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12.1 Introduction

Inverse scattering problems are of fundamental importance in nearly every branch of
physics. They also arise in numerous applied fields ranging from biomedical imaging
to seismology. Such problems can be formulated in a variety of settings, depending
upon the nature of the probing wave field and the length scales of interest. Regardless
of such considerations, the fundamental theoretical questions relate to the unique-
ness, stability and reconstruction of the solution to the problem. By uniqueness, we
mean the injectivity of the forward map from the scattering potential to the scattering
data. Stability refers to continuity of the inverse map from scattering data to the po-
tential. We note that inverse scattering problems are typically ill-posed, which means
that the inverse map must be suitably regularized to achieve stable inversion.

There are a number of approaches to the problem of recovering the scattering po-
tential. See [6, 8, 9, 12, 16] for a comprehensive overview of inverse scattering theory.
Direct reconstruction methods provide an analytic solution to the inverse problems,
principally in one-dimension although higher-dimensional methods are also known.
Optimization methods iteratively minimize the distance between the scattering data
and the solution to the forward problem, viewed as a functional of the scattering po-
tential. Although such techniques are extremely flexible, the presence of localminima
and the computational cost of evaluating the forward map limit their practical util-
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ity. Finally, linear sampling and related qualitative methods can be used to recover
the support of the scattering potential for obstacle scattering and the inverse medium
problem [4, 5, 17].

The inverse Born series (IBS) is a direct reconstruction method that was initially
developed to study the quantum mechanical inverse backscattering problem in one
dimension [13, 22] and later extended to higher dimensions [10, 18, 26, 30, 31]. The
authors analyzed the convergence, stability and error of the IBS [23]. They have also
applied the IBS to various inverse scattering problems, including those of optical to-
mography, electrical impedance tomography, and acoustic and electromagnetic imag-
ing [1, 14, 15, 19, 20, 24, 25]. The IBS has also been applied to discrete inverse problems
on graphs, independent of the continuous setting in which it was initially proposed
[7]. Finally, we note that the inverse of the Bremmer series can be investigated using a
related approach [29].

It is important to note that the principal computational advantage of the IBS is
that it does not make use of a partial differential equation solver. Instead, the IBS ob-
tains the solution to the inverse problem as an explicitly computable functional of
the scattering data. This functional can be expressed in terms of the Green’s function
for the underlying partial differential equation, whose decay governs the convergence
and stability of the method.

In this chapter, we present a survey of recent results on the inverse Born series.
In Section 12.2, the convergence and stability of the IBS is analyzed in Banach spaces.
The results are then applied to a wide range of inverse problems. These include the
inverse scattering problem for diffuse waves in Section 12.3, the Calderon problem of
electrical impedance tomography in Section 12.4, the inverse radiative transport prob-
lem in Section 12.5, and the inverse scattering problem for electromagnetic waves in
Section 12.6. Finally, in Section 12.7, we consider the inverse problem for graph diffu-
sion.

We use the following notational conventions throughout this chapter. For n ≥ 2, Ω
denotes a bounded domain inℝn with a smooth boundary 𝜕Ω. If X is a Banach space,
Xj indicates the j-fold tensor productXj = X⊗⋅ ⋅ ⋅⊗X equippedwith the projective norm
[27] for j > 1. We note that Xj is generally not a Banach space.

12.2 Analysis of the inverse Born series
In this section, we formulate the IBS in a Banach space setting. This formulation will
then be applied to various inverse scattering problems later in the chapter. The presen-
tation closely follows [23], where the case of Lp spaces was considered. The extension
to Banach spaces was described in [2]. Let X and Y be Banach spaces. We consider the
power series

ϕ = K1η + K2η ⊗ η + K3η ⊗ η ⊗ η + ⋅ ⋅ ⋅ , (1)
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where Kj : Xj → Y . The forward problem is to evaluate the map F : η 󳨃→ ϕ defined by
(1). We will refer to Kj as forward operators and (1) is called the Born series.

The inverse problem is to determine η assuming that ϕ is known. That is, we seek
to construct a map I : ϕ 󳨃→ η which is, in some sense, the inverse of F . Toward this
end, we make the ansatz that ηmay be expressed as a series in tensor powers of ϕ of
the form

η = 𝒦1ϕ + 𝒦2ϕ ⊗ ϕ + 𝒦3ϕ ⊗ ϕ ⊗ ϕ + ⋅ ⋅ ⋅ . (2)

Here, the inverse operators 𝒦j : Y j → X are to be determined. By substituting (1) into
(2) and equating terms with the same tensor power of η, we find that the operators 𝒦j
are given by

𝒦1K1 = I , (3)
𝒦2 = −𝒦1K2𝒦1 ⊗ 𝒦1, (4)
𝒦3 = −(𝒦2K1 ⊗ K2 + 𝒦2K2 ⊗ K1 + 𝒦1K3)𝒦1 ⊗ 𝒦1 ⊗ 𝒦1, (5)

𝒦j = −(
j−1
∑
m=1

𝒦m ∑
i1+⋅⋅⋅+im=j

Ki1 ⊗ ⋅ ⋅ ⋅ ⊗ Kim)𝒦1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒦1. (6)

We will refer to (2) as the inverse Born series (IBS). Here, we note several of its
properties. (i) The operator K1 generally does not have a bounded inverse. Thus 𝒦1 is
taken to be the regularized pseudoinverse of K1, which is defined as follows. Consider
the Tikhonov functional T which is of the form

T(η) = ‖K1η − ϕ‖
2
Y + λF(η), (7)

where F is a convex penalty function and λ > 0 is a regularization parameter [11, 21,
28]. The minimizer of T is denoted η† and is referred to as the regularized pseudoin-
verse solution of K1η = ϕ. The operator𝒦1 is defined as the map𝒦1 : ϕ 󳨃→ η†. Here we
take η ∈ X̃, where X̃ is a uniformly convex subspace of X. If K1 is bounded, it follows
that η† exists and is unique [28]. (ii) The coefficients in the inverse series have a re-
cursive structure. The operator 𝒦j is determined by the coefficients of the Born series
K1,K2, . . . ,Kj. (iii) Inversion of only the linear term in the Born series is required to com-
pute the IBS to all orders. Thus a nonlinear inverse problem that is often ill-posed is
replaced by an ill-posed linear inverse problem plus a well-posed nonlinear problem,
namely the computation of the higher order terms in the series.

We now proceed to analyze the convergence and stability of the IBS. Throughout,
we assume that the operator Kj is bounded with

‖Kj‖ ≤ νμ
j−1, (8)

for suitable constants μ and ν. We immediately see that the Born series (1) converges
in norm provided that ‖η‖X < 1/μ. The following lemma provides an estimate on the
norm of the operator 𝒦j.
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Lemma 12.2.1. Let ‖𝒦1‖ < 1/(μ + ν). Then the operator 𝒦j : Xj → Y defined by (6) is
bounded and

‖𝒦j‖ ≤ C(μ + ν)
j‖𝒦1‖, (9)

where C is independent of j. Moreover, for all ϕ ∈ Y

‖𝒦jϕ ⊗ ⋅ ⋅ ⋅ ⊗ ϕ‖X ≤ C(μ + ν)
j‖𝒦1ϕ‖

j
X . (10)

Proof. We first prove (9). Using (6), we find that

‖𝒦j‖ ≤
j−1
∑
m=1
∑

i1+⋅⋅⋅+im=j
‖𝒦m‖‖Ki1‖ ⋅ ⋅ ⋅ ‖Kim‖‖𝒦1‖

j

≤ ‖𝒦1‖
j
j−1
∑
m=1
∑

i1+⋅⋅⋅+im=j
‖𝒦m‖νμ

i1−1 ⋅ ⋅ ⋅ νμim−1, (11)

where we have used (8) to obtain the second inequality. Next, we define Π(j,m) to be
the number of ordered partitions of the integer j intom parts. It can be seen that

Π(j,m) = ( j − 1
m − 1
), (12)

j−1
∑
m=1

Π(j,m) = 2j−1 − 1. (13)

It follows that

‖𝒦j‖ ≤ ‖𝒦1‖
j
j−1
∑
m=1
‖𝒦m‖Π(j,m)ν

mμj−m

≤ ‖𝒦1‖
j(

j−1
∑
m=1
‖𝒦m‖)(

j−1
∑
m=1

Π(j,m)νmμj−m)

≤ ν‖𝒦1‖
j(

j−1
∑
m=1
‖𝒦m‖)(

j−1
∑
m=0
(
j − 1
m
)νmμj−1−m)

= ν‖𝒦1‖
j(μ + ν)j−1

j−1
∑
m=1
‖𝒦m‖. (14)

Thus ‖𝒦j‖ is a bounded operator and

‖𝒦j‖ ≤ (μ + ν)
j‖𝒦1‖

j
j−1
∑
m=1
‖𝒦m‖. (15)

The above estimate for ‖𝒦j‖ has a recursive structure. It can be seen that

‖𝒦j‖ ≤ Cj[(μ + ν)‖𝒦1‖]
j
‖𝒦1‖, (16)
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where, for j ≥ 2, Cj obeys the recursion relation

Cj+1 = Cj + [(μ + ν)‖𝒦1‖]
jCj, C2 = 1. (17)

Evidently,

Cj =
j−1
∏
m=2
(1 + [(μ + ν)‖𝒦1‖]

m
). (18)

We see that Cj is bounded for all j since

lnCj ≤
j−1
∑
m=1

ln(1 + [(μ + ν)‖𝒦1‖]
m
)

≤
j−1
∑
m=1
[(μ + ν)‖𝒦1‖]

m

≤
1

1 − (μ + ν)‖𝒦1‖
, (19)

where the final inequality follows if (μ + ν)‖𝒦1‖ < 1.
To prove (10), we note that the same reasoning as above leads to the inequality

‖𝒦jϕ ⊗ ⋅ ⋅ ⋅ ⊗ ϕ‖X ≤ (μ + ν)
j‖𝒦1ϕ‖

j
X

j−1
∑
m=1
‖𝒦m‖p. (20)

Making use of (20) leads to

‖𝒦jϕ ⊗ ⋅ ⋅ ⋅ ⊗ ϕ‖X ≤ C(μ + ν)
j ‖𝒦1‖
1 − (μ + ν)‖𝒦1‖

‖𝒦1ϕ‖
j
X , (21)

which completes the proof.

We now establish a basic result that governs the convergence and approximation
error of the IBS.

Theorem 12.2.1. Suppose that ‖𝒦1‖ < 1/(μ + ν), ‖𝒦1ϕ‖X < 1/(μ + ν). Let ℳ =
max (‖η‖X , ‖𝒦1K1η‖X) and assume that ℳ < 1/(μ + ν). Then the inverse Born series
(2) converges in norm and the following error estimate holds:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
η −

N
∑
j=1

𝒦jϕ ⊗ ⋅ ⋅ ⋅ ⊗ ϕ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X
≤ C󵄩󵄩󵄩󵄩(I − 𝒦1K1)η

󵄩󵄩󵄩󵄩X + C̃
[(μ + ν)‖𝒦1ϕ‖X]N

1 − (μ + ν)‖𝒦1ϕ‖X
,

where C and C̃ are independent of N and ϕ.
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Proof. The hypotheses imply that the series

η̃ = ∑
j
𝒦jϕ ⊗ ⋅ ⋅ ⋅ ⊗ ϕ (22)

converges. Here, 𝒦1 is regularized and we denote by η̃ the sum of the corresponding
IBS. The Born series (1) also converges by hypothesis, so we can substitute it into (22)
to obtain

η̃ = ∑
j
𝒦̃jη ⊗ ⋅ ⋅ ⋅ ⊗ η, (23)

where

𝒦̃1 = 𝒦1K1, (24)

and

𝒦̃j = (
j−1
∑
m=1

𝒦m ∑
i1+⋅⋅⋅+im=j

Ki1 ⊗ ⋅ ⋅ ⋅ ⊗ Kim) + 𝒦jK1 ⊗ ⋅ ⋅ ⋅ ⊗ K1, (25)

for j ≥ 2. From (6), it follows that

𝒦̃j =
j−1
∑
m=1

𝒦m ∑
i1+⋅⋅⋅+im=j

Ki1 ⊗ ⋅ ⋅ ⋅ ⊗ Kim (I − 𝒦1K1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒦1K1). (26)

We thus obtain the estimate

‖η − η̃‖X ≤ ∑
j

j−1
∑
m=1
∑

i1+⋅⋅⋅+im=j
‖𝒦m‖‖Ki1‖ ⋅ ⋅ ⋅ ‖Kim‖‖η ⊗ ⋅ ⋅ ⋅ ⊗ η − 𝒦1K1η ⊗ ⋅ ⋅ ⋅ ⊗ 𝒦1K1η‖X j . (27)

Next, we put

ψ = η − 𝒦1K1η (28)

and make use of the identity

η1 ⊗ ⋅ ⋅ ⋅ ⊗ η1 − η2 ⊗ ⋅ ⋅ ⋅ ⊗ η2
= ζ ⊗ η2 ⊗ ⋅ ⋅ ⋅ ⊗ η2 + η1 ⊗ ζ ⊗ η2 ⊗ ⋅ ⋅ ⋅ ⊗ η2
+ ⋅ ⋅ ⋅ + η1 ⊗ η1 ⊗ ⋅ ⋅ ⋅ ⊗ ζ ⊗ η2 + η1 ⊗ η1 ⊗ ⋅ ⋅ ⋅ ⊗ η1 ⊗ ζ , (29)

where ζ = η1 − η2 to obtain

‖η ⊗ ⋅ ⋅ ⋅ ⊗ η − 𝒦1K1η ⊗ ⋅ ⋅ ⋅ ⊗ 𝒦1K1η‖X j ≤ jℳj−1‖ψ‖X . (30)

Brought to you by | University of Michigan
Authenticated

Download Date | 1/18/20 6:06 PM



12 Inverse Born series | 279

We then have

‖η − η̃‖X ≤ ∑
j

j−1
∑
m=1
∑

i1+⋅⋅⋅+im=j
‖𝒦m‖‖Ki1‖ ⋅ ⋅ ⋅ ‖Kim‖jℳ

j−1‖ψ‖X

≤ ∑
j

j−1
∑
m=1

jℳj−1‖𝒦m‖Π(j,m)ν
mμj−m‖ψ‖X , (31)

where we have used (8). Making use of (12), we have

‖η − η̃‖X ≤ ν∑
j
‖ψ‖X jℳ

j−1(
j−1
∑
m=1
‖𝒦m‖)(

j−1
∑
m=0
(
j − 1
m
)νmμj−1−m)

≤ ‖ψ‖X∑
j

j−1
∑
m=1

jℳj−1(μ + ν)j‖𝒦m‖. (32)

We now apply Lemma 12.2.1 to obtain

‖η − η̃‖X ≤ C‖ψ‖X∑
j

j−1
∑
m=1

jℳj−1(μ + ν)m+j‖𝒦1‖
m, (33)

since the constant C from the lemma is independent of j. Performing the sum overm,
we have

‖η − η̃‖X ≤ C‖ψ‖X∑
j
jℳj−1(μ + ν)j (μ + ν)

j‖𝒦1‖
j − 1

(μ + ν)‖𝒦1‖ − 1
, (34)

which is bounded sinceℳ(μ + ν) < 1 and (μ + ν)‖𝒦1‖ < 1. Equation (34) thus becomes

‖η − η̃‖X ≤ C
󵄩󵄩󵄩󵄩(I − 𝒦1K1)η

󵄩󵄩󵄩󵄩X , (35)

where C is a new constant which depends on μ, ν, ℳ and ‖𝒦1‖. Finally, using the
triangle inequality and (10), we can account for the error which arises from cutting off
the tail of the series. We thus obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
η −

N
∑
j=1

𝒦jϕ ⊗ ⋅ ⋅ ⋅ ⊗ ϕ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
η −∑

j
𝒦̃jη ⊗ ⋅ ⋅ ⋅ ⊗ η

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X
+
∞
∑

j=N+1
‖𝒦jϕ ⊗ ⋅ ⋅ ⋅ ⊗ ϕ‖X

≤ C󵄩󵄩󵄩󵄩(I − 𝒦1K1)η
󵄩󵄩󵄩󵄩X + C̃
((μ + ν)‖𝒦1ϕ‖X)N+1

1 − (μ + ν)‖𝒦1ϕ‖X
. (36)

Brought to you by | University of Michigan
Authenticated

Download Date | 1/18/20 6:06 PM



280 | S.Moskow and J. C. Schotland

We make two important remarks concerning Theorem 12.2.1. (i) The hypothesis
‖K1‖ ≤ ν, which corresponds to (8) when j = 1, is not generally inconsistent with the
condition ‖𝒦1‖ ≤ 1/(μ + ν). In particular, for the case of Tikhonov regularization, ‖𝒦1‖
can be chosen to be arbitrarily small by proper choice of the regularization parameter.
(ii) We note that due to regularization of 𝒦1, the IBS does not converge to η. That is,
𝒦1 is not the true inverse of K1. However, if it is known a priori that η belongs to a
particular finite-dimensional subspace of X, 𝒦1 can be chosen to be a true inverse
on this subspace. Then, provided the hypotheses of Theorem 12.2.1 hold, the IBS will
recover η exactly.

The next result characterizes the stability of the limit of the IBS under perturba-
tions in the data ϕ.

Theorem 12.2.2. Let ‖𝒦1‖ < 1/(μ + ν) and let ϕ1 and ϕ2 be data for which M‖𝒦1‖ <
1/(μ + ν), where M = max (‖ϕ1‖Y , ‖ϕ2‖Y ). Let η1 and η2 denote the corresponding limits
of the inverse Born series. Then the following estimate holds:

‖η1 − η2‖X < C‖ϕ1 − ϕ2‖Y ,

where C is a constant which is independent of ϕ1 and ϕ2.

Proof. We begin with the estimate

‖η1 − η2‖X ≤ ∑
j

󵄩󵄩󵄩󵄩𝒦j(ϕ1 ⊗ ⋅ ⋅ ⋅ ⊗ ϕ1 − ϕ2 ⊗ ⋅ ⋅ ⋅ ⊗ ϕ2)
󵄩󵄩󵄩󵄩X . (37)

Next, we make use of the identity (29) from which it follows that

‖η1 − η2‖X ≤ ∑
j

j
∑
k=1
‖𝒦j‖‖ϕ1 ⊗ ⋅ ⋅ ⋅ ⊗ ϕ1 ⊗ ψ ⊗ ϕ2 ⊗ ⋅ ⋅ ⋅ ⊗ ϕ2‖Y j

= ∑
j
j‖𝒦j‖M

j−1‖ψ‖Y , (38)

whereψ = ϕ1 −ϕ2 is in the kth position of the tensor product. Using Lemma 12.2.1, we
have

‖η1 − η2‖X ≤ C‖𝒦1‖‖ψ‖Y∑
j
j[(μ + ν)‖𝒦1‖M]

j

≤ ‖𝒦1‖‖ϕ1 − ϕ2‖Y
C

[1 − (μ + ν)‖𝒦1‖M]2
. (39)

The above series converges when (μ + ν)‖𝒦1‖M < 1, which holds by hypothesis.
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12.3 Diffuse waves

12.3.1 Forward problem

We consider the propagation of a diffuse wave in an absorbing medium. The energy
density u of the wave satisfies the time-independent diffusion equation

−∇2u + k2(1 + η(x))u = 0 in Ω, (40)

u + ℓ𝜕u
𝜕n
= δx1 on 𝜕Ω. (41)

Here, x1 is the position of a point source, δx1 is the Dirac delta at x1, the diffuse
wave number k is a positive constant, n is the outward unit normal to 𝜕Ω and ℓ is
a positive constant. The function η, which is the spatially varying part of the ab-
sorption coefficient, is assumed to be supported in a closed ball Ba of radius a, with
1 + η(x) nonnegative for all x ∈ Ω. The energy density u obeys the integral equa-
tion

u(x) = ui(x) − k
2 ∫
Ω

G(x, y)u(y)η(y)dy, (42)

where ui is the energy density of the incident diffuse wave which satisfies

−∇2ui + k
2ui = 0 in Ω, (43)

ui + ℓ
𝜕ui
𝜕n
= δx1 on 𝜕Ω. (44)

Here G is the Green’s function for the operator −∇2 + k2, which obey the boundary
condition (41). Beginning with the incident wave ui, we can iterate (42) to obtain the
series

u(x) = ui(x) − k
2 ∫
Ω

G(x, y)η(y)ui(y)dy

+ k4 ∫
Ω×Ω

G(x, y)η(y)G(y, y󸀠)η(y󸀠)ui(y
󸀠)dydy󸀠 + ⋅ ⋅ ⋅ . (45)

Evidently, we can write (45) in the form of the Born series (1), whereϕ = ui −u and the
operator Kj is defined by

(Kjf )(x1, x2) = (−1)
j+1k2j ∫

Ba×⋅⋅⋅×Ba

G(x1, y1)G(y1, y2) ⋅ ⋅ ⋅

× G(yj−1, yj)G(yj, x2)f (y1, . . . , yj)dy1 ⋅ ⋅ ⋅ dyj, (46)
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where x1, x2 ∈ 𝜕Ω. The data ϕ(x1, x2) is proportional to the intensity measured by
a point detector at x2 ∈ 𝜕Ω due to a point source at x1 ∈ 𝜕Ω. In [23] it was shown
that Kj is a bounded operator whose norm obeys the estimate (8) with X = L2(Ba),
Y = L2(𝜕Ω × 𝜕Ω) and

μ = k2 sup
x∈Ba

󵄩󵄩󵄩󵄩G(x, ⋅)
󵄩󵄩󵄩󵄩L2(Ba)

≤ k2e−ka/2(sinh(ka)
4πk
)
1/2
, (47)

ν = k2|Ba|
1/2 sup

x∈Ba

󵄩󵄩󵄩󵄩G(x, ⋅)
󵄩󵄩󵄩󵄩L2(𝜕Ω)

≤ k2|𝜕Ω||Ba|
1/2 e−2k dist(𝜕Ω,Ba)

(4π dist(𝜕Ω,Ba))2
. (48)

Analogous results for Lp spaces were also obtained for 2 ≤ p ≤ ∞.

12.3.2 Inverse problem

The inverse problem is to reconstruct η from boundary measurements of ϕ. We con-
sider a three-dimensional medium which varies only in the radial direction. Here Ω
is taken to be a ball of radius R centered at the origin and we consider an absorption
coefficient of the form

η(x) = {
η0 0 ≤ |x| ≤ R1,
0 R1 < |x| ≤ R,

(49)

which corresponds to a spherical inclusion of radius R1 and contrast η0. The data ϕ
is obtained by a series solution to the diffusion equation (40). The solution to the lin-
earized inverse problem is obtained by computing 𝒦1 by regularized singular value
decomposition. The details are presented in [24].

The parameters for the reconstructions are chosen as follows: R = 3 cm, R1 =
1.5 cm, ℓ = 0.3 cm and k = 1 cm−1. Figure 12.1 shows a series of experiments where the
contrast of the inclusion is varied through a series of values of η0 = 1.1, 1.3, 1.5, 1.7. In
each of the graphs, we show the reconstruction using up to five terms of the IBS. We
also display the projection of η, which is given by𝒦1K1η. In some sense, the projection
is thebest approximation toη that canbe expected.Note that at lowcontrast, the series
appears to converge quite rapidly to a reconstruction that is close to the projection.
As the contrast is increased, the higher order terms significantly improve the linear
reconstruction.
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Figure 12.1: Reconstructions of inhomogeneities with R1 = 1.5 cm and R = 3 cm. The contrast ranges
from: top left η0 = 1.1, top right η0 = 1.3, bottom left η0 = 1.5 and bottom right η0 = 1.7.

12.4 Calderon problem

12.4.1 Forward problem

The Calderon problem is the inverse problem of electrical impedance tomography. We
consider a scalar field u that obeys the equation

∇ ⋅ σ(x)∇u = 0 in Ω, (50)

where the coefficient σ(x) > 0 for all x ∈ Ω. The field is also taken to satisfy the Robin
boundary condition

u + zσ 𝜕u
𝜕n
= g on 𝜕Ω, (51)

where σ and z are nonnegative and constant on 𝜕Ω. In electrical impedance tomogra-
phy, the field u is identified with the electric potential and the coefficient σ with the
conductivity. The coefficient z in (51) is the surface impedance and g is the current
density. A typical choice for g is a dipole source of unit strength:

g = δx1 − δx2 , x1, x2 ∈ 𝜕Ω. (52)
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The forward problem is to determine the field u for a given coefficient σ. To pro-
ceed, we assume that the conductivity is of the form σ(x) = σ0(1 + η(x)), where the
background coefficient σ0 = σ|𝜕Ω is constant and η ∈ L∞(Ba) is assumed to be sup-
ported in a closed ball Ba of radius a centered at the origin. We thus find that (50)
becomes

− Δu = ∇ ⋅ η(x)∇u in Ω. (53)

The field u obeys the integral equation

u(x) = u0(x) + ∫
Ω

G(x, y)∇ ⋅ η(y)∇u(y)dy, x ∈ Ω, (54)

where u0 obeys (53)with η = 0 and satisfies the boundary condition (86). Here,G is the
Green’s function for the operator −Δ, which obeys the boundary condition (86) with
zero right-hand side. Upon integrating (54) by parts, we see that the solution to the
forward problem obeys the integral equation

u(x) = u0(x) − ∫
Ω

∇yG(x, y) ⋅ ∇u(y)η(y)dy. (55)

Beginning with u0, we can iterate (55) to obtain a series for u of the form

u(x) = u0(x) + u1(x) + u2(x) + ⋅ ⋅ ⋅ , (56)

where

uj+1(x) = −∫
Ω

∇yG(x, y) ⋅ ∇uj(y)η(y)dy, j = 0, 1, . . . . (57)

We nowwrite (56) in the form of the Born series (1), whereϕ = u0 −u and the operator
Kj is defined by

(Kjf )(x)

= (−1)j ∫
Ω

∇y1G(y1, x) ⋅ ∇y1 ∫
Ω

∇y2G(y2, y1)

⋅ ⋅ ⋅ ⋅ ∇yj−1 ∫
Ω

∇yjG(yj, yj−1) ⋅ ∇yju0(yj)f (y1, . . . , yj)dy1 ⋅ ⋅ ⋅ dyj. (58)

It was shown in [1] that Kj is a bounded operator whose norm obeys the estimate (8)
with X = L∞(Ba), Y = L2(𝜕Ω) and

μ = 1, (59)
ν = sup

x∈𝜕Ω

󵄩󵄩󵄩󵄩∇G(x, ⋅)
󵄩󵄩󵄩󵄩L2(Ba)‖∇u0‖L2(Ba). (60)
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Figure 12.2: Reconstruction of the conduc-
tivity with σlungs = 0.2 and σheart = 2.

12.4.2 Inverse problem

The inverse problem is to reconstruct η frommeasurements of the dataϕ. The function
ϕ depends implicitly upon the position of the source. For example, in the case of the
dipole source (52), if we fix the point x1 ∈ 𝜕Ω and vary x2 ∈ 𝜕Ω, then ϕ will depend
upon both x2 and the point x at which we measure the field on 𝜕Ω. Accordingly, will
assume that ϕ ∈ L∞(𝜕Ω × 𝜕Ω). We consider a two-dimensional chest phantom, where
Ω is taken to be a disk of radius R centered at the origin.

The data ϕ is obtained by solving (21) by the finite-element method. The solution
to the linearized inverse problem is obtained by computing 𝒦1 by regularized singu-
lar value decomposition. The details are presented in [1]. The parameters for the re-
constructions are chosen as follows: R = 40, σ0 = 1 and zσ0 = 1. Figure 12.2 shows
reconstructions using up to four terms of the IBS.

12.5 Radiative transport

12.5.1 Forward problem

The physical quantity of interest in radiative transport theory is the specific intensity
u(x, θ) at the point x ∈ Ω in the direction θ ∈ Sd−1. The specific intensity obeys the
radiative transport equation (RTE)

θ ⋅ ∇u + σ(x)u = ∫
Sd−1

k(θ, θ󸀠)u(x, θ󸀠)dθ󸀠 in Ω × Sd−1, (61)

u = g on Γ−. (62)
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Theattenuation coefficientσ(x) is assumed tobenonnegative for all x ∈ Ω. In addition,
the scatteringkernel k(θ, θ󸀠) is nonnegative andobeys the reciprocity relation k(θ, θ󸀠) =
k(−θ󸀠, θ) and is normalized so that

∫

Sd−1

k(θ, θ󸀠)dθ󸀠 = 1, θ ∈ Sd−1. (63)

We also introduce the sets Γ± which are defined by

Γ± = {(x, θ) ∈ 𝜕Ω × S
d−1 : ±θ ⋅ n(x) > 0}, (64)

with n being the outer unit normal to 𝜕Ω.
The forward problem is to determine the specific intensity u for a given attenua-

tion σ. We assume that the attenuation coefficient σ is of the form

σ(x) = σ0(1 + η(x)), (65)

where the background attenuation σ0 = σ|𝜕Ω is constant and η(x) > −1 for all x ∈ Ω.
The function η is the spatially varying part of the attenuation coefficient; it is assumed
to be supported in a closed ball Ba of radius a, centered at the origin. The specific
intensity u obeys the integral equation

u(x, θ) = u0(x, θ) − σ0 ∫
Ω×Sd−1

G(x, θ; x󸀠, θ󸀠)η(x󸀠)u(x󸀠, θ󸀠)dx󸀠dθ󸀠. (66)

Here, u0 obeys (61) with η = 0 and G is the Green’s function for the background
medium, which satisfies the equation

θ ⋅ ∇xG(x, θ; x
󸀠, θ󸀠) + σ0G(x, θ; x

󸀠, θ󸀠)

= ∫

Sd−1

k(θ, θ󸀠󸀠)G(x, θ󸀠󸀠; x󸀠, θ󸀠)dθ󸀠󸀠 + δ(x − x󸀠)δ(θ − θ󸀠),

together with homogeneous boundary conditions on Γ−. It is easily seen that u0 is
given by the formula

u0(x, θ) = ∫
𝜕Ω

∫

θ󸀠 ⋅n<0

G(x, θ; x󸀠, θ󸀠)󵄨󵄨󵄨󵄨θ
󸀠 ⋅ n(x󸀠)󵄨󵄨󵄨󵄨g(x

󸀠, θ󸀠)dx󸀠dθ󸀠. (67)

The integral equation (66) has a unique solution. Upon iteration, beginning with
u = u0, we obtain an infinite series for u of the form

u(x, θ) = u0(x, θ) + u1(x, θ) + u2(x, θ) + ⋅ ⋅ ⋅ , (68)

where

uj+1(x, θ) = −σ0 ∫
Ω×Sd−1

G(x, θ; x󸀠, θ󸀠)uj(x
󸀠, θ󸀠)η(x󸀠)dx󸀠dθ󸀠, j = 0, 1, . . . . (69)
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The series (68) can be written in the form of the Born series (1), where ϕ = u0 − u and
the operator Kj is defined by

(Kjf )(x, θ) = (−1)
j+1σj0 ∫

Γa×⋅⋅⋅×Γa

G(x, θ; x󸀠1, θ
󸀠
1)G(x
󸀠
1, θ
󸀠
1; x
󸀠
2, θ
󸀠
2)G(x
󸀠
2, θ
󸀠
2; x
󸀠
3, θ
󸀠
3) ⋅ ⋅ ⋅

× G(x󸀠j−1, θ
󸀠
j−1; x
󸀠
j , θ
󸀠
j )u0(x

󸀠
j , θ
󸀠
j )f (x
󸀠
1, . . . , x

󸀠
j )dx
󸀠
1dθ
󸀠
1 ⋅ ⋅ ⋅ dx

󸀠
jdθ
󸀠
j , (70)

where f ∈ L∞(Ba × ⋅ ⋅ ⋅ × Ba). In [19] it was shown that Kj is a bounded operator whose
norm obeys the estimate (8) with X = L∞(Ba), Y = L1(Γ+) and

μ = σ0 sup
(x󸀠 ,θ󸀠)∈Γa

∫
Γa

G(x, θ; x󸀠, θ󸀠)dxdθ, (71)

ν = σ0 ∫
Γa

u0dxdθ sup
(x󸀠 ,θ󸀠)∈Γa

∫
Γ+

G(x, θ; x󸀠, θ󸀠)dxdθ, (72)

where Γa = Ba × Sd−1.

12.5.2 Inverse problem

The inverse problem is to reconstruct the coefficient η everywhere within Ω frommea-
surements of the scattering data Φ on Γ+. We consider a homogeneous isotropically
scattering slab-shaped medium with contrast Δ embedded in a homogeneous infinite
medium with attenuation σ0. We suppose the embedded medium occupies the strip
−a ≤ z ≤ a inside of a slab of width 2L with −L ≤ z ≤ L. The data ϕ is obtained by
solving the RTE by the singular eigenfunction method. The solution to the linearized
inverse problem is obtained by computing 𝒦1 by regularized singular value decom-
position. The details are presented in [19]. The parameters for the reconstructions are
chosen as follows: L = 10ls, a = 5ls, σ0 = 1 and Δ = 2.3. Here lengths are measured
in units of the scattering length ls. Figure 12.3 shows reconstructions using up to five
terms of the IBS.

12.6 Electromagnetic waves

12.6.1 Forward problem

We consider the scattering of time-harmonic electromagnetic waves in a nonmagnetic
medium. The electric field E obeys the wave equation

∇ × ∇ × E − k2ϵ(x)E = 0, (73)
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Figure 12.3: Reconstruction of the attenua-
tion coefficient.

where k is the free-space wavenumber and ϵ is the dielectric permittivity. We also im-
pose the radiation condition

lim
|x|→∞
|x|[(∇ × Es) × x

|x|
− ikEs] = 0. (74)

Here, we have decomposed the total field E into its incident and scattered components
Ei and Es according to

E = Ei + Es, (75)

where Ei obeys (73) with ϵ = 1. Evidently, Es obeys the equation

∇ × ∇ × Es − k2Es = k2η(x)E, (76)

where the susceptibility η = ϵ − 1. Eq. (76) is equivalent to the integral equation

Es(x) = (k2 + ∇∇⋅) ∫
Ba

G(x, y)η(y)E(y)dy, (77)

where we have assumed that η is supported in Ba, the ball of radius a centered at the
origin. In addition, G is the fundamental solution of the Helmholtz equation, which
in three dimensions is given by

G(x, y) = eik|x−y|)

4π|x − y|
. (78)

The field E thus obeys the integral equation

E(x) = Ei(x) + (k2 + ∇∇⋅) ∫
Ba

G(x, y)η(y)E(y)dy. (79)

If we iterate (79) beginning with E = Ei, we obtain an infinite series for E of the form

E = Ei + E(1) + E(2) + ⋅ ⋅ ⋅ , (80)
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where

E(j+1)(x) = ∫
Ba

G(x, y)η(y)E(j)(y)dy, (81)

where E(0) := Ei. We now write (80) in the form of the Born series (1), where ϕ = Ei − E
and the operator Kj is defined by

(Kjf )(x) = (k
2 + ∇∇⋅) ∫

Ba×⋅⋅⋅×Ba

G(x, y1)(k
2 + ∇y1∇y1 ⋅)G(y1, y2) ⋅ ⋅ ⋅ (k

2 + ∇yj−1∇⋅yj−1)

× G(yj−1, yj)Ei(yj)f (y1, . . . , yj)dy1 ⋅ ⋅ ⋅ dyj. (82)

In the above, the point x will be taken to belong to a compact set which lies outside
the support of η. It was shown in [15] that Kj is a bounded operator whose norm obeys
the estimate (8) with X = L∞(Ba), Y = [L2(K)]3 and

μ = 17
2
(ka)2 + 2√74ka + 105, (83)

ν = |Ba|
1/2󵄩󵄩󵄩󵄩E

i󵄩󵄩󵄩󵄩[L2(Ba)]3 supx∈Ba

󵄩󵄩󵄩󵄩(k
2 + ∇x1∇x1 ⋅)G(⋅, x)I

󵄩󵄩󵄩󵄩[L2(K)]3 . (84)

12.6.2 Inverse problem

The inverse problem is to reconstruct η from measurements of ϕ. We consider a scat-
terer that consists of a sphere of radius R = 2λ = 4π/k with index of refraction n = 1.1
related to the susceptibility by η0 = (n2 − 1)/4π. The data ϕ is computed from the Mie
solution to the wave equation [3]. The solution to the linearized inverse problem is
obtained by computing 𝒦1 by regularized singular value decomposition. The details
are presented in [25]. The incident field is polarized in the x̂ direction and the incident
plane wave is in the ŷ direction. The plane of detection was located at a distance λ/3
from the topof the sphere. Figure 12.4 presents the reconstructions obtainedusing four
terms of the IBS. The central column shows the results of reconstructions in the equa-
torial plane of the sphere. The left and right columns are the results of reconstructions
in the planes 0.7R above and below the equatorial plane. The first row illustrates the
results of linear reconstructions while the second, third and fourth rows show the sec-
ond, third and fourth order nonlinear reconstructions, respectively. Figure 12.5 shows
the one-dimensional profiles of the reconstructed susceptibility along the central line
in the equatorial plane.
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Figure 12.4: Tomographic images of the
reconstructed susceptibility.

Figure 12.5: One-dimensional profiles of the
reconstructed susceptibility.

12.7 Diffusion on graphs

12.7.1 Forward problem

In this section,we consider thediscrete analogof the inverseproblemof optical tomog-
raphy with diffuse light. We focus on the problem of recovering vertex properties of a
graph from boundarymeasurements. The results presented here are adapted from [7].
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Let G = (V ,E) be a finite locally connected loop-free graph with vertex boundary
δV . We consider the time-independent diffusion equation

(Lu)(x) + α0[1 + η(x)]u(x) = f (x), x ∈ V , (85)
t u(x) + 𝜕u(x) = g(x), x ∈ δV . (86)

Here, we assume that the absorption of the medium is nearly constant with back-
ground absorption α0 and inhomogeneities represented by the vertex potential η. In
place of the Laplace operator, we introduce the combinatorial Laplacian L defined by

(Lu)(x) = ∑
y∼x
[u(x) − u(y)], (87)

where y ∼ x if the vertices x and y are adjacent. We make use of the graph analog of
Robin boundary conditions, where the normal derivative is defined by

𝜕u(x) = ∑
y∈V
y∼x

[u(x) − u(y)], (88)

and t is an arbitrary nonnegative parameter, which interpolates betweenDirichlet and
Neumann boundary conditions. If the potential η is nonnegative, then there exists a
unique solution to the diffusion equation (85) satisfying the boundary condition (86).

The forward problem is to determine u, given η. The corresponding inverse prob-
lem, which we refer to as graph optical tomography, is to recover the potential η from
measurements of u on the boundary of the graph. More precisely, let G = (V ,E) be a
connected subgraph of a finite graph Γ = (𝒱 , ℰ) and let δV denote those vertices in 𝒱
adjacent to a vertex in V . In addition, let S, R denote fixed subsets of δV . We will refer
to elements of S and R as sources and receivers, respectively. For a fixed potential η,
source s ∈ S and receiver r ∈ R, let u(r, s; η) be the solution to (85) with vertex potential
η and boundary condition (86), where

g(x) = {
1 x = s,
0 x ̸= s.

(89)

We define the Robin-to-Dirichlet map Λη by

Λη(s, r) = u(r, s; η). (90)

The inverse problem is to recover η from the Robin-to-Dirichlet map Λη.
The background Green’s function for (85) is the matrix G0 whose i, jth entry is the

solution to (85), with η ≡ 0, at the ith vertex for a unit source at the jth vertex. Under
suitable restrictions this matrix can be used to construct the Robin-to-Dirichlet map
Λη giving the solution of (85) on R ⊂ δV to unit sources located in S ⊂ δV . To write a
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compact expression for Λη in terms of G0, let Dη denote the matrix with entries given
by

(Dη)i,j = {
ηi if i = j,
0 otherwise.

Additionally, for any two sets U ,W ⊂ V ∪ δV , let GU ;W
0 denote the submatrix of G0

formed by taking the rows indexed by U and the columns indexed byW . For η suffi-
ciently small, we may write the Robin-to-Dirichlet map as the series

Λη(s, r) = G0(r, s) −
∞
∑
j=1

Kj(η, . . . , η) (r, s), r ∈ R, s ∈ S, (91)

where Kj : ℓp(Vn) → ℓp(R × S) is defined by

Kj(η1, . . . , ηj) (r, s) = (−α0)
jGr;V

0 Dη1 G
V ;V
0 Dη2 ⋅ ⋅ ⋅G

V ;V
0 DηjG

V ;s
0 . (92)

Evidently, (91) has the form of the Born series (1).
In order to establish the convergence and stability of (91), we seek appropriate

bounds on the operators Kj : ℓp(V × ⋅ ⋅ ⋅ × V) → ℓp(δV × δV). Note that if |V | and |δV |
are finite then all norms are equivalent. However, since we are interested in the rate of
convergence of the IBS it will prove useful to establish bounds for arbitrary ℓp norms.

Proposition 12.7.1. Let p, q ∈ [1,∞] such that 1/p + 1/q = 1 and define the constants νp
and μp by

νp = α0
󵄩󵄩󵄩󵄩G

R;V
0
󵄩󵄩󵄩󵄩ℓq(V)×ℓp(R)

󵄩󵄩󵄩󵄩G
V ;S
0
󵄩󵄩󵄩󵄩ℓq(V)×ℓp(S), μp = α0,CGV ;V

0
, (93)

where

CGV ;V
0 ,q
= max

v∈V
󵄩󵄩󵄩󵄩G

V ;v
0
󵄩󵄩󵄩󵄩ℓq(V). (94)

The Born series (91) converges if

μp‖η‖p < 1. (95)

Moreover, the N-term truncation error has the following bound:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Λη − (G0−

∞
∑
j=N

Kj(η, . . . , η))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓp(R×S)

≤ νp‖η‖
N+1
p μNp

1
1 − μp‖η‖p

. (96)
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12.7.2 Inverse problem

Let ϕ ∈ ℓ2(R × S) denote the scattering data

ϕ(r, s) = G0(r, s) − Λη(r, s), (97)

which corresponds to the difference between the measurements in the background
medium and those in the medium with the potential present. Note that if the Born
series converges, we have

ϕ(r, s) =
∞
∑
j=1

Kj(η, . . . , η). (98)

The IBS is now of the form

η = 𝒦1(ϕ) + 𝒦2(ϕ,ϕ) + 𝒦3(ϕ,ϕ,ϕ) + ⋅ ⋅ ⋅ , (99)

where 𝒦j is given by (6). Note that ϕ can be thought of as an operator from ℓ2(R) to
ℓ2(S), in (99) we treat it as a vector of length |R| ⋅ |S|. Similarly, though it is often con-
venient to think of η as a (diagonal) matrix, in (99) it should be thought of as a vector
of length |V |. With a slight abuse of notation, we also use K1 to denote the |R||S| × |V |
matrix mapping η (viewed as a vector) to K1η, once again thought of as a vector.

The following result provides sufficient conditions for the convergence of the IBS
for graphs where |V | = |R × S|, corresponding to the case of a formally determined
inverse problem.

Theorem 12.7.1. Let |V | = |R × S| and p ∈ [1,∞]. Suppose that the operator K1 is invert-
ible. Then the inverse Born series converges to the true potential η if ‖ϕ‖p < rp. Here the
radius of convergence rp is defined by

rp =
Cp
μp
[1 − 2

νp
Cp
(√1 +

Cp
νp
− 1)], (100)

where

Cp = min
‖η‖p=1
󵄩󵄩󵄩󵄩K1(η)
󵄩󵄩󵄩󵄩p (101)

and νp, μp are defined in (93).

Wenowconsider the stability of the limit of the inverse scattering series under per-
turbations in the scattering data. The following stability estimate follows immediately
from Theorem 12.7.1.

Proposition 12.7.2. Let E be a compact subset of Ωp = {ϕ ∈ ℂn | ‖ϕ‖p < rp}, where rp
is defined in (100) and p ∈ [1,∞]. Let ϕ1 and ϕ2 be scattering data belonging to E and
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ψ1 and ψ2 denote the corresponding limits of the inverse Born series. Then the following
stability estimate holds:

‖ψ1 − ψ2‖p ≤ M‖ϕ1 − ϕ2‖p,

where M = M(E, p) is a constant which is otherwise independent of ϕ1 and ϕ2.

Theorem 12.7.1 guarantees convergence of the IBS, but does not provide an esti-
mate of the approximation error. Such an estimate is provided in the next theorem.

Theorem 12.7.2. Suppose that the hypotheses of Theorem 12.7.1 hold and ‖ϕ‖p < τrp,
where τ < 1. If η is the true potential corresponding to the scattering data ϕ, then

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
η −

N
∑
m=1

𝒦m(ϕ, . . . ,ϕ)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< M( 1

1 − τ
)
n
(
‖ϕ‖p
τrp
)
N 1
1 − ‖ϕ‖pτrp

.

Remark 12.7.1. In the analysis of the IBS in the continuous setting, it was found that
certain smallness conditions onboth ‖𝒦1‖p and ‖𝒦1ϕ‖p are sufficient to guarantee con-
vergence. Note that such a condition on ‖𝒦1‖p is not present in Theorem 12.7.1, Propo-
sition 12.7.2 or Theorem 12.7.2.
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