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Incentive Design for Temporal Logic Objectives

Yagiz Savas, Vijay Gupta, Melkior Ornik, Lillian J. Ratliff, Ufuk Topcu

Abstract— We study the problem of designing an optimal
sequence of incentives that a principal should offer to an
agent so that the agent’s optimal behavior under the incentives
realizes the principal’s objective expressed as a temporal logic
formula. We consider an agent with a finite decision horizon,
and model its behavior as a Markov decision process (MDP).
Under certain assumptions, we present a polynomial-time
algorithm to synthesize an incentive sequence that minimizes
the cost to the principal. We show that if the underlying MDP
has only deterministic transitions, the principal can hide its
objective from the agent and still realize the desired behavior
through incentives. On the other hand, an MDP with stochastic
transitions may require the principal to share its objective
with the agent. Finally, we demonstrate the proposed method
in motion planning examples where a principal changes the
optimal trajectory of an agent by providing incentives.

I. INTRODUCTION

Consider a scenario in which a principal provides in-
centives to an agent so that the optimal behavior of the
agent under the provided incentives satisfies the principal’s
objective. If the principal had enough resources to provide
arbitrarily large incentives, it would be straightforward to
obtain the desired agent behavior. However, since the re-
sources are typically limited in practice, it is important to
establish the minimum amount of incentives that leads to
the desired behavior. In this paper, we study the problem
of designing a sequence of incentives that minimizes the
cost to the principal while guaranteeing the realization of
its objective by the agent.

We model the behavior of the agent as a Markov decision
process (MDP) [1], and assume that the agent’s objective
is to maximize its expected total reward at the end of a
finite planning horizon. Although each planning horizon is
finite, the agent plans its future decisions infinitely many
times. Examples of such an agent can be a person who plans
her schedule on a weekly basis or an autonomous system
with a limited computational power which plans its route by
considering only a subset of all possible environment states.

The principal’s objective is described by a syntactically co-
safe linear temporal logic (LTL) formula. LTL specifications
are widely used to describe complex tasks for autonomous
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robots [2], design security protocols [3] and check the
reliability of software [4]. For example, in a navigation
scenario, syntactically co-safe LTL formulae allow one to
specify tasks such as liveness (eventually visit the region A)
or priority (first visit the region A and then B).

We assume that the principal is aware of the agent’s
reward function and the length of its planning horizon.
In many real-world applications, the decision horizon and
the reward structure of an agent can be known or at least
inferred through observations. For example, a manufacturing
company is generally interested in maximizing its profit at
the end of a fiscal year, and an autonomous car aims to reach
its destination within certain time interval.

From a practical point of view, an interesting question is
whether an adversarial principal can convince an agent to
satisfy its objective through incentives. In such a scenario,
if the agent knows the principal’s objective explicitly, it will
reject the provided incentives because the resulting behavior
under the incentives will serve to the benefit of the enemy.
However, if the principal can design an incentive sequence
without sharing its objective with the agent, then the incen-
tives may lead to the desired agent behavior. Therefore, it is
important to establish conditions under which the principal
can actually hide its objective from the agent.

The contributions of this paper are threefold. First, we
present an algorithm, based on a series of linear optimization
problems, to synthesize a sequence of incentives that mini-
mizes the cost to the principal while ensuring that the optimal
agent behavior under the provided incentives satisfies a syn-
tactically co-safe LTL formula with maximum probability.
Second, we present an example scenario where the principal
has to share its objective with the agent to induce the desired
behavior. The provided example illustrates that, unless the
principal states its objective explicitly, inducing the desired
agent behavior through incentives is, in general, not possible.
Third, we provide sufficient conditions on the structure of the
MDP and the length of the agent’s decision horizon under
which there exists an optimal incentive sequence that allows
the principal to hide its objective from the agent.

Related work. The problem of obtaining desired agent be-
havior through a sequence of incentives has been extensively
studied in the literature. In [5] and [6], the authors present
methods to design incentive sequences with limited resources
that maximize the value of the principal’s objective function.
They employ techniques from the inverse reinforcement
learning literature, and prove the NP-hardness of the problem
[5]. The work in [7] provides a polynomial-time algorithm
to synthesize minimum incentives for inducing a specific
agent policy. Reference [8] considers a bandit model and
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presents methods to induce desired agent actions under
different constraints on the incentives. Although it is quite
different from the problem considered in this paper, the
design of feasible incentives that align the objectives of an
agent and a principal is discussed in [9] from a control-
theoretic perspective. Unlike the references mentioned above,
in this paper, we consider the problem of designing minimum
incentives that maximize the value of the principal’s objective
expressed as a temporal logic formula. We also note that
establishing the complexity of the design problem considered
in this paper was mentioned as an open problem in [5].

II. PRELIMINARIES

For a set S, we denote its power set and cardinality
by 2% and |S|, respectively. Additionally, N={1,2,...},
No={0,1,2,...} and R>¢=[0, c0).

A. Markov Decision Processes

Definition 1: A Markov decision process (MDP) is a tu-
ple M=(S,s0, A, P,AP,L,R) where S is a finite set
of states, sp€S is an initial state, A is a finite set of
actions, P:Sx.AxS—[0,1] is a transition function such that
Y ves P(s,a,8)=1 for all s€S and ac.A(s) where A(s)
denote the available actions in s, AP is a set of atomic
propositions, £:5—247 is a function that labels each state
with a subset of atomic propositions, and R:SxA—R is a
reward function.

We denote the transition probability P(s, a, s’) by Ps.q,s-
Definition 2: For an MDP M, a decision rule
d:SxA—[0,1] is a function s1.10h t'hat DoacAs) d(s,a):.l
for all s€S. A decision rule d is said to be deterministic if
for all s€S there exists a€.A(s) such that d(s,a)=1, and
randomized otherwise. For an MDP M, we denote the set
of all (deterministic) decision rules by (D (M)) D(M).

For an MDP M, a decision-maker, i.e., an agent, chooses

a decision rule deD(M) at each stage.
Definition 3: An N-stage policy for an MDP M is a se-
quence 7=(dy,ds, . ..,dy) where N<oco and d;eD(M) for
all t<N. A stationary policy is a policy such that d,=d; for
all t<N. A policy is said to be deterministic if d;€DP (M)
for all ¢, and randomized otherwise. For an MDP M, we
denote the set of all N-stage policies by IIy(M). For
notational simplicity, we denote the set of co-stage policies
by II(M).

For an MDP M and a policy 7€II(M), let ] (s, a) be the
joint probability of being in state s€S and taking the action
a€A(s) at stage t, which is uniquely determined through the
recursive formula

=3 > Poawni(s,a)dia(sa’) (1)

s€S acA(s)

fiiy (s’ ')

where 47 (s,a)=d;(s,a)po(s) and po:S—{0,1} is a func-
tion such that o (so)=1 and p(s)=0 for all s€S\{so}.
Definition 4: For an MDP M and a policy m€II(M), the
expected residence time in a state-action pair (s, a) is

An infinite sequence " =sgs15s3 ... of states generated in
M under a policy w€ll(M), which starts from the initial
state so and satisfies ZateA (50) dk(st,at)Pshat7sm>O for
all >0, is called a path. Any finite prefix of o™ a finite
path fragment. We define the set of all paths and finite path
fragments in M under the policy m by Paths™(M) and
PathsF,;, (M), respectively. We use the standard probability
measure over the outcome set Paths™ (M) [10, Chapter 10].
Definition 5: An incentive sequence I' for an MDP M is
a sequence (71,72, ...) of functions where ;:5x A—R>o.
For an MDP M, we denote the set of all admissible incentive
sequences by O(M).

B. Linear temporal logic

We consider syntactically co-safe linear temporal logic
(scLTL) formulae to specify tasks and refer the reader to
[10], [11] for the syntax and semantics of scLTL.

An scLTL formula is built up from a set AP of atomic
propositions, logical connectives such as conjunction (A) and
negation (—), and temporal modal operators such as until (If)
and eventually (¢). An infinite sequence of subsets of AP
defines an infinite word, and an scLTL formula is interpreted
over infinite words on 27, We denote by w=¢ that a word
wW=wowiWs . .. satisfies an scLTL formula ¢.

For an MDP M under a policy 7, a path p"=sps; ...
generates a word w=wowy . . . where wip=L(sy) for all k>0.
With a slight abuse of notation, we use L£(o") to denote
the word generated by ¢”. For an scLTL formula ¢, the set
{0"€Paths™(M):L(0™ )=} is measurable [10]. We define

o") E v}

as the probability of satisfying the scLTL formula ¢ for an
MDP M under the policy we€Il(M).

Priv(so = ¢) == Pri{0" € Paths™ (M) : L(

III. PROBLEM STATEMENT

We consider an agent whose behavior is modeled as an
MDP M, and a principal that provides the agent a sequence
I'e©(M) of incentives.

The agent’s objective is to maximize its expected total
reward after N stages. However, since the incentive sequence
offered by the principal may be non-stationary, the agent
computes an [N-stage policy in every IV stages. A graphical
illustration of the agent’s planning method is shown in Fig.
1. Formally, let NeN be a constant, and R(S, A:) and
~:(St, A¢) be the random reward and incentive received in
stage t<N. Additionally, let J:=(Jy, J,...) be a sequence
of objective functions where Jj:ITx (M)xO(M)—RIS! is
defined as

Jk(ﬂ', [iv:

t=1

R(St, At) + Vin+¢(St, Ar))

for all s€S. Here, the expectation is taken over the finite path

)= Z (i (s, a). 2) fragments that are generated by the policy w€lly (M) and
oy have the initial state s. Then, for a given sequence ['e©(M)
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Fig. 1: An illustration of the incentive implementation and
the agent’s decision-making process. The principal offers
incentives for the next NV stages. After receiving the incen-
tive offers, the agent computes and implements its optimal
decisions for the next N stages.

of incentives, the agent’s optimal co-stage policy is given by
n*:=(n§, 77, ...), where 7} is such that

Ji(m,T)(s) 3)

*

T € argwerrrll]?g(M)
for all s€S and k€Nj. Note that the agent’s policy }
maximizes the total reward starting from any s€S.

The principal’s objective is to design a sequence of in-
centives that incurs the minimum cost while ensuring that
the agent’s optimal policy, under the provided incentives,
satisfies an scLTL formula ¢ with maximum probability. We
make the following assumptions:

(i) Agent’s reward function R is known to the principal.

(i) Agent’s decision horizon N is known to the principal.
(iii)) The principal pays the offered incentives if and only if
the agent takes the incentivized action.

Then, the optimization problem that we are interested in
solving is the following:

in  ET [ , } 4

iy e
subject to: 7 = (7,7, ..) (4b)
re Jp(m,T Vs e S,Vk e N
T € arg max k(m, T)(s) Vs 0

(40)

Pr7, = Pr’; 4d

(S0 = ) L i (s0 = @) (4d)

where I'=(71,72, .. .). Note in (4a)-(4d) that the principal’s
objective is to minimize its cost over infinite horizon whereas
the agent aims to maximize its total reward at the end of each
finite decision horizon.

IV. THE SYNTHESIS OF INCENTIVE SEQUENCES

In this section, we provide a method to synthesize an
incentive sequence that solves the problem (4a)-(4d). For
simplicity, we restrict our attention to reachability specifica-
tions, i.e., o=0p where p€ AP. The synthesis of incentive
sequences for general scLTL specifications is discussed in
Section VI.

We first partition the states into three disjoint sets as
follows. Let BC.S be the set of all states such that {p} CL(s),
i.e., the set of states that the principal wants the agent
to reach, and SyCS be the set of states that have zero
probability of reaching the states in B under any policy.

More precisely, s€Sy if Priy (s = Op)=0 for all 7€ll(M).
Finally, we let S,.=S\(B U Sp) be the set of all states that
are not in B and have nonzero probability of reaching a
state in B under some policy. These sets can be found in
time polynomial in the size of the MDP using graph search
algorithms [10, Chapter 10].

The agent’s initial state so€S can belong to either B,
So or S,.. However, we only consider the case syo€S,,
since otherwise the optimal incentive sequence is trivially
vt (s, a)=0 for all teN.

A. The cost of control

Recall that the agent’s
JoTIn (M) xO(M)—=RIS! is

first objective function

N
Jo(m, T)(s) = EZ | S(RS1, A + (S0, A))]
t=1
for all s€S. Let V,,:S—R be the agent’s value function at
stage n such that

N
Vile) = amax | 2|3 (R(S1, A1) + (51, A1)

for all s€S, where the expectation is taken over the paths
that occupy s at stage n. Then, we have the recursive formula
Vo(s) = max R(s,a) + yn(s,a) + Z Ps.a.s' Var1(s)
acA() s'es
for all 1<n<N, where Vy;1(s)=0 for all s€S. Let
Qn:Sx A—R be the agent’s Q-function at stage n such that

Qn(s,a) :==R(s,a) + (s, a) + Z Ps.a,s Var1(s').
s'eS
By the principle of optimality [1], [12], the agent’s optimal
policy n§=(ds,d5,...,dy) is such that, for all 1<n<N,
dn(s,a’)>0 only if

a' € arg ma s, a).
gaeAfi)Q"( ,a)

We recursively define

@n(& a) :=R(s,a)+ Z PS,a,s/Vn+l(s/)a )
s'es
V() = max Q,(s,a), (6)

acA(s)

for all s€S and a€.A(s). For a given ¢>0, we finally define
a real-valued function ¢5:5 x A—R>¢ such that

o (5, a) = {Vn(s) —Q,(s,a)+¢ ifseS,, ac Als)

0 otherwise.

For an arbitrarily small e>0, the value of ¢S, (s, a), referred
as the cost of control for the state-action pair (s,a), is
the minimum incentive that should be offered to the agent
in order to make the action a€A(s) uniquely optimal at
stage t. It is worth noting that although the cost of control
@% (s,a) depends on the stage number n, it is independent
of the objective number, i.e., it is the same for all Jj.
This is because the agent’s reward function R is stationary,
and therefore, V,,(s) and Q,,(s,a) do not change with the
objective number k as can be seen from (5)-(6).
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B. An €-optimal incentive design

To synthesize an incentive sequence that minimizes the
cost to the principal, we should specify the actions to be
incentivized by the principal at each state for each stage. To
this aim, we modify the MDP M by considering the agent’s
decision horizon N as another dimension in the state-space.
Definition 6: For an MDP M and T={1,2,..., N}, the ex-
panded MDP is a tuple M=(S,3, A, P, AP, L, R) where

. §:S X T,

e S0=(s0,1) is the initial state,

e P:S x Ax S—0,1] is such that

P(s,n),a,(s’,n’) =

Psas if1l<n<N-landn' =n+1
Ps,a,s’ ifn=Nandn' =1
0 otherwise,

o L£:5—247 is such that £((s,n))=L(s) for all s€S and

for all neT,

e R:S x A—R>( is such that R((s,n),a)=R(s,a) for

all s€S, for all acA, and for all neT,
and A, and AP are as defined for M.

We note that the transition function P is defined such that
the agent’s initial state while computing the k-th N stage
policy is the state occupied by the agent at kN-+1-st stage
on the expanded MDP.

Let BUSoUS,. be the partition of the states of M such
that if s€ B, then (s,n)€B for all n€T, and the sets Sy and
S, are defined similarly. Then, the principal’s objective on
M is to induce an agent policy that eventually reaches the
set B with maximum probability.

To synthesize an incentive sequence under which the opti-
mal agent policy satisfies the desired property, we modify the
expanded MDP M by making its states/sEEU?O absorbing,
and denote the resulting MDP by M . Then, for a given
constant €0, we define the cost of control for a state-action
pair on M through the function ¢“:Sx.A—R>q such that
6°((s,n),a) = {Vn(s) —Q,(s,a)+¢ ifse ?T,a € A(s)

0 otherwise.
Let (M )CII(M') be a subset of the set of oco-stage
policies such that =/€Z(M ) if and only if

' € arg max Pr" (5o | ¢), @)
rell(M')
and for >0, fezE(ﬂl)—ﬂR be a function such that
felm) =B, [ D7 6°(S1 A1) ®)

1

~
I

Then, for an arbitrarily small €>0, an €-optimal incentive
sequence can be designed in two steps as follows.

Step 1: Compute V,,(s) and @, (s,a) given in (5)-(6),
and construct the cost of control function ¢°. Then, for

the modified expanded MDP M, compute a stationary
deterministic policy 7=(d,d, ...) such that

T € arg min / fe(m). 9)

TEE(M)

Step 2: Let o™ €Paths™ (M) be the path followed by the
agent. At stage kN where N is the agent’s decision horizon
and k€Ny, provide the agent with the incentive sequence
(J1,%25 - - -, YN such that

o if o"[n]¢B U Sy for all n<kN,

9°((s,n),a) if s € S, and d((s,n),a) >0,
Fn(s,a) := <€ if s¢ S, and d((s,n),a) >0,
0 otherwise,

(10)

e Yn($,a):=0 otherwise.

Under the proposed incentive sequence (10), the agent’s
value function V;, satisfies V;,(s)=V,(s)+(N + 1 —n)e for
all s€S, n<N. Additionally, if o™ [n|€BUS, for all n<kN,
then for all s€S, d((s,n),a)>0 implies that the agent’s Q-
function satisfies

Qn(sa a‘) = R(Sv a) + :?n(sv a) + Z PS,G,S’VnJrl(S/)
s'es
= ﬁn(sv a) +@n(5a a‘) + (N - TL)E
=(N+1—-n)e+V,(s)
> (N —n)e+V,(s) =

!
a’Eg%g))i{a} Qn(57 “ )
Consequently, the agent is guaranteed to take the incentivi-
tized actions at each stage until reaching the set BUSj.

We now show €-optimality of the proposed incentive
sequence. Note that an optimal incentive sequence, i.e., €=0,
does not exist since choosing e=0 in the cost of control
function ¢{, may not make the incentivized action uniquely
optimal for the agent. As a result, the principal may not be
able to control the agent’s actions by offering such incentives.

We use the following lemma to state the main result.
Lemma 1:~There exists a policyﬁ TEarg min_ =) fo(m)
such that £7 (s, a)<oo for all s€S,. and ac.A(s).

Proof (Sketch): The problem of synthesizing a policy 7 such
that T€arg min_ c=(7T) fo(m) can be recast as a stochastic
shortest path (SSP) problem with dead ends and zero-cost
loops. Specifically, the dead ends are the states Sy and
zero-cost loops are formed by states S,.. The existence of
stationary policies for such SSP problems can be established
by slightly modifying the statement of Theorem 1 in [13].
Since any stationary policy WEE(M/) is guaranteed to reach
the set B U Sy with probability 1 within finite number of
stages, the result follows. [J

Theorem 1: For any given €>0, there exists e>0 such that

min fe(r) < min fo(7) +€

TEE(M) TEE(M)

Proof: For any policy WEE(ﬂ/) such that £™ (s, a)<oo for
all s€S,. and a€A(s), we have

fem) = folm)+ Y. Y € (s,a)e

s€S, acA(s)

(1)
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Now, for a given €>0, we evaluate both sides of the above
equation at wEarg min_ e=(A) fo(m), which satisfies the
condition £7 (s, a)<oo due to Lemma 1. Choosing
€
‘ Zses,w ZaEA(S) £7(s,a) >0

and taking the minimum of the left hand side of (11) over
the set Z(M), we conclude the result. [J

We conclude this section by noticing a remarkable prop-
erty of the proposed incentive sequence. Specifically, to im-
plement the proposed sequence (10), the principal should use
only a simple switch mode which offers the same incentives
until the agent reaches the set BUS, and shifts all incentives
to zero after the agent either satisfies the principal’s objective
or fails to satisfy it.

V. COMPUTATION OF OPTIMAL INCENTIVE SEQUENCES
In the previous section, we developed a method to syn-
thesize an €-optimal incentive sequence which require us to
solve a constrained cost minimization problem given in (8).
Specifically, to solve the problem in (4a)-(4d), one should
synthesize a stationary deterministic policy 7 such that

7 €arg min K} [Zqﬁ St,At)} (12)

TES (./\/l)

In this section, we develop a method to solve the above
optimization problem. For the ease of notation, we consider
an scLTL formula of the form ¢=_0p. The design of incen-
tives for general scLTL formulae is shown in Section VI.

A. Construction of the feasible policy space

To solve the problem (12), we first represent the set
E(ﬂ/) of feasible policies as a set of policies that maximizes
the expected total reward with respect to a specific reward
function.

For a given MDP M, we partition the set of states into
three disjoint sets B B, So, and S, as explained in Section
IV, and make the states s€eBUS, absorbing to form the
modified MDP M/. For the modified MDP, we define a

reward function r:Sx.A—Rx( such that
o) TP i 55,
’ 0 otherwise.

By making use of the known results, e.g., Theorem 10.100 in
— —
[10], it can be easily shown that for any s€.S and w€Il(M),

B[S0 (5, 40] =P (s k)

t=1

B. Synthesis of an optimal stationary deterministic policy

Using Lemma 1, one can formulate the problem (13a)-
(13b) as a linear optimization problem and synthesize
an optimal stationary policy. First, we compute the max-
imum probability of satisfying the specification ¢, i.e.,
xs 7 Pr’" (so = ¢), by solving a linear program

RIS (Y
(LP) [10] (see Chapter 10). Then we solve the following LP

minimize > As )¢ (s, a) (14a)
A(s,a) o5, acA
subject to: Z Z A(s,a)r(s,a) =z, (14b)
s€S, a€A
Vs € S,, Z A(s,a) — Z Z Py a s\’ a) = a(s)
a€A(s) s'€S,. a€A(s)
(14¢c)
Vs €S, ac As), A(s,a) >0 (144)

where a:S—{0,1} is a function such that a(sg)=1 and
a(s)=0 for all s€S\{3p}. The variable \(s,a) denotes
the expected residence time in the state-action pair (s,a)
[1], [14]. The constraint (14b) ensures that the probability
of satisfying the specification ¢ is maximized, and the
constraints (14c) represent the balance between the “inflow”
to and “outflow” from states.

For each s€S,. and ac.A(s), let A\*(s,a) be optimal de-
cision variables in (14a)-(14d). An optimal stationary policy

m*={d*,d*, ...} that solves the problem (13a)-(13b) is then
given by
A (s,a) . *
0 (5.0) = 4 Seeaa Vo 1T 2acag A(5,) >0
arbitrary otherwise (15)

for s€S.,., and d*(s,a)=1 for an arbitrary a€A(s) for s¢S..
We note that a policy constructed through (15) is ran-
domized in general. One can argue that choosing one of
the actions a€.A(s) such that d*(s,a)>0 deterministically
yields an optimal stationary deterministic policy. However,
the following example illustrates that such an approach may
result in an infeasible policy for the problem (14a)-(14d).
Example 1: Consider the MDP given in Fig. 2, where the
cost of control ¢° is such that ¢“(s1,az2)=1 and ¢(s,a)=0
otherwise. Suppose that the specification is p=0ss, i.e.,
r(s1,a2)=1 and r(s,a)=0 otherwise. For the LP (14a)-
(14d), a set of optimal decision variables is given by
A*(sp,a1)=2, A\*(s1,a1)=1, and A\*(s1,as)=1. Therefore,
an optimal policy synthesized through (15) is d*(sp, a1)=1,
d*(s1,a1)=1/2, and d*(s1, a2)=1/2. Clearly, if we consider

where ¢=0p, pe AP, and {p}CL(s') if and only if s'€B. o0 )
*._ _, 0 az,
f;;tl }fé're?ﬁiggg(sjw ) Pr (s = ). Then, the problem (12) ° e e 01,0
min_ - EJ {i o (St At)} (13a) a1,0
metM) tozol Fig. 2: An. MDP e?(ample for \yhich arbitrar'%l){ c.hoosing. one
subject to: ET {Z r(Sh, At)} e (13b) erl tik:;ezlspittl)rlr;a; Oalci(t;;ns and taking it deterministically yields
t=1
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a deterministic policy such that d(sq,a;)=1, the proba-
bility of satisfying the specification ¢ under this policy
is zero. Hence, choosing an arbitrary action a€.A(s) such
that d* (s, a)>0 deterministically violates the constraint and
yields an infeasible policy.<

As Example 1 illustrates, a structured approach is required
to synthesize an optimal deterministic policy from the solu-
tion of the LP (14a)-(14d). Let v* be the optimal value of
the LP in (14a)-(14d). To synthesize an optimal deterministic
policy, we first solve the following LP,

minimize Z Z A(s,a) (16a)
/\(S7a) S€§T acA

subject to: Z Z A(s,a)r(s,a) =z, (16b)
sSES, acA

Z Z A(s,a)9 (s, a) = v* (16¢)
SES,. acA

Vs € S,, Z A(s,a) — Z Z PsasA(s',a) = als)
aEA(s) 5/e5, aCA(s)
(16d)

Vs € S,, acA(s), A\(s,a) > 0. (16e)

From the optimal decision variables A*(s, a) of (16a)-(16e),
an optimal policy 7*={d*,d*,...} can be generated as
follows. Let A*(s):={a€A(s) : \*(s,a)>0}. If A*(s)#0,
we choose d*(s,a)=1 for an arbitrary a€A*(s), and if
A*(s)=0, we choose d*(s,a)=1 for an arbitrary ac.A(s).
Proposition 1: A stationary deterministic policy generated
from the optimal decision variables A*(s,a) of (16a)-(16e)
is a solution to the problem (13a)-(13b).!

Intuitively, the LP in (16a)-(16e) computes the minimum
expected time to reach the set B with probability Ty,
with the cost of v*. Therefore, if A\*(s,a)>0, by taking
the action a€.A(s), the agent has to “get closer” to the
set B with nonzero probability. Otherwise, the minimum
expected time to reach the set B would be strictly decreased.
Consequently, by choosing an arbitrary action a€.4*(s), the
agent is guaranteed to reach the set B with the desired
probability.

VI. INCENTIVE DESIGN FOR GENERAL SCLTL
SPECIFICATIONS

In previous sections, we have developed methods to
synthesize €-optimal incentive sequences for reachability
specifications (=_0p. For such specifications, the principal
induces the desired agent behavior by sharing only the
incentive sequences with the agent. In other words, the
principal does not have to inform the agent explicitly about
the specification. In this section, we show that for general
scLTL formulae, the problem (4a)-(4d) may not have a
feasible solution, in which case the principal must share its
objective with the agent to induce the desired behavior.

To solve the problem (4a)-(4d) for general scLTL formu-
lae, one needs to utilize the techniques from automata theory

'Due to space restrictions, we provide a proof of Proposition 1 at
https://mornik.ae.illinois.edu/wp-content/uploads/SGORT19.pdf

[10]. In particular, we use the fact that for any scLTL formula
 built up from AP, we can construct a deterministic finite
automata (DFA) A,=(Q, qo, 2%, 0,,, F) where Q is a finite
set of memory states, 24P is the alphabet, §,,:Q x 24P Qs
a transition function and FCQ is the set of accepting states
[15]. Then, after forming the expanded MDP M for a given
MDP M and a decision horizon IV as explained in Section
IV-B, one can construct the product MDP which is defined
as follows.

Definition 7: Let M=(S,5,, A,P, AP,L,R) be an ex-
panded MDP and A,=(Q, qo,2"%,6,,F) be a DFA. The
product MDP My,=(S,, s0,, A, P, AP, L, Fp,R) is a tuple
where

° Sp:§XQ; —
e 80, = (30,q) such that ¢ = §(qo, L(S0)),

ﬁsas/ if /:5 ,ES/
F((s,q).a. (5", ¢')={ " ¢ =0, £
0 otherwise,

Ly((s,9)) ={q}.

. FPZS x F.

The problem in (4a)-(4d) can now be solved on the product
MDP M,, in three steps. First, we partition the states of
M, into three disjoint sets. Let B:=F,, Sy be the set of
states that have zero probability of reaching the set B, and
Sy:=8,\BUS)y. Second, we form the modified product MDP
M, by making all states BU S absorbing. Finally, we apply
the methods developed in Section IV to synthesize an -
optimal incentive sequence on M;.

Note that the incentive sequence is designed on the product
MDP M,,. Therefore, the principal must share the DFA
structure, i.e., it’s objective, with the agent to use the
computed sequence. However, for the existence of a solution
to the problem (4a)-(4d), the incentive sequence should be
designed on the MDP M. The following example illustrates
that the problem (4a)-(4d) may have no feasible solution,
even though the existence of an €-optimal incentive sequence
on M, is guaranteed.

Example 2: Consider the MDP given in Fig. 3, where
the numbers next to actions a; represent the transition
probabilities, €.g., Ps, q,,s; =0.4, and the letters next to state
numbers represent labels, e.g., L£(so)=A. Let the agent’s
decision horizon be N =3, and the reward function R be such
that R(so,a1)=1 and R(s, a)=0 otherwise. Additionally, let
the principal’s objective be expressed by the scLTL formula
e=0(BAOC), i.e., first visit state B and then state C.
The maximum probability of satisfying ¢ is x5=0.5, which
can be computed by solving an LP [10]. The value xf is
attainable if and only if the agent takes the action as€.4(sp)

as, 1
al,l s3,C s0, A a170.4
ahl

Fig. 3: An MDP example where no feasible incentive se-
quence exists for the scLTL specification p=0(BAOC).

ay,0.2 a,1
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with probability 1 after visiting state so.

The principal should decide on which actions to incen-
tivize in the first three stages t=1,2,3 since the agent’s
decision horizon is N=3. Clearly, the action a; should be
incentivized for t=1,2 so that the agent visits state ss. At
t=3, the agent will be in state sy with nonzero probability.
Now, if the principal incentivize a1, the agent will take action
as€A(sg) with probability less then 1 after visiting state
S2. On the other hand, if as is incentivized, then the agent
cannot satisfy the specification with probability higher than
0.46. Consequently, no incentive sequence on the given MDP
can guarantee the satisfaction of the specification ¢ with
maximum probability. <

We now present a sufficient condition on the structure of
the MDP M which guarantees the existence of an €-optimal
incentive sequence on M.

For the product MDP M, and a policy w€ll(M,,), let

M7, ={q€ Q) c 4 17 ((5,9),a)>0} be the set of occupied
memory states when the agent is in state s€S at stage t€N.
Theorem 2: For an MDP M and a decision horizon N,
let S be the finite set of states for the expanded MDP.
There exists an €-optimal incentive sequence on M if there
exists an €-optimal incentive sequence on M, such that
the agent’s optimal policy w€II(M,) under the provided
incentives satisfies [M7,|<1 for all s€S and teN.
Proof: Let I' be an €-optimal incentive sequence on M,
with the desired property. Note that the function in (10) is a
mapping from the expanded MDP M to the MDP M that
preserves e-optimality of the incentive sequence. Therefore,
in what follows, we construct an incentive mapping from
M,, to M that preserves é-optimality of the sequence T,
and conclude the result.

An €-optimality-preserving mapping ¢ such that
'={y{,7%,...}:=¢(T") where T'={~1,72,...} is given as
follows. For a given t€N,

o if [MT,]=0, v;(s,a):=7:((s,q),a) for an arbitrary g€ Q

and for all acA(s),

o if [M7,|=1, vi(s,a):=v:((s,q),a) for gc M, and for

all acA(s). O

The following corollary follows from the fact that the
principal can induce a stationary deterministic agent policy
on the product MDP through the methods explained in
Section V.

Corollary 1: For an MDP, there exists an €-optimal incen-
tive sequence if P, , »€{0,1} for all s,s’€S and acA(s).

Finally, we provide a sufficient condition on the agent’s
decision horizon N that ensures the existence of an €-optimal
incentive sequence on M.

Proposition 2: For an MDP M, there exists an €-optimal
incentive sequence if the agent’s decision horizon is N=1.
Proof (Sketch): There is a one-to-one correspondence be-
tween the paths of the product MDP M, and the MDP M
[10]. Therefore, the principal can observe the path followed
by the agent on M, and provide the incentives according to
the corresponding path on M, at each stage. Because N=1,
the principal knows the memory state occupied by the agent

at each stage. Consequently, it becomes possible to map the
incentives from M, to M at each stage. []

VII. NUMERICAL SIMULATIONS

In this section, we demonstrate the proposed methods on
two simple motion planning examples. Considering the avail-
ability of off-the-shelf solvers, e.g., Gurobi [16], MOSEK
[17], that can efficiently solve large-scale linear optimization
problems, we restrict our attention to small scale examples
to better emphasize the properties of the proposed methods.
We synthesize the incentive sequences for the following
examples through the use of MOSEK [17] solver together
with CVXPY [18] interface.

A. Incentives for reachability objectives

In this example, we consider a 5x5 grid world envi-
ronment, shown in Fig. 4, and an agent with decision
horizon N=1. At each state, the agent has four actions, i.e.,
A={left, right,up, down}, and a transition to the chosen
direction occurs with probability 1. If the adjacent state in
the chosen direction is the boundary of the environment, the
agent stays in its current state. A reward function for the
agent is generated by choosing all rewards R (s, a) from the
set {0,1,...,9} uniformly randomly.

The agent starts from the bottom left corner, i.e., Start
state in Fig. 4, and aims to maximize its immediate reward
at each stage. The principal provides incentives to the agent
so that the agent reaches the top right corner, i.e., Target
state in Fig. 4.

In the absence of incentives, i.e., (s, a)=0 for all teN,
the agent’s optimal path is shown by blue arrows in Fig. 4.
Under its optimal policy, the agent cycles between two states
infinitely often. We synthesize an incentive sequence for the
agent so that it reaches the target state with probability 1. The
agent’s optimal path under the provided incentives is shown
by red arrows in Fig. 4. The total cost to the principal is
computed as 9+410e units of resources (UR) where ¢>0 is
an arbitrarily small constant.

As can be seen from Fig. 4, under the provided incentives,
the agent follows the lowest cost path rather than the shortest

Target

Y

A

Y

Y

AN
Stal}%/ ~

Fig. 4: The motion of an agent on a grid world. The agent’s
decision horizon is N=1, and it starts from the Start state.
The principal’s objective is to induce an agent policy that
reaches the Target state with probability 1. Blue and red
arrows indicate the agent’s optimal policy in the absence
and the presence of incentives, respectively.
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one to the target state. Specifically, the shortest path would
take 8 stages to reach the target state and cost 12 UR to the
principal, whereas the lowest cost path takes 10 stages to
reach the target and cost 9 UR. Quantitatively, the proposed
incentive sequence allows the principal to save 25% of the
resources that would be paid to the agent if it was to follow
the shortest path.

B. Incentives for general scLTL specifications

In this example, we consider the same grid world environ-
ment introduced in the previous example with different state
labels. The agent’s decision horizon is N =4, and its objective
is to reach the state labeled as C' in Fig. 5. The principal’s
objective is to induce an agent policy that satisfies the scLTL
specification p=0(A A O(B A OC)), i.e., the agent should
first visit state A, then B, and then C, with probability 1.

The agent receives the reward of 2 for transitioning to the
top left state and the reward of 5 for transitioning to the top
right state. Its optimal path in the absence of incentives is
shown in Fig. 5 with blue arrows (top path). We synthesize an
optimal incentive sequence under which the agent’s optimal
path is shown in Fig. 5 with red arrows (bottom path).

The total cost of the incentives to the principal is com-
puted as 2+13e units of resources. Specifically, the principal
provides 2+-€ incentives for the right action in the start state
and then e incentives at each stage for desired actions. An
interesting property of the incentivized (red) path is that the
agent stays in the same state in third stage by taking down
action. This is due to the fact that the state s on the left of the
state labeled as B has value V,,(s)=0 for all n. Therefore,
the principal wants that state to be the agent’s initial state
when it computes its second 4-stage policy. By doing so, the
principal ensures that the states s’ occupied by the agent in
the next 4 stages will always have a value zero, i.e., V,,(s')=0
if 3, c(sr) Hitn(s's@)>0, and therefore the cost of control
will only be e.

N N
> > > rﬁf 7C
A 1
AlAT | ]
7
A
A \/
B
A 3
Start

Fig. 5: The motion of an agent on a grid world. The agent’s
decision horizon is N=4, and it starts from the Start state.
The principal’s objective is to induce an agent policy that first
visits A, then B, and then C. The optimal path of the agent
in the absence of incentives is shown by blue arrows (top
path). Red arrows indicate the agent’s optimal path under
the provided incentives (bottom path).

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We considered a principal-agent model and studied the
problem of designing an optimal sequence of incentives that

the principal should offer to the agent in order to induce
a desired agent behavior expressed as a syntactically co-
safe linear temporal logic (scLTL) formula. For reachability
objectives, we presented a polynomial-time algorithm to
synthesize an incentive design that minimizes the cost to
the principal. We showed with an example scenario that a
feasible incentive design may not exists for general scLTL
formulae, and the principal may need to share its objective
with the agent to induce the desired behavior. Furthermore,
we provided sufficient conditions under which the principal
can induce the desired behavior without sharing the scLTL
formula with the agent.

The results of this paper are obtained under the assump-
tions that the agent’s reward function and the length of its
decision horizon are known to the principal. An interesting
future direction may be to develop methods for inferring
the length of the agent’s decision horizon, or to design an
incentive sequence that does not require the knowledge of
the length of the decision horizon.
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