

COVERING INTERVALS WITH ARITHMETIC PROGRESSIONS

PAUL BALISTER, BÉLA BOLLOBÁS, ROBERT MORRIS,
JULIAN SAHASRABUDHE, AND MARIUS TIBA

ABSTRACT. In this short note we give a simple proof of a 1962 conjecture of Erdős, first proved in 1969 by Crittenden and Vanden Eynden, and note two corollaries.

Covering systems were introduced by Erdős [3] in 1950, and over the last few years there has been much activity in the area. In particular, the famous ‘minimum modulus problem’, posed by Erdős [3] in his original paper on the topic, was resolved in 2015 by Hough [8], following an earlier breakthrough by Filaseta, Ford, Konyagin, Pomerance and Yu [7]. In this note we shall concern ourselves with two other questions about covering systems, asked by Erdős [4] in 1962.

We say that a family $\mathcal{A} = \{A_1, \dots, A_k\}$ of arithmetic progressions *covers* a set $S \subset \mathbb{Z}$ if $S \subset A_1 \cup \dots \cup A_k$, and if \mathcal{A} covers \mathbb{Z} then it is called a *covering system*. Strengthening a conjecture of Stein [9], made in 1958, Erdős [4] conjectured that if \mathcal{A} covers the set $[2^k] = \{1, \dots, 2^k\}$ then it covers all of \mathbb{Z} . The family of progressions $A_i = \{2^{i-1} \pmod{2^i}\}$ for $i = 1, \dots, k$ shows that 2^k cannot be decreased to $2^k - 1$. Erdős mentioned this conjecture in several of his later papers, see for example [5, 6].

In support of this conjecture, Erdős (see [5]) proved that there exists $N(k) \in \mathbb{N}$ such that if \mathcal{A} covers $[N(k)]$ then it also covers \mathbb{Z} . However, the full conjecture was only proved in 1969 by Crittenden and Vanden Eynden [1, 2]. Our aim in this note is to give a short proof of this theorem.

Theorem 1. *Let $\mathcal{A} = \{A_1, \dots, A_k\}$ be a collection of k arithmetic progressions. If \mathcal{A} covers 2^k consecutive numbers, then it covers \mathbb{Z} .*

Proof. Let $I = \{a + 1, \dots, a + 2^k\}$ be an interval of 2^k consecutive integers, and suppose (for a contradiction) that \mathcal{A} covers I but fails to cover \mathbb{Z} . Since translating all of the arithmetic progressions by a constant makes no difference, let us assume that $a = 0$. Let us write $\text{lcm}(\mathcal{A})$ for the least common multiple of the moduli d_1, \dots, d_k of the progressions in \mathcal{A} , and observe that every translation of the interval I by a multiple of $\text{lcm}(\mathcal{A})$ is also covered by \mathcal{A} . Therefore, setting $q := \text{lcm}(\mathcal{A})$, there exists an integer $2^k < c \leq q$ that is not covered by \mathcal{A} .

Set $\omega := \exp(2\pi i/q)$ and let $\Omega = \{1, \omega, \dots, \omega^{q-1}\}$ be the multiplicative cyclic group of order q generated by ω . Thus $\omega^q = 1$, and the map $n \mapsto \omega^n$ is a homomorphism from the

The first two authors were partially supported by NSF grant DMS 1600742, the third author was partially supported by CNPq (Proc. 303275/2013-8) and FAPERJ (Proc. 201.598/2014), and the fifth author was supported by a Trinity Hall Research Studentship.

additive group \mathbb{Z} onto the multiplicative group Ω , mapping A_i into a set Z_i with $|Z_i| = q/d_i$. Set $Z := Z_1 \cup \dots \cup Z_k$, and observe that

$$\{\omega^j : 1 \leq j \leq 2^k\} \subset Z \quad \text{and} \quad \omega^c \notin Z, \quad (1)$$

for some $2^k < c \leq q$, by the assumptions above. Now, observe that Z is precisely the set of zeros of the polynomial

$$P(z) = \prod_{i=1}^k (z^{q/d_i} - \omega^{a_i q/d_i}),$$

where $A_i = \{a_i + nd_i : n \in \mathbb{Z}\}$. Expanding $P(z)$ as a linear combination of monomials, we find that

$$P(z) = \sum_{S \subset [k]} c_S z^{\sum_{j \in S} q/d_j} = \sum_{S \subset [k]} c_S z^{\alpha_S},$$

where the coefficients c_S are (possibly zero) complex numbers. In particular, $P(z)$ is in the linear span W of the monomials z^{α_S} , and the dimension of W is at most 2^k .

Now, for each $m \in \mathbb{Z}$, define $P_m(z) := P(\omega^{-m}z)$, and observe that $P_m(z) \in W$, since

$$P(\omega^{-m}z) = \sum_{S \subset [k]} (c_S \omega^{-m\alpha_S}) z^{\alpha_S}.$$

To contradict the bound $\dim W \leq 2^k$, we shall show that the $2^k + 1$ polynomials $P_0(z)$, $P_1(z), \dots, P_{2^k}(z)$ are linearly independent. To this end, it suffices to show the following for each $0 \leq \ell \leq 2^k$: if

$$\sum_{m=\ell}^{2^k} \lambda_m P_m(z) = 0 \quad (2)$$

then $\lambda_\ell = 0$. To do so, let $2^k < s \leq q$ be minimal such that $P(\omega^s) \neq 0$, and recall from (1) that such an s exists. Since $P_\ell(\omega^{s+\ell}) = P(\omega^s) \neq 0$, but $P_m(\omega^{s+\ell}) = P(\omega^{s-(m-\ell)}) = 0$ for all $\ell < m \leq 2^k$, it follows from (2) that

$$\lambda_\ell P_\ell(\omega^{s+\ell}) = \lambda_\ell P(\omega^s) = 0.$$

Thus $\lambda_\ell = 0$, and this completes the proof. \square

To conclude, let us note two simple consequences of Theorem 1. To state the first, let us say that a covering system \mathcal{A} is *minimal* if no proper subset of \mathcal{A} covers \mathbb{Z} .

Corollary 2. *In a minimal covering system of k arithmetic progressions, every modulus is at most 2^{k-1} .*

Proof. Let \mathcal{A} be a minimal covering system of k arithmetic progressions, and let $A \in \mathcal{A}$. Set $\mathcal{A}' := \mathcal{A} \setminus \{A\}$ and $I := \{a + 1, \dots, a + d - 1\}$, where $A = \{a + nd : n \in \mathbb{Z}\}$. Then \mathcal{A}' is a collection of $k - 1$ arithmetic progressions that covers the interval I but does not cover \mathbb{Z} . By Theorem 1, it follows that $|I| \leq 2^{k-1} - 1$, and hence $d \leq 2^{k-1}$, as claimed. \square

The family of progressions $\{A_1, \dots, A_k\}$, where $A_i = \{2^{i-1} \pmod{2^i}\}$ for $i = 1, \dots, k-1$ and $A_k = \{0 \pmod{2^{k-1}}\}$, shows that the bound 2^{k-1} in Corollary 2 is best possible.

The second consequence of Theorem 1 is also almost immediate, and answers the following question¹ of Erdős [6]: “Let the moduli d_1, \dots, d_k of a collection of arithmetic progressions satisfy $\sum_{i=1}^k 1/d_i \leq 1 - 1/2^k$. Is it true that there is a number u , $1 \leq u \leq 2^k$, that does not satisfy any of the congruences?” In fact, more is true.

Corollary 3. *Let \mathcal{A} be a collection of k arithmetic progressions whose moduli d_1, \dots, d_k satisfy $\sum_{i=1}^k 1/d_i < 1$. Then no set of 2^k consecutive numbers is covered by \mathcal{A} .*

Proof. Set $q := \text{lcm}(\mathcal{A})$, the least common multiple of the moduli d_1, \dots, d_k . We have

$$\left| [q] \cap \bigcup_{i=1}^k A_i \right| \leq \sum_{i=1}^k |[q] \cap A_i| = \sum_{i=1}^k \frac{q}{d_i} < q,$$

so \mathcal{A} does not cover \mathbb{Z} . The result now follows by Theorem 1. \square

We remark that if the moduli are assumed to be distinct, then the conclusion of Corollary 3 holds under the slightly weaker assumption that $\sum_{i=1}^k 1/d_i \leq 1$, using the fact² (see [4, 5]) that \mathbb{Z} cannot be covered by a finite number of disjoint progressions with distinct differences.

REFERENCES

- [1] R.B. Crittenden and C.L. Vanden Eynden, A proof of a conjecture of Erdős, *Bull. Amer. Math. Soc.*, **75** (1969), 1326–1329.
- [2] R.B. Crittenden and C.L. Vanden Eynden, Any n arithmetic progressions covering the first 2^n integers cover all integers, *Proc. Amer. Math. Soc.* **24** (1970) 475–481.
- [3] P. Erdős, On integers of the form $2^k + p$ and some related problems, *Summa Brasil. Math.*, **2** (1950), 113–123.
- [4] P. Erdős, Számelméleti megjegyzések, IV. Extremális problémák a számelméletben, I. (Remarks on number theory, IV. Extremal problems in number theory, I., in Hungarian), *Mat. Lapok*, **13** (1962). 228–255.
- [5] P. Erdős, Extremal problems in number theory, in *Proc. Sympos. Pure Math.*, Vol. VIII, pp. 181–189, Amer. Math. Soc., Providence, R.I., 1965.
- [6] P. Erdős, Számelméleti megjegyzések, V. Extremális problémák a számelméletben, II. (Remarks on number theory, V. Extremal problems in number theory, II., in Hungarian), *Mat. Lapok*, **17** (1966), 135–155.
- [7] M. Filaseta, K. Ford, S. Konyagin, C. Pomerance and G. Yu, Sieving by large integers and covering systems of congruences, *J. Amer. Math. Soc.*, **20** (2007), 495–517.
- [8] R. Hough, Solution of the minimum modulus problem for covering systems, *Ann. Math.*, **181** (2015), 361–382.

¹Erdős asked this question immediately after stating the conjecture that was proved by Crittenden and Vanden Eynden, but (rather surprisingly) he did not remark that it would follow as a consequence.

²To be precise, Erdős [4] proved that if A_1, \dots, A_k are disjoint (infinite) arithmetic progressions with distinct moduli $1 < d_1 < \dots < d_k$, then $\sum_{i=1}^k 1/d_i \leq 1 - 2^{-k}$, which is sharp. He attributes the method to L. Mirsky and D. Newman, who proved (unpublished) that $\sum_{i=1}^k 1/d_i < 1$.

[9] S.K. Stein, Unions of arithmetic sequences, *Math. Ann.*, **134** (1958), 289–294.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152, USA
Email address: pbalistr@memphis.edu

DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS, WILBERFORCE ROAD, CAMBRIDGE, CB3 0WA, UK, AND DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152, USA

Email address: b.bollobas@dpmms.cam.ac.uk

IMPA, ESTRADA DONA CASTORINA 110, JARDIM BOTÂNICO, RIO DE JANEIRO, 22460-320, BRAZIL
Email address: rob@impa.br

PETERHOUSE, TRUMPINGTON STREET, UNIVERSITY OF CAMBRIDGE, CB2 1RD, UK AND IMPA, ESTRADA DONA CASTORINA 110, JARDIM BOTÂNICO, RIO DE JANEIRO, 22460-320, BRAZIL

Email address: julians@impa.br

DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS, WILBERFORCE ROAD, CAMBRIDGE, CB3 0WA, UK

Email address: mt576@dpmms.cam.ac.uk