is a chiral or Kac-Moody quotient

along a null killing vector of a sigma-model with target space R1,1.

In this paper, we generalize this to interacting systems with various amounts of super-

symmetry. Throughout this paper, we have assumed that the fields b, c are commuting, as

1Throughout this paper, we use b, c for left-moving fields with integer spin (regardless of statistics), and

β, γ for their superpartners.
2We thank Samson Shatashvili for pointing out that on curved world sheets, linear dilaton terms could

lead to subtleties with this symmetry.
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c corresponds to a coordinate on a target space manifold. However, very little changes if we

let b, c be anticommuting — we are just studying sigma-models into a target supermanifold.

In section 2, we consider a broad class of generalized bosonic βγ-systems and find

their geometric interpretation. In section 3, we repeat the exercise in (1, 1) superspace; the

couplings to the fermions clearly reflect the underlying geometry in a nontrivial way. In

section 4, we increase the supersymmetry to (1, 2); in this case the geometric sigma-model

is a pseudo SKT geometry (strong Kähler with torsion), and the chiral quotient is different

from the usual (1, 2) quotient. In section 5, we describe the same system in (2, 1) superspace;

in this case, the usual quotient gives the βγ-system. One significant difference is that left-

moving βγ-systems are necessarily complex in (1, 2) superspace but not in (2, 1) superspace.

In section 6, we consider (2, 2) superspace. In this case, these models arise naturally in terms

of semichiral superfields, and we find a pseudo generalized Kähler geometry. Finally, in

section 7, we discuss our results and further possible developments.

2 Bosonic models

In this section, we introduce the general bosonic sigma-model interacting with a commuting

spin one left-moving βγ-system, and discuss its properties. We then find a geometric sigma-

model whose quotient by a null symmetry gives the interacting βγ-system, and discuss its

properties. Finally, we discuss various special cases of interest.

2.1 Definitions and properties

Let EAB = 1
2(GAB +BAB) be the sum of the metric and the B field, and consider

S =

∫
dx

(
∂φAEAB ∂̄φ

B + bαA
α
B ∂̄φ

B
)
, (2.1)

where we combine the sigma-model fields φi with cα and write a generic coordinate

{φA} ≡ {φi, cα} . (2.2)

As long as it is invertible, we can always choose Aα
β = δαβ by redefining b, which gives:

Aα
B = δαB + δjBA

α
j (φ) ⇐⇒ Aα

B = (Aα
j , δ

α
β ) . (2.3)

Then we can absorb EBα by a shift of bα:

bα = b′α − ∂φBEBα , which leads to EAj = E′
Aj + EAβA

β
j . (2.4)

Dropping the ′, we are left with

EAB = (EAi, 0) ≡
(
Eij 0

Eαj 0

)
, (2.5)

which we call the minimal frame. The action (2.1) then reads

S =

∫
dx

(
∂φAEAj ∂̄φ

j + bα∂̄c
α + bαA

α
j ∂̄φ

j
)

(2.6)

– 2 –



J
H
E
P
0
6
(
2
0
2
0
)
0
3
9

The field equations that follow from extremizing (2.6) are3

∂̄cα +Aα
i ∂̄φ

i = 0 , (2.7)

Eαj∂∂̄φ
j + ∂̄φjΓ(+)

jAα∂φ
A + ∂̄bα − bβA

β
j ,α ∂̄φ

j = 0 ,

Gij∂∂̄φ
j + Eαi∂∂̄c

α + ∂̄φBΓ(+)
BAi∂φ

A − bαA
α
[j ,i] ∂̄φ

j + ∂̄bαA
α
i = 0 , (2.8)

where we have used

(EBA,D +EAD,B −EBD,A ) =
1

2
(GBA,D +GAD,B −GBD,A+BBA,D +BAD,B −BBD,A )

=: Γ(0)
BDA − 1

2
HBDA =: Γ(−)

BDA = Γ(+)
DBA , (2.9)

Part of our purpose is to find a geometric interpretation of these equations, which we

do below.

We now discuss the formal symmetries of the action (2.6). We expect these to include

diffeomorphisms and B field gauge transformations, modified so that they preserve the

minimal form of E in (2.5). To this end we note that the action (2.6) is invariant under

two symmetries which do not preserve (2.5), and therefore can be used as compensating

transformations to restore the minimal frame. The first does not transform the coordinates:

δφA = 0 , δEAB = −κAαA
α
B , δbα = κAα∂φ

A . (2.10)

The second is any transformation that preserves the sigma-model term in the action and

transforms the rest as

δ
(
Aα

A∂̄φ
A
)
= −µα

β

(
Aβ

A∂̄φ
A
)
, δbα = bβµ

β
α . (2.11)

The B-field transformation

δBEAB =
1

2
δBBAB ≡ ∂AΛB − ∂BΛA (2.12)

preserves the action but not the form of E (2.5). To restore the form we add a κ-

transformation (2.10) with parameter

κAα = ∂[AΛα] (2.13)

which implies

δEAα = ∂[AΛα] − κAβA
β
α = ∂[AΛα] − κAα = 0 , (2.14)

as required.

Thus we find

δBbα = ∂Λα − ∂φA∂αΛA

δBEAj = (∂AΛB − ∂BΛA)P
B
j

δBA
α
i = 0 (2.15)

3Antisymmetrization is A[iBj] := AiBj −BjAi etc.
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where the operator

PA
j = δAj − δAαA

α
j (2.16)

satisfies

(Aα
j , δ

α
β )

(
δji

−Aβ
i

)
≡ Aα

BP
B
i = 0 , (2.17)

The reparametrization symmetries4

δφA = −ξA , (2.18)

δEAj = ξB∂BEAj + (∂Aξ
B)EBj + (∂jξ

k)EAk (2.19)

preserve the sigma-model part of the action (2.6) but not the form of E (2.5). To restore

the form of E, we use a κ-transformation (2.10). Since the second term in (2.6) depends on

φA, we also need a µ transformation (2.11) to make the action invariant. The parameters

are

κAα = ∂αξ
jEAj , µβ

α = (∂αξ
B)Aβ

B . (2.20)

Since EAα = 0, we need to check that its variation vanishes; using EAα = 0, we find

δEAα = ξB∂BEAα + (∂Aξ
B)EBα + (∂αξ

B)EAB − κAβA
β
α

= (∂αξ
B)EAB − κAα = (∂αξ

β)EAβ = 0 . (2.21)

Thus we find

δbα = ∂φBEBj∂αξ
j + bβA

β
B∂αξ

B

δEAj = ξB∂BEAj + (∂Aξ
B)EBj + PB

j (∂Bξ
k)EAk

δAα
i = PB

i

(
∂Bξ

α +Aα
j ∂Bξ

j
)
+ ξB∂BA

α
i . (2.22)

2.2 The bosonic geometric model

To understand the geometry of the model, we use the same strategy as in [19]: we think

of bα as a connection and the term

bαA
α
A∂̄φ

A (2.23)

as a gauge fixed version of

Dq̂αA
α
A∂̄φ

A = (∂q̂α + bα)A
α
A∂̄φ

A . (2.24)

This identifies Aα
A as the sum of metric and B-field

∂q̂αA
α
A∂̄φ

A =: ∂q̂αẼ
α
A∂̄φ

A (2.25)

4Note that the first term in (2.19) is cancelled by EAB ,C δφC for δφC in (2.18).
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in the ungauged sigma-model with additional coordinates q̂α. The resulting geometry has

a Kac-Moody isometry:5 ∂E
∂q̂α

= 0.

The Lagrangian for this extended (ungauged) model is

L̃ = ∂φÃẼÃB̃ ∂̄φ
B̃ (2.26)

where

{φÃ} := {φA, q̂α} = {φi, cα, q̂α} := {φi, cα, q̂α̂} , (2.27)

where we have introduced q̂α̂ := q̂α for convenience. In general EÃB̃ is given by

ẼÃB̃ ≡
(
EAB 0

Aα
B 0

)
, (2.28)

which gives rise to the metric

G̃ÃB̃ ≡
(
GAB Aβ

A

Aα
B 0

)
. (2.29)

The nonzero components of the connections Γ̃(+)

ÃB̃C̃
are

Γ̃(+)
ABγ̂ = Aγ

A,B

Γ̃(+)

Aβ̂C
= Aβ

[C ,A]

Γ̃(+)
ABC = Γ(+)

ABC . (2.30)

2.3 The minimal frame

In the particular frame (2.3), (2.5) the matrix (2.28) reduces to

ẼÃB̃ ≡

⎛

⎜⎝
Eij 0 0

Eαj 0 0

Aα
j δαβ 0

⎞

⎟⎠ , (2.31)

and we note that Ẽα̂BPB
i = 0. The corresponding metric is

G̃ÃB̃ =

⎛

⎜⎝
Gij Eβi A

β
i

Eαj 0 δβα
Aα

j δαβ 0

⎞

⎟⎠ , (2.32)

which in general is invertible:

G̃B̃Ã =

⎛

⎜⎜⎝

G̃ji −G̃kjAα
k −G̃kjEαk

−Aβ
kG̃

ki Aβ
kG̃

kjAα
j G̃β

α

−EβkG̃ki G̃α
β EβkG̃kjEαj

⎞

⎟⎟⎠ . (2.33)

5The gauging of Kac-Moody isometries is discussed in [20].
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Here

G̃ji := (Gij − Eα(iA
α
j))

−1

G̃α
β := δαβ + G̃ijEβiA

α
j . (2.34)

In particular, this implies that G̃ÃB̃ is invertible in the general frame (2.28). We note that

vectors of the form (0, vα, 0) and (0, 0, v̂α̂) are all null in the metric (2.32). The metric

(both in the minimal and the general frame) has signature (n, k,−k) where i = 1 . . . n, and

α, α̂ = 1 . . . k, as long as the interaction terms Eαj , Aα
j are not too large.

The field equations for the extended sigma-model may be used to write those of the

original model as follows

∂(G̃α̂B ∂̄φ
B) = 0 (2.35)

[
G̃AB̃∂∂̄φ

B̃ + Γ̃(+)

BC̃A
∂̄φB∂φC̃

]

∂q̂α̂=bα
= 0 (2.36)

where (2.35) is the derivative of (2.7), and we use

Γ̃(+)
jAα̂ = Aα

j ,A

Γ̃(+)
jα̂i = Aα

[i,j]

Γ̃(+)
iα̂β = −Aα

i ,β

Γ̃(+)
ABC = Γ(+)

ABC ; (2.37)

recall that we use q̂α̂ ≡ q̂α for notational convenience.

2.4 Discussion

We have seen that the model with the left-moving fields bα, cα is a chiral quotient (Kac-

Moody quotient) of a geometric sigma-model. We have assumed that bα, cα are commuting,

but aside from some obvious signs, the discussion would not change if some or all of them

were anticommuting — in that case the target space becomes a supermanifold, but the

quotient proceeds in the same way.

In the general case (2.1), for E and A to be functions of c, we require c to be a scalar,

and hence b is a vector b++ on the world sheet. A particular special case arises when

Aα
B = Aα,B (2.38)

for some functions Aα; then the second term in the action becomes

Sb =

∫
bα∂̄A

α (2.39)

and the functions Aα are simply left-moving on-shell. We can change coordinates such

that c′α = Aα(φ, c). Then this term looks free, and all the interactions come through the

dependence of E on c′.

– 6 –
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When (2.38) is satisfied, the connections (2.30) take a particularly simple form — the

nonvanishing components are:

Γ̃(+)
ABγ̂ = Aγ,AB

Γ̃(+)
ABC = Γ(+)

ABC . (2.40)

When inserted into the definition of the curvature ((3.11) below), the curvature has no

components with hatted indices.

3 (1, 1) supersymmetry

In this section we straightforwardly generalize the bosonic case — both the interacting

left-moving βγ-system and the sigma-model whose quotient gives rise to it.

3.1 The (1, 1) βγ-system

The Lagrangian (2.1) is immediately generalized to (1, 1) superspace:

S =

∫
D+D−

[
D+φ

AEABD−φ
B + βα+A

α
AD−φ

A
]
, (3.1)

where the scalars φ and the spinor β are (1, 1) superfields in representations of the su-

persymmetry algebra given in appendix A.1. As in the bosonic case, we combine the

sigma-model fields φi with cα and write a generic coordinate

{φA} ≡ {φi, cα} . (3.2)

Again, we can chose the E and A in the special forms (2.5) and (2.3) using the same

arguments to redefine β. Then the action has modified diffeomorphisms (2.22) and B-field

symmetries (2.15).

As above, when Aα
B = Aα,B is a gradient, the second term in the action simplifies to

Sβ =

∫
D+D−(βα+D−A

α) (3.3)

and the β field equation implies that the Aα are left-moving on shell:

D−A
α = 0 ⇒ D2

−A
α ≡ i∂̄Aα = 0 . (3.4)

To reduce (3.1) to components we shall need the following definitions:6

ψA
± := D±φ

A

FA := iD+D−φ
A

ηα+ := iD+D−βα+

Fα := −iD−βα+

bα++ := −iD+βα+ (3.5)

6We now make the Lorentz vector structure of bα manifest by writing bα++ . Throughout, we define

components of superfields by their spinor derivatives; it is not necessary to indicate a projection setting θ’s

to zero.
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The calculation of the component Lagrangian is straight forward albeit not very illumi-

nating. In its place we follow the strategy of section 2.2 to find the ungauged geometric

Lagrangian and reduce that instead.

3.2 The (1, 1) geometric model

The Lagrangian for this higher-dimensional sigma-model is

L̃ = D+φ
ÃẼÃB̃D−φ

B̃ (3.6)

where the geometry is as in section 2.2 with all fields now superfields. In particular, we

have

{φÃ} := {φA, q̂α} = {φi, cα, q̂α} ≡ {φi, cα, q̂α̂} . (3.7)

We define components as

ψÃ
+ = D+φ

Ã, ψÃ
− = D−φ

Ã, F Ã = iD+D−φ
Ã . (3.8)

We collect terms and integrate by parts to get:

S =

∫
d2x

[
∂φÃEÃB̃ ∂̄φ

B̃ +
i

2
(ψÃ

+
¯̃∇ψB̃

+ + ψÃ
−∇̃ψB̃

−)G̃ÃB̃

−1

4
R̃(+)

C̃D̃ÃB̃
ψÃ
+ψ

B̃
+ψ

C̃
−ψ

D̃
− +

1

2
G̃ÃB̃(F

Ã − iΓ(+)Ã

C̃D̃
ψD̃
+ψC̃

−)(F
B̃ − iΓ(+)B̃

F̃ Ẽ
ψẼ
+ψ

F̃
−)

]

(3.9)

where

¯̃∇ψÃ
+ = ∂̄ψÃ

+ + Γ(+)Ã

B̃C̃
∂̄φB̃ψC̃

+

∇̃ψÃ
− = ∂ψÃ

− + Γ(−)Ã

B̃C̃
∂φB̃ψC̃

− . (3.10)

Here R(+)

C̃D̃ÃB̃
is the Riemann curvature of Γ(+):

R̃(+)

ÃB̃C̃D̃
= Γ(+)

[B̃|C̃D̃|,Ã]
+Γ(+)

[Ã|C̃Ẽ
G̃ẼF̃Γ(+)

|B̃]D̃F̃
(3.11)

Separating out the i,α and α̂ components is not particularly rewarding. However, we

observe that it follows from the relations (2.30) and the fact that ∂
∂q̂α̂

is an isometry, that

the Ã and B̃ indices of R(+)

ÃB̃C̃D̃
can never be α̂ or β̂.

Since the metric G̃ÃB̃ is invertible, we can eliminate the auxiliary fields F Ã:

G̃ÃB̃F
Ã = iΓ(+)

C̃D̃B̃
ψD̃
+ψC̃

− . (3.12)

The details are given in the minimal frame in appendix B.

The ¯̃∇-covariant derivatives in (3.10) are

G̃ÃB̃
¯̃∇ψÃ

+ = G̃ÃB̃ ∂̄ψ
Ã
+ + Γ(+)

C̃ÃB̃
∂̄φC̃ψÃ

+ (3.13)

– 8 –
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For B̃ = B this reads

G̃ÃB
¯̃∇ψÃ

+ = GAB∇̄ψA
+ + ∂̄(Aα

Bψ
α̂
+)−Aα

C ,B ∂̄φCψα̂
+ , (3.14)

while B̃ = β̂ yields

G̃Ãβ̂
¯̃∇ψÃ

+ = ∂̄(Aβ
Aψ

A
+) +Aβ

[C ,A] ∂̄φ
CψA

+ . (3.15)

Similarily we have for the ∇̃ terms in (3.10):

G̃ÃB̃∇̃ψÃ
− = G̃ÃB̃∂ψ

Ã
− + Γ(+)

C̃ÃB̃
∂φÃψC̃

− (3.16)

For B̃ = B this reads

G̃ÃB∇̃ψÃ
− = GAB∇ψA

− +Aα
B∂ψ

α̂
− +Aα

[B,A] ∂φ
α̂ψA

− , (3.17)

and for B̃ = β̂

G̃Ãβ̂∇̃ψÃ
− = ∂(Aβ

Aψ
A
−) . (3.18)

Using these formulae we rewrite the action (3.9) as

S =

∫
d2x

[
∂φAEAB ∂̄φ

B + ∂φα̂Aα
B ∂̄φ

B

+i

{
1

2
ψA
+GAB∇̄ψB

+ + ψB
+

[
∂̄(Aα

Bψ
α̂
+)−Aα

C ,B ∂̄φCψα̂
+

]

+ψα̂
+

[
∂̄(Aα

Bψ
B
+) +Aα

[C ,B] ∂̄φ
CψB

+

]
+

1

2
ψA
−GAB∇ψB

−

+ψB
−
[
Aα

B∂ψ
α̂
− +Aα

[B,A] ∂φ
α̂ψA

−
]}

−1
4R̃

(+)

CDÃB̃
ψÃ
+ψ

B̃
+ψ

C
−ψ

D
−

]
. (3.19)

To make contact with (3.1) we first gauge the Kac-Moody isometry ∂
∂q̂α̂

by replacing (re-

call (3.7) tells us φα̂ ≡ q̂α̂)

D+q̂
α̂ → ∇+q̂

α̂ := D+q̂
α̂ + βα+ , (3.20)

in analogy to (2.24), and choose a gauge where

∇+q̂
α̂ → βα+ . (3.21)

Comparing the components of q̂α̂ from (3.8)

φα̂ = q̂α̂ , ψα̂
+ = D+q̂

α̂ , ψα̂
− = D−q̂

α̂ , F α̂ = iD+D−q̂
α̂ (3.22)

to those of βα+ in (3.5)

Fα := −iD−βα+ , bα++ := −iD+βα+ , η−α := iD+D−βα+ (3.23)

– 9 –
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we see from (3.21) that

ψα̂
+ → βα+ (3.24)

in our gauge. With this identification it is clear that the auxiliary fields agree

F α̂ = Fα . (3.25)

In addition we find from (3.23) that if we substitute βα+ = D+q̂α̂, we get

bα++ = −iD+D+q̂
α̂ = ∂q̂α̂ , η−α = iD+D−D+q̂

α̂ = ∂ψα̂
− . (3.26)

In the action, q̂α̂ and ψα̂
− only appear in these combinations. We thus find the components

of (3.1) with all F auxiliary fields eliminated:

S =

∫
d2x

[
∂φAEAB ∂̄φ

B + bα++A
α
B ∂̄φ

B

+i

{
1

2
ψA
+GAB∇̄ψB

+ + ψB
+

[
∂̄(Aα

Bβα+)−Aα
C ,B ∂̄φCβα+

]

+βα+
[
∂̄(Aα

Bψ
B
+) +Aα

[C ,B] ∂̄φ
CψB

+

]
+

1

2
ψA
−GAB∇ψB

−

+ψB
−
[
Aα

Bη+α +Aα
[B,A] bα++ψ

A
−
]}

−1

4

(
R̃(+)

CDABψ
A
+ψ

B
+ψ

C
−ψ

D
− + 2R̃(+)

CDAβ̂
ψA
+ββ+ψ

C
−ψ

D
− + R̃(+)

CDα̂β̂
βα+ββ+ψ

C
−ψ

D
−

)]
.

(3.27)

We note that η is a fermionic auxiliary field whose equation is Aα
Bψ

B
− = 0; this becomes

ψα
− = −Aα

j ψ
j
− in the minimal frame (2.5), (2.3). Thus we have found a geometric form of

the component action corresponding to (3.1), including complicated interaction terms of

the fermions. We also observe that when Aα
B = Aα,B holds, the b++,β+ terms collapse to

the component expansion of the semifree action (3.3):

Sβ =

∫ [
bα++∂̄A

α + iβα+∂̄(A
α
Bψ

B
+)

]
. (3.28)

4 (1, 2) supersymmetry

For the bosonic and the (1, 1) models, the relation between the sigma-model and its gauge-

fixed reduction is straightforward. When we go to (1, 2) supersymmetry, the natural ex-

tensions do not have the same clear relation.

4.1 The (1, 2) βγ-system

Our starting point is the (1, 2) action for a βγ-system coupled to a sigma-model:

S = i

∫
D+D−D̄−(kAJ

A
BD+φ

B + βα+J
α
βA

β)

= −
∫

D+D−D̄−(kAD+φ
A − k̄ĀD+φ̄

Ā + βa+A
a − β̄ā+A

ā) , (4.1)
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where we complexify all indices from the previous sections: {A} = {A, Ā}, {α} = {a, ā}.
The (1, 2) superfields are {φA} ≡ {φA, φ̄Ā}, {βα+} ≡ {βa+, β̄ā+}, and obey the chirality

conditions

D̄−φ
A = 0 , D̄−βa+ = 0 ,

D−φ̄
Ā = 0 , D−β̄ā+ = 0 . (4.2)

The supersymmetry algebra is given in appendix A.2, and J is a diagonal matrix such that

J2 = −1: it is +i on holomorphic vectors and −i on antiholomorphic vectors.

Reducing (4.1) to (1, 1) components, as described in appendix A.2, we find (3.1) with

non-zero components:

EAB̄ = kA,B̄ , EĀB = k̄Ā,B ,

Aa
B̄ = Aa,B̄ , Aā

B = Aā,B , (4.3)

where we have chosen a particular gauge for the B-field in E [21]. More covariantly, we

can write:

2EAB = JC
A kC ,D JD

B + kA,B , 2Aα
B = Jα

γ Aγ ,D JD
B +Aα,B . (4.4)

There are two ways we can satisfy Aα
B = Aα,B (cf. (2.38)): when Aa,B= 0, then Aa is

antichiral: D−Aa = 0. Then we can make a change of coordinates to replace c̄ā by Aa.

The β equations of motion D̄−Aa = 0 imply that Aa is left-moving as in (3.4); the complex

conjugate works in the same way.

An alternative is to use a real7 Aα; since the β field equation implies D̄−Aa = 0 and

the β̄ field equation implies D−Aā = 0, then Aα is left-moving.

In contrast to the previous cases in sections 2 and 3, here we can only shift β by chiral

functions due to (4.2), which means we cannot choose the minimal form (2.5) in (1, 2)

superspace.

4.2 The (1, 2) geometric model

Alternatively, we start from a general (1, 2) sigma-model with isometries generated by ∂
∂q̂â

:

S = −
∫

D+D−D̄−(kÃD+φ
Ã − k̄ ¯̃A

D+φ̄
¯̃A) , (4.5)

where now

{φÃ} := {φA, q̂a} = {φi, ca, q̂a} , {φ̄
¯̃A} := {φ̄Ā, ¯̂qā} = {φ̄ī, c̄ā, ¯̂qā} . (4.6)

Because of (4.3), the isometries

∂

∂q̂â
kÃ =

∂

∂q̂â
k̄ ¯̃A

= 0 (4.7)

7Clearly, we could choose Aa equal to Aā up to a phase which can be absorbed by a redefinition of β.
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(and their complex conjugates) imply that Ẽ has the form (2.28)

ẼÃB̃ ≡
(
EAB 0

Aα
B 0

)
, (4.8)

We could try to gauge the imaginary part of the isometries in chiral representation as

described in [22]; in contrast to the case of (1, 1) superspace above, this does not give the

correct quotient model, and so we need another procedure.

The key observation is that the action (4.5) actually has a Kac-Moody symmetry: we

can shift q̂a ≡ q̂â by right moving chiral parameters λâ obeying

D+λ = ∂λ = D̄−λ = 0 (4.9)

This can be promoted to a local symmetry with a (1, 2) chiral gauge parameter Λâ by

introducing a novel chiral connection βâ
+ ≡ βa+ obeying D̄−βa+ = 0, which gives

D+q̂a → ∇+q̂a := D+q̂a + βa+ , (4.10)

where

δq̂a = Λa , δβa+ = −D+Λa , (4.11)

and similarly for the complex conjugate. When we choose the gauge q̂ = ¯̂q = 0, we

recover (4.1) with Aa ≡ kâ. This is the correct complexified version of the (1, 1) story.

5 (2, 1) supersymmetry

It is interesting to describe the same geometry in (2, 1) superspace. Here the description

of the βγ-system is quite different; in particular, as the complex structure appears in the

opposite sector, there is no need to complexify the βγ-system. The quotient needed to

descend from the geometric model to the βγ-system is the usual quotient [22], as in the

bosonic and (1, 1) cases.

5.1 The (2, 1) βγ-system

Our starting point is the (2, 1) action for a βγ-system coupled to a sigma-model; in this

case, the form of the action appears geometric, but the ghost fields cα are described by

unconstrained scalar fields Xα.

S = i

∫
D−D+D̄+(kiJ

i
jD−φ

j + kαD−X
α)

= −
∫

D−D+D̄+(kiD−φ
i − k̄īD−φ̄

ī − ikαD−X
α) , (5.1)

where the indicies {i} = {i, ī} are complexified. The (2, 1) superfields are {φi} ≡ {φi, φ̄ī},
and {Xα}; the φi obey the chirality conditions

D̄+φ
i = 0 , D+φ̄

ī = 0 , (5.2)
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whereas Xα are unconstrained, and J is a complex structure as in the previous section.

The supersymmetry algebra is given in appendix A.3.

Reducing (5.1) to (1, 1) components, as described in appendix A.3, we find (3.1) with

non-zero components:

2Eij = Jn
j kn,m Jm

i + kj ,i , 2Eαi = ki,α , 2Eiα = kα,j J
j
i ,

2Aα
i ↔ kj ,α J

j
i − kα,i , 2Aα

β ↔ kβ ,α−kα,β , (5.3)

where the index mismatch for Aα
B arises because we identify βα ↔ Ψα; we also identify

Xα ↔ cα.

The condition Aα
B = Aα,B (cf. (2.38)) implies

kj ,α J
j
i = hα,i , kβ ,α= hα,β , (5.4)

where hα is any real 1-form. Then

Aα
B ↔ (hα − kα),B . (5.5)

In (2, 1) superspace, this condition means that the equation of motion of Xα implies

(cf. (3.3))

D−(hα − kα) = 0 ⇒ ∂̄(hα − kα) = 0 . (5.6)

5.2 The (2, 1) geometric model

In (2, 1) superspace, the geometric sigma-model is straightforward to find. Just as in (2.24),

we identifyX as a connection gauging a symmetry of a general (2, 1) sigma-model by letting

Xα → Xα + cα + c̄α (5.7)

where c is a chiral superfield:

D̄+c = 0 , D+c̄ = 0 . (5.8)

Thus the ungauged geometric sigma-model is found by letting

Xα → cα + c̄α (5.9)

and gives an action

S = i

∫
D−D+D̄+(kÃJ

Ã
B̃
D−φ

B̃) (5.10)

where now

{φÃ} := {φi, cα} , {φ̄
¯̃A} := {φ̄ī, c̄α} . (5.11)

To compare to the (1, 1) geometric model, we need to interpret c+ c̄ as the real ghost

field c and i(c̄− c) as q̂ in (3.7):

{φÃ} := {φA, q̂α} = {φi, cα, q̂α} . (5.12)
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In this basis Ẽ has the form (2.28)

ẼÃB̃ ≡
(
EAB 0

Aα
B 0

)
, (5.13)

with the components of E and A given (5.3).

The sigma-model that we get after (5.9) has the obvious null isometry:

i

(
∂

∂cα
− ∂

∂c̄α

)
. (5.14)

This is actually a Kac-Moody symmetry, because cα + c̄α is invariant under

δcα = iλα , c̄α = −iλα , D̄+λ = D+λ = 0 ⇒ ∂λ = 0 . (5.15)

We can gauge the symmetry following [22] — we start by introducing an unconstrained

real scalar superfield V , which we identify with X and let

cα + c̄α → Xα + cα + c̄α . (5.16)

This combination is now gauge invariant under the complexified gauge transformations:

δcα = iΛα , c̄α = −iΛ̄α , δXα = i(Λ̄α − Λα) , D̄+Λ = D+Λ̄ = 0 (5.17)

Because only this combination enters in the gauged action, the gauge connection Γ− does

not appear in the action. Hence when we choose the gauge c = c̄ = 0, we recover (5.1).

6 (2, 2) supersymmetry

We now consider (2, 2) superspace and find the relation to both (1, 2) superspace and (2, 1)

superspace. To consider both left and right moving interacting βγ-systems, we need to

consider such models.

6.1 Models with only right semichirals

As pointed out in [23] a model with only right semichiral fields describes a multiplet of

free left moving bosons and left moving fermions. Here we briefly recapitulate this. We

use a notation consistent with the previous sections of this paper, albeit differing from

the literature on semichiral multiplets [24] and label the right semichiral fields by indices

{α} ≡ {a, ā}:

D̄−Xa = 0 , D−X̄ā = 0 (6.1)

The (2, 2) action is

S =

∫
D2D̄2K(X, X̄) . (6.2)

The (2, 2) field equations that follow from this are

D̄−Ka = Kab̄ D̄−X̄b̄ = 0 ⇒ D̄−X̄ā = 0 , (6.3)
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and the complex conjugate.8 In the last equality we assume that Kab̄ is invertible. Using

the results of appendix A, we find that (6.3) corresponds to the (1, 1) equations:

D−Xα = 0 , D−Ψ
α
+ = 0 ⇒ ∂̄Xα = ∂̄Ψα

+ = 0 , (6.4)

where Ψα
+ := −Jα

βQ+Xβ .

6.2 Semichiral superfields interacting with sigma-models

We now consider the action

S =

∫
D2D̄2K(ϕi,Xα) , (6.5)

where ϕi are (2, 2) chiral Φ and/or twisted chiral χ superfields.9

6.2.1 Reduction to (1, 2) superspace

To understand the geometry, we reduce to (1, 2) superspace and use the results of the

section 4. The (2, 2) superfields ϕ, ϕ̄

{ϕi} = {Φ,χ} , {ϕ̄ī} = {Φ̄, χ̄} (6.6)

are holomorphic (resp. antiholomorphic) with respect to the complex structure J(+):

J i
(+)j dϕ

j = i dϕi , J ī
(+)̄j dϕ̄

j̄ = −i dϕ̄ī . (6.7)

Along with the right-chiral superfields X, X̄ these are identified with the (1, 2) superfields

φ, φ̄ as follows

{φA} := {φi,φa} = {Φ, χ̄,X} , {φ̄Ā} = {φ̄ī, φ̄ā} = {Φ̄,χ, X̄} , (6.8)

and are holomorphic (resp. antiholomorphic) with respect to the complex structure J(−):

J A
(−)B dφB = i dφA , J Ā

(−)B̄ dφ̄B̄ = −i dφ̄Ā . (6.9)

note that χ̄ is antichiral with respect to J(+) and chiral with respect to J(−). We em-

phasize that because the fields ϕ include chiral and twisted chiral fields but no semichiral

fields, the complex structures J(±) commute with each other [25]. When reduced to (1, 2)

superpace [26], as described in appendix A.4, the action becomes

S(1,2) = i

∫
D+D−D̄−(Ki J

i
(+)j D+ϕ

j +Ψα
+Kα) , (6.10)

where Ψα
+ := Q+Xβ is (1, 2) chiral. Comparing to (4.1), we can identify

ki = −Kj J
j

(+)k J
k

(−)i , kα = 0 , βα+ ↔ −Jα
βΨ

β
+ , Aα ↔ Kα , (6.11)

8Throughout this section, we use the abbreviation Ka := K,a, etc.
9This is a not the most general (2, 2) sigma-model — for that, we would need to include further semichiral

superfields of both chiralities. In this paper, we restrict our attention to the simpler case.
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where the different index positions on βα+, Aα relative to Ψα
+,Kα arise because we use the

usual convention for the coordinate Xα.

Observe that when there is an isometry, e.g., when K(ϕ, ϕ̄,X + X̄), Aa = Aā as dis-

cussed below (4.2); then (2.38) is satisfied, and Aα is left-moving. This can be seen directly

in (2, 2) superspace, as the X, X̄ field equations imply D−KX = D̄−KX = 0 (cf. section 6.1).

We now substitute (6.11) into (4.4); we must remember to identify JB
A from section 4

with J(−). We then find the geometric quantities E and A which are used to write the (1, 1)

superspace action:

2Eij = Kmn J
m

(+)i J
n

(−)j −Kmi J
m

(+)n J
n

(−)j ,

2Eαi = −Kmα J
m

(+)n J
n

(−)i , 2Eiα = Kjβ J
j

(+)i J
β
α ,

2Aα
i ↔ Kαj J

j
(−)i −Kβi J

β
α , 2Aα

β ↔ Kαγ J
γ
β −Kβγ J

γ
α . (6.12)

6.2.2 Reduction to (2, 1) superspace

The reduction of the model to (2, 1) superspace is simpler. We use (A.25) and (A.27)

to find

S(2,1) = i

∫
D−D+D̄+

[
KiJ

i
(−)j D−φ

i +KαJ
α
βD−Xβ

]
. (6.13)

Here φi are (anti)chiral (2, 1) superfields, J(−) is as discussed in section 6.2.1, and X are

complex unconstrained (2, 1) superfields. To compare to section 5, we could decompose

them into their real and imaginary parts, but it is more convenient to keep the complex

coordinates. We need to recall the J i
j in section 5 is now J(+). Then we find

ki = −Kj J
j

(−)k J
k

(+)i , Kα = Kβ J
β
α (6.14)

Computing the (1, 1) quantities by substituting these into (5.3) gives exactly the same

answer as above, namely (6.12).

6.3 The (2, 2) geometric model

To relate the βγ-system to a (2, 2) sigma-model, we mimic the ALP construction of [19].

This is based on the interpretation of semichiral superfields as gauge fields for certain

symmetries in a sigma-model with chiral and twisted chiral superfields. We thus consider

the action

S =

∫
D2D̄2K(ϕi, Xα) , (6.15)

where

Xa := Φa + χ̄a , X̄ ā := Φ̄ā + χā (6.16)

with Φ and χ chiral and twisted chiral fields, respectively. The target space geometry is

thus a torsionful geometry with a left and a right complex structure covariantly constant

with respect to two torsionful connections.10

10See, e.g., [19]. In fact (6.15) is a special case of a chiral and twisted chiral sigma-model, and consequently,

the left and right complex structures J(±) commute.
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The action is invariant under a complex Kac-Moody symmetry that preserves Xα:

δΦa = λa , δχ̄a = −λa , δΦ̄ā = λ̄ā , δχā = −λ̄ā , (6.17)

where

D+λ = D̄+λ = ∂λ = D̄−λ = 0 ,

D+λ̄ = D̄+λ̄ = ∂λ̄ = D−λ̄ = 0 . (6.18)

The quotient described below is analogous to what we found in section 4.2, namely a novel

gauging for Kac-Moody symmetries.

To reduce to (1, 2), we use

Q+X
α = J α

(+)β̂
D+Y

β̂ ,

Y â := Φa − χ̄a , Ȳ
¯̂a := Φ̄ā − χā . (6.19)

We find (4.5) with

kÃ = −KC̃ Ĵ C̃
B̃ J B̃

(−)Ã
(6.20)

where Ĵ is J(+) when written in a coordinates ϕ, X, Y . Writing out the various indicies

we have:

ki = ±Ki , kâ = Ka , ka = 0 , (6.21)

and similarly for the complex conjugates. The ± is + for chiral superfields and − for twisted

antichiral superfields, which are both chiral with respect to J(−); see (6.8). Identifying

Y α̂ := q̂α̂, we recover a special case of (4.5).

Just as in the (1, 2) case, the standard gauging [27] does not reduce the model to (6.5);

instead, we gauge the Kac-Moody symmetry (6.17) as in [19]. We introduce a right semichi-

ral field Xα

K(ϕi, Xα) → K(ϕi, Xα + Xα) . (6.22)

This potential is now invariant under

δφa = Λa , δχ̄a = − ¯̃Λa , δXa = −Λa + ¯̃Λa (6.23)

where Λa is chiral and ¯̃Λa is twisted antichiral. Clearly we can then choose a gauge where

we gauge away φa, χ̄a; then

K(ϕi, Xα + Xα) → K(ϕi,Xα) (6.24)

and we recover the form (6.5), now with knowledge about the underlying sigma-model

geometry.
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7 Discussion

We have found a geometric way of understanding βγ-systems coupled to sigma-models

with varying amounts of supersymmetry: as quotients along null Kac-Moody isometries of

conventional sigma-models.

We have studied the case with only left-moving β and γ, and have only concerned

ourselves with the classical geometric aspects — in particular, we have not concerned

ourselves with quantization and sigma-model anomalies, as discussed, e.g., in [1–18]. We

expect the inclusion of right-moving βγ-systems to be straightforward; by describing left-

moving βγ-systems in both (1, 2) and (2, 1) superspace, the methods to treat the right-

moving systems are apparent.

For (2, 2) supersymmetric models, we have only considered sigma-models described by

chiral and twisted chiral superfields; we expect the extension to the general case, including

further left and right semichiral superfields, to be straightforward. Other superfield repre-

sentations, namely complex linear and twisted complex linear superfields are equivalent to

models with chiral and twisted chiral superfields.

It would be interesting to see if these considerations can be extended in any way to

“higher dimensional βγ-systems” [28].
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A Superspaces

In these appendices, we discuss the superspace for various superalgebras. Sigma-models

have target space geometries that depend on the amount of supersymmetry. For (1, 1),

the geometry is (pseudo)Riemannian with a natural connection with torsion; for (1, 2) or

(2, 1), the geometry is (pseudo) strong Kähler with torsion; and for (2, 2), the geometry is

(pseudo) generalized Kähler.

A.1 (1, 1) superspace

The (1, 1) superalgebra is generated by spinor derivatives D± that obey

D2
+ = i∂ , D2

− = i∂̄ , {D+, D−} = 0 . (A.1)

The (1, 1) superfields are unconstrained, and gauging is done with a spinor connection

D± → ∇± = D± + β±. The superspace action is written using the measure D+D−
as follows:

S :=

∫
d2xD+D− L . (A.2)
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A.2 (1, 2) superspace

The (1, 2) superalgebra is generated by the real spinor derivative D+ and the complex

spinor derivatives D−, D̄−.

D2
+ = i∂ , {D−, D̄−} = i∂̄ , {D+,D−} = {D+, D̄−} = 0 . (A.3)

Right-(anti)chiral superfields obey D̄−φ = 0,D−φ̄ = 0, resp. Usual gauging involves a

left-spinor connection β+ and a real potential V — see [22] for the details of the analogous

(2, 1) case. As shown in section 4.2, we need a different kind of gauging that is suitable for

Kac-Moody symmetries.

We reduce to (1, 1) using

D− =
1

2
(D− − iQ−) , D̄− =

1

2
(D− + iQ−) , (A.4)

from which it follows the superspace measure becomes

D+D−D̄− =
i

2
D+D−Q− . (A.5)

When we push in Q− to find the (1, 1) action for chiral superfields, we use, e.g.,

Q−φ = iD−φ , Q−φ̄ = −iD−φ̄ , (A.6)

which can be written covariantly for {φi} = {φi, φ̄ī} as

Q−φ
i = J i

j D−φ
j (A.7)

A.3 (2, 1) superspace

The (2, 1) superalgebra is generated by the real spinor derivative D− and the complex

spinor derivatives D+, D̄+.

D2
− = i∂̄ , {D+, D̄+} = i∂ , {D−,D+} = {D−, D̄+} = 0 . (A.8)

Left-(anti)chiral superfields obey D̄+φ = 0,D+φ̄ = 0, resp. Usual gauging involves a

left-spinor connection β− and a real potential V — see [22] for the details. As shown

in section 5.2, we need a different kind of gauging that is suitable for left Kac-Moody

symmetries generated by parameters obeying ∂̄λ = 0.

We reduce to (1, 1) using

D+ =
1

2
(D+ − iQ+) , D̄+ =

1

2
(D+ + iQ+) , (A.9)

from which it follows the superspace measure becomes

D−D+D̄+ = − i

2
D+D−Q+ . (A.10)

When we push in Q+ to find the (1, 1) action for chiral superfields, we use, e.g.,

Q+φ = iD+φ , Q+φ̄ = −iD+φ̄ , (A.11)
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which can be written covariantly for {φi} = {φi, φ̄ī} as

Q+φ
i = J i

j D+φ
j (A.12)

On the other hand, for an unconstrained superfield X, Q+X is independent as a (1, 1)

superfield:

Ψ+ = Q+X . (A.13)

A.4 (2, 2) superspace

The (2, 2) algebra of covariant derivatives is

{D+, D̄+} = i∂ , {D−, D̄−} = i∂̄ , D2
± = 0 ,

{D+,D−} = 0 , {D̄±,D∓} = 0 , (A.14)

and the complex conjugate relations.

Chiral superfields Φa satisfy:

D̄±Φ
a = D±Φ̄

ā = 0 , (A.15)

but in d = 2 we may also introduce twisted chiral fields χ that satisfy

D̄+χ = D−χ = 0 , D+χ̄ = D̄−χ̄ = 0 . (A.16)

as well as left and right semichiral superfields; in this paper we only use11 right semichiral

superfields which obey

D̄−X = D−X̄ = 0 . (A.17)

To display the physical content we may rewrite an action in (1, 2) superspace. By

analogy to (A.4), we descend to (1, 2) superspace by defining the left-handed real spinor

derivative

D+ ≡ D+ + D̄+ , (A.18)

and the generator of second supersymmetry

Q+ ≡ i(D+ − D̄+) . (A.19)

They satisfy

D2
+ = Q2

+ = i∂ . (A.20)

The (2, 2) measure reduces to

D2D̄2 := −2D+D−D̄+D̄− = 2D+D̄+D−D̄− = iD+D−D̄−Q+ (A.21)

11Usually, we write Xℓ, X̄ℓ̄ for left semichiral fields (which obey D̄+Xℓ = D+X̄ℓ̄ = 0) and Xr, X̄r̄ for right

semichiral superfields [24]; since here we use only right semichiral superfields, we drop their superscripts.
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In (1, 2) superspace, all superfields are either unconstrained or chiral; we now explain how

(2, 2) superfields decompose into their (1, 2) components. From (A.15), we find

Q+Φ = JD+Φ (A.22)

where J is the canonical complex structure (diagonal +i,−i). Similarly, from (A.16),

we find

Q+χ = JD+χ . (A.23)

However, Φ, χ̄ are the (1, 2) chiral superfields, which we collectively denote as φ. To distin-

guish (2, 2) and (1, 2) chirality properties, we use the notation J(+) and J(−) as explained

in section 6.2.

The right semichiral multiplets X give rise to two (1, 2) chiral multiplets: a scalar and

a spinor:

X , Ψ+ = Q+X . (A.24)

We can also reduce from (2, 2) to (2, 1) superspace. Everything proceeds analogously;

in particular, we find

D2D̄2 = iD−D+D̄+Q− . (A.25)

The reduction of (2, 2) chiral and twisted chiral superfields to (2, 1) chiral superfields inter-

changes the roles of J(+) and J(−), but otherwise is unchanged; instead of (A.22) and (A.23),

we find

Q−Φ = JD−Φ , Q−χ = −JD−χ . (A.26)

However, in contrast to (A.24), right semichiral multiplets X now give rise to a complex

unconstrained (2, 1) scalar superfield:

Q−X = JD−X . (A.27)

B Minimal frame components

Here we work out the detailed form of various quantities in the minimal frame of section 2.3

(in particular, see (2.5), (2.3)). For the bosonic auxiliary field equations, when the indices

B̃ = B in (3.12), the equations read

GABF
A +Aα

BFα = iΓ(+)
CDBψ

D
+ψC

− − iAδ
j ,B ψδ̂

+ψ
j
− + iAδ

k,j ψ
δ̂
+ψ

j
−δ

k
B . (B.1)

Choosing B = β and B = j in turn in (B.1) yields

F β̂ = iΓ(+)
CDβψ

D
+ψC

− − iAδ
j ,β ψ

δ̂
+ψ

j
− − EβiF

i

GijF
i +Aα

j F
α̂ = iΓ(+)

CDjψ
D
+ψC

− − iAδ
[k,j] ψ

δ̂
+ψ

j
− . (B.2)
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For B̃ = β̂ (3.12) reads

G̃Aβ̂F
A = Aβ

AF
A = iΓ̃(+)

jAβ̂
ψA
+ψ

j
− = iAβ

j ,A ψA
+ψ

j
−

⇒ F β = iAβ
j ,A ψA

+ψ
j
− +Aβ

i F
i (B.3)

The ¯̃∇-covariant derivatives in (3.10) are

G̃ÃB̃
¯̃∇ψÃ

+ = G̃ÃB̃ ∂̄ψ
Ã
+ + Γ(+)

C̃D̃B̃
∂̄φC̃ψD̃

+ (B.4)

For B̃ = B this reads

G̃ÃB
¯̃∇ψÃ

+ = GAB
¯̃∇ψA

+ +Aα
B∇̄ψα̂

+

= GAB ∂̄ψ
A
+ +Aα

B ∂̄ψ
α̂
+ + Γ(+)

CDB ∂̄φ
CψD

+ −Aδ
i ,B ∂̄φiψδ̂

+ +Aδ
j ,i ∂̄φ

jψδ̂
+δ

i
B ,

(B.5)

while B̃ = β̂ yields

G̃Ãβ̂
¯̃∇ψÃ

+ = Aβ
A
¯̃∇ψA

+ = ∂̄ψβ
+ +Aβ

i ∂̄ψ
i
+ +Aβ

i ,D ∂̄φiψD
+ . (B.6)

Similarily we have for the ∇̃ terms in (3.10):

G̃ÃB̃∇̃ψÃ
− = G̃ÃB̃∂ψ

Ã
− + Γ(+)

C̃D̃B̃
φ̄D̃ψC̃

− (B.7)

For B̃ = B this reads

G̃ÃB∇̃ψÃ
− = GAB∇̃ψA

− +Aα
B∇ψα̂

−

= GAB∂ψ
A
− +Aα

B∂ψ
α̂
− + Γ(+)

DCB∂φ
CψD

− −Aδ
i ,B ∂φδ̂ψi

− +Aδ
j ,i ∂φ

δ̂ψj
−δ

i
B , (B.8)

and for B̃ = β̂

G̃Ãβ̂∇̃ψÃ
− = Aβ

A∇̃ψA
− = ∂ψβ

− +Aβ
i ∂ψ

i
− +Aβ

i ,D ∂φDψi
− = ∂(Aβ

Bψ
B
−) . (B.9)

We next work out the details of the component action in the minimal frame.

S =

∫
d2x

[
∂φAEAj ∂̄φ

j + ∂φα̂Aα
B ∂̄φ

B + i

{
1

2
ψA
+GAB∇̄ψB

+

+ψB
+ [A

α
B ∂̄ψ

α̂
+ −Aδ

i ,B ∂̄φiψδ̂
+] + ψi

+A
δ
j ,i ∂̄φ

jψδ̂
+

+ψβ̂
+[∂̄ψ

β
+ +Aβ

i ∂̄ψ
i
+ +Aβ

i ,D ∂̄φiψD
+ ] +

1

2
ψA
−GAB∇ψB

−

+ψB
− [A

α
B∂ψ

α̂
− −Aδ

i ,B ∂φδ̂ψi
−] + ψi

−A
δ
j ,i ∂φ

δ̂ψj
−

}

−1
4R̃

(+)

CDÃB̃
ψÃ
+ψ

B̃
+ψ

C
−ψ

D
−

]
(B.10)

To descend to the quotient model, we substitute

ψα̂
+ → βα+ , bα++ := −iD+D+φ

α̂ = ∂φα̂ , η−α := iD+D−D+φ
α̂ = ∂ψα̂

− . (B.11)
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into (B.10); since φα̂ and ψα̂
− only appear as in (B.11), this gives:

S =

∫
d2x

[
∂φAEAj ∂̄φ

j + bα++A
α
B ∂̄φ

B + i
{1
2
ψA
+GAB∇̄ψB

+

+ψB
+ [A

α
B ∂̄βα+ −Aα

i ,B ∂̄φiβα+] + ψi
+A

α
j ,i ∂̄φ

jβα+

+ββ+[∂̄ψ
β
+ +Aβ

i ∂̄ψ
i
+ +Aβ

i ,D ∂̄φiψD
+ ] +

1

2
ψA
−GAB∇ψB

−

+ψB
− [A

α
Bη+α −Aα

i ,B bα++ψ
i
−] + ψi

−A
α
j ,i bα++ψ

j
−

}

−1

4

(
R̃(+)

CDABψ
A
+ψ

B
+ψ

C
−ψ

D
− + 2R̃(+)

CDAβ̂
ψA
+ββ+ψ

C
−ψ

D
− + R̃(+)

CDα̂β̄
βα+ββ+ψ

C
−ψ

D
−

)]
.

(B.12)

We note that η is a fermionic auxiliary field whose equation Aα
Bψ

B
− = 0 implies

ψα
− = −Aα

j ψ
j
− (B.13)

since we are in the minimal frame.
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[27] U. Lindström, M. Roček, I. Ryb, R. von Unge and M. Zabzine, New N = (2, 2) vector
multiplets, JHEP 08 (2007) 008 [arXiv:0705.3201] [INSPIRE].

[28] A. Losev, G.W. Moore, N. Nekrasov and S. Shatashvili, Chiral Lagrangians, anomalies,
supersymmetry and holomorphy, Nucl. Phys. B 484 (1997) 196 [hep-th/9606082] [INSPIRE].

– 24 –


