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JULIAN SAHASRABUDHE, AND MARIUS TIBA

Abstract. In this short note we give a simple proof of a 1962 conjecture of Erdős, first

proved in 1969 by Crittenden and Vanden Eynden, and note two corollaries.

Covering systems were introduced by Erdős [3] in 1950, and over the last few years there

has been much activity in the area. In particular, the famous ‘minimum modulus problem’,

posed by Erdős [3] in his original paper on the topic, was resolved in 2015 by Hough [8],

following an earlier breakthrough by Filaseta, Ford, Konyagin, Pomerance and Yu [7]. In

this note we shall concern ourselves with two other questions about covering systems, asked

by Erdős [4] in 1962.

We say that a family A = {A1, . . . , Ak} of arithmetic progressions covers a set S ⊂ Z if

S ⊂ A1 ∪ · · · ∪ Ak, and if A covers Z then it is called a covering system. Strengthening a

conjecture of Stein [9], made in 1958, Erdős [4] conjectured that if A covers the set [2k] =

{1, . . . , 2k} then it covers all of Z. The family of progressions Ai =
{

2i−1 (mod 2i)} for

i = 1, . . . , k shows that 2k cannot be decreased to 2k − 1. Erdős mentioned this conjecture

in several of his later papers, see for example [5, 6].

In support of this conjecture, Erdős (see [5]) proved that there exists N(k) ∈ N such that

if A covers [N(k)] then it also covers Z. However, the full conjecture was only proved in

1969 by Crittenden and Vanden Eynden [1, 2]. Our aim in this note is to give a short proof

of this theorem.

Theorem 1. Let A = {A1, . . . , Ak} be a collection of k arithmetic progressions. If A covers

2k consecutive numbers, then it covers Z.

Proof. Let I = {a+ 1, . . . , a+ 2k} be an interval of 2k consecutive integers, and suppose (for

a contradiction) that A covers I but fails to cover Z. Since translating all of the arithmetic

progressions by a constant makes no difference, let us assume that a = 0. Let us write

lcm(A) for the least common multiple of the moduli d1, . . . , dk of the progressions in A, and

observe that every translation of the interval I by a multiple of lcm(A) is also covered by A.

Therefore, setting q := lcm(A), there exists an integer 2k < c 6 q that is not covered by A.

Set ω := exp(2πi/q) and let Ω = {1, ω, . . . , ωq−1} be the multiplicative cyclic group of

order q generated by ω. Thus ωq = 1, and the map n 7→ ωn is a homomorphism from the
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additive group Z onto the multiplicative group Ω, mapping Ai into a set Zi with |Zi| = q/di.

Set Z := Z1 ∪ · · · ∪ Zk, and observe that{
ωj : 1 6 j 6 2k

}
⊂ Z and ωc /∈ Z, (1)

for some 2k < c 6 q, by the assumptions above. Now, observe that Z is precisely the set of

zeros of the polynomial

P (z) =
k∏
i=1

(
zq/di − ωaiq/di

)
,

where Ai =
{
ai + ndi : n ∈ Z

}
. Expanding P (z) as a linear combination of monomials, we

find that

P (z) =
∑
S⊂[k]

cSz
∑

j∈S q/dj =
∑
S⊂[k]

cSz
αS ,

where the coefficients cS are (possibly zero) complex numbers. In particular, P (z) is in the

linear span W of the monomials zαS , and the dimension of W is at most 2k.

Now, for each m ∈ Z, define Pm(z) := P
(
ω−mz

)
, and observe that Pm(z) ∈ W , since

P
(
ω−mz

)
=
∑
S⊂[k]

(
cS ω

−mαS
)
zαS .

To contradict the bound dimW 6 2k, we shall show that the 2k + 1 polynomials P0(z),

P1(z), . . . , P2k(z) are linearly independent. To this end, it suffices to show the following for

each 0 6 ` 6 2k: if
2k∑
m=`

λmPm(z) = 0 (2)

then λ` = 0. To do so, let 2k < s 6 q be minimal such that P (ωs) 6= 0, and recall from (1)

that such an s exists. Since P`(ω
s+`) = P (ωs) 6= 0, but Pm(ωs+`) = P (ωs−(m−`)) = 0 for all

` < m 6 2k, it follows from (2) that

λ`P`(ω
s+`) = λ`P (ωs) = 0.

Thus λ` = 0, and this completes the proof. �

To conclude, let us note two simple consequences of Theorem 1. To state the first, let us

say that a covering system A is minimal if no proper subset of A covers Z.

Corollary 2. In a minimal covering system of k arithmetic progressions, every modulus is

at most 2k−1.

Proof. Let A be a minimal covering system of k arithmetic progressions, and let A ∈ A. Set

A′ := A \ {A} and I := {a + 1, . . . , a + d − 1}, where A = {a + nd : n ∈ Z}. Then A′ is a

collection of k − 1 arithmetic progressions that covers the interval I but does not cover Z.

By Theorem 1, it follows that |I| 6 2k−1 − 1, and hence d 6 2k−1, as claimed. �
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The family of progressions {A1, . . . , Ak}, where Ai =
{

2i−1 (mod 2i)} for i = 1, . . . , k − 1

and Ak =
{

0 (mod 2k−1)}, shows that the bound 2k−1 in Corollary 2 is best possible.

The second consequence of Theorem 1 is also almost immediate, and answers the following

question1 of Erdős [6]: “Let the moduli d1, . . . , dk of a collection of arithmetic progressions

satisfy
∑k

i=1 1/di 6 1− 1/2k. Is it true that there is a number u, 1 6 u 6 2k, that does not

satisfy any of the congruences?” In fact, more is true.

Corollary 3. Let A be a collection of k arithmetic progressions whose moduli d1, . . . , dk
satisfy

∑k
i=1 1/di < 1. Then no set of 2k consecutive numbers is covered by A.

Proof. Set q := lcm(A), the least common multiple of the moduli d1, . . . , dk. We have∣∣∣∣[q] ∩ k⋃
i=1

Ai

∣∣∣∣ 6 k∑
i=1

∣∣[q] ∩ Ai∣∣ =
k∑
i=1

q

di
< q,

so A does not cover Z. The result now follows by Theorem 1. �

We remark that if the moduli are assumed to be distinct, then the conclusion of Corollary 3

holds under the slightly weaker assumption that
∑k

i=1 1/di 6 1, using the fact2 (see [4, 5])

that Z cannot be covered by a finite number of disjoint progressions with distinct differences.
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