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Abstract
We consider the two scale asymptotic expansion for a transmission problem
modeling scattering by a bounded inhomogeneity with a periodic coefficient in
the lower order term of the Helmholtz equation. The squared index of refrac-
tion is assumed to be a periodic function of the fast variable, specified over
the unit cell with characteristic size ε. Since the convergence of the boundary
correctors to their limits is in general slow, we explore in detail their use in a
second order approximation and show a new convergence estimate for the sec-
ond order boundary corrector on a square. We show numerical examples of the
higher order forward approximation in one and two dimensions. We then use
the first order boundary correction as an asymptotic model for inversion and
show numerical examples of inversion in the two dimensional case.

Keywords: boundary correctors, periodic inhomogeneities, inverse scattering,
Helmholtz

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of waves in periodic metamaterial structures is important for a broad range of
applications such as medical diagnosis [17], optical super-focusing [35], energy harvesting
[39], and seismic protection [18]. There is a large body of mathematics literature on waves
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in unbounded periodic media [1, 2, 4, 5, 7, 8, 14, 15, 16, 22, 25, 27, 32, 44], however, in
the above mentioned applications, the scatterer is inherently of finite extent. In recent years
it was found that the boundary effects were larger than previously thought; indeed they are
an order larger than periodic drift effects [12] and in some cases an order larger than bulk
effects [10]. For the case of periodicity in the higher order part of the operator, explicit
characterization of the boundary correctors in homogenization of periodic media has been
extremely difficult, both in the case of Dirichlet [3, 6, 19, 20, 24–26, 33, 34, 41] and trans-
mission [12, 43] problems, as well as those featuring domains with small medium perturba-
tions [29–31], and for nonsmooth microstructures [21, 37, 38, 42]. Fortunately, it is often
the case in optical scattering that the microstructure is only in the lower part of the opera-
tor (the refractive index), and in this case the most difficult aspect of the boundary corrector
analysis disappears [10]. For this class of configurations, it was shown that the boundary cor-
rector effects and limits can be both characterized explicitly and detected in the far field. We
further showed that, in contrast to Dirichlet boundary value problems, the boundary effect
for transmission problems emerges already at O(ε), where ε is the vanishing size of the unit
cell.

While the boundary correctors limits can be characterized explicitly, convergence to these
limits is often slow, and at best on the order of the characteristic cell size. In order to
produce an explicitly computable approximation of the field which is higher order, one
needs to augment the limiting correction with further terms. We discuss this here, in par-
ticular for the case of square scatterers for which the limits are all nontrivial (which also
carries over to other convex polygons). We also show that for a square, the higher order
boundary corrections converge to their limits on the order of the square root of the cell
size. We validate all of these results with numerical examples. Furthermore, we explore
the use of the homogenization expansion as a model for inversion and derive an exte-
rior field asymptotic formula using the first and second order approximation to recover
the periodic refractive index in the media. However, we assume we know the scatterer
and the characteristic cell size and use the expansion to image the microstructure. We
test this approach using the first order approximation on examples of square and circular
scatterers.

The paper is organized as follows. In section 2 we discuss the problem setup and known
results on the second order approximation including the boundary correction. In section 3, we
consider replacing the first order correction with its limit and derive the extra terms neces-
sary to maintain a higher order approximation. We do this explicitly for a square, and remark
that the same approach works for convex polygons of rational normal. Section 4 contains a
new estimate for convergence of the second order boundary correction to its limit. We show
numerically the appearance and necessity of the newly derived terms in one dimension in
section 5. Section 6 contains numerical examples in two dimensions, including forward approx-
imations for a circle and square and inversion experiments for both cases. We show that if we
know the homogenized scatterer (which can be obtained e.g. by qualitative inversion meth-
ods [9, 11, 13]) and the cell size, we can use the asymptotic approximation to reconstruct the
microstructure.

2. Preliminaries

Let D ⊂ R
d be a bounded simply connected open set with piecewise-smooth boundary ∂D

representing the support of a periodic inhomogeneity. Let ε > 0 be the characteristic size of
the periodic unit cell, which is assumed to be small both relative to the size of D and the
wavelength of the incident field, and let the rescaled unit cell be defined to be Y = [0, 1]d .
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Assume the physical properties of an obstacle are given by a positive-definite constant matrix
a and a positive scalar function nε := n(x/ε) ∈ C∞(D), related (in the context of acoustic
wave propagation) to the mass density and refraction index, respectively. The slow vari-
able is given by x ∈ D while y = x/ε ∈ R

d denotes the fast variable. The regularity restric-
tions on n(y) are imposed primarily for the sake of simplicity of exposition, and a more
detailed investigation into minimal regularity requirements on n would be very interesting.
The results here use that solutions of a constant coefficient elliptic pde with right-hand side n
(see β below) have bounded gradients when restricted to the boundary, which is for example
the case for a large class of piecewise smooth n. For simplicity, we also assume a and nε
are real-valued, though the analysis that follows applies equally to complex coefficients,
and we assume that inf|ξ|=1 ξ · aξ = amin > 0 and infy∈Y n(y) > 0. The scattering of a time-
harmonic incident field ui (which is an entire solution of the Helmholtz equation) by the above
periodic inhomogeneity can be mathematically formulated for the total field, u = us + ui,
as

∇ · a∇u + k2n(x/ε)u = 0 in D

Δus + k2us = 0 inRd\D

(us + ui) = u on ∂D

∇(us + ui) · ν = a∇u · ν on ∂D

(1)

where us denotes the scattered field; the Sommerfeld radiation condition

lim
|x|→∞

|x| d−1
2

(
∂us

∂|x| − ikus

)
= 0 (2)

is satisfied uniformly with respect to x̂ := x/|x|, d is the dimension of the space, and ν is the
outward unit normal on ∂D.

The above scattering problem for an inhomogeneous obstacle D with periodically varying
coefficients can be formulated as the transmission problem uε := u in D and uε := us in R

d\D,
namely

∇ · a∇uε + k2n(x/ε)uε = 0 in D

Δuε + k2uε = 0 inRd\D

u+
ε − u−

ε = f on ∂D

(∇uε · ν)+ − (a∇uε · ν)− = g on ∂D

(3)

where uε satisfies the Sommerfeld radiation condition (2) at infinity. Here f := − ui and g := −
ν · ∇ui on ∂D, and the superscripts ‘ + ’ and ‘ − ’ denote the respective limits on ∂D from the
exterior and interior of D.

As was done in [7, 10] one can write the equation for uε inside of D as a first-order system

a∇uε − vε = 0,

∇ · vε + k2n(x/ε)uε = 0,
(4)

which allows one to examine the conormal jump condition more directly. We then assume an
ansatz for the bulk expansions inside of D,

3
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uε = u0(x, x/ε) + εu(1)(x, x/ε) + ε2u(2)(x, x/ε) + . . . ,

vε = v0(x, x/ε) + εv(1)(x, x/ε) + ε2v(2)(x, x/ε) + . . . .
(5)

and we use the chain rule to write ∇ = ∇x +
1
ε
∇y, substitute (5) into (4), and equate the like

powers of ε to obtain a series of equations for the interior microstructure and mean field terms.
For the expansion in the exterior of D, there are no explicit microstructure terms. As was seen
in [10], the exterior expansion will contain boundary corrector functions at all orders, and
mean field terms beginning at second order. The boundary corrector functions are derived by
matching the boundary jumps of the microstructure terms, while the mean field terms have no
boundary jumps. We now summarize these results.

The homogenized solution solves the transmission problem given by

∇ · a∇u0 + k2nu0 = 0 in D

Δu0 + k2u0 = 0 inRd\D

u+
0 − u−

0 = f on∂D

(∇u0 · ν)+ − (a∇u0 · ν)− = g on∂D

(6)

with the Sommerfeld radiation condition at infinity where n =
∫

Y n(y) dy for Y = [0, 1] × [0, 1]
the period cell. One then has the second order approximation [10]

uε = u0 + εθε + ε2u(2) + ε2θ(2)
ε + o(ε2), (7)

where the first order boundary corrector θε satisfies

∇ · a∇θε + k2n(x/ε)θε = 0 in D

Δθε + k2θε = 0 inRd\D

θ+ε − θ−ε = 0 on ∂D

(∇θε · ν)+ − (a∇θε · ν)− = v(1) · ν on ∂D,

(8)

with the Sommerfeld radiation condition (2) at infinity. The correction v(1) used in the above
cornormal jump is given by

v(1) = k2a∇yβ(y)u0

where β is the unique zero-mean Y-periodic solution to

∇y · a∇yβ(y) = n − n(y).

The second order bulk correction, which includes the microstructure and mean field correction,
is

u(2) = k2β(y)u0 + û(2)(x) (9)

4
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where the mean field drift û(2)(x) is the solution to

∇ · a∇û(2) + k2nû(2) = −k4nβu0 in D

Δû(2) + k2û(2) = 0 inRd\D(
û(2)

)+ −
(
û(2)

)−
= 0 on ∂D

(∇û(2) · ν)+ − (a∇û(2) · ν)− = 0 on ∂D

(10)

with the Sommerfeld radiation condition at infinity. The second order boundary corrector is
defined to be the solution of

∇ · a∇θ(2)
ε + k2n(x/ε)θ(2)

ε = 0 in D

Δθ(2)
ε + k2θ(2)

ε = 0 inRd\D

θ(2)+
ε − θ(2)−

ε = u(2) − û(2) on ∂D

(∇θ(2)
ε · ν)+ − (a∇θ(2)

ε · ν)− =
(
v(2) − v(2)

)
· ν on ∂D

(11)

with v(2) is given by

v(2) = k2β(y)a∇u0 + a∇xû(2) − 2k2a(∇2
yγ)a∇u0,

and the cell function γ is defined to be the Y-periodic solution to

∇y · a∇yγ = β

again to be the unique Y-periodic solution with zero cell average
∫

Yγ dy = 0. We note that(
v(2) − v(2)

)
= k2β(y)a∇u0 − 2k2a(∇2

yγ)a∇u0.

We also characterized the general boundary correctors in section 5.3 of [10]. At each higher
order εi, one will have a bulk correction u(i), v(i) which includes its mean field û(i), v(i). The
mean field will be defined to have no transmission jumps, and the general ith order boundary
corrector, i = 1, 2, 3, . . . , will be the unique solution to

∇ · a∇θ(i)
ε + k2n(x/ε)θ(i)

ε = 0 in D

Δθ(i)
ε + k2θ(i)

ε = 0 inRd\D(
θ(i)
ε

)+ −
(
θ(i)
ε

)−
= u(i) − û(i) on ∂D

(∇θ(i)
ε · ν)+ − (a∇θ(i)

ε · ν)− = (v(i) − v(i)) · ν on ∂D.

(12)

Given that there is no oscillation in a, the asymptotic limit of these corrections is easily char-
acterizable [10]. However, care must be taken when replacing θ(i)

ε with its limit if one needs to
maintain higher order convergence. We describe in detail how this should be done for domains
with flat boundary of rational normal (such as a union of period cells), and propose to use the
simplified boundary corrector function defined in [10] for smooth domains with no flat parts.
Furthermore, we prove a new convergence estimate for the second order boundary corrector to
its limit for the case of a square. As in [10], the limit, if it exists, in general depends on how
the sequence ε approaches zero and is slower than that of the first order correction.
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3. On using limiting boundary correctors

We consider here the case of convex polygons with rational normals. In the formulation for θε
given in (8), the transmission data depends strongly on the choice of ε. If, for example D is a unit
square and εm = 1/m for integer m, this boundary layer problem would see only a boundary
slice of the periodic function ∇yβ. Therefore we have different limits of the boundary layer
function for different sequences of ε going to zero. We assume that εm is a sequence going to
zero for which the boundary cutoff is fixed. That is, assume that the fractional part of 1/εm is
constant, i.e.

δ =
1
εm

− � 1
εm

� for all m.

For a sequence with fixed cutoff δ, from theorem 4.1 in [12], we have that θεm → θ∗ where θ
∗

is the solution to

∇ · a∇θ∗ + k2nθ∗ = 0 in D

Δθ∗ + k2θ∗ = 0 in R
d\D(

θ∗
)+ −

(
θ∗
)−

= 0 on ∂D

(∇θ∗ · ν)+ − (a∇θ∗ · ν)− = v(1)∂ · ν on ∂D

(13)

where v(1)∂ denotes the weak limit of v(1) on the boundary of D and is given by

v(1)∂ = k2a(∇yβ)∗u0(x),

and (∇yβ)∗ is the weak limit of ∇yβ(x/ε) on ∂D as ε→ 0.
Of course one may wish to use θ

∗
in the approximation (7) for uε since it is much easier

to compute. In this case, care must be taken as the convergence of θε to θ
∗

is O(ε) for this
case described above (and slower than that for general domains). So, while second order con-
vergence is maintained, to obtain a higher order approximation this is insufficient. Recall that
θε and θ

∗
differ in both the oscillating coefficient and boundary data. Consider an auxilliary

function ψε which has the oscillating coefficient but the limiting boundary data, that is, we let
ψε satisfy

∇ · a∇ψε + k2n(x/ε)ψε = 0 in D

Δψε + k2ψε = 0 in R
d\D

(ψε)
+ − (ψε)

− = 0 on ∂D

(∇ψε · ν)+ − (a∇ψε · ν)− = v(1)∂ · ν on ∂D.

(14)

We then write

εθε = ε(θε − ψε) + ε(ψε − θ∗) + εθ∗ (15)

and note that θε − ψε satisfies the oscillatory equation and has transmission data

(θε − ψε)
+ − (θε − ψε)

− = 0

(∇(θε − ψε) · ν)+ − (a∇(θε − ψε) · ν)− =
(
v(1) − v(1)∂

)
· ν.

6
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We know from our analysis in [12] that if the conormal jump is divided by ε the bounded
limit is maintained, and hence we can move this portion of the error into the second order
boundary correction. We therefore define an adjusted second order boundary corrector θ̂(2)

ε to
be the solution of

∇ · a∇θ̂(2)
ε + k2n(x/ε)θ̂(2)

ε = 0 in D

Δθ̂(2)
ε + k2θ̂(2)

ε = 0 in R
d\D(

θ̂(2)
ε

)+

−
(
θ̂(2)
ε

)−
= u(2) − û(2) = k2β(y)u0(x) on ∂D

(∇θ̂(2)
ε · ν)+ − (a∇θ̂(2)

ε · ν)− =

(
v(1) − v(1)∂

ε
+ v(2) − v(2)

)
· ν on ∂D

(16)

which we know is bounded in L2 [12]. This will take care of the first term in the right-hand
side of (15). For the term ψε − θ

∗
we note that this corresponds to the error in a standard

homogenization problem, and the largest part is taken by its boundary correction. Hence we
introduce the first order limiting boundary corrector to ψε, which we will call θ

∗∗
, to be the

solution to

∇ · a∇θ∗∗ + k2nθ∗∗ = 0 in D

Δθ∗∗ + k2θ∗∗ = 0 in R
d\D

θ∗∗+ − θ∗∗− = 0 on ∂D

(∇θ∗∗ · ν)+ − (a∇θ∗∗ · ν)− = k2(a∇yβ)∗θ∗(x) on ∂D.

(17)

Thus, for the case of convex polygons with rational normals, our second order approximation
with the first order limiting boundary corrector is

uε = u0 + εθ∗ + ε2θ∗∗ + ε2u(2) + ε2θ̂(2)
ε + o(ε2). (18)

In this case, the limit of θ̂(2)
ε as ε→ 0 is the same as the limit of θ(2)

ε , which we denote as θ(2)∗ ,
and is the solution to

∇ · a∇θ(2)∗ + k2nθ(2)∗ = 0 in D

Δθ(2)∗ + k2θ(2)∗ = 0 in R
d\D(

θ(2)∗)+ −
(
θ(2)∗)− = k2β∗u0(x) on ∂D

(∇θ(2)∗ · ν)+ − (a∇θ(2)∗ · ν)− =
(
v(2)∂ · ν

)
on ∂D

(19)

where β
∗

is the weak limit on the boundary as proven in [10]. When a doubly periodic function
on R

2 is restricted to a line of rational slope, its restriction is one dimensionally periodic on
that line. Its weak limit as the period goes to zero will be the one dimensional cell average
corresponding to that line. Therefore, when D is a polygon of rational sides, β

∗
will be constant

on each flat portion of ∂D, equal to its restricted one dimensional cell average. In summary, for
the case of polygons with rational normals, the second order approximation to uε with limiting
boundary correctors at first and second order is

uε = u0 + εθ∗ + ε2θ∗∗ + ε2u(2) + ε2θ(2)∗ + o(ε2). (20)

7
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Remark 3.1. From [10], in the case where D is a domain whose boundary has no flat parts of
rational normal, the limit (∇yβ)∗ will be its Y cell average and therefore zero as it is a gradient
of a Y-periodic function. Thus θ

∗
and θ

∗∗
are identically zero, and the above approximation

is essentially a reshuffling of the first order correction into the second one. Recall that the
order of convergence of θε to θ

∗ ≡ 0 may be slow, and therefore we introduce the intermediary
boundary correction θ̃ε which satisfies

∇ · a∇θ̃ε + k2nθ̃ε = 0 in D

Δθ̃ε + k2θ̃ε = 0 in R
d\D

θ̃+ε − θ̃−ε = 0 on ∂D

(∇θ̃ε · ν)+ − (a∇θ̃ε · ν)− = v(1) · ν on ∂D.

(21)

Notice that θ̃ε has oscillatory boundary data but constant coefficients, and therefore is simpler
to compute than θε since one no longer needs to resolve the microstructure in the interior.
To use the intermediary boundary correction in the second order approximation, one could
consider

uε ≈ u0 + εθ̃ε + ε2u(2) + ε2θ(2)
ε . (22)

Note that θ̂(2)
ε is not necessary here, as there is no difference in transmission data between θε

and θ̃ε. In the numerical examples below, we demonstrate that the approximation above yields
an empirical order of convergence of O(ε3). One could also replace θ(2)

ε with an analogous
intermediary second order boundary correction θ̃(2)

ε in the above.

We can now define the higher order modified boundary terms similarly to (12). Let θ̂(i)
ε be

the solution to

∇ · a∇θ̂(i)
ε + k2n(x/ε)θ̂(i)

ε = 0 in D

Δθ̂(i)
ε + k2θ̂(i)

ε = 0 in R
d\D(

θ̂(i)
ε

)+

−
(
θ̂(i)
ε

)−
=

(
u(i) − û(i)

)
on ∂D

(∇θ̂(i)
ε · ν)+ − (a∇θ̂(i)

ε · ν)− =

(
v(i−1) − v(i−1)∂

ε
+ v(i) − v(i)

)
· ν on ∂D

(23)

with weak limit

∇ · a∇θ(i)∗ + k2nθ(i)∗ = 0 in D

Δθ(i)∗ + k2θ(i)∗ = 0 in R
d\D(

θ(i)∗)+ −
(
θ(i)∗)− = u(i)∗ on ∂D

(∇θ(i)∗ · ν)+ − (a∇θ(i)∗ · ν)− =
(
v(i)∂ · ν

)
on ∂D

(24)

where u(i)∗ is the weak limit of u(i) − û(i), in the case of a square or a convex polygon with
rational normals.

8
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4. Convergence theorems for a square scatterer

For the second order, we show strong L2 convergence of the boundary corrector to its limit
for a sequence εm with fixed cutoff as described previously where D = (0, 1) × (0, 1). We
prove the convergence order piece by piece, in particular, looking at the right-hand side of the
square, i.e. x1 = 1. We abuse notation a bit to set our oscillatory boundary functions to their
restrictions:

β(y2) :=β(δ, y2), v(1)∂(y2) := v(1)∂(δ, y2).

We need to introduce auxiliary problems on a strip G = G+ ∪ G− where

G+ = {y1 � 0; y2 ∈ [0, 1]} and G− = {y1 < 0; y2 ∈ [0, 1]}.

Define Γ := ∂D ∩ {x1 = 1} and

g(x/ε) = a1i
∂β

∂yi
− a1i

∂β

∂yi

Γ = a∇yβ(y) · ν − a(∇yβ)∗.

Let ŵ(y1, y2) solve

∇y · a∇ŵ = 0 in G−

Δyŵ = 0 in G+

ŵ(0, y2)+ − ŵ(0, y2)− = β(y2) on ∂D

∂y1 ŵ(0, y2)+ − a1i∂yiŵ(0, y2)− = g(y2) on ∂D

ŵ [0, 1] − periodic in y2

There existsγ > 0 such that e±γy1∇ŵ ∈ L2(G±).

Such a solution ŵ exists and is unique up to an additive constant across the entire strip G [12].
Because of the exponential decay of all derivatives in both directions at infinity, we have that
ŵ approaches a constant as y1 →±∞. We set

d+ = lim
y1→∞

ŵ and d− = lim
y1→−∞

ŵ,

and let

β∗ = d+ − d−.

Later in this section, we show that β
∗

is the average of β on the boundary of the unit cell. Then
we can similarly define w to be

9
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∇y · a∇w = 0 in G−

Δyw = 0 in G+

w(0, y2)+ − w(0, y2)− = β(y2) − β∗ on ∂D

∂y1w(0, y2)+ − a1i∂yiw(0, y2)− = g(y2) on ∂D

w [0, 1] − periodic in y2

(25)

There existsγ > 0 such that e±γy1∇w ∈ L2(G±). (26)

For w, the additive constant can be chosen so that w itself also decays to zero as |y1| →∞.

Proposition 4.1. Let d+ and d− be defined as above, i.e.

d+ = lim
y1→∞

ŵ and d− = lim
y1→−∞

ŵ.

We have that β
∗
= d+ − d− is given by

β∗ =

∫ 1

0
β(y2) dy2.

Proof. From the definition of ŵ,

ŵ(0, y2)+ − ŵ(0, y2)− = β(y2).

We begin by considering the general Dirichlet problem. Let ŵD, periodic in y2, be the solution
to

∇y · a∇ŵD = 0 y1 � 0, −∞ < y2 < ∞
ŵD(0, y2) = η(y2) −∞ < y2 < +∞

eγy1
∂ŵD

∂yi
∈ L2(G+) i = 1, 2 for some γ > 0

(27)

where η(y2) is extended periodically in y2 with period [0, 1]. Let wD = ŵD − d for some
constant d . Then wD is the unique solution to

∇y · a∇wD = 0 y1 � 0, −∞ < y2 < ∞
wD(0, y2) = η(y2) − d −∞ < y2 < +∞

eγy1
∂wD

∂yi
∈ L2(G+) i = 1, 2 for some γ > 0.

(28)

Recall that the constant d for which wD itself is exponentially small at y1 = ∞ is given by

d =

∫ 1

0
η(y2) dy2.

To see this, note from the Poincaré inequality,

‖ŵD(y1, ·) − ŵD(y1)‖2
L2(0,1) � C

∥∥∥∥∂ŵD

∂y2
(y1, ·)

∥∥∥∥2

L2(0,1)

10
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where C is independent of y1. For clarification, ŵD indicates the average of ŵD in the y2 variable
over the interval (0, 1). Multiply by e2γy1 and integrate in y1 over (0,∞) to get∫

G+

(
eγy1 (ŵD(y1, y2) − ŵD(y1))

)2
dy1 dy2

� C
∫

G+

(
eγy1

∂ŵD

∂y2

)2

dy1 dy2 < ∞.

Therefore eγy1 (ŵD(y1, y2) − ŵD(y1)) ∈ L2(G+). Note that

d
dy1

ŵD(y1) =
d

dy1

∫ 1

0
ŵD(y1, y2) dy2 =

∫ 1

0

∂ŵD

∂y1
dy2 = 0

from the periodicity of ŵD. Therefore

ŵD(y1) = ŵD(0) = d

Hence ŵD(y1) − d = 0, and eγy1 (ŵD(y1) − d) ∈ L2(G+). Because eγy1 (ŵD(y1, y2) − ŵD(y1)) ∈
L2(G+), we conclude that

eγy1wD = eγy1 (ŵD − d) ∈ L2(G+).

Note that −d therefore satisfies the problem on G−.
Using this fact, and the definition of d+ and d−, we have

d+ =

∫ 1

0
ŵ(0, y2)+ dy2 and d− =

∫ 1

0
ŵ(0, y2)− dy2.

Therefore

β∗ = d+ − d− =

∫ 1

0

(
ŵ(0, y2)+ − ŵ(0, y2)−

)
dy2 =

∫ 1

0
β(y2) dy2.

�
With these results, we have the following convergence theorem.

Remark 4.1. In the following proof, we replace v(2) − v(2) by v(2)∂ . Using the analogue
of θε − θ

∗
, by lemma 5.1 in [10], we see that the piece remaining after this substitution is

much like the first order boundary corrector, and so we expect the convergence order to be
O(ε).

Theorem 4.1. (a isotropic) Let D = (0, 1) × (0, 1) be the unit square and let εm be a
sequence approaching zero such that 1

εm
− � 1

εm
� = δ f or all m. Let BR be a ball of radius

R > 0 which contains D. Then if a is a positive constant and θ̂(2)
εm

solves (16) together with the
Sommerf eld radiation condition at infinity f or ε = εm, we have that

‖θ̂(2)
ε − θ(2)∗‖L2(BR) � CRε

1/2‖u0‖H1(D)

where CR has no dependence on ε or u0 and θ(2)∗ solves (19).

Proof. We write the beginning of the proof allowing for more general matrix a so that we
can point out where we need a to be isotropic. Without loss of generality, we can assume that

11
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the Dirichlet part of the jump data is zero in a neighborhood of the corners. If we were to only
have small-support Dirichlet jumps and no Neumann jumps, the L2-norm would go to zero. To
justify this assumption, we use the L2-boundedness of θ̂(2)

ε which can be proven similarly to
that of θε in the appendix of [12]. Decompose θ̂(2)

ε solving (16) into θ̂(2)
ε = ψ(1)

ε + ψ(2)
ε where

ψ(1)
ε satisfies

∇ · a∇ψε
(1) + k2n(x/ε)ψε

(1) = 0 in D

Δψε
(1) + k2ψε

(1) = 0 in R
2\D(

ψε
(1)
)+ −

(
ψε

(1)
)−

= 1x1=1k2β∗u0(x) on ∂D

(∇ψε
(1) · ν)+ − (a∇ψ(1)

ε · ν)− = 1x1=1

(
v(2)∂ · ν

)
on ∂D

(29)

and ψ(2)
ε solves

∇ · a∇ψε
(2) + k2n(x/ε)ψε

(2) = 0 in D

Δψε
(2) + k2ψε

(2) = 0 in R
2\D(

ψε
(2)
)+ −

(
ψε

(2)
)−

= 1x1=1k2(β(x/ε) − β∗)u0(x) on ∂D

(∇ψε
(2) · ν)+ − (a∇ψ(2)

ε · ν)− = 1x1=1ε
−1g(x/ε)u0(x) on ∂D

(30)

complemented with the Sommerfeld radiation condition at infinity. By homogenization theory
in the first order, we have that

‖ψ(1)
ε − θ(2)∗‖L2(BR) � CRε.

Define V(x2) to be the restriction of u0(x) to ∂D ∩ {x1 = 1}, extended as a constant in the x1-
direction and extended by zero for x2 outside of (0, 1). By our earlier assumption, we have that
V(x2) is zero in a neighborhood of x2 = 0, 1, so that this extension is smooth. Define φ(x1) to
be a smooth cutoff function (constant in x2) such that φ ≡ 1 for x1 � 1 and φ ≡ 0 for x1 � 0.
Let

ψ(3)
ε = w

(
x1 − 1

ε
,

x2

ε

)
where w solves (25) with constant chosen so that w goes to zero as y1 →±∞. Set

ψ(4)
ε = ψ(3)

ε V(x2)φ(x1).

Using the triangle inequality, we can bound ψ(2)
ε in L2

loc(R
2) by

‖ψ(2)
ε ‖L2(BR) � ‖ψ(2)

ε − ψ(4)
ε ‖L2(BR) + ‖ψ(4)

ε ‖L2(BR).

Because of the way w was defined, there exists γ > 0 such that e±γy1∇w ∈ L2(G±). By
definition of ψ(4)

ε , we have

|ψ(4)
ε | � Ce−γ

|x1−1|
ε ‖u0‖H1(D).

12
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Let Φ ∈ C∞
0 (D) be any test function. For fixed 0 < x2 < 1, integrating by parts and using the

weak derivative of |Φ|, we have

∫ 1

0
exp

(
γ

x1 − 1
ε

)
|Φ| dx1 � Cε

(∫ 1

0

∣∣∣∣ ∂

∂x1
Φ(x1, x2)

∣∣∣∣2 dx1

)1/2

.

Therefore we have

‖ψ(4)
ε ‖L2(BR) � Cε‖u0‖H1(D).

By definition of ψ(2)
ε and ψ(4)

ε , the residual ψ(2)
ε − ψ(4)

ε solves

∇ · a∇
(
ψε

(2) − ψ(4)
ε

)
+ k2n(x/ε)

(
ψε

(2) − ψ(4)
ε

)
= −2a∇ψ(3)

ε · ∇Vφ− ψ(3)
ε a : ∇∇(Vφ) − k2nψ(3)

ε Vφ in D

Δ
(
ψε

(2) − ψ(4)
ε

)
+ k2

(
ψε

(2) − ψ(4)
ε

)
= −2∇ψ(3)

ε · ∇Vφ− ψ(3)
ε Δ(Vφ) − k2ψ(3)

ε Vφ in R
2\D

(
ψε

(2) − ψ(4)
ε

)+ −
(
ψε

(2) − ψ(4)
ε

)−
=0 on ∂D

∇
(
ψε

(2) − ψ(4)
ε

)+ · ν − a∇
(
ψε

(2) − ψ(4)
ε

)− · ν =− a12w
−V ′(x2) on ∂D.

(31)

It is at this point we need to assume that a is a scalar constant, which makes the above
conormal residual jump equal to zero. With Φ ∈ C∞

0 (D), using integration by parts we then
have ∣∣∣∣∫

D
ψ(3)
ε aΔ(Vφ)Φ d x

∣∣∣∣ �
∣∣∣∣∫

D
a∇ψ(3)

ε · ∇(Vφ)Φ d x

∣∣∣∣
+

∣∣∣∣∫
∂D

a∇(Vφ) · ν ψ(3)
ε Φ d x

∣∣∣∣ = ∣∣∣∣∫
D

a∇ψ(3)
ε · ∇(Vφ)Φ d x

∣∣∣∣ .
Therefore we can find a bound for the right-hand side term of the partial differential equation
that the residual solves inside D by looking at the bound of∣∣a∇ψ(3)

ε · ∇(Vφ) + k2n(x/ε)ψ(3)
ε Vφ

∣∣ .
As before, due to the exponential decay of w, we have

|∇ψ(3)
ε | � |∇w| � ε−1|∇yw| � C

ε
e−γ

|x1−1|
ε .

Therefore we have∣∣∣∣∫
D

a∇ψ(3)
ε · ∇(Vφ)Φ d x

∣∣∣∣ � C
ε

∫
D

exp

(
γ

x1 − 1
ε

)
|∇(Vφ)| |Φ| d x.

13
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Because ∇(Vφ) is bounded in D, we must have that∣∣∣∣∫
D

a∇ψ(3)
ε · ∇(Vφ)Φ d x

∣∣∣∣ � C
∫

D

1
ε

exp

(
γ

x1 − 1
ε

)
|Φ| d x.

Similarly to before, for fixed 0 < x2 < 1, we have that

∫ 1

0

1
ε

exp

(
γ

x1 − 1
ε

)
|Φ| dx1 � Cε1/2

(∫ 1

0

∣∣∣∣ ∂

∂x1
Φ(x1, x2)

∣∣∣∣2 dx1

)1/2

.

Integrating the above over x2 and using the Cauchy–Schwartz inequality again, we have∫
D

1
ε

exp

(
γ

x1 − 1
ε

)
|Φ| d x � Cε1/2‖Φ‖H1

0 (D).

Therefore

‖a∇ψ(3)
ε · ∇(Vφ)‖H−1(D) � Cε1/2.

Moreover, using the fact that n ∈ C∞(D), we have

‖k2n(x/ε)ψ(3)
ε Vφ‖L2(BR) � Cε‖u0‖H1(D).

Therefore we can bound the data for the residual inside D by Cε1/2‖u0‖H1(D). We can bound
the data for the residual outside of D similarly. Thus we have shown that

‖ψ(2)
ε ‖L2(BR) � ‖ψ(2)

ε − ψ(4)
ε ‖L2(BR) + ‖ψ(4)

ε ‖L2(BR)

� Cε1/2‖u0‖H1(D) + Cε‖u0‖H1(D)

� Cε1/2‖u0‖H1(D)

which completes the proof. �

Remark 4.2. Note that any domain which has a flat boundary portion with rational normal
will yield a nonzero limit, and therefore the above theorems hold for such a domain in general
for the piece of θ̂(2)

ε which lives on the flat part. For the case when a is anisotropic, the residual
ψ(2)
ε − ψ(4)

ε has nonzero conormal jump in (31). In this case one can show that the convergence
satisfies

‖θ̂(2)
ε − θ(2)∗‖L2(BR) � CRε

1/2(‖u0‖H1(∂D) + ‖u0‖H1(D)). (32)

Unfortunately, in the case of a polygon, one may not always have u0 in H1(∂D). However, for
a smooth domain which has a flat boundary portion with rational normal or for certain choices
for matrix a one may have u0 in H3/2(D), and therefore we include the above estimate in this
remark. Note that for the case of a general domain with flat boundary portion, one would need
to use a change of variables to translate to the side of a square.

14
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Figure 1. Real (left) and imaginary (right) parts of the error uε − (u0 + εθ
∗
+ ε2θ

∗∗
+

ε2u(2)) (red) vs second order limiting boundary corrector ε2θ(2)∗ (blue) assuming n(y) =
2 + sin(2πy) and ε = 1/4.3, k = 1. The scatterer D is defined to be (0, 1), and we plot
both inside and outside of the scatterer for x ∈ (−1.5, 2.5).

Figure 2. Absolute error between uε and second order approximations with oscillatory
boundary correctors as in (7) (left) and limiting boundary correctors as in (20) (right)
assuming n(y) = 2 + sin(2πy) and ε = 1/4.3, k = 1. Note that the order of error is the
same for both approximations. The scatterer D is defined to be (0, 1), and we plot both
inside and outside of the scatterer for x ∈ (−1.5, 2.5).

5. One dimensional problem

We now study numerically the use of the limiting second order approximation proposed in
(20). Using this approximation, we observed an empirical order of convergence of O(ε3), in
the case where the periodic scattering media occupies the interval (0, 1). We include plots
of the real and imaginary parts of ε2θ(2)∗ alongside the real and imaginary parts of the error
between uε and u0 + εθ

∗
+ ε2θ∗∗ + ε2u(2) for ε = 1/4.3 in figure 1. Note that ε2θ(2)∗ is suffi-

cient to act as the second order boundary corrector in both the domain and the exterior field.
In figure 2 we show that the order of absolute error is the same using oscillatory boundary
correctors as in the second order approximation (7) vs using limiting boundary correctors as
in (20).

15
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Figure 3. Circular domain with smooth n(y) given by (33). Contour plots of uε − u0 −
εθε (left) vs ε2u(2) (right) assuming ε = 1/3 and k = 1. Note that the PML region begins
at r = 1.75.

Figure 4. Circular domain with smooth n(y) given by (33). Contour plots of uε − u0 −
εθε − ε2u(2) (left) vs ε2θ(2)

ε (right) assuming ε = 1/3 and k = 1. Note that the PML region
begins at r = 1.75.

6. Two dimensional problem

6.1. Circular domain

We first consider a smoothly varying n. Let D be the circle of radius 1 centered at the origin,
a = I (the identity), and consider the true solution uε with

n(y) = 2 + sin(2πy1) + cos(2πy2). (33)

Assume the incident wave ui is given by eik(cosθx1+sinθx2) for some θ ∈ [0, 2π). The follow-
ing numerical computations are performed in the open source finite element package Net-
gen/NGSolve [36]. We numerically compute the scattered solution us using cubic finite
elements with radial perfectly matched layers to model the radiation boundary conditions.
The scattered field of the homogenized solution can be computed similarly. Since the limit-
ing boundary correctors for a smooth domain with no flat parts are zero, we compute θε, û(2),
and θ(2)

ε using the same methodology.
Numerical results in figure 3 show that ε2u(2) corrects for the oscillatory behavior remaining

in the bulk after the addition of εθε as described in the theory. Moreover, figure 4 shows that
ε2θ(2)

ε corrects both in the domain and in the far field. In figure 5 we plot log2(ε) vs log10(E)
where E is the error in the L2-norm for the varying approximations. The slopeα is the observed
order of convergence O(εα). Note that the empirical order of convergence α which we are

16



Inverse Problems 36 (2020) 065009 F Cakoni et al

Figure 5. Circular domain with smooth n(y) given by (33). Log–log plot showing the
observed convergence εα: error without boundary correction (blue), error with first
boundary correction εθε (red), error with first order boundary correction and second order
bulk correction εθε + ε2u(2) (pink), error with second order bulk correction and first and
second order boundary correction εθε + ε2u(2) + ε2θ(2)

ε (green), ε = 1/2.1, 1/2.6, and
1/3.1.

observing for the rate at which θ(2)
ε is converging to its limit θ(2)∗ = 0 is 0.695 449. Replacing

θ̃ε with θε yields similar numerical results.

6.2. Square domain

We now consider a smoothly varying periodic n on a square. Let D = (0, 1) × (0, 1), a = I (the
identity), and consider the true solution uε with n(y) = n(y1) = 2 + sin(2πy1).

Recall the second order approximation with first order limiting boundary correction given
in (18) as

uε = u0 + εθ∗ + ε2θ∗∗ + ε2u(2) + ε2θ̂(2)
ε + o(ε2).

We numerically compute the true solution as before as well as the approximation above and
observe an empirical order of convergence of O(ε3). In figure 6, one sees that ε2u(2) corrects for
the oscillatory behavior remaining in the bulk after the addition of εθ

∗
+ ε2θ

∗∗
. Furthermore,

numerical results in figure 7 show that ε2θ̂(2)
ε acts to correct the remaining error noticeable at

the boundary of D. In figure 8, we show that the difference between θ̂(2)
ε and θ(2)∗ contains

only oscillations as θ(2)∗ is a subsequential limit with no oscillatory behavior. We also include
a log-log plot of the empirical order of convergence of θ̂(2)

ε to θ(2)∗ for different cutoffs of ε.
Note that we are observing O(ε1/2) convergence as seen in the theory.

6.3. Exterior field expansion and inversion

We investigate the use of the expansion

uε(x) ≈ u0 + εθε

17
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Figure 6. Square domain with smooth n(y) = 2 + sin(2πy1). Contour plots of uε − u0 −
εθ

∗ − ε2θ
∗∗

(left) vs ε2u(2) (right) assuming ε = 1/3 and k = 1. Note that the PML region
begins at the circle centered at (0.5, 0.5) with radius 1.75.

Figure 7. Square domain with smooth n(y) = 2 + sin(2πy1). Contour plots of uε − u0 −
εθ

∗ − ε2θ
∗∗ − ε2u(2) (left) vs ε2θ̂(2)

ε (right) assuming ε = 1/3 and k = 1. Note that the
PML region begins at the circle centered at (0.5, 0.5) with radius 1.75.

as a model for exterior field measurements to recover properties of n(x). Let us assume that
one can read the solution uε in the far field. Recall the first order approximation for uε, that
is,

uε ≈ u0 + εθ̃ε,

where θ̃ε solves (8) with n in place of n(x/ε). From [10], we can write θ̃ε as the single layer
potential

θ̃ε(z) = k2
∫
∂D

a∇yβ(x/ε) · ν u0(x)Ga,n(z, x) dσx

where Ga,n is the fundamental solution corresponding to a background with the homogenized
scatterer embedded. Using integration by parts and because ∇y · a∇yβ = n − n, we have the
following approximation in the exterior field

uε(z) ≈ u0(z) + εθ̃ε(z)

≈ u0(z) + k2
∫

D
(n − n(x/ε))u0(x)Ga,n(z, x) d x + O(ε2). (34)
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Figure 8. Square domain with smooth n(y) = 2 + sin(2πy1). On the left, contour plot
of θ̂(2)

ε − θ(2)∗ (right) assuming ε = 1/3 and k = 1. Note that the PML region begins at
the circle centered at (0.5, 0.5) with radius 1.75. On the right, log–log plot showing the
observed convergence εα: error of θ̂(2)

ε − θ(2)∗ for different cutoffs δ.

Assuming one knows the location of the scatterer D, the constant a, the average n, ε, and can
control the incident wave, one can use the above expansion to recover an approximation of
n(x/ε) as a finite sum of smooth periodic elements.

One may also use the second order ε2 terms to model the far field information,

uε ≈ u0 + εθ̃ε + ε2θ∗∗ + ε2û(2) + ε2θ̃(2)
ε + O(ε3), (35)

which could be used to recover nβ and ∇yβ. One can write the second order bulk correction
û(2) using the fundamental solution

û(2)(z) = −k4nβ
∫

D
u0(x)Ga,n(z, x) d x, (36)

and similarly, using integration by parts, the second order boundary corrector θ̃(2)
ε can be written

using layer potentials

θ̃(2)
ε (z) =

k2

ε

∫
D

(∇yβ · ∇xGa,n)u0(x) d x + k2
∫

D
(∇xu0 · ∇xGa,n)β(x/ε) d x

+ k2
∫

D
β(x/ε)u0(x)ΔGa,n(z, x) d x +

k2

ε

∫
D
∇x(u0Ga,n) · (a∇yβ) d x

+
k2

ε2

∫
D

(∇y · a∇yβ)u0(x)Ga,n(z, x) d x − k2

ε

∫
∂D

(
a∇yβ

∗ · ν
)

u0(x)Ga,n(z, x)dσx

− k2
∫
∂D
β∗(a∇u0 · ν)Ga,n(z, x)dσx.

Plugging this into (35) along with (36), we derive the second order far field approximation for
a general domain to be
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uε(z) ≈ u0(z) + k2
∫

D
(n − n(x/ε))u0(x)Ga,n(z, x) d x

+ 2εk2
∫

D
a∇yβ(x/ε) · ∇x(u0(x)Ga,n(z, x)) d x

+ εk2
∫
∂D

[(
∇yβ · ν

)
−
(
a∇yβ · ν

)∗]
u0(x)Ga,n(z, x) dσx

+ εk2
∫

D
(n − n(x/ε))θ∗Ga,n d x − ε2k4nβ

∫
D

u0(x)Ga,n(z, x) dx

− ε2k2
∫
∂D
β∗ (a∇u0(x) · ν) Ga,n(z, x) dσx + O(ε3).

For smooth domains with no flat parts, we have that β
∗
= 0, and hence the approximation

above can be simplified to

uε(z) ≈ u0(z) + k2
∫

D
(n − n(x/ε))u0(x)Ga,n(z, x) d x

+ 2εk2
∫

D
a∇yβ(x/ε) · ∇x(u0(x)Ga,n(z, x)) d x

+ εk2
∫
∂D

(
∇yβ · ν

)
· ν u0(x)Ga,n(z, x) dσx

− ε2k4nβ
∫

D
u0(x)Ga,n(z, x) d x + O(ε3).

For the following numerical experiments, we use (34) to recover properties of n(x). The tech-
niques presented are implemented in the open source finite element package Netgen/NGSolve
[36].

6.3.1. Smooth n. We first consider a smoothly varying periodic n on a circle. Let D be the
circle of radius 1 centered at (0, 0), a = I (the identity), and consider the solution uε with
(33). Assume the incident wave ui is given by eik(cosθx1+sinθx2). We simulate data outside the
scatterer by numerically computing the true solution and the homogenized solution using
cubic finite elements with radial perfectly matched layers to model the radiation boundary
conditions. We read (uε − u0)(z) at K equidistant points z ∈ R

2 lying on the circle of radius
1.99 centered at (0, 0). We repeat this procedure for N incident waves by varying θ in the
incident wave. The Green’s function Ga,n(z, x) is computed using cubic finite elements with
perfectly matched layers for each z1, . . . , zK. In order to estimate the delta function, we use a
Gaussian,

δ(x, y) = lim
σ→0

1
2πσ2

e−((x−z1)2+(y−z2)2)/(2σ2), z = (z1, z2) (37)

with σ = 1/59. We then use a basis of M smooth periodic elements to approximate n(x), that
is, n(x/ε) ≈ n +

∑M
j=1 c jφ j(x/ε), and solve for the unknown coefficients in

uε(z) − u0(z) ≈ −k2
M∑

j=1

c j

∫
D
φ j(x/ε)u0(x)Ga,n(z, x) d x. (38)
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Figure 9. Results of numerical inversion with n(x/ε) given by (33) (left) and recovered
n (right) plotted on the circular scatterer D with radius r = 1, ε = 1/4. Data is read in
the exterior field at a radius of r = 1.99.

Figure 10. Relative error between n(x/ε) given by (33) and recovered n given in
figure 9.

As the system we create is of coursed ill-posed, hence we solve the regularized least-squares
problem

min ‖b − Ax‖2
2 + α‖x‖2

2

where α is the regularization strength. Numerical results in figure 9 show that the first order
approximation of the exterior field given in (34) allows us to recover qualitative properties of
n(x). In figure 10, we plot the relative error between the true n(x/ε) given by (33) and the
recovered n. The L1 norm of the relative error is 0.000 582 83.

For results in figure 9, we use N = 3 incident waves, K = 3 equidistant points, and M = 9
smooth periodic elements, as our true n(y) lies within our test space. For this example, we
also consider imperfect data by introducing 1%, 5%, and 10% noise to the data. We use a
Gaussian with zero mean and standard deviation 1 to model the noise. In figure 11, we observe
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Figure 11. Results of numerical inversion with n(y) = 2 + sin(2πy1) + cos(2πy2) and
recovered n with noise, circular scatterer D with radius r = 1, ε = 1/4. From left to
right: percentage of noise is 1%, 5%, and 10%. Data is read in the exterior field at a
radius of r = 1.99.

Figure 12. Inversion with n(x/ε) given by (39) and recovered n for the circular scatterer
D of radius 1, ε = 1/4. Top left: true solution n, top right: recovered n reading data in
the exterior field on the circle r = 1.1, bottom left: recovered n reading data at r = 1.5,
bottom right: recovered n reading data at r = 1.99.

a relatively accurate approximation for n(x) for small noise. As the noise grows, our recovery
of n deteriorates.

6.3.2. Piecewise constant layering. Let D again be the unit circle. In this example, we choose
a piecewise-constant periodic n(y) with high contrast,

n(y) =

{
6 y1 ∈ [0, 0.5)

2 y1 ∈ [0.5, 1).
(39)

We again assume we know ε, the location of the scatterer D, and that the interior of the scat-
terer has a periodic structure by modeling n using two-dimensional, smoothly varying periodic
elements. Again, we see that the first order approximation of the far field allows us to recover
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Figure 13. Results of numerical inversion with n(x/ε) given by (39) (left) and recovered
n (right) for the square scatterer D = (−0.5,−0.5) × (0.5, 0.5), ε = 1/4. Data is read at
a radius of r = 1.

Figure 14. n(y) defined as in (40) plotted on cell Y = [0, 1] × [0, 1].

n(x), as shown in figure 12. We also vary the radius at which we read our data. Note that as our
data approach ∂D, the n is better resolved. However, the approximations of n produced from
reading a bit further away ∂D, namely at r = 1.5 and r = 1.99, are still reasonable. In figure 13
we show the same simulation results for a square scatterer, D = (−0.5,−0.5)× (0.5, 0.5). For
the case of the square scatterer, we read the error in the scattered field on the circle centered at
the origin of radius 1.

6.3.3. Checkerboard. For the next example, we choose a piecewise-constant periodic n
varying in two dimensions given by
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Figure 15. Results of numerical inversion with n(x/ε) given by (40) and recovered n
plotted on the circular scatterer D of radius 1, ε = 1/4. Top left: true solution n, top
right: recovered n reading data in the scattered field on the circles r = 1.1, bottom left:
recovered n reading the data in the scattered field on the circle r = 1.5, bottom right:
recovered n reading the data in the scattered field on the circle r = 1.99.

n(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 y1 ∈ [0, 0.5), y2 ∈ [0, 0.5)

2 y1 ∈ [0, 0.5), y2 ∈ [0.5, 1)

2 y1 ∈ [0.5, 1), y2 ∈ [0, 0.5)

1 y1 ∈ [0.5, 1), y2 ∈ [0.5, 1)

(40)

as shown in figure 14. Once again, we assume we know ε, the location of the scatterer D, and
that the interior of the scatterer has a periodic structure by modeling n using two-dimensional,
smoothly varying periodic elements. Numerical results in figure 15 show the accuracy of the
first order approximation in recovery of qualitative properties of n(x) when D is a circle. Once
again, we show results for varying radii at which we read the data. Results in figure 16 show
our recovery for the checkerboard when D is a square.

Remark 6.1. The above reconstruction approach recovers the small highly oscillating part
of the refractive index as perturbation of the effective homogenized medium, meaning that n
and the support D are known. These are not restrictive assumptions since from the same type
of data we use, one can first determine the ∂D by means of any of the linear or factoriza-
tion methods [13] which can reconstruct the support without any knowledge of the refractive
index. Furthermore, if such data is collected for a range of frequencies, it is possible to deter-
mine the lowest transmission eigenvalue corresponding to the inhomogeneity [13], which for
the current case, is sufficient to estimate the constant n, as discussed e.g. in [11]. The inversion
method here also assumes periodicity and the knowledge of the period ε, but no other apriori
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Figure 16. Results of numerical inversion with n(x/ε) given by (40) (left) and recovered
n (right) plotted on the square scatterer D = (−0.5,−0.5) × (0.5, 0.5), ε = 1/4. Data is
read at a radius of r = 1.

information about the medium. We believe that a detailed asymptotic analysis of the transmis-
sion eigenvalue problem with explicit first correction term will allow us to estimate the period
from the measured first transmission eigenvalue, and we plan to pursue this in a forthcoming
study.
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