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1 Introduction

Generalized [v-systems arise in many contexts — including string theory and conformal
field-theory; many papers have explored their quantum properties — see, e.g. [1-8]. In
this paper, we explore the geometry of such systems interacting with general nonlinear
sigma-models. We restrict our attention to left-moving Bvy-systems, but the extension to
include right-moving systems is straightforward. Our paper is only indirectly related to
the work on chiral bosons — see, e.g. [9-17]. After completing this work, the relevance
of [18] was pointed out to us — it studies quantum and mathematical aspects of certain
models related to the ones we describe here; our work focuses on a covariant geometric,
albeit classical, description using (supersymmetric) sigma-models.
Consider a free Bv-system, that is a system with bosonic fields with a chiral action®

Sy = /d%bﬁc, (1.1)
which has field equations
dc=0, 0b=0. (1.2)

We assume that b = by has spin one, and c¢ is a scalar. Clearly this system in not a
sigma-model, and the target space is not a manifold in the usual sense. We can find a
geometric description of this system as follows: we reinterpret b as the gauge connection
of a Kac-Moody symmetry on a certain manifold with indefinite signature. We start with

S = / d’z dgdc, (1.3)

which is a sigma-model with target space RY!. This has a (right-moving) Kac-Moody
s.ymmetry2

SG=X, =0 (1.4)

(Clearly, it also has a left-moving Kac-Moody symmetry, but we are not interested in it).
If we gauge this Kac-Moody symmetry by introducing a connection b

8G — Vi:=0G+b, (1.5)

we can choose a gauge ¢ = 0, and the gauged version of (1.3) reduces to (1.1). We thus have
found a geometric interpretation of our Svy-system: it is a chiral or Kac-Moody quotient
along a null killing vector of a sigma-model with target space R

In this paper, we generalize this to interacting systems with various amounts of super-
symmetry. Throughout this paper, we have assumed that the fields b, ¢ are commuting, as

!Throughout this paper, we use b, ¢ for left-moving fields with integer spin (regardless of statistics), and
B, for their superpartners.

2We thank Samson Shatashvili for pointing out that on curved world sheets, linear dilaton terms could
lead to subtleties with this symmetry.



c corresponds to a coordinate on a target space manifold. However, very little changes if we
let b, ¢ be anticommuting — we are just studying sigma-models into a target supermanifold.

In section 2, we consider a broad class of generalized bosonic [7-systems and find
their geometric interpretation. In section 3, we repeat the exercise in (1, 1) superspace; the
couplings to the fermions clearly reflect the underlying geometry in a nontrivial way. In
section 4, we increase the supersymmetry to (1,2); in this case the geometric sigma-model
is a pseudo SKT geometry (strong Kéhler with torsion), and the chiral quotient is different
from the usual (1, 2) quotient. In section 5, we describe the same system in (2, 1) superspace;
in this case, the usual quotient gives the Sy-system. One significant difference is that left-
moving vy-systems are necessarily complex in (1, 2) superspace but not in (2, 1) superspace.
In section 6, we consider (2, 2) superspace. In this case, these models arise naturally in terms
of semichiral superfields, and we find a pseudo generalized Kéahler geometry. Finally, in
section 7, we discuss our results and further possible developments.

2 Bosonic models

In this section, we introduce the general bosonic sigma-model interacting with a commuting
spin one left-moving fv-system, and discuss its properties. We then find a geometric sigma-
model whose quotient by a null symmetry gives the interacting S~y-system, and discuss its
properties. Finally, we discuss various special cases of interest.

2.1 Definitions and properties

Let Eap = %(GAB + B4p) be the sum of the metric and the B field, and consider
S = / da (a¢AEABé¢B n baA“B(%B) , (2.1)

where we combine the sigma-model fields ¢’ with ¢* and write a generic coordinate
{01} ={¢"c"}. (2.2)
As long as it is invertible, we can always choose Ag = 5§ by redefining b, which gives:
% =08 +0pA%(9) = AL =(A%85). (2.3)
Then we can absorb Ep, by a shift of by:
bo = b, — 96" Epa , which leads to Eaj = Ely; + EapAl . (2.4)

Dropping the /, we are left with

E;; 0
EAB = (EA“O) = (E ]. 0> y (25)
o]

which we call the minimal frame. The action (2.1) then reads

S = / da (3¢AEAjé¢j + boOc® + baA?&;ﬁj) (2.6)



The field equations that follow from extremizing (2.6) are®

™ + ALI¢' = 0, (2.7)
Eoj0d¢? + 0¢'T\H) 06 + 0bs — bs AT 0 07 = 0,
Gij00 + Eaiddc® + DPPT 5] 00% — b A%, 9§79 + Db AT = 0, (2.8)
where we have used

1
(Epa,p +Eap,B —EBp,a) = 3 (Ga,p +Gap,B —GBpsA+Bpa,p +Bap,s —BBD,A )

0 1 - +
= F(BDA — 5HBpa = ) D)A = F%E);Av (2.9)

Part of our purpose is to find a geometric interpretation of these equations, which we
do below.

We now discuss the formal symmetries of the action (2.6). We expect these to include
diffeomorphisms and B field gauge transformations, modified so that they preserve the
minimal form of E in (2.5). To this end we note that the action (2.6) is invariant under
two symmetries which do not preserve (2.5), and therefore can be used as compensating
transformations to restore the minimal frame. The first does not transform the coordinates:

61 =0, O0FEAp = —KaadAS, by = kaadd™ . (2.10)

The second is any transformation that preserves the sigma-model term in the action and
transforms the rest as

6 (A%06") = g (A500%) . 6ba = bl (2.11)
The B-field transformation
1
5BEAB = 5(5BBAB = 6AAB — aBAA (2.12)

preserves the action but not the form of E (2.5). To restore the form we add a k-
transformation (2.10) with parameter

RAa = 8[AAQ] (2.13)
which implies
0Eaq = Opalg) — kAL = 0alo) — Kaa =0, (2.14)

as required.
Thus we find

6Bba = Ny — 00N 4
0BE4; = (0aAp — 0pAa)P]
SBAY =0 (2.15)

3Antisymmetrizati0n is A[iBj] = A;B; — BjA; etc.



where the operator

Pl =61 — 04 AS (2.16)
satisfies
& 5
(A7.98) | s | =ABE =0, (2.17)

The reparametrization symmetries
st = ¢4, (2.18)
SE4; = P0pEaj + (04P)Epj + (9;6")Eax (2.19)

preserve the sigma-model part of the action (2.6) but not the form of E (2.5). To restore
the form of E, we use a s-transformation (2.10). Since the second term in (2.6) depends on
¢*, we also need a p transformation (2.11) to make the action invariant. The parameters
are

Fan = 0o Baj, 1 = (0a7)A% | (2.20)
Since F 4, = 0, we need to check that its variation vanishes; using F4, = 0, we find

0B a0 = EB0pE A + (046P)Epa + (0a8P)Eap — kapAl
= (0atP)EAp — kAo = (0a€”)Eap =0 . (2.21)

Thus we find
Sbo = OGP Epj0at? + by AP 0,8

SEa; = £P0pEaj + (046°)Ep; + PP (08¢")Eax
JAY = PP (0p€™ + A%0p¢7) + P0p AL . (2.22)

2.2 The bosonic geometric model

To understand the geometry of the model, we use the same strategy as in [19]: we think
of b, as a connection and the term

bo A% D" (2.23)
as a gauge fixed version of
Do A%9¢™ = (0da + ba) ASD™ . (2.24)
This identifies A9 as the sum of metric and B-field

0GaA%00™ =: Djn ESOp™ (2.25)

“Note that the first term in (2.19) is cancelled by Eap,c 6¢€ for 64 in (2.18).



in the ungauged sigma-model with additional coordinates ¢,. The resulting geometry has

a Kac-Moody isometry:® % = 0.

The Lagrangian for this extended (ungauged) model is

L = 06" E ;506" (2.26)
where
{0} = (0" da} = {¢", " da} = {¢",¢*, 0"}, (2.27)
where we have introduced ¢% := §, for convenience. In general E ip 1s given by
- Eap 0
i — ’ 2.28
which gives rise to the metric
Gig=|C4E A4 2.29

)

The nonzero components of the connections FE;B o are

wa:—l;Q/ = A’Z47B

nH)

e = Ao

. =14 (2.30)

2.3 The minimal frame
In the particular frame (2.3), (2.5) the matrix (2.28) reduces to
E; 00

ig=|Ea; 00], (2.31)
A2 550

and we note that Ej PP = 0. The corresponding metric is

Gij Eg AP

Gig=|FEa; 0 051, (2.32)
A% 590

which in general is invertible:
G —GHAY —GN B,
GPA= | —AfGr AlGMAs  GF . (2.33)
—Eﬁkéki ég Eﬁkékanj

®The gauging of Kac-Moody isometries is discussed in [20].



Here

Gﬁ = (GU - Ea(iA%)_l

G4 = 6§ + GV Eg AT . (2.34)
In particular, this implies that G ip is invertible in the general frame (2.28). We note that
vectors of the form (0,v%,0) and (0,0,9%) are all null in the metric (2.32). The metric
(both in the minimal and the general frame) has signature (n, k, —k) where i = 1...n, and
a,& =1...k, as long as the interaction terms E;, Ag‘ are not too large.

The field equations for the extended sigma-model may be used to write those of the
original model as follows

d(Gapdo?) =0 (2.35)
G 1 5006" + fggAéquaqs@} oy, =0 (2.36)

where (2.35) is the derivative of (2.7), and we use

~(+ «
s = A5

() . ga
Uiai = Apiog)
o N
Fz(d,% = —Af's
=(+ +
FfélB)’C = FEL\E)?C ; (2.37)

recall that we use ¢¢ = §, for notational convenience.

2.4 Discussion

We have seen that the model with the left-moving fields by, c® is a chiral quotient (Kac-
Moody quotient) of a geometric sigma-model. We have assumed that b, c® are commuting,
but aside from some obvious signs, the discussion would not change if some or all of them
were anticommuting — in that case the target space becomes a supermanifold, but the
quotient proceeds in the same way.

In the general case (2.1), for E and A to be functions of ¢, we require ¢ to be a scalar,
and hence b is a vector by on the world sheet. A particular special case arises when

5 =A%p (2.38)
for some functions A%; then the second term in the action becomes
Sy = / boOA® (2.39)

and the functions A® are simply left-moving on-shell. We can change coordinates such
that ¢* = A%(¢,c). Then this term looks free, and all the interactions come through the
dependence of E on .



When (2.38) is satisfied, the connections (2.30) take a particularly simple form — the
nonvanishing components are:

fE:—B)A/ = AlaB
M =T - (2.40)

When inserted into the definition of the curvature ((3.11) below), the curvature has no
components with hatted indices.

3 (1,1) supersymmetry

In this section we straightforwardly generalize the bosonic case — both the interacting
left-moving v-system and the sigma-model whose quotient gives rise to it.

3.1 The (1,1) Bv-system

The Lagrangian (2.1) is immediately generalized to (1,1) superspace:
5 = / D.D_ [D+¢AEABD_¢>B + Bar ASD_¢4] (3.1)

where the scalars ¢ and the spinor § are (1,1) superfields in representations of the su-
persymmetry algebra given in appendix A.1. As in the bosonic case, we combine the
sigma-model fields ¢’ with ¢® and write a generic coordinate

{61} = {¢,*} . (3.2)

Again, we can chose the E and A in the special forms (2.5) and (2.3) using the same
arguments to redefine 5. Then the action has modified diffeomorphisms (2.22) and B-field
symmetries (2.15).

As above, when A% = A% p is a gradient, the second term in the action simplifies to

Sg = /D+D_(BQ+D_A°‘) (3.3)
and the S field equation implies that the A% are left-moving on shell:

D A*=0 = D2A*=idA>=0. (3.4)

To reduce (3.1) to components we shall need the following definitions:®

Y = Dig?

FA .= iD,D_¢"

Na+ = D4y D_Poy

Fy := —iD_fay
bay = —iD4fayt (3.5)

5We now make the Lorentz vector structure of b, manifest by writing bo4 . Throughout, we define

components of superfields by their spinor derivatives; it is not necessary to indicate a projection setting 0’s
to zero.



The calculation of the component Lagrangian is straight forward albeit not very illumi-
nating. In its place we follow the strategy of section 2.2 to find the ungauged geometric
Lagrangian and reduce that instead.

3.2 The (1,1) geometric model
The Lagrangian for this higher-dimensional sigma-model is
L=Dy¢ E 3D ¢ (3.6)

where the geometry is as in section 2.2 with all fields now superfields. In particular, we
have

{01} = {0% 4o} = {0, " da} = {#, ", ¢°} . (3.7)
We define components as
v =Dyo¢t, YA=D_¢", FA=iD,D_¢". (3.8)
We collect terms and integrate by parts to get:
5= [ [3¢AEAB5¢B T L T TP

— R g BuCul 1 S G (P — it RyC)(FE —ir )Py byl

(3.9)

1
2

where
vl = gyl +r 8gz5 By

Vol = apd + r 8¢ch : (3.10)
Here R( +) PAL is the Riemann curvature of I'(H):

p(+) (+) () AEFp(H)
Risen =Vigenra taes ¢ Diapr (3.11)
Separating out the ¢, and & components is not particularly rewarding. However, we

observe that it follows from the relations (2.30) and the fact that 57 is an isometry, that

d

(+)
the A and B indices of RABC‘[) can never be & or §.

Since the metric G ; i is invertible, we can eliminate the auxiliary fields F A,

GapFt =) Pyl (3.12)

The details are given in the minimal frame in appendix B.
The V-covariant derivatives in (3.10) are

GAB%Q[)_{} = 64351#_% + F(jrz ~5¢é¢£ (3.13)



For B = B this reads

GABelﬁé = GapVii + I(A%YS) — A%, 5 06° S (3.14)
while B = B yields
GAB%W: = 0t + Ao, a D (3.15)

Similarily we have for the V terms in (3.10):

G sVl = G ipout +TE) 09ty (3.16)
For B = B this reads
G 1Vt = GapVer + AROYS + Afy, 4 0% 02, (3.17)
and for B = f3
G 3Vt = a(Afw?) . (3.18)

Using these formulae we rewrite the action (3.9) as
s:/f%wﬁmﬁw+wﬁ%w3
+i{;¢fa,4mf OB [O(AGUS) — A5 670
+U¢ [O(ABYE) + A%, 5 06 YT + %wéGABw?
+YP[AROYS + Afy, 4 069 ] }

—ARE) 1ptv eyl (3.19)

To make contact with (3.1) we first gauge the Kac-Moody isometry aq% by replacing (re-
call (3.7) tells us ¢% = ¢%)

DyG* = ViG* =Dy ¢ + Bay , (3.20)
in analogy to (2.24), and choose a gauge where
Vi§® = Bay - (3.21)
Comparing the components of ¢* from (3.8)
0% =g, ¥§=Dy¢*, v*=D_¢", F*=iD,D_¢* (3.22)
to those of [, in (3.5)

Fo:=—iD_fas, bas = —iDifar, 1y = iDyD_fas (3.23)



we see from (3.21) that
Vg = Bat (3.24)
in our gauge. With this identification it is clear that the auxiliary fields agree
FY=F, . (3.25)
In addition we find from (3.23) that if we substitute S, = D44§%, we get
boy = —iD, D, G% =0¢%, n, =iDyD_D,¢* = o* . (3.26)

In the action, ¢* and ¢ only appear in these combinations. We thus find the components
of (3.1) with all F' auxiliary fields eliminated:

S = / d?x [8¢AEAB(§¢B + boyr A%OGP
- 1 W 3 @ @ 3
#i GUAGATT U + 08 [OAB ) — A 06 5]
_ - 1
+Bat [O(ABVE) + A%, 08702 + iwi‘GABwff
+p 8 [A%nia + Afp,a) Doyt ] }
(B st Bu Oy 1 2R | Bs Oyl + BE) 6o BpuCy?)
A \TCDABYH V=Y - cpag” HPBHY =Y - cpaplathBty=y—-J|-
(3.27)

We note that 7 is a fermionic auxiliary field whose equation is A%¢§ = 0; this becomes
Y = —A;xwi in the minimal frame (2.5), (2.3). Thus we have found a geometric form of
the component action corresponding to (3.1), including complicated interaction terms of
the fermions. We also observe that when A% = A9p holds, the by, B4 terms collapse to
the component expansion of the semifree action (3.3):

S = [ [pasdac + iBor3a50E)] (3.25)

4 (1,2) supersymmetry

For the bosonic and the (1, 1) models, the relation between the sigma-model and its gauge-
fixed reduction is straightforward. When we go to (1,2) supersymmetry, the natural ex-
tensions do not have the same clear relation.

4.1 The (1,2) Bvy-system

Our starting point is the (1,2) action for a Sv-system coupled to a sigma-model:

S =i [ DiDD_ (ka3 D1 6" + far I3 A7)

= — / D D_D_(kaDi¢™ — kxDid™ + Bas A* — Bar A% (4.1)

~10 -



where we complexify all indices from the previous sections: {4} = {A, A}, {a} = {a,a}.
The (1,2) superfields are {¢4} = {¢®, 02}, {Bas} = {Bas, Bas ), and obey the chirality

conditions

]D ¢ =0 ) D—ﬁa-f— =0 )
D_¢2=0, D_Bar=0 . (4.2)

The supersymmetry algebra is given in appendix A.2, and J is a diagonal matrix such that
J? = —1: it is 4+i on holomorphic vectors and —i on antiholomorphic vectors.

Reducing (4.1) to (1,1) components, as described in appendix A.2, we find (3.1) with
non-zero components:

EAB = kA’B ) EAB = EA?B ’
AaB = Aa,}g , % = Aa,B , (4.3)

where we have chosen a particular gauge for the B-field in E [21]. More covariantly, we
can write:

2Bap = IS ko JB +kap 245 = XAV p IR+ A% p . (4.4)

There are two ways we can satisfy A% = A9p (cf. (2.38)): when A% =0, then A% is
antichiral: D_A% = 0. Then we can make a change of coordinates to replace & by A%.
The 3 equations of motion D_A® = 0 imply that A® is left-moving as in (3.4); the complex
conjugate works in the same way.

An alternative is to use a real” A®; since the § field equation implies D_A® = 0 and
the 3 field equation implies D_ A% = 0, then A® is left-moving.

In contrast to the previous cases in sections 2 and 3, here we can only shift § by chiral
functions due to (4.2), which means we cannot choose the minimal form (2.5) in (1,2)
superspace.

4.2 The (1,2) geometric model

Alternatively, we start from a general (1,2) sigma-model with isometries generated by %:

—/D+D—D—(k‘AD+¢A—TfAD+GEZ)7 (4.5)
where now
(68} = {02 da) = {0, "}, {02} = {07 G} = {1, da} - (4.6)

Because of (4.3), the isometries

0 0 -
ks = ks
0q¢e 0¢s A

- (4.7)

"Clearly, we could choose A% equal to A% up to a phase which can be absorbed by a redefinition of 3.

- 11 -



(and their complex conjugates) imply that E has the form (2.28)

- Eap 0
E;p= 4.8
AB ( A% 0> ) ( )

We could try to gauge the imaginary part of the isometries in chiral representation as
described in [22]; in contrast to the case of (1,1) superspace above, this does not give the
correct quotient model, and so we need another procedure.

The key observation is that the action (4.5) actually has a Kac-Moody symmetry: we
can shift g, = ¢* by right moving chiral parameters A% obeying

D A=0A=D_A=0 (4.9)

This can be promoted to a local symmetry with a (1,2) chiral gauge parameter A% by
introducing a novel chiral connection ﬁfﬁ = 44 obeying D_ B,y = 0, which gives

D4 Go = Vida = Dida + Ba+ (4.10)
where

0Ge = Noy 0Ba+ = —DiAg, (4.11)
and similarly for the complex conjugate. When we choose the gauge ¢ = ¢ = 0, we
recover (4.1) with A* = k;. This is the correct complexified version of the (1, 1) story.
5 (2,1) supersymmetry

It is interesting to describe the same geometry in (2,1) superspace. Here the description
of the Bv-system is quite different; in particular, as the complex structure appears in the
opposite sector, there is no need to complexify the S~-system. The quotient needed to
descend from the geometric model to the [7y-system is the usual quotient [22], as in the
bosonic and (1, 1) cases.

5.1 The (2,1) Bv-system

Our starting point is the (2, 1) action for a 7y-system coupled to a sigma-model; in this
case, the form of the action appears geometric, but the ghost fields ¢ are described by
unconstrained scalar fields X“.

S = z'/Dmm(kiJ;Dw + koD_X%)
= —/D_D+D+(kiD_q§i — kD_¢ — ikoD_X®), (5.1)

where the indicies {i} = {i,i} are complexified. The (2,1) superfields are {¢*} = {¢}, $'},
and {X}; the ¢’ obey the chirality conditions

D+¢i = 07 D+a); =0, (52)

- 12 —



whereas X“ are unconstrained, and J is a complex structure as in the previous section.
The supersymmetry algebra is given in appendix A.3.
Reducing (5.1) to (1,1) components, as described in appendix A.3, we find (3.1) with

non-zero components:
2Eij = J7 knym Ji" + Kjyi 2E0i = kiya 2Bi0 = kaoj Ji ,
242 & kjua J! — kai 2A% < kg.a —kars | (5.3)

where the index mismatch for A% arises because we identify B, <+ ¥U%; we also identify
X% & c@.
The condition A% = A%p (cf. (2.38)) implies

Kjsad] = hasi s kgia= hasp (5.4)
where h,, is any real 1-form. Then
% A (ha - ka)aB . (5.5)

In (2,1) superspace, this condition means that the equation of motion of X® implies
(cf. (3.3))

D_(ha — ko) =0 = O(ha —ka)=0. (5.6)

5.2 The (2,1) geometric model

In (2, 1) superspace, the geometric sigma-model is straightforward to find. Just as in (2.24),
we identify X as a connection gauging a symmetry of a general (2, 1) sigma-model by letting

X% = X4+ (5.7)
where c is a chiral superfield:
ID)+C = 0, D_}_E =0. (58)

Thus the ungauged geometric sigma-model is found by letting

X oy ¢ 4 ¢ (5.9)
and gives an action
S =i / D_D.Dy (kzJ2D_¢P) (5.10)
where now
Ry = {0}, (6P} =14} (5.11)

To compare to the (1,1) geometric model, we need to interpret ¢ + ¢ as the real ghost
field ¢ and i(¢ — ¢) as ¢ in (3.7):

{6} = {6™ da} = {6', ¢, da} - (5.12)

~13 -



In this basis £ has the form (2.28)

~ Eap 0
o 5.13
AB (A% 0> ’ ( )

with the components of E and A given (
The sigma-model that we get after (

[ 0 0

This is actually a Kac-Moody symmetry, because ¢ + ¢ is invariant under
5 =i\*, & =—i\*, DA=DA=0=0A=0. (5.15)

We can gauge the symmetry following [22] — we start by introducing an unconstrained
real scalar superfield V', which we identify with X and let

A+ X+ (5.16)

This combination is now gauge invariant under the complexified gauge transformations:

§c® =N, & =—iA*, 0X*=i(A*-A*), DyA=D,A=0 (5.17)

Because only this combination enters in the gauged action, the gauge connection I'_ does
not appear in the action. Hence when we choose the gauge ¢ = ¢ = 0, we recover (5.1).

6 (2,2) supersymmetry

We now consider (2, 2) superspace and find the relation to both (1,2) superspace and (2, 1)
superspace. To consider both left and right moving interacting S+y-systems, we need to
consider such models.

6.1 Models with only right semichirals

As pointed out in [23] a model with only right semichiral fields describes a multiplet of
free left moving bosons and left moving fermions. Here we briefly recapitulate this. We
use a notation consistent with the previous sections of this paper, albeit differing from
the literature on semichiral multiplets [24] and label the right semichiral fields by indices

{a} ={a,a}:

D_X*=0, D_X%=0 (6.1)
The (2,2) action is

S = /]D)2}]3>2K(X,X) : (6.2)
The (2, 2) field equations that follow from this are

D K,=K;D X=0 = DX =0, (6.3)
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and the complex conjugate.® In the last equality we assume that K_j is invertible. Using
the results of appendix A, we find that (6.3) corresponds to the (1,1) equations:

D_X*=0, D.U$=0 = O0X*=0¥}=0, (6.4)
where U¢ := —JE‘QJFXB.

6.2 Semichiral superfields interacting with sigma-models

We now consider the action
S = /D2D2K(<pi,xa), (6.5)
where ' are (2,2) chiral ® and/or twisted chiral y superfields.”

6.2.1 Reduction to (1,2) superspace

To understand the geometry, we reduce to (1,2) superspace and use the results of the
section 4. The (2,2) superfields ¢, @

{PY={2,x}, {F}=1{2x} (6.6)
are holomorphic (resp. antiholomorphic) with respect to the complex structure Ji:
hide =idg', JisdP = —idg' . (6.7)

Along with the right-chiral superfields X, X these are identified with the (1,2) superfields
¢, ¢ as follows

{62} = {¢", 0"} = {&,x, X}, {6} ={¢",¢"} = {&,x, X}, (6.8)

and are holomorphic (resp. antiholomorphic) with respect to the complex structure J_y:
JAg de® =ide™, JAZdg® = —idd™ . (6.9)
note that y is antichiral with respect to .J) and chiral with respect to J_). We em-

phasize that because the fields ¢ include chiral and twisted chiral fields but no semichiral
fields, the complex structures J1) commute with each other [25]. When reduced to (1,2)
superpace [26], as described in appendix A.4, the action becomes

Sa2) =1 / DyD_D_(K; J}); Di¢? + ViKa), (6.10)
where U¢ := QX" is (1,2) chiral. Comparing to (4.1), we can identify

ki=—K; g0 b ka=0, Bap o —J5UL, A% o K., (6.11)

8Throughout this section, we use the abbreviation K, := K4, etc.
9This is a not the most general (2,2) sigma-model — for that, we would need to include further semichiral
superfields of both chiralities. In this paper, we restrict our attention to the simpler case.
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where the different index positions on (3,4, A% relative to V¢, K, arise because we use the
usual convention for the coordinate X¢.

Observe that when there is an isometry, e.g., when K(p, @, X + X), A% = A% as dis-
cussed below (4.2); then (2.38) is satisfied, and A® is left-moving. This can be seen directly
in (2,2) superspace, as the X, X field equations imply D_Kx = D_Kx = 0 (cf. section 6.1).

We now substitute (6.11) into (4.4); we must remember to identify J¥ from section 4
with J_). We then find the geometric quantities F and A which are used to write the (1,1)
superspace action:

2Eij = Ko S5 I = Kmi J 50 I 555

2E0i = —Kma S0 4" 2Eiq = Kjp 2, J8

iYa

2A% ¢ Koj J7 ), — Kpi J2

8. 243 ¢ Koy J) — Ky J7. . (6.12)
6.2.2 Reduction to (2,1) superspace

The reduction of the model to (2,1) superspace is simpler. We use (A.25) and (A.27)
to find

Sy =1 / D_D,D, [KiJ(i)j D,¢i+KanD,Xﬂ : (6.13)

Here ¢' are (anti)chiral (2,1) superfields, J_) is as discussed in section 6.2.1, and X are
complex unconstrained (2,1) superfields. To compare to section 5, we could decompose
them into their real and imaginary parts, but it is more convenient to keep the complex
coordinates. We need to recall the J]Z: in section 5 is now J(;). Then we find

j k
ki = =K J2 s Ko =Kg J] (6.14)
Computing the (1,1) quantities by substituting these into (5.3) gives exactly the same
answer as above, namely (6.12).

6.3 The (2,2) geometric model

To relate the [7y-system to a (2,2) sigma-model, we mimic the ALP construction of [19].
This is based on the interpretation of semichiral superfields as gauge fields for certain
symmetries in a sigma-model with chiral and twisted chiral superfields. We thus consider
the action

S = /DQDQK(d,XO‘), (6.15)
where
X" :=0%+ ¢, X*:=d"+° (6.16)

with ® and x chiral and twisted chiral fields, respectively. The target space geometry is

thus a torsionful geometry with a left and a right complex structure covariantly constant

with respect to two torsionful connections.!”

108¢e, e.g., [19]. In fact (6.15) is a special case of a chiral and twisted chiral sigma-model, and consequently,
the left and right complex structures J(4) commute.
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The action is invariant under a complex Kac-Moody symmetry that preserves X<:
JPL =\ Ix4 =), 6T =N\", 6T = -\, (6.17)

where

0
DoA=DA=0A=D A=0. (6.18)

The quotient described below is analogous to what we found in section 4.2, namely a novel
gauging for Kac-Moody symmetries.
To reduce to (1,2), we use

Qi X*=J%.D,Y",

(+)8
V=0 — y*, V=30 — @ (6.19)
We find (4.5) with
0 1B
ka=—Ko G0 ; (6.20)

where J is J(+) when written in a coordinates ¢, X,Y. Writing out the various indicies
we have:

ki = 4K, ky=K,, ko=0, (6.21)

and similarly for the complex conjugates. The = is 4 for chiral superfields and — for twisted
antichiral superfields, which are both chiral with respect to J_; see (6.8). Identifying
Y% := ¢%, we recover a special case of (4.5).

Just as in the (1, 2) case, the standard gauging [27] does not reduce the model to (6.5);
instead, we gauge the Kac-Moody symmetry (6.17) as in [19]. We introduce a right semichi-
ral field X

K¢, X% — K(o', X% 4+X9) . (6.22)
This potential is now invariant under
5% = A%, Sy =—A", §X®=—A"+A° (6.23)

where A% is chiral and A® is twisted antichiral. Clearly we can then choose a gauge where
we gauge away ¢%, x%; then

K(¢h X +X%) = K(p', X% (6.24)

and we recover the form (6.5), now with knowledge about the underlying sigma-model
geometry.
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7 Discussion

We have found a geometric way of understanding [v-systems coupled to sigma-models
with varying amounts of supersymmetry: as quotients along null Kac-Moody isometries of
conventional sigma-models.

We have studied the case with only left-moving 5 and ~, and have only concerned
ourselves with the classical geometric aspects — in particular, we have not concerned
ourselves with quantization and sigma-model anomalies, as discussed, e.g., in [1-18]. We
expect the inclusion of right-moving Bv-systems to be straightforward; by describing left-
moving [Bvy-systems in both (1,2) and (2,1) superspace, the methods to treat the right-
moving systems are apparent.

For (2,2) supersymmetric models, we have only considered sigma-models described by
chiral and twisted chiral superfields; we expect the extension to the general case, including
further left and right semichiral superfields, to be straightforward. Other superfield repre-
sentations, namely complex linear and twisted complex linear superfields are equivalent to
models with chiral and twisted chiral superfields.

It would be interesting to see if these considerations can be extended in any way to
“higher dimensional Sv-systems” [28].
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A Superspaces

In these appendices, we discuss the superspace for various superalgebras. Sigma-models
have target space geometries that depend on the amount of supersymmetry. For (1,1),
the geometry is (pseudo)Riemannian with a natural connection with torsion; for (1,2) or
(2,1), the geometry is (pseudo) strong Kéhler with torsion; and for (2, 2), the geometry is
(pseudo) generalized Kéhler.

A.1 (1,1) superspace

The (1, 1) superalgebra is generated by spinor derivatives Dy that obey
DY =i0, D?:=id, {Dy,D_}=0. (A1)

The (1,1) superfields are unconstrained, and gauging is done with a spinor connection
Dy — Vi = Dy + B+. The superspace action is written using the measure Dy D_
as follows:

S = /dza:D+D_ L. (A.2)
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A.2 (1,2) superspace

The (1,2) superalgebra is generated by the real spinor derivative D; and the complex
spinor derivatives D_,D_.

DI =i0, {D_,D_}=4id, {Dy,D_}={DyD_}=0. (A.3)

Right-(anti)chiral superfields obey D_¢ = 0,D_¢ = 0, resp. Usual gauging involves a
left-spinor connection S and a real potential V' — see [22] for the details of the analogous
(2,1) case. As shown in section 4.2, we need a different kind of gauging that is suitable for
Kac-Moody symmetries.

We reduce to (1,1) using

D= (D —iQ), D = (D +iQ), (A4)

from which it follows the superspace measure becomes

D,D_D_ = %D+D_Q_ . (A.5)

When we push in Q_ to find the (1, 1) action for chiral superfields, we use, e.g.,

Q*sz Y:ngb, Q*qg: —’L'D,Qg, (A6)
which can be written covariantly for {¢'} = {¢, ¢'} as
Q ¢ =JiD ¢ (A7)

A.3 (2,1) superspace

The (2,1) superalgebra is generated by the real spinor derivative D_ and the complex
spinor derivatives Dy, D .

D? =id, {D,,Dy}=1id, {D_,Dy}={D_,D;}=0. (A.8)

Left-(anti)chiral superfields obey Dy¢ = 0,Dy ¢ = 0, resp. Usual gauging involves a
left-spinor connection f_ and a real potential V' — see [22] for the details. As shown
in section 5.2, we need a different kind of gauging that is suitable for left Kac-Moody
symmetries generated by parameters obeying O\ = 0.

We reduce to (1,1) using

Dy = o (Ds —iQs), Dy = o(Dy+iQs), (A.9)
from which it follows the superspace measure becomes
D_D,D, = —%D+D_Q+ : (A.10)
When we push in @ to find the (1, 1) action for chiral superfields, we use, e.g.,

Q¢ =1iDy¢, Qi¢=—iDi¢, (A.11)
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which can be written covariantly for {(;52} = {¢i, @1} as
Qo' = J} D¢/ (A.12)

On the other hand, for an unconstrained superfield X, @4+ X is independent as a (1,1)
superfield:

U, = QX . (A.13)

A.4 (2,2) superspace
The (2,2) algebra of covariant derivatives is
{Dy, Dy} =140, {D_,D_} =10, D% =0,
{]D)JF’D*} =0, {Di’D$} =0, (A14)

and the complex conjugate relations.
Chiral superfields ®¢ satisfy:

Di®* =D1d% =0, (A.15)
but in d = 2 we may also introduce twisted chiral fields x that satisfy
Dyx=D_x=0, Dyy=D_yx=0. (A.16)

as well as left and right semichiral superfields; in this paper we only use'! right semichiral
superfields which obey

D X=DX=0. (A.17)

To display the physical content we may rewrite an action in (1,2) superspace. By
analogy to (A.4), we descend to (1,2) superspace by defining the left-handed real spinor
derivative

D+ = D+ —+ D+ s (A18)

and the generator of second supersymmetry

Q+ =i(D4 —Dy) . (A.19)
They satisfy
DI =Q%=i0. (A.20)
The (2,2) measure reduces to
D?D? := —2D,D_D, D_ = 2D, D, D_D_ =D, D_D_Q, (A.21)

1 Usually, we write X, X’ for left semichiral fields (which obey D X! = D+XZ =0) and X", X" for right
semichiral superfields [24]; since here we use only right semichiral superfields, we drop their superscripts.
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In (1,2) superspace, all superfields are either unconstrained or chiral; we now explain how
(2,2) superfields decompose into their (1,2) components. From (A.15), we find

Q.®=JD,® (A.22)

where J is the canonical complex structure (diagonal +i,—i). Similarly, from (A.16),
we find

Q+x =JDix . (A.23)

However, ®, x are the (1,2) chiral superfields, which we collectively denote as ¢. To distin-
guish (2,2) and (1,2) chirality properties, we use the notation Ji) and J_, as explained
in section 6.2.

The right semichiral multiplets X give rise to two (1,2) chiral multiplets: a scalar and
a spinor:

X, U, =Q,X. (A.24)

We can also reduce from (2,2) to (2, 1) superspace. Everything proceeds analogously;
in particular, we find

D’D? =iD_D,D,Q_ . (A.25)

The reduction of (2,2) chiral and twisted chiral superfields to (2, 1) chiral superfields inter-
changes the roles of J;) and J_, but otherwise is unchanged; instead of (A.22) and (A.23),
we find

Q. ®=JD_®, Q_y=-JD_y . (A.26)

However, in contrast to (A.24), right semichiral multiplets X now give rise to a complex
unconstrained (2,1) scalar superfield:

Q_X=JD_X. (A.27)

B Minimal frame components

Here we work out the detailed form of various quantities in the minimal frame of section 2.3
(in particular, see (2.5), (2.3)). For the bosonic auxiliary field equations, when the indices
B = B in (3.12), the equations read

GapFA 4 AFFy = i00) guyC — i AL gyl g +iAf; vyl of . (B.1)
Choosing B = 8 and B = j in turn in (B.1) yields
P’ = CDﬂwaC iAd gyl — EgiF?

Gy F' + AYF® = tipﬁ”fﬂJ(_} [k’j ¢+¢J (B.2)
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For B = (3 (3.12) reads

A A B A _ () AT ; A d

GapF* = AGFA = zrjAgmqpﬂ_ =iA] vy’

= FP = iAl quity! + AJF (B.3)
The V-covariant derivatives in (3.10) are

G 1Vt = Gt +T5) 1967 pD (B.4)
For B = B this reads
GAB%QXJ—F GABVLZJ+ + A% Vw_,_
= Gapdyf + ABOYS + T 00742 — AL p 0l + A, 067907,

(B.5)
while B = § yields
G 35Vif = AGTud = 0wl + APov + A0 pdsiyY (B.6)
Similarily we have for the V terms in (3.10):
G sVl =G ot + T 6PyC (B.7)

For B = B this reads
GVt = GapVy? + AZVY®
= Gapd? + ABOUS + TG 06T — A2 5 96y + A2, 06°07 8%, (B.8)
and for B = B
G35Vl = AGVyph = oy + Afoyt + A7 posPyt = a(AlyP) . (B.9)
We next work out the details of the component action in the minimal frame.
S = / d*x {awEAjaw + 0> A%IPP + i{;wﬁGABWE
+OP[ABOVS — AL 06"L] + v A% D67
+2 (002 + APay + AP B P + —wéG ABVUE
+PIAROYY — AL 0¢° Y | + 4 A%, 0% }
—iRY) -y ByCyP (B.10)
To descend to the quotient model, we substitute

V¢ = Pat,  bay = —iDyDy¢% = 9¢%, ny :=iDyD_Di¢* =09t . (B.11)
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into (B.10); since ¢® and 1% only appear as in (B.11), this gives:

S:/d2a:

_ _ 1 _
O E ;007 + boy ARG + z{iwﬁG ApVYE

+P[AB0Bay — AL B 08 Bart] + YA 0¢ Bay
_ _ _ 1
+8a 00 + A0V + ATp 0'0T] + St Cap VY

B AR e — AL b ]+ AT, awz}

_i (BSDapvte vl +2R5) utBasvCul + Rggwﬁamw?w?)] :
(B.12)
We note that 7 is a fermionic auxiliary field whose equation A%Q/)§ = 0 implies
U = — A%y (B.13)
since we are in the minimal frame.
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