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Abstract. We generate data-driven reduced order models (ROMs) for inversion of the
one and two dimensional Schrödinger equation in the spectral domain given boundary data
at a few frequencies. The ROM is the Galerkin projection of the Schrödinger operator onto
the space spanned by solutions at these sample frequencies. The ROM matrix is in general
full, and not good for extracting the potential. However, using an orthogonal change of
basis via Lanczos iteration, we can transform the ROM to a block triadiagonal form from
which it is easier to extract q. In one dimension, the tridiagonal matrix corresponds to
a three-point staggered finite-difference system for the Schrödinger operator discretized
on a so-called spectrally matched grid which is almost independent of the medium. In
higher dimensions, the orthogonalized basis functions play the role of the grid steps. The
orthogonalized basis functions are localized and also depend only very weakly on the
medium, and thus by embedding into the continuous problem, the reduced order model
yields highly accurate internal solutions. That is to say, we can obtain, just from boundary
data, very good approximations of the solution of the Schrödinger equation in the whole
domain for a spectral interval that includes the sample frequencies. We present inversion
experiments based on the internal solutions in one and two dimensions.

1. Introduction

In this work we consider the following problem on a bounded domain Ω in d dimensions

−∆u(x;λ) + q(x)u(x;λ) + λu(x;λ) = 0 for x ∈ Ω ⊂ Rd(1)

∂u

∂ν
(x;λ) = g for x ∈ ∂Ω

for ν the outward unit normal to the boundary ∂Ω and q ∈ L∞(Ω). That is, u(x;λ) is
the solution to the Schrödinger equation with Neumann data corresponding to spectral
parameter λ, which here we assume to be positive real. We apply K Neumann boundary
functions {g1, . . . , gK}, with each gr ∈ H−1/2(∂Ω) and read the corresponding Dirichlet
data u(x;λ) on the boundary ∂Ω for multiple values of λ, and are interested in determining
q(x) from this data. The reconstruction of q(x) from boundary measurements is known to
be an ill-posed problem and, depending on the physical setup can result in reconstructions
with very poor resolution [2]. The map from q(x) to the data is highly nonlinear, and
due to ill-posedness is difficult to invert unless regularization is added. As examples of
literature on this subject, see [7],[3],[21].
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A relatively new class of approaches employ ideas from model reduction theory to do
direct inversion using reduced order forward models [10],[16],[11],[12],[17] with impressive
numerical results. These works have grown out of earlier work on spectrally matched finite
difference grids [15], where special grid steps were chosen so that the numerical solution
matched functionals of the solution at the boundary in the spectral domain. The spectrally
matched grid steps depended very weakly on the medium, and this allowed for the direct
extraction of the unknown coefficients [8]. There were some extensions of this to higher
dimensions [5], [6], [9], however, the grid itself was fundamentally one-dimensional, blocking
the generation of truly higher dimensional direct inversion methods, except for special
geometries. The more recent works use a more general reduced order model approach
[10],[11],[12],[16],[17] .

Here we show how one can obtain spectrally matched finite difference operators with well
chosen localized Galerkin basis functions. Using the basis functions, higher dimensional
extensions are natural. This was essentially what was used in [16],[10] in the time domain.
In this work we consider the spectral domain, and we show explicitly how to view the
reduced order models (ROMs) through the spectral Galerkin equivalence mentioned above.
The Galerkin equivalence of spectrally matched grids was known on the boundary from [14],
however the basis in which the Galerkin model is the same as the finite difference operator
everywhere was not known.

A main advantage first observed in [10] is that, like the grid steps, the basis functions
appear to depend only very weakly on the medium. It is this crucial observation that allows
one to use the ROM for inversion. Furthermore, by viewing the reduced order model as
embedded into the continuous problem and using the reference medium basis functions,
good approximations of the internal solutions can be produced from the boundary data.
We will demonstrate this with numerical examples in one and two dimensions.

The paper is organized as follows. In Section 2 we state the reconstruction problem in
general. In Section 3 we consider a one dimensional version with one source. In Section 3.1
we follow the Loewner framework [1] and describe how one obtains a Galerkin model from
the data directly, in Section 3.2 we describe the orthogonalization and prove the equiva-
lence everywhere with spectrally matched grids. In Section 3.3 we present one dimensional
numerical examples along with the internal solution generation/reconstruction algorithm.
In Section 4 we describe the same approach in higher dimensions; including the generation
of the ROM from the data in Section 4.1 and the orthogonalization procedure in Section
4.2. Finally in Section 4.3 we present two dimensional numerical examples and the inter-
nal solution generation/reconstruction algorithm, and Section 5 contains some concluding
remarks.

2. Problem statement.

Consider the problem (1) where we apply K Neumann boundary functions {g1, . . . , gK},
with each g = gr ∈ H−1/2(∂Ω) and denote by ur(x;λ) the solution to (1) corresponding to
spectral value λ and source g = gr. We read data in the form of the matrix valued transfer
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function as depending on the spectral parameter

Frl(λ) :=

∫
∂Ω
ur(x;λ)gl(x)dσx.

If, for example, each Neumann function is an approximate delta function corresponding
to a source/receiver location, for r, l = 1, . . . ,K, the transfer function Frl(λ) corresponds
to reading the solution coming from the rth ”source” at the lth ”receiver”. We take m
spectral values λ = b1, . . . , bm, and define

uri := ur(x; bi),

the solution to (1) at λ = bi with g = gr. Now let us assume that we are in possession of
boundary data of the form

F irl := Frl(bi) =

∫
∂Ω
uri gl

and

DF irl :=
dFrl
dλ

(λ)|λ=bi

where the derivative here is with respect to λ. The inverse problem is to determine q from
the data

(2) {F irl, DF irl} for i = 1, . . . ,m and r, l = 1, . . . ,K.

Such data can be obtained from the time domain via a Fourier transform.

Remark 2.1. As we will see below, from this data one can find a ROM which matches
the data exactly. However, it is not at all crucial that the data be of the Hermite form (2).
In fact, matching point values of F at 2m spectral points leads to a ROM with even better
approximation properties and still yields a stable system [15], [14]. Other forms of spectral
data are also possible [1],[14]. However, we consider only the Hermite data (2) in this work
for simplicity.

Remark 2.2. As motivation for the above, we can assume that equation (1) is the Laplace
transform of the diffusion equation with absorption, i.e.,

−∆v(x, t) + q(x)v(x, t)− v(x, t)t = 0

with Neumann condition g(x)δ(t) on the boundary ∂Ω. Furthermore, the approach devel-
oped here can also be straightforwardly extended to

(3) −∆u(x, λ) + q(x)u(x, λ)− c(x)λu(x, λ) = 0

assuming that c(x) is known. Indeed, (3) can be Liouville-transformed to

−∇ · (σ(x)∇w(x, λ)) + c(x)σ(x)λw(x, λ) = 0,

which can again can be obtained as the Laplace transform of the diffusion problem

−∇ · (σ(x)∇w(x, t))− c(x)σ(x)w(x, t)t = 0.
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The data is assumed to be the time-domain transfer function F̃rl(t). We want to construct
a reduced order model (ROM) that in the Laplace domain is of the form

(S + λM)~c = ~F

with positive matrices S,M . The best L2 approximation of the time-domain transfer func-
tion for a self-adjoint parabolic problem, i.e, the H2 optimal approximation, matches Her-
mite interpolation conditions [19] . Derivatives in the Laplace domain can be obtained via
a Laplace-Mellin transform

∫
t expλt · dt. For parabolic problems the Laplace domain lies

on the real positive semi-axis and plays a particularly important role for the solution of the
inverse problem [18]. There are known algorithms for computing H2 optimal approxima-
tions on data, see for example [4]. To simplify the computations here, for the interpolation
points we use geometric progressions with empirically chosen parameters. This choice is
motivated by the Zolotarev approximant, for which the interpolation points can be asymp-
totically approximated by geometric progressions with optimally chosen parameters [20]. It
is known that the optimal solutions for problems which have continuous spectrum are rather
close to the Zolotarev approximant. Inversion using actual H2 optimal approximations is
the subject of future work.

3. One dimensional problems.

3.1. One dimensional Galerkin model from spectral data. To begin, we follow the
Loewner framework for model reduction [1]. Consider solving the one dimensional, one
source version of (1),

− d2

dx2
u(x;λ) + q(x)u(x;λ) + λu(x;λ) = 0 for x ∈ (0, 1)(4)

− d

dx
u(0;λ) = 1

d

dx
u(1;λ) = 0

where we read the data u(0;λ) and d
dλu(0;λ) for λ > 0 as would be natural coming from the

time domain. ( ln principle λ could be anywhere in C away from the Neumann eigenvalues
of the Schrödinger operator ). One sees easily that (4) has the variational form: Find
u ∈ H1((0, 1)) such that

(5)

∫ 1

0
u′φ′ +

∫ 1

0
quφ+ λ

∫ 1

0
uφ = φ(0)

for all φ ∈ H1((0, 1)). We note that by Sobolev embedding and the trace theorem the
values of φ(0) are well defined for all test functions in H1. For any given value of λ, let us
define our true spectral domain medium response by

F (λ) = u(0;λ)

where u(x, λ) is the solution to (5).
Consider the exact solutions u1, . . . , um to (5) where

uj(x) := u(x, bj).
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These form the subspace

Vm = span{u1, . . . , um},
and we can consider the Galerkin solution uG to the variational problem: Find uG ∈ Vm
such that

(6)

∫ 1

0
u′Gφ

′ +

∫ 1

0
quGφ+ λ

∫ 1

0
uGφ = φ(0)

for any φ ∈ Vm. Searching for the unknown coefficients {ci} for the solution uG = Σm
i=1ciui

and by setting φ = uj , one obtains the system

(7) (S + λM)~c = ~F

where ~F = (u1(0), . . . , um(0))> = (F (b1), . . . , F (bm))>, the vector ~c = (c1, . . . cm)>, and
M,S are the m×m mass and stiffness matrices given by

Mij =

∫ 1

0
uiuj

and

Sij =

∫ 1

0
u′iu
′
j +

∫ 1

0
quiuj .

Using the variational formulation (6) with uG = ui and φ = uj (recall ui is the exact
solution for λ = bi), we obtain that

(8) Sij + biMij = F (bj) for all i, j = 1, . . . ,m.

Using this, if we are in possession of data {F (bj), F
′(bj) : j = 1, . . . ,m}, we can actually

directly reconstruct S and M . By reversing i and j and subtracting, for i 6= j we have

(bi − bj)Mij = F (bj)− F (bi)

or

(9) Mij =
F (bj)− F (bi)

bi − bj
where we have used the symmetry of S and M . Imagine now that one were to have data
F (z) corresponding to solution uz for z some spectral point close to bi. Then by the above
one has the formula ∫ 1

0
uiuz =

F (z)− F (bi)

bi − z
.

Taking z → bi, we have that uz → ui, so that

(10) Mii =

∫ 1

0
u2
i = −F ′(bi).

Multiplying (8) by bj , reversing i and j and subtracting, we get

(bj − bi)Sij = bjF (bj)− biF (bi)
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or

(11) Sij =
bjF (bj)− biF (bi)

bj − bi
.

Again by taking some spectral point z close to bi and letting z → bi one obtains

(12) Sii = (λF )′(bi).

Hence the formulas (9),(10),(11),(12), well known in the model reduction community [1],
provide the mass and stiffness matrices directly from the data. Similar formulas can be
derived for other forms of spectral data. Together S and M provide a reduced order model
for (4).

The solution uG to (6) also has the property that at x = 0, as a function of λ it matches
the data

(13) {F (bj), F
′(bj) : j = 1, . . . ,m}

exactly. We show this in the following Lemma, which was previously known [1].

Lemma 3.1. Let uG(x;λ) be the Galerkin solution to (6) for subspace Vm generated by
exact solutions corresponding to λ = b1, . . . , bm. Let Fm given by

(14) Fm(λ) =

m∑
i=1

y2
i

λ− θi

be the unique rational Hermite interpolant of form (14) to F (λ) matching the data (13)
with positive residues and negative poles. We then have

uG(0;λ) = Fm(λ)

for all λ.

Proof. First we show that the Galerkin solution yields a response at x = 0 of the form (14)
for all λ. Here we use the continuous L2(0, 1) inner product 〈, 〉. Decomposing the solution
uG into an orthonormal basis of Galerkin eigenpairs {wi, µi},

uG =
m∑
i=1

〈uG, wi〉wi,

we have

(15) uG(0;λ) =

m∑
i=1

〈uG, wi〉wi(0).

The fact that {wi, µi} is an eigenpair means that

〈uG, wi〉 = − 1

µi

(∫
w′iu

′
G +

∫
qwiuG

)
which from the variational formulation for uG gives

〈uG, wi〉 =
1

µi
〈wi, λuG〉 −

1

µi
wi(0).
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Solving for 〈uG, wi〉 we have

〈uG, wi〉 =
wi(0)

λ− µi
which from (15) yields

FG(λ) := uG(0;λ) =

m∑
i=1

w2
i (0)

λ− µi
.

Hence uG(0;λ) has the same form as Fm(λ) in (14), with positive residues and negative
poles. Recall that Fm is the rational Hermite interpolant to F at the points λ = b1, . . . , bm.
Now, since the trial space for the Galerkin solution contains the exact solutions for λ =
b1 . . . bm, uG will be the exact solution at those spectral points, which means that at λ = bi,

uG(0; bi) = F (bi) = Fm(bi).

We claim FG(λ) := uG(0;λ) also matches the derivatives at the spectral points as a function
of λ. The Galerkin solution uz := uG(0, z) for some λ = z near bi can be used as a test
function for ui, so that one has

FG(z) = uz(0) =

∫
u′iu
′
z +

∫
quiuz + bi〈ui, uz〉.

We can also use the variational formulation for this same Galerkin solution uz for λ = z
with ui as a test function to obtain

FG(bi) = ui(0) =

∫
u′zu

′
i +

∫
quzui + z〈uz, ui〉,

and by subtracting them we have

FG(z)− FG(bi) = (bi − z)〈uz, ui〉.

Taking the limit as z → bi one obtains

F ′G(bi) = − lim
z→bi
〈uz, ui〉 = −〈ui, ui〉 = F ′(bi)

from (10). Hence FG(λ) = uG(0;λ) is the rational Hermite interpolant to F at the given
spectral points, and so by uniqueness of this Padé approximation,

uG(0;λ) = Fm(λ)

for all λ. �

Spectral Galerkin models such as the above are difficult to work with since they tend
to yield full matrices. In particular for inverse problems, it is not obvious how one may
extract the coefficients, since we wouldn’t know the basis functions {ui} internally from
the data. It is for these reasons we follow along the lines of [10],[17] and do a Lanczos
orthogonalization to construct a new orthonormal basis for Vm in which the operator S
becomes tridiagonal. In the new basis, M is the identity from the orthonormality.



8 L. BORCEA1, V. DRUSKIN2, A. MAMONOV3, S. MOSKOW4, M. ZASLAVSKY5

3.2. Lanzcos orthogonalization and equivalence with spectrally matched finite
difference grids. The original idea of spectrally matched grids [15] was that, given re-
ceiver data in the spectral domain, choose a rational approximation for this data, then find
the three point finite difference stencil whose forward solution at the receiver matches ex-
actly this rational approximation. This yielded a very special nonuniform grid and spectral
convergence at the receiver. Higher order convergence for the forward model was sacrificed
elsewhere in domain, but this was irrelevant for inversion. It was also shown at the time
that the receiver response of the finite difference scheme was equivalent to that of a spec-
tral Galerkin method, for various types of spectral data [14]. Just as above we saw how to
generate a Galerkin model from data, one can generate a finite difference model from the
same data.

Suppose we read the data (13) as before. Forgetting for now about the Galerkin method,
there is a unique rational approximation Fm(λ) to F (λ) of the form (14) with positive
residues and negative poles which gives this Hermite interpolant to F (λ), matching the
data (13). From these positive residues and negative poles, by using what is essentially the
Lanczos algorithm, one can find a continued fraction form for Fm(λ),

Fm(λ) =
1

γ̂1λ+
1

γ1 +
1

γ̂2λ+ · · ·
1

γm−1 +
1

γ̂mλ

.

Then from there one can extract {γi, γ̂i} which define a three-point staggered difference
scheme with tridiagonal matrix Lm for which the approximated solution at x = 0 is exactly
Fm(λ) [15]. That is, the rational approximation Fm(λ) uniquely determines positive γj , γ̂j ,
such that solving the finite difference scheme

− 1

γ̂j

(
Uj+1 − Uj

γj
− Uj − Uj−1

γj−1

)
+ λUj = 0 for j = 1, . . .m(16)

−U1 − U0

γ0
= 1,

Um+1 − Um
γm

= 0

yields

U1 = Fm(λ).

Note that U0 and Um+1 are ghost points only (and γ0, γm ghost grid steps) and the nonzero
Neumann condition on the left yields a nonzero right hand side in the first component. That
is, this yields an m dimensional matrix system of the form

(Lm + λI)~U =
~e1

γ̂1

for the unknown U1, . . . , Um, with entries of Lm given by (16) in terms of the γj and γ̂j .
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Remark 3.2. When q = 0, the γj , γ̂j are primary and dual finite difference grid steps.
For nonzero q, finite difference scheme (16) can be transformed to a discrete Schrödinger
form with a discrete Liouville transform [13]. For simplicity, we won’t do that here, since
we don’t use the finite difference framework for reconstructions.

Consider again approximating the solution to (4) by a Galerkin method with the finite
dimensional subspace Vm, generated by the exact solutions {ui} at the spectral points
λ = bi. Since the finite difference grid does not easily extend to higher dimensions, we
would rather work with Galerkin systems. Recall the Galerkin system (7)

(S + λM)~c = ~F

where ~F = (F (b1), . . . , F (bm))> and the vector ~c = (c1, . . . cm)> contains the coefficients
for solution

uG =
∑

ciui.

Unfortunately, unlike the finite difference model, the stiffness and mass matrices S and M
are full. However, one can in fact find a new basis for Vm in which the Galerkin system is
tridiagonal, and exactly everywhere the same as the symmetrization of the finite difference
system (16). To do this we will do Lanczos orthogonalization. Define δm ∈ Vm to be the
projection of the delta function onto Vm, that is, the unique element of Vm which satisfies

〈δm, w〉 = w(0) for all w ∈ Vm,

identified with the coefficient vector ~d = (d1, d2, . . . dm). Note that ~d = M−1 ~F . Consider
now the basis where we let A = M−1S and

B = {~d,A~d,A2~d, . . . , Am−1~d}.

and we orthogonalize using Gram-Schmidt with respect to the mass matrixM inner product

〈~x, ~y〉M := 〈M~x, ~y〉.

This will yield continuous L2 orthogonality of the basis functions. Note that A is symmetric
with respect to this inner product. We get new orthogonalized basis for Vm:

(17) Vm = span{û1(x), û2(x), . . . ûm(x)}.

Due to the orthogonalization, the new basis is somewhat localized, more refined near zero
and coarsening out towards one, as spectrally matched finite difference grid steps do. See
an example in Figure 1 for m = 6. Furthermore, A is tridiagonal in the new basis, and
since M becomes the identity, this means that S is also tridiagonal in the new basis.

Theorem 3.3. If we change the basis to the orthogonalized (17) and form the Galerkin
system in this new basis

(18) (Ŝ + λM̂)~̂c =
~̂
F
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Figure 1. New basis û1, . . . , ûm for a homogeneous medium in which the
Galerkin system becomes a tridiagonal finite difference system. Note the
localization of the basis functions, with peaks refining near zero and coars-
ening out towards 1.

(with M̂ = I) to solve for ~̂c, this is the symmetrization of the finite difference system (16)

for ~U . In particular,

uG =
m∑
i=1

√
γ̂iUiûi(x).

Proof. We first symmetrize (16) by setting

Vj =
√
γ̂jUj

and then multiplying each row i by
√
γ̂i in the resulting equations for the {Vi}. The

resulting system is in the form

(L+ λI)~V =
1√
γ̂1
~e1,

where L is now symmetric. We recall that for the given impedance of the form (14) (now
multiplied by

√
γ̂1), the symmetric tridiagonal L is uniquely determined.

Consider now the system (18) in the new basis. The mass matrix M̂ = I will be identity

due to orthogonality. The stiffness matrix Ŝ will be tridiagonal due to the fact that this
is a Lanczos process with polynomials in A, (A becomes tridiagonal and therefore Ŝ).
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Figure 2. Orthogonalized basis for a homogeneous q0 = 0 medium, plotted
with its corresponding finite difference grid. Stars ∗ correspond to primary
grid points and plus signs + to dual grid points. Primary grid points are
color coded with corresponding basis functions. Note the masses of the basis
functions are concentrated between each primary point and the next dual
point.

Furthermore, since û1 is the projection of the delta function, it will be nonzero at zero, but
from orthogonality of the new basis functions we have that

〈û1, ûi〉 = ûi(0) = 0

for all i > 1. Hence the right hand side
~̂
F is nonzero only in the first component and is

therefore equal to û1(0)~e1. This means that the system (18) is of the form

(Ŝ + λI)~̂c = û1(0)~e1

for Ŝ tridiagonal symmetric. We also know from Lemma 3.1 and the construction of the
system (16) that uG(0;λ) = Fm(λ) = U1 for all λ, which means that

ĉ1û1(0) =
1√
γ̂1
V1

for all λ. By decomposing ~̂c into the normalized eigenpairs of Ŝ as was done in the proof
of Lemma 3.1 except now using the standard Euclidean inner product in Rm, one can
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Figure 3. Red: Orthogonalized basis normalized so that ûi(xi) = 1 where
xi is the ith primary grid point. Blue: Nodal basis {φi} of Vm satisfying
φi(xj) = δij . Note that the Lanczos orthogonalized basis resembles the
nodal one, but has more localization.
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calculate that

ĉ1 = û1(0)
m∑
i=1

z2
i

λ− θi

for θi the eigenvalues and z2
i the squares of the first components of the normalized eigen-

vectors of Ŝ. Similarly

V1 =
1√
γ̂1

m∑
i=1

y2
i

λ− µi

where µi the eigenvalues and y2
i the squares of the first components of the normalized

eigenvectors of L. By the above impedance equality for all λ and the normalization of the
residues, one must have that the poles and residues are equal (and that the multipliers

from right hand sides are the same). Therefore L and Ŝ are the same by the uniqueness of

the inverse eigenvalue problem, and ~̂c = ~V , from which the result follows. �

Remark 3.4. From the above we also found that

û1(0) =
1√
γ̂1
,

which coincides with û1 being a projection of the delta function.

That is, the solution components Uj of the difference scheme (16) can be interpreted as
coefficients of the spectrally converging Galerkin solution with respect to the orthogonal
basis (17). See Figure 2 for an example of an orthogonalized basis with its equivalent
staggered finite difference grid. Note that the masses of the basis functions are concentrated
between the primary grid steps and the next dual grid step, and they spread out in the
same way that the grid steps coarsen. In Figure 3, we normalize each function in the basis
to be equal to 1 at its corresponding primary grid point, and plot it against the nodal basis
for the same space. (The nodal basis is the unique basis {φi} of Vm satisfying φi(xj) = δij .)
Note that our orthogonal basis resembles the nodal one, but is less oscillatory away from
the corresponding grid point. In what follows below, we propose an inversion method using
the Lanczos orthogonalized basis, which makes no use of the finite difference grid steps,
and is easily generalizable to other geometries.

3.3. Internal data generation and inversion in one dimension. Consider solving

−u′′ + qu+ λu = 0 on (0, 1)(19)

−u′(0) = 1

u(1) = 0

as a perturbation of the corresponding reference problem

−u′′0 + λu0 = 0 on (0, 1)(20)

−u′0(0) = 1

u0(1) = 0.
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Here we use the reference medium q0 = 0, however, any known reference medium should
work the same. We note also that one can have either a Dirichlet or Neumann condition
on the right endpoint x = 1. The one dimensional numerical experiments below were done
with a Dirichlet condition, a Neumann condition yielded similar results.
Algorithm

(1) Read data (here synthetically generated) F (bi), F
′(bi) for some positive λ = b1, . . . bm

for the perturbed problem (19), and compute all of the corresponding solutions u0
i

for i = 1, . . . ,m for the reference problem.
(2) Use (9, 10, 11, 12) to generate the m×m stiffness and mass matrices S and M for

Galerkin system for the perturbed problem, and similarly compute S0, M0 for the
reference problem.

(3) Compute projections of the delta function at zero onto Vm = 〈ui〉 by solving for ~d
in

M~d = ~F

where components Fj = F (bj). These are the coefficients dj of projected δ in the

{ui} basis for Vm. Similarly, we calculate ~d0 by solving

M0
~d0 = ~F 0,

where (F 0)j = u0
j (0) is the reference data. This means that {(d0)j} are the co-

efficients of the projected delta function in the reference basis {u0
i } for the space

V 0
m = 〈u0

i 〉.
(4) Set A = M−1S, and note that A is symmetric with respect to the inner product
〈~x, ~y〉M := M~x · ~y, which is same the L2 inner product on the corresponding con-
tinuous functions. Perform Lanczos orthogonalization with respect to this inner
product on the basis

{~d,A~d,A2~d, . . . , Am−1~d}

and let Ŝ, M̂ = I be the Galerkin stiffness and mass matrices in this new basis
{ûi}. Note that Ŝ is tridiagonal.

(5) Similarly, set A0 = M−1
0 S0 and perform Lanczos orthogonalization with respect to

the M0 inner product on the basis

{~d0, A0
~d0, A

2
0
~d0, . . . , A

m−1
0

~d0}

to obtain the corresponding orthognalized basis {û0
i } for V 0

m.

(6) Now choose any spectral value λ and solve c = (A+ λI)−1 ~̂F , so that uG =
∑
ciûi

is the Galerkin approximation in Vm to the solution of (19) . Since we don’t know
ûi from the data, approximate uG by

ũ =
∑

ciû
0
i .

(7) Given λ and ũ from Step (6), compute (ũ′′ − λũ)/ũ ≈ q; or reserve ũ for another
use.
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Figure 4. Weak dependence of orthogonalized bases on q . Orthogonalized
basis functions for reference and perturbed medium with q as in Figure 6
visually coincide, here m = 6.
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Figure 5. Left: Internal solution for arbitrarily chosen spectral value λ = 3
generated from data, compared to exact perturbed and reference medium
solutions. Right: Zoom in of same.

In summary, the spectral data gives the Galerkin system ROM for (4) corresponding to
spectral snapshots. Simultaneously, we can do the same for a reference medium. Lanc-
zos orthogonalization localizes the spectral snapshots, forming a basis which depends very
weakly on the medium. In Figure 4, we show an example of the orthogonalized basis func-
tions for a piecewise cubic q (as shown in Figure 6), varying from 0 up to .2 and back down
to 0. In this case we take m = 6 and we use the Zolotarev points 1, 2, 14, 50, 128, 262.2672
for interpolation. Here in Figure 4 the basis functions are plotted against the orthogo-
nalized basis functions for the reference medium q0 = 0, and appear indistinguishable.
Therefore, although we do not have the internal spectral snapshots for the true medium,
in the localized basis they are very close to those of the reference medium. For any given
λ now, by solving the Galerkin system, we can get the coefficients, and this yields a
good approximation to internal data. See Figure 5 for an example of an internal solution.
This is the same example as described above, but we use the m = 9 interpolation points
1, 2, 14, 50, 128, 262.2672, 486, 900, 20000. One possibility is to use the internal solution to
do inversion- for example by calculating (ũ′′ − λũ)/ũ ≈ q. Note that for positive λ, ũ is
never zero. We try this simple approach in Figure 6 and Figure 7.
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Figure 6. Reconstruction (red) of piecewise cubic q(x) (blue) using deriva-
tives of data generated internal solution.

4. Higher dimensional problems.

4.1. Galerkin model from spectral data in higher dimensions. Again we follow the
Loewner framework. Consider the full problem (1) with given data (2). Assuming that

each Neumann source function gr ∈ H−1/2(∂Ω) and q ∈ L∞(Ω), the variational formulation
of (1) is: Find uri ∈ H1(Ω) such that∫

Ω
∇uri · ∇φ+

∫
Ω
quriφ+ bi

∫
Ω
uriφ =

∫
∂Ω
grφ

for all φ ∈ H1(Ω). Generating a Galerkin subspace with these m ∗K exact solutions

VmK = span{{uri }i=1,...,m,r=1,...,K}

and using them as test functions, we have that∫
Ω
∇uri · ∇ulj +

∫
Ω
quriu

l
j + bi

∫
Ω
uriu

l
j =

∫
∂Ω
gru

l
j(21)

= F jlr(22)

for all i, j = 1, . . . ,m and r, l = 1, . . . ,K. That is,

Sirjl + biMirjl = F jlr
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Figure 7. Reconstruction (red) of smooth q(x) (blue) using derivatives of
data generated internal solution.

where S and M are the stiffness and mass matrices respectively. From this and the same
derivation as in one dimension, one obtains them directly from the data

(23) Mirjl =
F jlr − F

i
lr

bi − bj
,

(24) Miril = −DF ilr,

(25) Sirjl =
bjF

j
lr − biF

i
lr

bj − bi
,

and

(26) Siril = (λFrl)
′(bi).

4.2. Block Lanczos orthogonalization and generation of the block tridiagonal
reduced order model. Note the above S and M can be viewed as m×m matrices with
entries that are K ×K blocks. First we consider our data functional δF (φ) : H1(Ω)→ RK
which is defined by

[δF (φ)]l :=

∫
∂Ω
φgl for l = 1, . . . ,K.
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Similarly to what was done in one dimension, we find the projection of each component of
δF (φ) onto VmK . That is, we look for δlmK ∈ VmK such that∫

Ω
δlmKu

r
j =

∫
∂Ω
urjgl = F jlr.

That is, we identify δlmK with its coefficients ~dl in the basis for VmK ;

δlmK =
∑

i=1,...,m;r=1,...,K

dliru
r
i ,

which again can be obtained directly by solving the m×m matrix system of K×K blocks

M~d = F.

We now use this as our starting vector for block Lanczos orthogonalization with respect to
the basis generated by powers of the matrix A = M−1S:

B = {~d,A~d,A2~d, . . . , Am−1~d}.
and we orthogonalize using Gram-Schmidt with respect to the mass matrixM inner product

〈~x, ~y〉M := 〈M~x, ~y〉.
This will yield again continuous L2 orthogonality of the basis functions. Note that A is
symmetric with respect to this inner product and will be block tridiagonal in the new basis
for VmK :

(27) VmK = span{{ûri (x)}i=1,...,m;r=1,...,K}.

In this new basis, M̂ will be identity and Ŝ will be block tridiagonal, yielding a sparse,
spectrally converging ROM generated entirely from the data.

4.3. Embedding into the continuous problem and generation of internal data.
We now describe the algorithm to generate the internal solutions, which is simply a gener-
alization of that from Section 2.3. Here we assume we know or can compute solutions to
the reference problem

−∆(uri )
0 + q0(uri )

0 + bi(u
r
i )

0 = 0 in Ω(28)

∂(uri )
0

∂ν
= gr on ∂Ω

Algorithm

(1) Read data (again here synthetically generated)

F irl =

∫
∂Ω
uri gl

and
dF irl
dλ

corresponding to some positive λ = bi for i = 1, . . . ,m and K sources/receivers
{gr} for the perturbed problem (1).



20 L. BORCEA1, V. DRUSKIN2, A. MAMONOV3, S. MOSKOW4, M. ZASLAVSKY5

(2) Compute all of the corresponding solutions (uri )
0 for i = 1, . . . ,m, r = 1, . . . ,K for

the reference problem (28) and the corresponding reference data sets F 0 and DF 0.
(3) Use (23, 24, 25, 26) to generate the m×m systems of K×K block stiffness and mass

matrices S and M for Galerkin system for the perturbed problem, and similarly
generate S0, M0 for the reference problem.

(4) Compute projection of the vector of functionals δF (φ) onto

VmK = span{{uri }i=1,...,m,r=1,...,K}
and onto the corresponding reference Galerkin space

V 0
mK = span{{(uri )0}i=1,...,m,r=1,...,K},

that is, we compute the coefficient vectors ~d and ~d0 by solving the systems

M~d = F

and
M0

~d0 = F 0

respectively.
(5) Set A = M−1S, and perform block Lanczos orthogonalization with respect to the

M inner product using

{~d,A~d,A2~d, . . . , Am−1~d}

and let Ŝ, M̂ = I be the Galerkin stiffness and mass matrices in this new basis
{ûri } for VmK . Note that Ŝ is block tridiagonal with K ×K blocks.

(6) Similarly, set A0 = M−1
0 S0 and perform Lanczos orthogonalization with respect to

the M0 inner product on the basis

{~d0, A0
~d0, A

2
0
~d0, . . . , A

m−1
0

~d0}
to obtain the corresponding orthogonalized basis {(ûri )0} for V 0

mK .
(7) Now choose any spectral value λ and solve the Galerkin system in the new basis

c = (Ŝ + λI)−1F̂ , so that for each r, urG =
∑

i c
r
i û
r
i is the Galerkin projection of

the solution of (1) with bi = λ onto VmK . Since we don’t know ûri from the data,
approximate urG by

ũr =
∑
i

cri (û
r
i )

0.

(8) Compute (∆ũr − λũr)/ũr ≈ q; or reserve {ũr} for another use.

Remark 4.1. We note that just as the internal solutions can be computed for any spectral
value λ, they also be computed for any Neumann data where one can read the above solutions
urj on their support. For any given source g, the data

F jr =

∫
∂Ω
urjg

is the right hand side for the Galerkin system in the original basis, which can be transformed
to F̂ by the same change of basis found in the above Lanczos procedure.
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Figure 8. Left: Layered medium with one source on each side of layering
(two sided problem). Left: Original medium. Right: Reconstruction using
data generated internal solutions.

Figure 9. Left: Smooth bump profile. Right: Reconstruction using four
sources/receivers on bottom only, using data generated internal solution.

We now describe a few preliminary numerical experiments where we compute internal
solutions from the data using the above described algorithm. In all of these two dimensional



22 L. BORCEA1, V. DRUSKIN2, A. MAMONOV3, S. MOSKOW4, M. ZASLAVSKY5

Figure 10. Left: Data generated internal solution for two bumps. Right:
Actual internal solution. Bottom: Background solution for comparison.
The relative error between the true and data generated internal solutions is
0.003930. For comparison, the relative error between the true and reference
medium internal solutions is 0.084794.

experiments here we take the domain to be the square

Ω = (−1, 1)× (−1, 1).

In the first experiment, we consider a q which is 1-d smoothly varying medium with two
Gaussian bumps. For this case, we will use two sources; each a constant on one of the two
sides of the direction of variation. We do not assume apriori that we know the medium is
only one dimensionally varying. In this case, K = 2 corresponding to the two sources, and
we use six spectral values, yielding a ROM of total size 12 × 12. The spectral values are
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Figure 11. Reconstruction of two bumps. Eight sources total; two on each
side, and six spectral values.

again here 1, 2, 14, 50, 128, 262.2672. We implement the above algorithm as described with
λ = 3, and show the original medium and its reconstruction in Figure 8.

In our next example, we consider a medium with a smooth two dimensional bump, and
probe with four (K = 4) piecewise constant sources, all on one side of the domain. In this
case we use the first s = 4 spectral values, yielding a ROM of total size 16×16. The results
of the reconstruction with are in Figure 9.

Finally, we consider a two-bump medium and probe with K = 8 piecewise constant
sources; two on each side. We use s = 6 spectral values. For this example we first examine
the internal solutions in Figure 10. One sees that the data generated internal solutions
capture the asymetries in the true solution that the background solution does not. The
error in the data generated internal solution is just under 0.4%. In Figure 11 we apply the
Laplacian to obtain a reconstruction in which we see the two bumps.

5. Conclusions

Reduced order Galerkin models for spectral domain problems can be generated directly
from boundary data, and we saw in one dimension that these lead to the same boundary
response as the corresponding spectrally matched grid. After Lanczos orthogonalization,
the Galerkin model becomes tridiagonal and becomes everywhere the spectrally matched
finite difference system. Most importantly, the orthogonalized basis functions depend only
very weakly on the medium. This allows one to generate accurate internal solutions en-
tirely from boundary data. The approach extends nicely to higher dimensions, and the
internal solutions remain highly accurate, and can be differentiated to yield a fast direct
inversion method. Furthermore, the internal solutions themselves have potential to apply



24 L. BORCEA1, V. DRUSKIN2, A. MAMONOV3, S. MOSKOW4, M. ZASLAVSKY5

some problems directly, for example in applications to internal field monitoring for medical
ablation. A rigorous analysis of the dependence of the orthogonalized basis functions on
the medium is still needed and is the subject of future work.
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