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12.1 Introduction

Inverse scattering problems are of fundamental importance in nearly every branch of
physics. They also arise in numerous applied fields ranging from biomedical imaging
to seismology. Such problems can be formulated in a variety of settings, depending
upon the nature of the probing wave field and the length scales of interest. Regardless
of such considerations, the fundamental theoretical questions relate to the unique-
ness, stability and reconstruction of the solution to the problem. By uniqueness, we
mean the injectivity of the forward map from the scattering potential to the scattering
data. Stability refers to continuity of the inverse map from scattering data to the po-
tential. We note that inverse scattering problems are typically ill-posed, which means
that the inverse map must be suitably regularized to achieve stable inversion.

There are a number of approaches to the problem of recovering the scattering po-
tential. See [6, 8, 9, 12, 16] for a comprehensive overview of inverse scattering theory.
Direct reconstruction methods provide an analytic solution to the inverse problems,
principally in one-dimension although higher-dimensional methods are also known.
Optimization methods iteratively minimize the distance between the scattering data
and the solution to the forward problem, viewed as a functional of the scattering po-
tential. Although such techniques are extremely flexible, the presence of local minima
and the computational cost of evaluating the forward map limit their practical util-
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ity. Finally, linear sampling and related qualitative methods can be used to recover
the support of the scattering potential for obstacle scattering and the inverse medium
problem [4, 5, 17].

The inverse Born series (IBS) is a direct reconstruction method that was initially
developed to study the quantum mechanical inverse backscattering problem in one
dimension [13, 22] and later extended to higher dimensions [10, 18, 26, 30, 31]. The
authors analyzed the convergence, stability and error of the IBS [23]. They have also
applied the IBS to various inverse scattering problems, including those of optical to-
mography, electrical impedance tomography, and acoustic and electromagnetic imag-
ing [1, 14, 15, 19, 20, 24, 25]. The IBS has also been applied to discrete inverse problems
on graphs, independent of the continuous setting in which it was initially proposed
[7]. Finally, we note that the inverse of the Bremmer series can be investigated using a
related approach [29].

It is important to note that the principal computational advantage of the IBS is
that it does not make use of a partial differential equation solver. Instead, the IBS ob-
tains the solution to the inverse problem as an explicitly computable functional of
the scattering data. This functional can be expressed in terms of the Green’s function
for the underlying partial differential equation, whose decay governs the convergence
and stability of the method.

In this chapter, we present a survey of recent results on the inverse Born series.
In Section 12.2, the convergence and stability of the IBS is analyzed in Banach spaces.
The results are then applied to a wide range of inverse problems. These include the
inverse scattering problem for diffuse waves in Section 12.3, the Calderon problem of
electrical impedance tomography in Section 12.4, the inverse radiative transport prob-
lem in Section 12.5, and the inverse scattering problem for electromagnetic waves in
Section 12.6. Finally, in Section 12.7, we consider the inverse problem for graph diffu-
sion.

We use the following notational conventions throughout this chapter. Forn > 2, Q
denotes a bounded domain in R" with a smooth boundary 9Q. If X is a Banach space,
X indicates the j-fold tensor product X’ = X®- --®X equipped with the projective norm
[27] for j > 1. We note that X’ is generally not a Banach space.

12.2 Analysis of the inverse Born series

In this section, we formulate the IBS in a Banach space setting. This formulation will
then be applied to various inverse scattering problems later in the chapter. The presen-
tation closely follows [23], where the case of LP spaces was considered. The extension
to Banach spaces was described in [2]. Let X and Y be Banach spaces. We consider the
power series

p=Kn+Knen+Ksnenen+---, 1
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12 Inverse Born series = 275

where K; : X' — Y. The forward problem is to evaluate the map .7 : n — ¢ defined by
(1). We will refer to K; as forward operators and (1) is called the Born series.

The inverse problem is to determine n assuming that ¢ is known. That is, we seek
to construct a map .# : ¢ — 1 which is, in some sense, the inverse of .#. Toward this
end, we make the ansatz that n may be expressed as a series in tensor powers of ¢ of
the form

n=Ki¢p+K,p0p+Kspp0d+---. )]

Here, the inverse operators K; : Y/ — X are to be determined. By substituting (1) into
(2) and equating terms with the same tensor power of n, we find that the operators K;
are given by

’ClKl = I, (3)
Ky = —Ki KoKy ® Ky, (4)
’C3 = _(ICZKI ® I<2 + ’Cz[(z ® K] + /C1K3)]C1 ® ICl ® /Cl, (5)

j-1
/c,-:—<21cm > Ki1®"'®Kim>K1®"'®IC1- (6)
m=1 i)+t =j

We will refer to (2) as the inverse Born series (IBS). Here, we note several of its
properties. (i) The operator K; generally does not have a bounded inverse. Thus £, is
taken to be the regularized pseudoinverse of K;, which is defined as follows. Consider
the Tikhonov functional T which is of the form

T(n) = IKyn - Iy + AF (), @)

where F is a convex penalty function and A > O is a regularization parameter [11, 21,
28]. The minimizer of T is denoted n" and is referred to as the regularized pseudoin-
verse solution of K;1 = ¢. The operator K, is defined as the map K, : ¢ — n'. Here we
take n € X, where X is a uniformly convex subspace of X. If K; is bounded, it follows
that n' exists and is unique [28]. (i) The coefficients in the inverse series have a re-
cursive structure. The operator K; is determined by the coefficients of the Born series
K, K,, ..., K;. (iii) Inversion of only the linear term in the Born series is required to com-
pute the IBS to all orders. Thus a nonlinear inverse problem that is often ill-posed is
replaced by an ill-posed linear inverse problem plus a well-posed nonlinear problem,
namely the computation of the higher order terms in the series.

We now proceed to analyze the convergence and stability of the IBS. Throughout,
we assume that the operator K; is bounded with

1Kl < vl ™, ®)

for suitable constants p and v. We immediately see that the Born series (1) converges
in norm provided that ||n]ly < 1/u. The following lemma provides an estimate on the
norm of the operator £;.
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Lemma12.2.1. Let |K;ll < 1/(u + v). Then the operator K; : X = Y defined by (6) is
bounded and

Il < Cu+vY K, ©
where C is independent of j. Moreover, forallp € Y
IKjp @@ plly < Clu+ Y IK bl (10)

Proof. We first prove (9). Using (6), we find that

j-1 .
WGl > Wl - 1K I 1P

m=1i++i,=j

-l . .
<IClY Y WCulvp ™ v, (11)

m=11i+-+iy,=j

where we have used (8) to obtain the second inequality. Next, we define I1(j, m) to be
the number of ordered partitions of the integer j into m parts. It can be seen that

. j-1
TG, m) = ( ) 12
Gm={_ (12)
j-1
G, m) = (13)
m=1
It follows that
-1 )
111 < 1Ay I Z 1K ITIG, mv™ ™™
m=1

e 1 .
< II/C1||’< 1o II>< 11§, m)V’"p"’”)
m=1 m=1

j-1 .
< Vi, Zn/c ||>< ”’")
m=0

= VI P (u+ vy Z Il (14)

m=1
Thus IGll is a bounded operator and

o
MG < G+ v I Y 1Kl (15)

m=1

The above estimate for (e has a recursive structure. It can be seen that
j
I < Gl + VI I I (16)
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where, for j > 2, C; obeys the recursion relation

Cip = G+ [+ VIKITC, =1 17)
Evidently,
j-1 .
G =[]+ [@+wiKk]™). (18)
m=2

We see that C; is bounded for all j since

j-1
InG < Y In(1+ [+ w)iky]™)

m=1
j-1

< Y [+l ]™

m=1
1

S 1
T Ik 19)

where the final inequality follows if (u + v)|IIC;|| < 1.
To prove (10), we note that the same reasoning as above leads to the inequality

) -
IKip®---®dlly < (u+ V)]||/C1¢||fx Z 1ol - (20)
m=1
Making use of (20) leads to

Ko+l < Cue v — LA Il e3)

K+ V)KL

which completes the proof. O

We now establish a basic result that governs the convergence and approximation
error of the IBS.

Theorem 12.2.1. Suppose that |Ki| < 1/(u + v), IKidplxy < 1/(u + v). Let M =
max ([nlly, 1, Kinllx) and assume that M < 1/(u + v). Then the inverse Born series
(2) converges in norm and the following error estimate holds:

N
< O - KR + LB

N
— ICs e >
“'7 ]; pe e . 1=+ dlx

where C and C are independent of N and ¢.
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Proof. The hypotheses imply that the series

=Y Kpe-op
j

(22)

converges. Here, K, is regularized and we denote by 77 the sum of the corresponding
IBS. The Born series (1) also converges by hypothesis, so we can substitute it into (22)

to obtain
= Z’C;‘ﬂ@"'@’%
j
where
K, = KKy,
and

j-1
K;j:< Ko Z K,.1®---®K,-m>+/cj1<1®---

m=1 i+t =f

forj > 2. From (6), it follows that

We thus obtain the estimate

j-1
In-alx <) > Y 1Kl IK; line---en-KiKne--- o KiK.

j m=lij++iy,=j
Next, we put
Y =n-KKn

and make use of the identity

MmN —1M,®---®1n,
=(®N® - ®N+1N;®(®1N,® @1,

® Ky,

oA O ® RN+ ®N @ RN ®,

where { = n; — 1, to obtain

e en-KKne- &Ky <Ml
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We then have

j-1 .
YD IKRIIK I UK 1AM Il

<2

j m=lij++iy,=j
<2

j

lIn = 7lx

- . .
X M ITIG, myv™ i ™ 1l (31)

m=1

where we have used (8). Making use of (12), we have
j-1

2, ()

m=0

e
I =fllx <v) ||¢||XJ'M"1< > ||/cm||>(
j m=1

j-1 . .
<l DT Y M+ VY Il (32)
j m=1
We now apply Lemma 12.2.1 to obtain
IS .
In—1illx < Clplly ) Y M ™+ v)™ K™, (33)

j m=1

since the constant C from the lemma is independent of j. Performing the sum over m,
we have

VI -1

_a R j (
I =l < Clpllx ]ZJM T (34)

which is bounded since M (u +v) < 1and (u + v)||K;|l < 1. Equation (34) thus becomes

In = illx < C|( - KKy

" (35)
where C is a new constant which depends on y, v, M and |K,||. Finally, using the

triangle inequality and (10), we can account for the error which arises from cutting off
the tail of the series. We thus obtain

N
h-$pe-os
j=1

X

<

n—Ziﬁm®-~®n” + Y IKpe-edlx
j X j=N+1

- (U + VI Pl

< C|a - K,k ¢ ' :
< Cla =Kol + C— "m0 i g
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We make two important remarks concerning Theorem 12.2.1. (i) The hypothesis
IK;ll < v, which corresponds to (8) when j = 1, is not generally inconsistent with the
condition ||| < 1/(u + v). In particular, for the case of Tikhonov regularization, ||C, ||
can be chosen to be arbitrarily small by proper choice of the regularization parameter.
(ii) We note that due to regularization of K;, the IBS does not converge to 1. That is,
K, is not the true inverse of K;. However, if it is known a priori that n belongs to a
particular finite-dimensional subspace of X, K; can be chosen to be a true inverse
on this subspace. Then, provided the hypotheses of Theorem 12.2.1 hold, the IBS will
recover 7] exactly.

The next result characterizes the stability of the limit of the IBS under perturba-
tions in the data ¢.

Theorem 12.2.2. Let |K;| < 1/(u + v) and let ¢, and ¢, be data for which M| K,|| <
1/(pu + v), where M = max (||¢,lly. 9, ly)- Let n, and n, denote the corresponding limits
of the inverse Born series. Then the following estimate holds:

1 - mallx < Cligy - dally,

where C is a constant which is independent of ¢, and ¢,.

Proof. We begin with the estimate

In —nallx < Z||’Cj(¢1 ® 0P —p® - ® ¢2)||X- (37)
j

Next, we make use of the identity (29) from which it follows that

j
I =mollx <D Y 1Ky @ @@ @@ &l

j k=1
= Y G IM  lly, (38)
j

where Y = ¢, — ¢, is in the kth position of the tensor product. Using Lemma 12.2.1, we
have

Iy = nallx < Iy Y (G + v, IM]
j
C

~ U+ M

<Ky — dally i (39)

The above series converges when (u + v)| KM < 1, which holds by hypothesis. [
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12.3 Diffuse waves

12.3.1 Forward problem

We consider the propagation of a diffuse wave in an absorbing medium. The energy
density u of the wave satisfies the time-independent diffusion equation

—Vu+ k2(1 +n(x))u=0 inQ, (40)
u+ fg—z =6, onoQ. (41)

Here, x; is the position of a point source, 6x1 is the Dirac delta at x;, the diffuse
wave number k is a positive constant, n is the outward unit normal to 0Q and ¢ is
a positive constant. The function 1, which is the spatially varying part of the ab-
sorption coefficient, is assumed to be supported in a closed ball B, of radius a, with
1 + n(x) nonnegative for all x € Q. The energy density u obeys the integral equa-
tion

u(x) = u;(x) - k2 j GO, y)uy)n)dy, 42)
Q

where y; is the energy density of the incident diffuse wave which satisfies

—V2u; +kKu; =0 inQ, (43)
1 1
u; + E% =6, onoQ. (44)

Here G is the Green’s function for the operator V2 + k%, which obey the boundary
condition (41). Beginning with the incident wave u;, we can iterate (42) to obtain the
series

u(x) = uy(x) - K2 j 66y (y)dy
Q

+ K j GO6LymWGY,y Iy )wi(y')dydy' + - (45)
QxQ

Evidently, we can write (45) in the form of the Born series (1), where ¢ = u; — u and the
operator K; is defined by

®H0ax) =D [ 6060y
B,x-xB,

X G-, Y1) G} X V15 -, yp)dyy - - dyj (46)
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where x;,x, € 0Q. The data ¢(x;,x,) is proportional to the intensity measured by
a point detector at x, € 0Q due to a point source at x; € 9Q. In [23] it was shown
that K; is a bounded operator whose norm obeys the estimate (8) with X = L2(Ba),
Y = L*(0Q x Q) and

p =k sup|Gx, ')”LZ(Ba)
X€B,

12

<Ket 2( —512}:1(: %) > : @)

v =K°B,|"? sup||G(x, )| 250
Xx€B,

o~ 2k dist(dQ.B,)

< K10QIIB, | e s,
[0Q||B,| (4ndiSt(aQ>Ba))2

(48)

Analogous results for P spaces were also obtained for 2 < p < co.

12.3.2 Inverse problem

The inverse problem is to reconstruct n from boundary measurements of ¢p. We con-
sider a three-dimensional medium which varies only in the radial direction. Here Q
is taken to be a ball of radius R centered at the origin and we consider an absorption
coefficient of the form
no) = «{”O O=h=Fu (49)
0 Ry <IxI<R,

which corresponds to a spherical inclusion of radius R, and contrast n,. The data ¢
is obtained by a series solution to the diffusion equation (40). The solution to the lin-
earized inverse problem is obtained by computing K; by regularized singular value
decomposition. The details are presented in [24].

The parameters for the reconstructions are chosen as follows: R = 3cm, R, =
15cm, £=03cmandk =1cm™. Figure 12.1 shows a series of experiments where the
contrast of the inclusion is varied through a series of values of n, = 1.1,1.3,1.5,1.7. In
each of the graphs, we show the reconstruction using up to five terms of the IBS. We
also display the projection of r7, which is given by K, K;7n. In some sense, the projection
is the best approximation to 7 that can be expected. Note that at low contrast, the series
appears to converge quite rapidly to a reconstruction that is close to the projection.
As the contrast is increased, the higher order terms significantly improve the linear
reconstruction.
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Figure 12.1: Reconstructions of inhomogeneities with R; = 1.5cm and R = 3 cm. The contrast ranges
from: top left o = 1.1, top right ng = 1.3, bottom left 5y = 1.5 and bottom right no = 1.7.

12.4 Calderon problem

12.4.1 Forward problem

The Calderon problem is the inverse problem of electrical impedance tomography. We
consider a scalar field u that obeys the equation

V.-o(x)Vu=0 inQ, (50)

where the coefficient o(x) > O for all x € Q. The field is also taken to satisfy the Robin
boundary condition

ou
— = 0Q, 1
u+zo- =g on (51)

where 0 and z are nonnegative and constant on 0Q. In electrical impedance tomogra-
phy, the field u is identified with the electric potential and the coefficient o with the
conductivity. The coefficient z in (51) is the surface impedance and g is the current
density. A typical choice for g is a dipole source of unit strength:

g§=06, -0, x5,x;€0Q (52)
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The forward problem is to determine the field u for a given coefficient o. To pro-
ceed, we assume that the conductivity is of the form o(x) = gy(1 + n(x)), where the
background coefficient g, = 013 is constant and € L*°(B,;) is assumed to be sup-
ported in a closed ball B, of radius a centered at the origin. We thus find that (50)
becomes

—Au=V-nx)Vu inQ. (53)

The field u obeys the integral equation

u(x) = U (x) + j GOLY)Y - nY)Vuy)dy, x € Q, (54)
Q

where u,, obeys (53) with 7 = 0 and satisfies the boundary condition (86). Here, G is the
Green’s function for the operator —A, which obeys the boundary condition (86) with
zero right-hand side. Upon integrating (54) by parts, we see that the solution to the
forward problem obeys the integral equation

0 = o) - | %,606) - u(In)dy. (55)
Q

Beginning with u,, we can iterate (55) to obtain a series for u of the form

u(x) = up(x) + uy (%) + up(x) + -+, (56)
where
000 = - [ ,600y) - Visoimo)dy, j=0.1..... (57)
Q

We now write (56) in the form of the Born series (1), where ¢ = u, —u and the operator
K; is defined by

(Kf)(x)
- 1/ [ 9,601,209, [ 9,602
Q Q
oV j Yy, G5 Yj1) - VyUoWf Oy - y)dyy -y (58)

Q

It was shown in [1] that K; is a bounded operator whose norm obeys the estimate (8)
with X = L®(B,), Y = L*(9Q) and

u=1, (59)
V= Sup “VG(X, .)”LZ(B )"Vu()”LZ(Ba). (60)
x€0Q “
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Figure 12.2: Reconstruction of the conduc-
tivity with gjyngs = 0.2 and Opean = 2.

The inverse problem is to reconstruct 7 from measurements of the data ¢. The function
¢ depends implicitly upon the position of the source. For example, in the case of the
dipole source (52), if we fix the point x; € 0Q and vary x, € 0Q, then ¢ will depend
upon both x, and the point x at which we measure the field on 0Q. Accordingly, will
assume that ¢p € L°(0Q x 0Q). We consider a two-dimensional chest phantom, where
Q is taken to be a disk of radius R centered at the origin.

The data ¢ is obtained by solving (21) by the finite-element method. The solution
to the linearized inverse problem is obtained by computing X; by regularized singu-
lar value decomposition. The details are presented in [1]. The parameters for the re-
constructions are chosen as follows: R = 40, 0, = 1 and zo, = 1. Figure 12.2 shows

reconstructions using up to four terms of the IBS.

12.5 Radiative transport

12.5.1 Forward problem

The physical quantity of interest in radiative transport theory is the specific intensity
u(x, 0) at the point x € Q in the direction 0 € $41 The specific intensity obeys the

radiative transport equation (RTE)

0-Vu+o(x)u= J k(6,6 u(x,6')dd’ inQ xS,
d—

S 1

u=g onl_.

(61)

(62)
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The attenuation coefficient o(x) is assumed to be nonnegative for all x € Q. In addition,
the scattering kernel k(6, 8') is nonnegative and obeys the reciprocity relation k(6, 8') =
k(-0',0) and is normalized so that
j k(6.6')d8' =1, §eSs™L. 63)
Sd—l

We also introduce the sets I', which are defined by
L ={(x,0) €00 xS : 10 n(x) > 0}, (64)

with n being the outer unit normal to 0Q.
The forward problem is to determine the specific intensity u for a given attenua-
tion 0. We assume that the attenuation coefficient o is of the form

o(x) = (1 +nx)), (65)

where the background attenuation 0, = 0|3 is constant and n(x) > -1 for all x € Q.
The function 7 is the spatially varying part of the attenuation coefficient; it is assumed
to be supported in a closed ball B, of radius a, centered at the origin. The specific
intensity u obeys the integral equation

u(x, 0) = uy(x,0) - g, J G(x,0;x",0"n(x" u(x',8")dx'ao’. (66)
Qxsd-1

Here, u, obeys (61) with n = 0 and G is the Green’s function for the background
medium, which satisfies the equation

0-V,G(x,0;x",0") + 5,G(x,0;x",0")

_ J k(6,6")G(x,0";x',6")d6" + 8(x - x')6(6 - 0'),
Sdfl

together with homogeneous boundary conditions on I'_. It is easily seen that u; is
given by the formula

Uuy(x,0) = J I G(x,6:x',6")|6" - n(x")|g(x',6")dx'de’. (67)

0Q 6'-n<0

The integral equation (66) has a unique solution. Upon iteration, beginning with
u = Uy, we obtain an infinite series for u of the form

ux,0) = ug(x,0) + u; (x, 0) + uy(x,0) + -+, (68)
where
U, (x,0) = -0 J G(x,0:x",60")u;(x', 0" )n(x")dx'a6’, j=0,1,....  (69)
Qx§d-1
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The series (68) can be written in the form of the Born series (1), where ¢ = u, — u and
the operator K; is defined by

(Kif)(x,0) = (-1)*"'d, j G(x, 65 x1,01)G(x1, 0135, 63) G(x3, 05 x5, 63) - --
[yx-xT,

X G(x;_1,0] 13,6 Juo(x), 0)f (xy,...., X} )dx;d6; - -- dx; A6, (70)

where f € L (B, x - -- x B,). In [19] it was shown that K; is a bounded operator whose
norm obeys the estimate (8) with X = L(B,), Y = L'(T',) and

U=0, sup J G(x,0;x',6")dxas, (71)
', 8")eT,
rﬂ
V=0, J updxdd  sup j G(x, 6:x', 6" )dxdo, 72)
: (0T, ¢

whereT, = B, x 471,

12.5.2 Inverse problem

The inverse problem is to reconstruct the coefficient n everywhere within Q from mea-
surements of the scattering data @ on I',. We consider a homogeneous isotropically
scattering slab-shaped medium with contrast A embedded in a homogeneous infinite
medium with attenuation o,. We suppose the embedded medium occupies the strip
—-a < z < ainside of a slab of width 2L with -L < z < L. The data ¢ is obtained by
solving the RTE by the singular eigenfunction method. The solution to the linearized
inverse problem is obtained by computing X; by regularized singular value decom-
position. The details are presented in [19]. The parameters for the reconstructions are
chosen as follows: L = 10, a = 5, 0, = 1and A = 2.3. Here lengths are measured
in units of the scattering length . Figure 12.3 shows reconstructions using up to five
terms of the IBS.

12.6 Electromagnetic waves

12.6.1 Forward problem

We consider the scattering of time-harmonic electromagnetic waves in a nonmagnetic
medium. The electric field E obeys the wave equation

VxVxE-keXxE =0, (73)
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2l tion coefficient.

where k is the free-space wavenumber and ¢ is the dielectric permittivity. We also im-
pose the radiation condition

ﬁm|ﬂ(vXﬁ)x1r4M5=o. (74)

x| =00 [x

Here, we have decomposed the total field E into its incident and scattered components
E' and E® according to

E=E+E, (75)
where E' obeys (73) with € = 1. Evidently, E° obeys the equation
V x V x E® - K°ES = k*n(x)E, (76)

where the susceptibility = € - 1. Eq. (76) is equivalent to the integral equation

ES(x) = (2 + VV-) j GO, yINYEQ)dy, @7)
B,

a

where we have assumed that 1 is supported in B, the ball of radius a centered at the
origin. In addition, G is the fundamental solution of the Helmholtz equation, which
in three dimensions is given by

ekx=yD
Gx,y) = ——. 8
xy) arx =yl (78)
The field E thus obeys the integral equation
ECO =E'00 + (74 97) | G yme)E®)dy. 79)

B

a

If we iterate (79) beginning with E = E', we obtain an infinite series for E of the form

E=E+EV+E? 4., (80)
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where

B0 (x) = j G606y MED 1)dy, (81)
Bll

where E©© .= E!. We now write (80) in the form of the Born series (1), where ¢=E ‘_E

and the operator K; is defined by

(Kf)(x) = (K + VV) J GO6yD (K + 9, Y, )Gy, y2) -+ (K + 9, V-, )

B,x-xB,
X Gi—p VIE W) a5 -5 yp)dyy - - dy;. (82)

In the above, the point x will be taken to belong to a compact set which lies outside
the support of 7. It was shown in [15] that K; is a bounded operator whose norm obeys
the estimate (8) with X = L®(B,), Y = [L*(K)]> and

U= g(ka)z +2V74ka + 105, (83)
Y2y pi 2
v =B E 2, ngp”(k + Vi, Vi )G 0] | 2 gy - (84)

12.6.2 Inverse problem

The inverse problem is to reconstruct n from measurements of ¢p. We consider a scat-
terer that consists of a sphere of radius R = 24 = 471/k with index of refraction n = 1.1
related to the susceptibility by n, = (n* - 1)/4n. The data ¢ is computed from the Mie
solution to the wave equation [3]. The solution to the linearized inverse problem is
obtained by computing K; by regularized singular value decomposition. The details
are presented in [25]. The incident field is polarized in the X direction and the incident
plane wave is in the y direction. The plane of detection was located at a distance A/3
from the top of the sphere. Figure 12.4 presents the reconstructions obtained using four
terms of the IBS. The central column shows the results of reconstructions in the equa-
torial plane of the sphere. The left and right columns are the results of reconstructions
in the planes 0.7R above and below the equatorial plane. The first row illustrates the
results of linear reconstructions while the second, third and fourth rows show the sec-
ond, third and fourth order nonlinear reconstructions, respectively. Figure 12.5 shows
the one-dimensional profiles of the reconstructed susceptibility along the central line
in the equatorial plane.
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Figure 12.4: Tomographic images of the
reconstructed susceptibility.

0F

Figure 12.5: One-dimensional profiles of the
-10 -6 -2 2 6 /A 10 reconstructed susceptibility.

12.7 Diffusion on graphs

12.7.1 Forward problem

In this section, we consider the discrete analog of the inverse problem of optical tomog-
raphy with diffuse light. We focus on the problem of recovering vertex properties of a
graph from boundary measurements. The results presented here are adapted from [7].
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Let G = (V, E) be a finite locally connected loop-free graph with vertex boundary
6V. We consider the time-independent diffusion equation

(Lu)(x) + ag[1+ ) ]ux) =f(x), x€V, (85)
tu(x) +ou(x)=gx), xedbV. (86)

Here, we assume that the absorption of the medium is nearly constant with back-
ground absorption a, and inhomogeneities represented by the vertex potential 5. In
place of the Laplace operator, we introduce the combinatorial Laplacian L defined by

L) = Y [ut) - uw)), (87)

y~X

where y ~ x if the vertices x and y are adjacent. We make use of the graph analog of
Robin boundary conditions, where the normal derivative is defined by

u(x) = Y [u() - uw)], (88)

yev
y~x
and t is an arbitrary nonnegative parameter, which interpolates between Dirichlet and
Neumann boundary conditions. If the potential n7 is nonnegative, then there exists a
unique solution to the diffusion equation (85) satisfying the boundary condition (86).
The forward problem is to determine u, given . The corresponding inverse prob-
lem, which we refer to as graph optical tomography, is to recover the potential n from
measurements of u on the boundary of the graph. More precisely, let G = (V,E) be a
connected subgraph of a finite graph I' = (V, £) and let §V denote those vertices in V
adjacent to a vertex in V. In addition, let S, R denote fixed subsets of §V. We will refer
to elements of S and R as sources and receivers, respectively. For a fixed potential n,
source s € S and receiver r € R, let u(r, s; 1) be the solution to (85) with vertex potential
n and boundary condition (86), where

1 x=s,
g(x) = { (89)
0O x+#s.

We define the Robin-to-Dirichlet map A, by
Ay(s,7) = u(r, s;m). (90)

The inverse problem is to recover 1 from the Robin-to-Dirichlet map A,.

The background Green’s function for (85) is the matrix G, whose i, jth entry is the
solution to (85), with 1 = 0, at the ith vertex for a unit source at the jth vertex. Under
suitable restrictions this matrix can be used to construct the Robin-to-Dirichlet map
A, giving the solution of (85) on R ¢ 6V to unit sources located in S ¢ 6V. To write a
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compact expression for A, in terms of G, let D, denote the matrix with entries given
by

n ifi=j,
Dy)ij =
v 0 otherwise.
Additionally, for any two sets U, W c V U 6V, let Gg W denote the submatrix of Gy
formed by taking the rows indexed by U and the columns indexed by W. For  suffi-
ciently small, we may write the Robin-to-Dirichlet map as the series

Ay (s,1) = Go(r,8) - ZKj(n,...,n) (r,s), reR,seS, (91)
j=1

where K; : &/(V") — ¢P(R x S) is defined by
Ky, 1)) (r,8) = (~a0Y G Dy, Gg™¥ Dy, -Gy Dy Gy ™. (92)

Evidently, (91) has the form of the Born series (1).

In order to establish the convergence and stability of (91), we seek appropriate
bounds on the operators K; : PV x---x V) — £P(8V x 8V). Note that if |V| and |6V|
are finite then all norms are equivalent. However, since we are interested in the rate of
convergence of the IBS it will prove useful to establish bounds for arbitrary £, norms.

Proposition 12.7.1. Letp,q € [1,00] such that 1/p +1/q = 1 and define the constants v,
and p, by

Vp = %[1Go ™ lesquymer G0 leacrer sy Ho = 0 Copv> 93)
where
Corvg = I?e"’},X“Gg eacwy- (94)

The Born series (91) converges if

Wylnll, < 1. (95)

Moreover, the N-term truncation error has the following bound:

1
< vyl ————. (96)
2P (RXS) P P P 1_I’lp||n"p

Ay - (co- ZK,-(n,...,m>
N

j=
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12.7.2 Inverse problem

Let ¢ € £%(R x S) denote the scattering data
@(r,s) = Go(r,s) = Ay(1,5), 97

which corresponds to the difference between the measurements in the background
medium and those in the medium with the potential present. Note that if the Born
series converges, we have

o(r,s) = Y K., (98)

j=1

The IBS is now of the form

n = Ky(@) + Ky, p) + K3(p, b, ) +- -+, (99)

where [; is given by (6). Note that ¢ can be thought of as an operator from 2%(R) to
£%(S), in (99) we treat it as a vector of length |R]| - |S]. Similarly, though it is often con-
venient to think of 1 as a (diagonal) matrix, in (99) it should be thought of as a vector
of length |V|. With a slight abuse of notation, we also use K; to denote the |R||S| x |V|
matrix mapping 1 (viewed as a vector) to K;1, once again thought of as a vector.

The following result provides sufficient conditions for the convergence of the IBS
for graphs where |V| = |R x S|, corresponding to the case of a formally determined
inverse problem.

Theorem 12.7.1. Let |V| = |R x S| and p € [1, co]. Suppose that the operator K; is invert-
ible. Then the inverse Born series converges to the true potential n if ||¢||p <ry. Here the
radius of convergence r, is defined by

C v C
rp:—p[l—Z—p< 1+—p—1>], (100)
Ky G Vp
where
Cp= ||mir_l 1K, (101)
nil,=1

and vy, u, are defined in (93).

We now consider the stability of the limit of the inverse scattering series under per-
turbations in the scattering data. The following stability estimate follows immediately
from Theorem 12.7.1.

Proposition 12.7.2. Let E be a compact subset of Q, = {¢ € c" | lll, < rp}, wherer,
is defined in (100) and p € [1,00]. Let ¢, and ¢, be scattering data belonging to E and

Brought to you by | University of Michigan
Authenticated
Download Date | 1/18/20 6:06 PM



294 =— S.Moskow and).C. Schotland

Y, and Y, denote the corresponding limits of the inverse Born series. Then the following
stability estimate holds:

Y1 = ¥,ll, < Ml — sl

where M = M(E, p) is a constant which is otherwise independent of ¢, and ¢,.

Theorem 12.7.1 guarantees convergence of the IBS, but does not provide an esti-
mate of the approximation error. Such an estimate is provided in the next theorem.

Theorem 12.7.2. Suppose that the hypotheses of Theorem 12.7.1 hold and ||$ll, < Trp,
where T < 1. If n is the true potential corresponding to the scattering data ¢, then

Hn—ézcm@,...,cp)”<M<1fr)n<"iip>N1 1

gl
‘rrp

Remark 12.7.1. In the analysis of the IBS in the continuous setting, it was found that
certain smallness conditions on both || ;|| b and | ;| pare sufficient to guarantee con-
vergence. Note that such a condition on |||, is not present in Theorem 12.7.1, Propo-
sition 12.7.2 or Theorem 12.7.2.
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