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Abstract

We investigate how to model the beliefs of an agent who
becomes more aware. We use the framework of Halpern
and Rêgo (2013) by adding probability, and define a
notion of a model transition that describes constraints
on how, if an agent becomes aware of a new formula ϕ
in state s of a model M , she transitions to state s∗ in
a model M∗. We then discuss how such a model can
be applied to information disclosure.

1 Introduction
Agents must sometimes take actions in situations that
they do not fully comprehend. Work in computer sci-
ence, economics, and philosophy has sought to cap-
ture this formally by considering agents who are un-
aware of some aspects of the world. (See, e.g., (Fa-
gin and Halpern 1988; Halpern and Rêgo 2013; Mod-
ica and Rustichini 1994; 1999; Heifetz et al. 2006;
Board and Chung 2009; Sillari 2008).) Most work on
awareness thus far has focused on the static case, where
awareness does not change. The focus of this paper is
the dynamic case: how to how to model the beliefs of
an agent who becomes more aware.

When there is no unawareness, the standard ap-
proach to dealing with beliefs is well understood; we
update by conditioning. However, it is far from clear
how beliefs should change when an agent becomes aware
of new features. For example, a mathematician who
becomes aware of the Riemann hypothesis, but learns
nothing beyond that, may change his methods of proof
and his beliefs about what is true, despite not having
learned that any particular event has obtained. When
an agent becomes more aware, his entire (subjective)
view may change. In this paper, we propose a model
for the dynamics of increased awareness for agents who
are introspective, and so can reason about their own
and other’s awareness (and lack of it).

We work with a probabilistic extension of the frame-
work of Halpern and Rêgo (2013) where agents under-
stand that they themselves may be unaware of some
propositions, but cannot directly reason about or ar-
ticulate such propositions. Instead the agents consider
states (possible worlds) that contain shadow proposi-
tions—proxies that represent an agent’s vague concep-

tion of those propositions of which he is unaware. We
define a notion of a model transition that describes con-
straints on how, if an agent becomes aware of a new
formula ϕ in state s of a model M , she transitions to
state s∗ in a model M∗. When an agent becomes aware
of a formula that she was previously unaware of, she
associates the novel propositions with shadow proposi-
tions she previously considered. The states of the up-
dated model resemble the original states except that
some shadow propositions may be replaced by the novel
propositions contained in the newly discovered formula.

The transition rule allows uncertainty to both in-
crease (because the agent can be uncertain about how to
interpret the new propositions) and decrease (because
by making a discovery, the agent learns about his own
unawareness). This is in contrast to reverse Bayesian-
ism which, roughly speaking, requires that if the agent
is aware of both ψ and ψ′, and becomes aware of ϕ, then
his assessment regarding the relative likelihood of ψ and
ψ′ should not change (Karni and Vierø 2013). Karni
and Vierø’s requirement does not seem appropriate for
many situations of interest, especially for introspective
agents, who may believe that the mere existence of ϕ is
itself informative about the world—so becoming aware
of ϕ changes beliefs about other propositions.

For example, suppose that agent i believes it is very
likely that he is fully aware and observes j taking ques-
tionable actions. He might then reasonably believe that
agent j is not rational. But then suppose that i becomes
aware of some fact ϕ of which he was not previously
aware. Since he now acknowledges that he did not fully
understand the situation, i considers it more likely that
j can rationalize his behavior. Hence, simply by be-
coming aware of ϕ, i changes his assessment of j being
rational.

We then discuss how such a model can be applied
to information disclosure. Many economic models pre-
dict voluntary disclosure due to strategic concerns (be-
cause no news is interpreted as bad news). For example,
consider restaurant health code inspections, which rate
restaurants on a scale of A-F. Surely, an A restaurant
would display the rating in the window, so a rational
and fully aware patron who sees a restaurant without
a rating can assume that the restaurant does not have



an A rating. But then, B restaurants would want their
rating to be known, rather than having patrons wonder
where in the B to F range they fall; hence B restaurants
will also post their ratings. Continuing inductively, it
follows that all restaurants will disclose their ratings
(except possible those with an F). Economists have used
such analyses to conclude that many types of financial
disclosures will be made voluntarily, so regulation is not
needed.

However, when agents might be unaware of the rating
system, this analysis clearly fails. An agent unaware of
the rating system can draw no conclusion whatsoever
from the lack of a rating. Since disclosure might not
only provide information but also expand awareness,
belief and behavior might change in subtle ways. For
example, we show that whether a restaurateur discloses
a rating is determined by his beliefs about how patrons
will interpret the rating if they were unaware of the
system. In particular, if the restaurateur believes that
patrons view a posted grade as arising from a binary
pass-fail system, then the B restaurant might withhold
its rating, despite B objectively being an above-average
rating.

More generally, there is a growing experimental lit-
erature suggesting that subjects often fail to prop-
erly reason about hypothetical or counterfactual events,
and thus deviate from the predictions of rational (and
omniscient) agents; see, for example, (Esponda and
Vespa 2014; John et al. 2016; Cox et al. 2017;
Jin et al. 2018). Such deviations need not result from
wholesale irrationality, but could arise from subjects’
unawareness of the relevant counterfactuals, for exam-
ple, being unaware of the actions an opponent could
have taken but did not. Our model provides a frame-
work for considering unawareness in a strategic setting,
and in particular, about the effect of agents’ beliefs
about other agents’ reactions to becoming more aware.

The rest of this paper is organized as follows: Sec-
tion 2 introduces the syntax and semantics of our static
propositional logic. We extend this model to a dynamic
environment in Section 3. The key definition is of a
transition rule, which captures how a model can change
when an agent becomes aware of a new formula. Sec-
tion 4 shows how thinking in terms of transition rules
can be helpful in making predictions in economic en-
vironments of information disclosure, where one agent
can strategically decide to make another agent aware of
a new formula. Finally, Section 5 concludes.

2 A (Static) Propositional Logic of
Awareness and Probabilistic Beliefs

In this section, we introduce a propositional logic of
awareness and probability that essentially combines
ideas from the propositional logic of awareness intro-
duced by Halpern and Rêgo (2013) (henceforth HR13)
and the logic of knowledge and probability introduced
by Fagin and Halpern (1994) (henceforth FH94). The
syntax of the logic is as follows: given a set {1, . . . , n}

of agents, formulas are formed by starting with a count-
ably infinite set Φ = {p1, p2, . . .} of primitive proposi-
tions and a countably infinite set X of variables, and
then closing off under conjunction (∧), negation (¬),
the modal operators Ai, Xi, i = 1, . . . , n, likelihood for-
mulas of the form a1`i(ϕ1) + · · ·+ ak`i(ϕk) > b, where
a1, . . . , ak, b are rational numbers, and quantification,
so that if ϕ is a formula, then so is ∀xϕ.

Some comments on the syntax: Following Fagin and
Halpern (1988), Xi denotes explicit knowledge (or be-
lief); Xiϕ is true if, in addition to ϕ being true in all
states that i considers possible, i is aware of ϕ. We cap-
ture awareness using the Ai modality; Aiϕ means that i
is aware of ϕ. Awareness is syntactic, so i may be aware
of p1 but not aware of p1 ∧ (p2 ∨ ¬p2). In this paper,
we assume for simplicity that awareness is generated by
primitive propositions (an assumption that goes back to
Fagin and Halpern (1988)), so that an agent is aware of
a formula iff he is aware of all the primitive propositions
in the formula). Following HR13, we use quantification
to capture knowledge of unawareness. For example,
the formula Xi(∃x¬Ai(x)) says that agent i (explicitly)
knows that there is a formula that he is unaware of. (As
usual, ∃xϕ is an abbreviation for ¬∀x¬ϕ.) The `i in a
likelihood formula can be interpreted as probability, so
a formula such as a1`i(ϕ1) + a2`i(ϕ2) > b says that a1
times the probability of ϕ1 plus a2 times the probability
of ϕ2 is at least b. Call this language L∀,X,`,An (Φ).

As in first-order logic, we can define inductively what
it means for a variable x to be free in a formula ϕ. Intu-
itively, an occurrence of a variable is free in a formula if
it is not bound by a quantifier. A formula that contains
no free variables is called a sentence. If ψ is a formula,
let ϕ[x/ψ] denote the formula that results by replacing
all free occurrences of the variable x in ϕ by ψ. (If there
is no free occurrence of x in ϕ, then ϕ[x/ψ] = ϕ.) Unlike
standard quantified modal logic, where the quantifiers
range over propositions (intuitively, sets of states), fol-
lowing HR13, here the quantifiers range over quantifier-
free sentences. Thus, ∀xϕ is true iff ϕ[x/ψ] is true for all
quantifier-free sentences ψ. Roughly speaking, we want
quantification to range over formulas, since Ai is syntac-
tic. However, it cannot range over all formulas, since,
for example, the formula ∀x(x) would then be true iff
all formulas (including itself) were true, and we would
not be able to get a recursive definition of truth. We
avoid these difficulties by taking the domain of quan-
tification to be the quantifier-free sentences. (See HR13
for further discussion of these syntactic constraints.)

We give semantics to these formulas in probabilis-
tic awareness structures. Given Φ, let Φ+ consist of
Φ together with an infinite set Φ′ = {q1, q2, . . .} (dis-
joint from Φ) of special primitive propositions that we
call shadow propositions; we explain their role below.
A probabilistic awareness structure for n agents (over
Φ+) is a tuple M = (S, π, K1, . . ., Kn, A1, . . . ,
An,PR1, . . . ,PRn,L) satisfying the following prop-
erties:

• S is a set of states (or possible worlds), which we take



to be finite for simplicity.

• π : S × Φ+ → {true, false} determines which primi-
tive propositions in Φ+ are true at each state in S.

• Ki is a binary relation on S for each agent i =
1, . . . , n, which for this paper we take to be Euclidean
(if (s1, s2) ∈ Ki and (s1, s3) ∈ Ki, then (s2, s3) ∈ Ki),
transitive, and serial (for all states s, there exists a
state s′ such that (s, s′) ∈ Ki).

• PRi associates with each state s a probability on the
states in Ki(s) = {s′ : (s, s′) ∈ Ki}, where all subsets
of Ki(s) are taken to be measurable and PRi(s

′) =
PRi(s) if s′ ∈ Ki(s).

• Ai is a function associating a set of propositions with
each state in S, for i = 1, ..., n such that if s′ ∈ Ki(s),
then Ai(s) = Ai(s′).

• L associates with each state s a subset of Φ+; we
require that (∪ni=1Ai(s)) ⊆ L(s) ⊆ (∪ni=1Ai(s)) ∪ Φ′

and that if s′ ∈ Ki(s), then Ai(s) ⊆ L(s′) ⊆ Ai(s) ∪
Φ′.

Intuitively, if (s, s′) ∈ Ki, then agent i considers state
s′ possible at s. The assumption that Ki is Euclidean,
transitive, and serial means that the Ki operator sat-
isfies the axioms of KD45 traditionally associated with
the logic of belief (see (Fagin et al. 1995) for more dis-
cussion).1 Ai(s) is the set of primitive propositions that
agent i is aware of at state s. It is more standard to
take AI(s) to be the set of all formulas that i is aware
of at world s. We are assuming here that awareness is
generated by primitive propositions (Fagin and Halpern
1988); agent i is aware of a formula ϕ if i is aware of all
the primitive propositions in ϕ. Thus, it suffices to take
Ai(s) to consist only of primitive propositions. The fact
that Ai(s′) = A(s) if s′ ∈ Ki(s) means that an agent
knows what he is aware of; similarly, the assumption
that PR(s′) = PR(s) if s′ ∈ Ki(s) means that an
agent knows his beliefs.

Intuitively, L(s) is the language associated with state
s. We certainly want the language to include all
the primitive propositions that some agent is aware
of at state s, but possibly others as well. For ex-
ample, if agent i knows at state s that there is a
formula that no agent is aware of (which can be ex-
pressed as Xi(∃x(¬A1(x) ∧ . . . ∧ ¬An(x))), then at
each state s′ that he considers possible, the language
must include a primitive proposition not in ∪nj=1Aj(s).
Moreover, as noted by HR13, we must allow differ-
ent languages at different worlds to deal with the pos-
sibility that agent i might be unsure of whether he
is aware of all formulas (which can be expressed as
¬Xi¬(∃x¬Ai(x)) ∧ ¬Xi¬(∀x(Ai(x)))). In this case,
there must be states s′ and s′′ inKi(s) such that L(s′) =
Ai(s) and L(s′′) ⊃ Ai(s) (where ⊃ denotes strict su-
perset). If s′ ∈ Ki(s), then we think of the primitive
propositions in L(s′)−Ai(s) as “shadow propositions”.

1As is often done, we blur the distinction between knowl-
edge and belief in this discussion.

Agent i understands that they must exist, at some level,
but since i is not aware of them, he does not really
understand what they denote. Thus, we require that
L(s′) consist of the “real” primitive propositions that
i is aware of and possibly some shadow propositions.
HR13 did not distinguish real and shadow propositions.
Making the distinction has no effect on their axioms in-
volving awareness, but we find it conceptually useful,
especially to discuss belief dynamics in the next sec-
tion. However, it is worth noting that this requirement
means that, in general, Ki will not be reflexive. If L(s)
contains real primitive propositions that agent i is un-
aware of, then we cannot have s ∈ Ki(s).

We now define what it means for a formula to be true
at a state s in a probabilistic awareness structure M by
combining the earlier definitions of FH94 and HR13.
We take L∀,X,`,An (s) to consist of the formulas all of
whose primitive propositions are in L(s). For a formula
ϕ let prop(ϕ) denote the set of primitive propositions
in the formula ϕ.

• (M, s) |= p if p ∈ L(s) and π(s, p) = true;

• (M, s) |= ¬ϕ if ϕ ∈ L∀,X,`,An (s)) and (M, s) 6|= ϕ;

• (M, s) |= ϕ ∧ ψ if (M, s) |= ϕ and (M, s) |= ψ;

• (M, s) |= Aiϕ if prop(ϕ) ∈ Ai(s);
• (M, s) |= Xiϕ if (M, s) |= Aiϕ and (M, s′) |= ϕ for

all s′ ∈ Ki(s);
• (M, s) |= ∀xϕ if (M, s) |= ϕ[x/ψ] for all quantifier-

free sentences ψ ∈ L∀,X,`,An (s);

• (M, s) |= a1`i(ϕ1) + · · · + ak`i(ϕk) > b if
a1PRi(s)([[ϕ1]]M ∩Ki(s))+ · · ·+akPRi(s)([[ϕk]]M ∩
Ki(s)) > b, where [[ϕ]]M = {s′ : (M, s′) |= ϕ}, and
(M, s) |= Ai(ϕ1 ∧ . . . ∧ ϕk).

Example 1. Consider a model with two agents, i and
j, and three states, s1, s2, and s3. L(s1) consists of two
propositions, p and p′, both “real”. In state s1, agent
i is unaware of p′, while j is aware of both. L(s2) =
{p, q}, where q is a shadow proposition. In state s2,
agent j is aware of both p and q, while i is aware only
of p. Finally, L(s3) = {p}, and both agents are aware
of p in state s3. Ki(sk) = {s2, s3} and Kj(sk) = sk for
k = 1, 2, 3.

In state s1, i believes its possible that j is aware of
something he himself is not aware of. However, he can
only describe this state vaguely, envisaging not p′, but
the shadow proposition q. He also considers it possible
that he is fully aware. If p is true at state s2, then
i knows that if he is unaware of something, then p is
true.

3 Dynamics
We now turn our attention to how an agent’s beliefs
should be updated when the agent becomes aware of
a formula ϕ of which he was previously unaware.2 As

2Of course, an agent may become aware of ϕ by learning
ϕ (i.e., by learning that ϕ is true). We view this conceptu-



the general case is notationally complex, to ease ex-
position, we first consider the single-agent case. With
only a single agent, the main concern is how the agent
interprets the formula he becomes aware of, and how
knowledge and probabilistic reasoning depend on his
interpretation. In the general case, considered in the
next subsection, we also need to deal with the beliefs of
other agents, and with higher-order beliefs.

3.1 Dynamics: The Single-Agent Case

Let L∀,X,`,Ai (Φ) denote the language with a single agent
i. Suppose that in state s in a model M = (S, π, Ki,
Ai, PRi, L), the (single) agent i becomes aware of a
formula ϕ of which he was previously unaware. Our
goal is to construct an updated model M∗ = (S∗, π∗,
K∗i , A∗i , PR∗i ,L∗) and state s∗ ∈ S∗ that reflects this.
Each state in M∗ corresponds to some state in M ; the
correspondence is captured by a relation T . We now
explain how T works.

If t is a state such that L(t) has at least as many
shadow propositions that i is unaware of as there are
propositions in ϕ that i is unaware of, then t is consis-
tent with i becoming aware of ϕ. Let cons(M,ϕ, i) ⊆ S
denote the states consistent with i becoming aware of
ϕ in model M . If PRi(s)(cons(M,ϕ, i)) = 0, then
becoming aware of ϕ was an event to which i previ-
ously gave probability 0; i didn’t consider it possible
that there were two primitive propositions of which he
was unaware. In this case, we place no constraints on
how i updates his beliefs; this is analogous to condition-
ing on an event of measure 0. (We make precise below
what “no constraints” means.)

If, on the other hand, PRi(s)(cons(M,ϕ, i)) 6= 0,
then for each t ∈ Ki(s) ∩ cons(M,ϕ, i), i must decide
how to take ϕ into account at t. For example, sup-
pose that at a state s where i is unaware of p and p′,
i becomes aware of the formula p ∧ p′. Further sup-
pose that at t ∈ Ki(s), there are exactly three shadow
propositions, q, q′, and q′′, in L(t). Then i must de-
cide which of q, q′, and q′′ is p and which is p′; i could
in principle decide that none of them is an appropriate
candidate for p (or p′). For example, after becoming
aware of p∧p′, i might consider possible a state t∗ such
that (1) L∗(t∗) = L(t) − {q, q′} ∪ {p, p′}; (2) A∗i (t∗) =
Ai(s)∪{p, p′} (3) π∗(t∗, r) = π(t, r) if r ∈ L(t)−{q, q′},
π∗(t∗, p) = π(t, q), and π∗(t∗, p′) = π(t, q′). Thus, in t∗,
i has replaced the shadow proposition q ∈ L(t) with p,
and q′ with p′. Agent i might also consider possible a
state where q′ is replaced by p and q′′ is replaced by p′.
Roughly speaking, in moving from M to M∗, we want
to replace each state t ∈ Ki(s) by some states compati-
ble with t (each of these states will be related to t by T )
and distribute the probability of t among these states,
and then condition on cons(M,ϕ, i).

ally as the composition of two updates: the update due to
becoming aware of ϕ, followed by the update due to learning
ϕ given that the agent is aware of ϕ, which can be handled
by standard techniques, specifically, conditioning.

The next definition makes precise the relationship be-
tween related states.

Definition 1. f : Φ+ → Φ+ is a ϕ-replacement scheme
if f is the identity on Φ+ − prop(ϕ) (where prop(ϕ)
is the set of propositions in ϕ) and f is injective on
prop(ϕ). A ϕ-replacement scheme f is compatible
with i becoming aware of ϕ at s if f is the iden-
tity on prop(ϕ) ∩ Ai(s) and f(prop(ϕ) − Ai(s)) ⊆
(L(s)∩Φ′)−Ai(s). A state s∗ is an f -replacement for
s if (1) f(L∗(s∗)) = L(s) and (2) π∗(s∗, p) = π(s, f(p))
for all p ∈ L(s∗).

Intuitively, a ϕ-replacement scheme for i describes
how i interprets the propositions in ϕ of which he was
previously unaware, associating each with a different
(shadow) proposition. That is, f maps each proposition
in ϕ that i becomes aware of to some (unique) shadow
proposition that i was unaware of, and leaves all other
propositions alone.

If f(p) = q, then i considers it possible that the
shadow proposition q represents the real proposition
p that appears in ϕ. So as discussed above, if after
becoming aware of p ∧ p′, i considers t∗ where p was
represented by q ∈ L(t) and p′ by q′, then t∗ is a f -
replacement of t where f(p) = q, f(p′) = q′, and f is
the identity otherwise. If PRi(s)(cons(M,ϕ, i)) 6= 0,
then the relation T mentioned above actually associates
each state t∗ ∈ K∗i (s∗) with a pair (t, f), where t ∈ Ki(s)
and t∗ is an f -replacement of t compatible with i bec-
moing aware of ϕ at s.

A situation is a pair (M, s) consisting of a model
M and a state s in M . Fix a set Φ of primitive
propositions and a set I of agents.3 Let M(I,Φ) and
S (I,Φ) consist of all models and situations, respec-
tively, over the language Φ with agents in I. Let
RS (ϕ, i, s) denote the set of ϕ-replacement schemes
compatible with i becoming aware of ϕ at s, and let
RS (ϕ) = {id} ∪ (∪i,sR(ϕ, i, w)) (where id is the iden-
tity function on Φ+).

The next definition is the one that we have been head-
ing for. It describes what counts as an acceptable up-
date from a situation (M, s) to a new situation (M∗, s∗)
that is the result of agent i becoming aware of ϕ. We
capture this using the notion of an acceptable transition
rule τ . Formally, a transition rule τ maps a situation,
a formula, and an agent (for now, necessarily the single
agent i) to a new situation, interpreted as the result
of agent i becoming aware of the formula ϕ when the
initial situation was (M, s). (M∗, s∗) is an acceptable
update from a situation (M, s) after agent i becomes
aware of ϕ if τ((M, s), i, ϕ) = (M∗, s∗) for some accept-
able transition rule τ . Although, conceptually, the ideas
behind the definition are quite straightforward, writing
them down carefully results in a complicated definition.
We give some intuition for the details of the definition

3Although this section deals only with the single-agent
case, so I = {i}, we introduce the more general notation for
so that we can use it in later sections.



immediately after the definition, and then provide an
example that illustrates some of them.

Definition 2. τ : S ({i},Φ) × L∀,X,`,Ai (Φ) ×
{i} → S ({i},Φ) is an acceptable transition rule
for a single agent if for all (M, s) ∈ S ({i},Φ),

ϕ ∈ L∀,X,`,Ai (Φ) if prop(ϕ) ∈ L(s), M =
(S, π,Ki,Ai,PRi,L), τ((M, s), ϕ, i) = (M∗, s∗),
and M∗ = (S∗, π∗,K∗1,A∗1,PR∗1,L∗), then either
prop(ϕ) ⊆ Ai(s) and (M, s) = (M∗, s∗), or prop(ϕ) 6⊆
Ai(s) and there exists a relation T ⊆ S × S∗ × RS (ϕ)
such that the following hold:

T1. For all t∗ ∈ S∗, there exists a unique t ∈ S and
f such that (t, t∗, f) ∈ T ; moreover, t∗ is an f -
replacement of t.

T2. (s, s∗, id) ∈ T and A∗i (s∗) = Ai(s) ∪ prop(ϕ).

T3. If PRi(s)(cons(M,ϕ, i)) 6= 0, then for all
(t, t∗, f) ∈ T the following conditions hold:

(a) K∗i (t∗) = {t† : (t′, t†, f ′) ∈ T, for some t′ ∈
Ki(s) ∩ cons(M,ϕ, i), f ′ ∈ RS (ϕ, i, s)}.

(b) If t′ ∈ Ki(s) ∩ cons(M,ϕ, i), let
rep(t′) = {t† ∈ K∗i (t′) : ∃f ′((t′, t†, f ′) ∈
T )}. Then PR∗i (t

∗)(rep(t′)) =
PRi(s)(t

′)/PRi(s)(cons(M,ϕ, i)).

Note that the conditions in the definition apply only
if prop(ϕ) ⊆ L(s). State s cannot be the actual world
if its language does not include propositions that appear
in a formula that is part of the description of the world.
We do not care what τ does at situations (M, s) that
do not describe the world. For situations that describe
the world, nothing changes if i was already aware of
all the primitive propositions in ϕ. If i was not aware
of all the primitive propositions in ϕ, then we use the
relation T to talk about corresponding states. T1–T3
describe the key properties of the T relation. T1 says
that, in M∗, each state t∗ is an f -replacement of some
state t in S. T2 ensures that the distinguished state s∗

comes from s and, agrees with s as far as the language
and truth of primitive propositions goes (since it is an
id-replacement of s); moreover, i’s awareness changes
appropriately (since i becomes aware of ϕ).

The most interesting requirement is T3, which cap-
tures how i’s beliefs change in states in K∗i (s∗). No-
tice that, by T2 and the constraints on awareness sets,
A∗i (t∗) = Ai(s)∪prop(ϕ) for all states that i considers
possible at s∗. Thus, i’s awareness must be updated
by adding the new propositions in ϕ, and he knows
this has occurred. There are no further constraints if
PRi(s)(cons(M,ϕ, i)) = 0; we have nothing to say
about how i’s beliefs change if i ascribes probability 0
at state s to the possibility of becoming aware of the
new primitive propositions in ϕ.

If i ascribed positive probability to cons(M,ϕ, i),
then each state t′ ∈ Ki(s) ∩ cons(M,ϕ, i) corresponds
to some states t† in Ki(s∗); each such state t† is a pos-
sible replacement of t, for some f ∈ RS (ϕ, i, s), so f is
compatible with i becoming aware of ϕ at s.

The probability of this set of replacements of t′,
which we denote rep(t′), according to PR∗i (t

∗) (which
is the same as PR∗i (s

∗)) is exactly the probability of
t′ according to PRi(s), conditional on cons(M, i, ϕ).
Thus, i’s beliefs about propositions he becomes aware
of depend on his interpretation of the shadow proposi-
tions. This updating rule is explored in a probability
theoretic setting by (Piermont 2019), where the primi-
tive is a prior and a posterior measure, PRi and PR∗i ,
and where PR∗i can be defined over a possibly richer
algebra of events. Piermont provides conditions on this
pair of measures that suffice to ensure that they arise
via an updating rule as given by T3(c).

The following example explores the mechanics of the
single agent transition rule and is presented diagram-
matically in Figure 1.

Example 2. Consider an agent i who is uncertain how
to interpret a novel proposition. Let M be the initial
model with a state space S = {s, t}, where L(s) = {p}
and L(t) = {q, q′}. Think of p as a real proposition
and q and q′ as shadow propositions. In s, p is true,
and in t, q is true and q′ false. The agent is unaware
of p and considers only t possible: Ai(s) = Ai(t) = ∅
and Ki(s) = Ki(t) = {t}. Obviously, the agent places
probability 1 on t.

For some α ∈ [0, 1], consider the transition rule τα

such that τα((M, s), p, i) = (M∗, s∗). M∗ has the state
space S∗ = {s∗, t∗, t†}. Let f be the p-replacement
scheme given by f : p 7→ q and let f ′ be the p-
replacement scheme given by f ′ : p 7→ q′. Then T =
{(s, s∗, id), (t, t∗, f), (t, t†, f ′)}. In all states, i’s aware-
ness is exactly p, and in all states, she considers both t∗

t† possible, that is, Ki(s∗) = Ki(t∗) = Ki(t†) = {t∗, t†}.
Finally, i puts probability α on state t∗ and (1− α) on
state t†. When α = 1, i is sure that the novel proposi-
tion p is what she was representing by the shadow propo-
sition q, and when α = 0 she is sure it was represented
by q′. In between, the agent is uncertain about the in-
terpretation of the novel proposition. Notice this uncer-
tainty is not captured in M , as the agent is unaware of p
in M , hence can not directly reason about its likelihood
of being represented by q or q′.

3.2 Dynamics: The Multiagent Case
In this section, we present a transition rule for mul-
tiagent models. We assume that other agents do not
realize that i has become aware, so their beliefs remain
invariant under the model transition. Although this is
conceptually simple, it complicates the definition of an
acceptable rule because the updated model must con-
tain additional states to handle other agents’ beliefs.
For example, if there are two agents, and j initially
(correctly) believes i is unaware of p, then after i be-
comes aware of p, j must consider a state where i is
unaware of p, even though he no longer is. Further-
more, since j still believes i is unaware of p, the worlds
that i considers from the worlds that j considers (i.e.,
Ki(Kj(s))) cannot contain p in language, requiring yet
more states to be added.
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Figure 1: A visual representation of Example 2. The states on the left are the initial state space, M , and those on
the right are M∗. The red, unlabeled arrows indicate i’s accessibility relation. The gray arrows indicate the relation
T , labeled according to the replacement scheme.

The following definition generalizes Definition 2 to
models with multiple agents.

Definition 3. τ : S (I,Φ) × L∀,X,`,An (Φ) × I →
S (I,Φ) is an acceptable transition rule if
for all (M, s) ∈ S (I,Φ), ϕ ∈ L∀,X,`,An (Φ),
and i ∈ I, if prop(ϕ) ∈ L(s), M =
(S, π,K1, . . . ,Kn,A1, . . . ,An,PR1, . . . ,PRn,L),
τ((M, s), ϕ, i) = (M∗, s∗), and M∗ =
(S∗, π∗,K∗1, . . . ,K∗n,A∗1, . . . ,A∗n,PR∗1, . . . ,PR∗n,L∗),
then either prop(ϕ) ⊆ Ai(s) and (M, s) = (M∗, s∗),
or prop(ϕ) 6⊆ Ai(s) and there exists a relation
T ⊆ S × S∗ × RS (ϕ) such that the following hold:

T1. For all t∗ ∈ S∗, there exists a unique t ∈ S and
f such that (t, t∗, f) ∈ T ; moreover, t∗ is an f -
replacement of t.

T2. (s, s∗, id) ∈ T , A∗i (s∗) = Ai(s) ∪ prop(ϕ), and
A∗j (s∗) = Aj(s) for j 6= i.

T3. If (t, t∗, f) ∈ T , t ∈ Ki(s) ∪ {s}, either f 6= id or
(t∗, f) = (s∗, id), and PRi(s)(cons(M,ϕ, i)) 6= 0,
then the following conditions hold:

(a) K∗i (t∗) = {t† : (t′, t†, f ′) ∈ T, for some t′ ∈
Ki(s) ∩ cons(M,ϕ, i), f ′ ∈ RS (ϕ, i, s)}.

(b) If t′ ∈ Ki(s) ∩ cons(M,ϕ, i), let
rep(t′) = {t† ∈ K∗i (t′) : ∃f ′((t′, t†, f ′) ∈
T )}. Then PR∗i (t

∗)(rep(t′)) =
PRi(s)(t

′)/PRi(s)(cons(M,ϕ, i)).

(c) f(Aj(t∗)) = Aj(t) for all j 6= i.

T4. If (t, t∗, f) ∈ T , then the following hold for all
agents j 6= i, and for j = i if t /∈ Ki(s) ∪ {s} or
if f = id and t∗ 6= s∗:

(a) f(Aj(t∗)) = Aj(t).
(b) For all t′ ∈ Kj(t), there exists t† 6= s∗ such

that (t′, t†, f) ∈ T , and K∗j (t∗) = {t† : (t′, t†, f) ∈
T for some t′ ∈ Kj(t), t† 6= s∗}.

(c) PR∗j (t
∗)(rep(t′) ∩ Ki(t∗)) = PRj(s)(t

′).

T1 and T2 are the same as in Definition 2 with the
caveat that the awareness of agents other than i does

not change. T3 is largely the same as before, except
that it adds a requirement handling the awareness of
other agents and it does not apply to all states. For a
state t† that corresponds to t′ via f , the awareness of
each agent j 6= i changes according to f ; if i becomes
aware of p, then i replaces f(p) with p, so if j was aware
of f(p) in t′, then j must be aware of p in t†—p replaces
f(p) in Aj(t∗).

The reason T3 no longer applies to all states is we
need to allow other agents to maintain their beliefs.
Note that states t† for which (t′, t†, id) ∈ T are not in
Ki(s∗), since id /∈ RS (ϕ, i, s) if there propositions that
i is not aware of in ϕ and thus are not under the scope
of T3. This is because prop(ϕ) ⊆ Φ, which is disjoint
from Φ′, so we cannot have id(prop(ϕ)−Ai(s)) ⊆ Φ′.
We use states t† where (t′, t†, id) ∈ T and t′ ∈ Ki(s) to
capture other agents’ beliefs about i.

Finally, T4 describes agents’ beliefs and awareness
except for i’s belief and awareness in states in Ki(s∗).
Because other agents do not know about i’s increased
awareness, T4 also handles the construction of i’s be-
liefs and awareness in states that are considered possi-
ble by other agents. Roughly speaking, T4 says that
if (t, t∗, f) ∈ T , then each agent’s awareness changes
according to f . The states that j considers possible
at a state that is an f -replacement of t are exactly
the f -replacements of Kj(t). So knowledge is unper-
turbed except as required by replacing shadow propo-
sitions where needed. The final condition of T4 mirrors
this but for probabilistic assessments.

Example 3. Consider what happens when agent i
in the model M from Example 1 becomes aware
of p′ in state s1. Let τ be a transition rule
that maps (M, s1) to (M∗, s∗1) with states S∗ =
{s∗1, s∗2i, s∗1j , s∗2j , s∗3j , s∗2ij , s∗3ij , s∗1ij}. Letting f de-
note the p′-replacement that maps p′ to q, T con-
sists of (s1, s

∗
1, id), (s2, s

∗
2i, f), and (sn, s

∗
nj , id) and

(sn, s
∗
nij , f)} for n ∈ {1, 2, 3}.

The awareness functions in M∗ are defined as fol-
lows: A∗i (s∗1) = A∗j (s∗1) = A∗i (s∗2i) = A∗j (s∗2i) =



A∗j (s∗2j) = {p, p′} and A∗i (s∗2j) = A∗i (s∗3) = A∗j (s∗3) =
{p}. The reachability functions in M∗ are defined as
follows: K∗i (s∗1) = K∗i (s∗2i) = {s∗2i}; K∗j (s∗1) = K∗j (s∗2i) =
K∗j (s∗2j) = {s∗2j}; K∗i (s∗2j) = K∗i (s∗3) = {s∗2j , s∗3}; and
K∗j (s∗3) = {s∗3}.

At s∗1, i believes that he is fully aware and also knows
that p is true. This is because he has disregarded the
possibility of s3, since s3 /∈ cons(p′, i). Thus, despite
fact that i only became aware of p′, and did not di-
rectly learn the truth of any proposition, he has im-
plicitly learned that p holds. Moreover, notice that j
believes i is unaware of p′.

The transition rule in Example 3, as opposed to that
in Example 2, adds many more states. This is because
when agent i becomes aware of p′, agent j does not
know this happened. Thus, we need a set of states that
represent j’s (now incorrect) beliefs that i is unaware of
p′: these are the states s∗1j , s

∗
2j , and s∗3j . In addition, i

knows that j does not know she became aware of p′. So
we also have to add more states to capture i’s correct
beliefs about j’s incorrect beliefs about i’s awareness;
these are the states s∗1ij , s

∗
2ij , and s∗3ij .

3.3 Dynamics: Syntax and Axioms

In this section we briefly explore an extension of the
language presented in Section 2 that allows us to cap-
ture the dynamic aspects of our transition rule. We
then present some axioms which we hope will help con-
vey the requirements of a valid transition rule more
directly. While these axioms are all sound, getting a
complete axiomatization seems to require more effort.
We are currently exploring this.

Given that we are interested in what happens after an
agent becomes of a formula, it seems reasonable to con-
sider extending the language by adding formulas of the
form [ϕ, i]ψ to the underlying language L∀,X,`,An consid-
ered in this paper, where [ϕ, i]ψ is interpreted as “after
i becomes aware of ϕ, ψ is true.” Such a formula is in-
terpreted relative to a probabiistic awarness structure
M and a transition rule τ in the obvious way:

(M, s, τ) |= [ϕ, i]ψ if ((τ((M, s), ϕ, i), τ) |= ψ.

Note that this definition allows for occurrences of for-
mulas of the form [ϕ′, j]ψ′ in ψ (although not in ϕ).

In this language, we can capture many of the prop-
erties of the transition function τ . For example, the
following two axioms are sound:

A∗. Aiψ ⇔ [ϕ, i]Ai(ϕ ∧ ψ) if prop(ψ) ∩ prop(ϕ) = ∅.
AKo. Kjψ ∧Ajψ ⇔ [ϕ, i](Kjψ ∧ [ϕ, i]Ajψ).

A∗ states that after becoming aware of ϕ agent i is aware
of ϕ and everything that he was initially aware of. AKo
states that the knowledge and awareness of other agents
remains invariant.

To capture how an agent’s beliefs changes as a result
of an update, we need to be able to talk about consis-
tency. Let Consis(ϕ, i) be a new formula that is true
at a state t if t is consistent with i becoming aware

of ϕ. If prop(ϕ) has no primitive propositions, then
Consis(ϕ, i) is equivalent to true, and if |prop(ϕ)| = 1,
then Consis(ϕ, i) is equivalent to ∃x¬Ai(x). But if
|prop(ϕ)| > 1, then it can be shown that Consis(ϕ, i)
is not equivalent to a formula in L∀,X,`,An . Using
Consis(ϕ, i), we can provide some sound axioms that
capture how an agent’s beliefs change:

Ka. (`i(Consis(i, ϕ) > 0) ∧ Ki(Consis(i, ϕ) ⇒ ψ)) ⇒
[ϕ, i]Kiψ.

Kb. (`i(Consis(i, ϕ) > 0 ∧ [ϕ, i]Kiψ[x/ψ′]) ⇒
Ki(Consis(ϕ, i)⇒ ∃xψ).

Pra. `i(ψ ∧ Consis(ϕ, i)) > α`i(Consis(ϕ, i)) ⇒
[ϕ, i](`i(ψ) > α).

Prb. (`i(Consis(i, ϕ) > 0 ∧ [ϕ, i](`iψ[x/ϕ]) > α) ⇒
`i(∃xψ ∧ Consis(ϕ, i)) > α`i(Consis(ϕ, i)).

Ka states that after becoming aware of ϕ, i knows ev-
erything he knew before he was aware of ϕ that was
consistent with becoming aware of ϕ, provided that be-
coming aware of ϕ has positive probability. Kb is al-
most a converse. It says that if after becoming aware
of ϕ i knows ψ, then before becoming aware, i knew
that ψ (with occurrences of ϕ replaced by an exis-
tential) held in all states where it was consistent for
i to become aware of ϕ. Pra and Prb are analogues
of Ka and Kb for probability formulas. Note that
`i(ψ∧Consis(ϕ, i)) > α`i(Consis(ϕ, i)) essentially says
that the probaiblity of ψ conditional on Consis(ϕ, i) is
greater than α. Since we do not have conditional prob-
ability formulas in the language, we cannot say this
directly.

4 Information Disclosure
The following section is a simple application of our
model to the problem of information disclosure. In the
interest of space and simplicity, we consider a highly
stylized setting: There are two agents, a buyer and a
seller (we can think of the seller as a restaurateur and
the buyer as a potential patron). The agents’ belief and
awareness will be modeled via a probabilistic awareness
structure for 2 agents along with a transition rule. We
can think of the agents as playing a game (i.e., they
have actions and payoffs associated with these actions),
but the game is not described explicitly in the epistemic
model.

The initial state space (i.e., before the buyer become
aware of a formula of which he was previously unaware)
is {smn , tmn }(n,m)∈{1,...,N}×{1,...,M}. The lower index (n)
represents the type or quality of the seller. So in state
smn or tmn , the seller has quality n; we assume that the
buyer’s value for a purchase is increasing in n (i.e., the
buyer gets better-quality meals, which he values more
highly, at a better-quality restaurant). The upper index
(m) represents the buyer’s type: how the buyer reacts
to becoming aware of new features (explained in detail
shortly).

The s states (i.e., states of the form smn for some
n and m) are “real” in the sense that they contain no



p, q

Ai = {p}
Aj = {p, q}

	

s2

p, p′

Ai = {p, p′}
Aj = {p, p′}

	

s∗2i

¬p
Ai = {p}
Aj = {p}

	

s3

p, p′

Ai = {p}
Aj = {p, p′}

s1

p, p′

Ai = {p, p′}
Aj = {p, p′}

s∗1

id

s∗3j
	

s∗2j
	

s∗1j

f

s∗3ij
	

s∗2ij
	

s∗1ij

f

Id

Figure 2: A visual representation of Example 3. The red arrows indicate i’s accessibility relation; the blue (dotted)
arrows indicate j’s accessibility relation. The gray arrows indicate the relation T , labeled according to the replacement
scheme. The two sets of three states on the right side of the figure are both copies of the original three states, under
different replacement schemes; the upper three states are f -replacements and the lower three are id-replacements.

shadow propositions. The seller, who we assume is fully
aware, considers only s states possible. The t states
represent the buyer’s understanding of the world, con-
taining shadow propositions in place of the real propo-
sitions that he is unaware of but exist in the s states.
We assume that (it is commonly known that) the seller
knows his type n but not how the buyer will react to
information, so Ks(smn ) ⊆ {sm′n : m′ ∈ {1, . . . ,M}}. On
the other hand, (it is commonly known that) the buyer
knows how he will react to information, but does not
know the seller’s type, so Kb(smn ) = Kb(tmn ) = {tmn′ :
n′ ∈ {1, . . . , N}}.

A list of propositions {p1, . . . , pK} is a rating struc-
ture, and the pk’s are called ratings, if (1) exactly one
proposition pk is true at each state smn and (2) if pk
is true at smn , pk′ is true at sm

′

n′ , and k > k′, then
n > n′. Thus, higher ratings indicate higher-quality
sellers. Note that this condition implies that the same
rating must hold at smn and sm

′

n : the seller knows the
rating. In general, a rating may be true at more than
one state; a rating p is perfectly informative if there is
exactly one n such that p is true of only states of the
form smn . We assume that the seller is aware of the
rating, but the buyer is not. Formally, we assume a
particular rating structure, given by p1, . . . , pK , such
that the seller is aware of p1, . . . , pK at all states of
the form smn . The buyer is not aware of these formu-
las at any state. In some states of the form tnm there
is no rating structure in the language (these are the
states where it does not occur to the buyer that there
is a rating structure). In other states there of the form
tmn , there are one or more rating structures, but these
are represented by shadow propositions x1, . . . , xK′ ;
the buyer is not aware of these shadow propositions,
but understands that the seller knows the actual rat-
ing structure (so, in these states, formulas of the form
¬Ab(xj)∧As(xj)∧(Ks(xj)∨Ks(¬xj) hold). We assume
that the superscript m in tmn indicates which rating
structures are in the language at tmn , so if {x1, . . . , xK}

is a rating structure and {x1, . . . , xK} ⊆ L(tmn ), then
{x1 . . . xK} ⊆ L(tmn′) for all n′.

The seller sets a price and possibly discloses his
rating; the buyer then decides whether to buy (i.e.,
whether to eat at the restaurant). Before deciding, the
buyer updates his beliefs based on whatever information
the seller discloses and his beliefs about the seller’s. If
the buyer was unaware of pk and pk is disclosed, then
the buyer first updates his beliefs according to the tran-
sition rule to become aware of pk, then he conditions
on the fact that pk is true. Among other things, the
index m captures how the buyer will update when she
becomes aware of a rating (i.e., it encodes a replace-
ment function). An equilibrium of this game consists
of (1) an action for each type of seller, and (2) beliefs
and an action for the buyer, for each action of the seller,
where (1) and (2) are such that both parties are max-
imizing (the expected revenue and the expected value
of the purchase, respectively).

As we observed in the introduction, if the buyer is
aware of the rating structure, then all sellers (except
possibly those with the lowest rating) will reveal their
rating. On the other hand, if the buyer is unaware of
the rating structure {p1, . . . , pK}, we must explicitly in-
dicate how he would treat the lack of revelation. This
is the role of the buyer’s type. We assume here that
when no rating is revealed, the buyer’s beliefs do not
change at all: the buyer continues to be unaware of
the rating. But note that this is fundamentally differ-
ent from the buyer knowing that the rating could have
been disclosed but was not. Under this assumption, the
unraveling argument given in the introduction fails: any
type with a rating imparting lower-than-average qual-
ity would prefer the buyer to retain his original belief;
not disclosing does not have any effect on these beliefs,
since the buyer’s unawareness prevents him from rea-
soning about the actions of other types.

Given the immediate failure of the unraveling argu-
ment, the more interesting aspect of this model is the
dependency of the seller’s beliefs on the transition rule,



as encoded by the m index. The key point is that smn
and sm

′

n are distinguished by the buyer’s reaction to
becoming aware of a new rating. We provide an exam-
ple showing how the seller’s beliefs about the transition
rule determine whether the seller decides to disclose his
rating.

Suppose that N = 3, so that there are three qual-
ities of seller (restaurant) and M = 2. Suppose that
the buyer’s utility for a purchase if the restaurant has
quality n is n, and that at smn , the buyer initially be-
lieves that tm1 , tm2 , and tm3 have probability 1

2 , 1
4 , and

1
4 , respectively. This indicates that in the absence of
any signal, when the buyer does not update his beliefs
at all, his expected utility is 1× 1

2 + 2× 1
4 + 3× 1

4 = 7
4 .

Suppose that the rating pn is true at state smn , for
n = 1, 2, 3, so pn is perfectly informative; L(smn ) =
{p1, p2, p3}. We take L(tnm) = {x1, x2, x3, y1}, where
these are all shadow ratings. Think of xn as the shadow
signal corresponding to pn, so that xn is true only at
the states tmn for n = 1, 2, 3. The shadow rating y1 is a
coarsening of x1 and x2; it is true at both tm1 and tm2 .

The transition rule is such that, if the buyer be-
comes aware of pn, the situation (M, smn ) is mapped
to the situation (M∗n, s

m∗

n ) with relation Tn contain-
ing (t1n′ , t

1∗
n′ , f

1
n) and (t2n′ , t

2∗
n′ , f

2
n) for n′ ∈ {1, 2, 3},

where the replacements are given by f1n : pn 7→ xn
for n ∈ {1, 2, 3}, and f21 : p1 7→ y1, f22 : p2 7→ y1,
and f23 : p3 7→ x3. That is, in states of the form t1n,
the buyer interprets pk as arising from the perfectly in-
formative shadow rating structure {x1, x2, x3}, and in
states t2n, he interprets it as arising from the coarser
shadow rating structure {y1, x3}, conflating p1 and p2.

As always, the highest type, a seller in state sm3 , will
disclose regardless of his beliefs about the transition
rule. Conversely, a seller in state sm1 never has a rea-
son to disclose. However, a seller in state sm2 will dis-
close only when he is sufficiently confident the seller
will correctly interpret p2 as being perfectly informa-
tive. In state s12, disclosing imparts beliefs (in the up-
dated model) that places probability 1 on state t12, and
a willingness to pay of 2 > 7

4 . Thus, if he knew that

he was in state s12, he would certainly want to disclose
p2. If, however, he knew he was in state s22, disclosing
imparts a beliefs (in the updated model) that places
probability 2

3 on state t11 and 1
3 on state t12, and a will-

ingness to pay of 4
3 <

7
4 .

5 Discussion
This paper develops a modal logic that allows agents
to reason both about probabilities and about their own
and others’ awareness. We introduce the semantic no-
tion of a model transition, which captures how a model
changes when an agent becomes aware of a new formula.
In contrast to prior work on the subject, our transition
rule allows the relative likelihood of two formulas that
an agent was aware of to change arbitrarily after she
becomes more aware. This is because the agent can, to
some extent, reason about her own unawareness. If, for

example, after becoming aware of ϕ she believes that
having been unaware of ϕ was correlated with the truth
of some other formula ψ, then her probabilistic assess-
ment of ψ can change.

We then apply this model to a simple economic envi-
ronment of information disclosure, where one agent can
strategically decide to make another agent aware of a
new formula. We show that the agent’s beliefs about
how others will react to novel information (i.e., her be-
liefs about the model transition rule) determine her de-
cision to disclose information and expand the awareness
of other agents.

In future work, we hope to explore further applica-
tions of dynamic awareness. We believe that thinking
about how awareness changes will prove critical in un-
derstanding economic puzzles and the general problem
of updating in the presence of unawareness. We would
also hope to provide a sound and complete axiomatic
characterization of our transition rule, in the spirit of
the discussion in Section 3.3.
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