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Polylidar - Polygons From Triangular Meshes

Jeremy Castagno

Abstract—This letter presents Polylidar, an efficient algorithm to
extract non-convex polygons from 2D point sets, including interior
holes. Plane segmented point clouds can be input into Polylidar
to extract their polygonal counterpart, thereby reducing map size
and improving visualization. The algorithm begins by triangulating
the point set and filtering triangles by user configurable parameters
such as triangle edge length. Next, connected triangles are extracted
into triangular mesh regions representing the shape of the point
set. Finally each region is converted to a polygon through a novel
boundary following method which accounts for holes. Real-world
and synthetic benchmarks are presented to comparatively evaluate
Polylidar speed and accuracy. Results show comparable accuracy
and more than four times speedup compared to other concave
polygon extraction methods.

Index Terms—Aerial systems: perception and autonomy,
reactive and sensor-based planning, computational geometry.

I. INTRODUCTION

IDEO and LiDAR data are widely used in robotics to

provide rich information about the environment. LiDAR
and RGBD cameras generate point clouds for localization and
mapping [1], 3D modelling [2], and scene classification for
autonomous navigation [3]. Flat surfaces such as walls and
floors are key environmental elements to identify; they are
often extracted using planar segmentation techniques [4]-[6].
However points clouds are dense incurring a high computa-
tional cost when used directly. A common simplifying approach
transforms point clouds into lower dimensional representations
such as lines and planes [7]. Furthermore, polygonal represen-
tations of planes reduces map size and may accelerate matching
for localization [8]. Convex polygon representations of planar
segments were proposed by [7]. Convex polygons are simple
and efficient to generate but ignore boundary concavities and
overestimate area of the enclosed point set. Non-convex poly-
gon representations may be generated using techniques such
as boundary following outlined in [8] or a--shapes as proposed
in [9]. However few methods also capture the interior holes
within non-convex polygons. Safe robot navigation demands
accurate capture of non-convex polygons with interior holes in
real-time, requiring both speed and robustness.
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Fig. 1. (a) Convex hull of a point set (red); (b) MultiPolygon extraction using
Polylidar (green). (c) Polygon extraction from a plane segmented point cloud
from an Intel RealSense RGBD camera capturing paper towel rolls on a basement
floor. Note that Polylidar also identifies holes (orange).

This paper presents Polylidar, an efficient algorithm to trans-
form 2D point sets into simplified non-convex (i.e. concave)
polygons with holes. Polylidar begins by triangulating the point
set and filtering triangles given user-specified parameters such
as maximum triangle edge length. Once filtering is complete,
edge-connected triangles are combined into regions creating a
set of triangular meshes representing the shape of the point set.
Next, Polylidar converts each mesh region to a polygon through
a novel boundary following method which accounts for holes.
Fig. 1(b) shows Polylidar applied to a 2D point set while (c)
shows Polylidar used on a plane segmented point cloud from an
RGBD image.

We show that the Polylidar algorithm is approximately 4 times
faster than leading open source approaches for concave polygon
extraction. Polylidar’s speed is attributed to rapidly identifying
boundary edges (shell and holes) and then performing boundary
following to ensure a valid polygon is returned.

Contributions of this paper are:

® A faster open source [10] concave (multi)polygon extrac-

tion algorithm from 2D point sets.

® A benchmark comparison of leading concave polygon

extraction techniques in terms of accuracy and speed.

Below, Sections II and III provide background on non-convex
shape generation and mathematical preliminaries, respectively.
Section IV describes Polylidar algorithms, while Section V
shows benchmark test results of Polylidar versus other methods.
Section VI describes test results. Sections VII and VIII provide
discussion and conclusions.

II. BACKGROUND

Characterizing the shape of a set of 2D points P has been
a long-term focus of computational geometry research. A con-
vex hull is defined as the smallest convex polygon that fully
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TABLE1
CONCAVE HULL EXTRACTION METHODS
Algorithm Output Holes?
CGAL a-shape unordered Yes
set of edges
Spatialite (multi)polygon Yes
PostGIS polygon Yes

Polylidar (new) (multi)polygon Yes

encapsulates all points in a set P. Although widely used to esti-
mate shape, point sets with non-convex distributions are poorly
characterized by a convex hull [11]. Convex hull over-estimation
can be a serious issue when the points represent physical objects,
e.g., obstacle free navigable areas. Several algorithms have been
developed to construct shapes that “fit” or “cover” point sets
more closely.

Figure 1 compares convex and concave hulls. Fig. 1(b) is the
multipolygon output of Polylidar described below. While there
is a unique convex hull, there is no true or unique concave hull.
Concave hull algorithm implementations can also have different
output types. Some return only an unordered set of edges while
others return a single polygon. Some algorithms return multiple
disconnected polygons (multipolygon), and some can generate
holes inside a polygon.

The a-shape algorithm is an early strategy to generate a
family of shapes ranging from a convex hull to a point set [12].
The parameter o dictates the radius of a closed disk used to
prune/remove area in the convex hull. This disk is allowed to
move freely shaving off the excess shape until it finds points.
When disk radius is large, ideally infinite, the convex hull is
produced; when disk radius is infinitesimally small only the
points remain. A common implementation of a-shape organizes
points using Delaunay triangulation and filters triangles whose
circumcircle radius is less than «.. The final shape is represented
by the remaining edges and triangles. Note that the «-shape
method creates multiple non-intersecting shapes with the possi-
bility of holes.

The geospatial software library Spatialite [13], an extension
to SQLite [14], contains a concave hull extraction procedure.
The algorithm again starts with Delaunay triangulation then
analyzes the distribution of each triangle’s edge length to de-
termine mean y; and standard deviation o;. Any triangle with
edge length greater than C' - o; + p; is removed, where C' is a
user-defined parameter. The final geometry returned is the union
of all triangles computed with GEOS, a high performance open
source geometry engine. The output may be a multipolygon (i.e.,
multiple disjoint polygons) with the possibility of holes inside
each.

PostGIS is a geospatial database of computational geometry
routines such as the concave hull method in [15]. This algorithm
first calculates the convex hull and then shrinks the hull by
adjusting vertex connections to closer points which “cave in”
the hull. This process recursively shrinks a boundary until a
user-specified percent reduction in area from the convex hull
is achieved. The resulting shape is a single polygon with the
possibility of holes.
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Table I provides a summary of the concave hull algorithms
discussed above. The Computational Geometry Algorithms Li-
brary (CGAL) is used as the implementation of the a-shape
method [16]. Note that the time complexity of all algorithm
implementations, with the exception of PostGIS, is O(nlogn).
Our paper contributes a procedure to more rapidly compute
(multi)polygon output with the possibility of holes. Though this
is a complex output to generate, we show through benchmarks
that our algorithm and implementation outperforms other avail-
able approaches.

I1I. PRELIMINARIES

A 2D point set is an arbitrarily ordered set of two dimensional
points in a Cartesian reference frame. Each point is defined by
orthogonal bases &, and &, with

Pi=1é; +yé, =z, (&)
where x, y are plane coordinates.

An n-point array P = {p1, pi, - - -, pr, } CONtains points p; €
R? indexed by i. A triangular mesh 7 is defined by

T ={t1,ti,...,tx} 2)

where each ¢; is a triangle with vertices defined by three point
indices {1, 12,13} € [1, n] referencing points in P.

We follow the Open Geospatial Consortium (OGC) stan-
dard [17] for defining linear ring and polygon. A linear ring is a
consecutive list of points that is both closed and simple. This
requires a linear ring to have non-intersecting line segments
that join to form a closed path. The key components of a
valid polygon are a single exterior linear ring representing the
shell of the polygon and a set of linear rings (possibly empty)
representing holes inside the polygon.

IV. METHODS

Sections IV-A, IV-B, and IV-C describe the triangulation
data structures, filtering, and mesh extraction respectively. Sec-
tion IV-D describes polygon extraction.

A. Triangulation With Half-Edge Decomposition

Polylidar begins with the Delaunator library [18] performing
a Delaunay triangulation of point set P. The original algorithm
was written in JavaScript but a C++ port of the library is used
in Polylidar [19]. Note that we have modified Delaunator to
use robust geometric predicates to ensure correctness during
triangulation [20]. Delaunator was chosen for its ease of integra-
tion, speed, and output data structure which returns a half-edge
triangulation. A half-edge triangulation decomposes a shared
edge using two half-edges A—B and B—A. An example of this
decomposition and resulting data structures is shown in Fig. 2.

Fig. 2(a) triangulates point set {PIO, PI1, PI2, PI3}. Trian-
gulation produces two triangles, ¢y and £;, with half-edges
{HEO, HE1, HE2} and {HE3, HE4, HES}, respectively. Each
half-edge supports clockwise travel to the next half-edge in
that triangle’s edge set. Fig. 2(b) lists the resulting hal fedges,
triangles, and points data structures. The hal fedges array is
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Fig. 2. (a) Triangulation of a square point set using Delaunator [18] with

output data structure indexed by half-edge ids in (b). HE=half-edge, PI=point
index, t=triangle. Grey edges show shared edges decomposed individually.
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Fig. 3. (a) Example of two regions extracted denoted by orange and blue.
Triangles ¢y and ¢1 are one region while ¢4 and t5 are another. (b) Two regions
are also extracted even with a shared vertex.

indexed by a half-edge reference id. It provides the opposite
half-edge of a shared edge if it exists; otherwise -1 is returned.
The triangles array is also indexed by half-edge id and gives the
starting point index of the associated half edge. The relationship
between half-edge and triangle indices is ¢ = floor(he/3).

B. Triangle Filtering

As with Spatialite and a-shape methods the initial shape starts
with k triangles in 7 per Eqn. (2) returned from Delaunay
triangulation. Also similar to a-shape and Spatialite methods,
Polylidar filters triangles by configurable criteria for each tri-
angle. Polylidar allows the user to perform triangle filtering
using either the ov parameter or maximum triangle edge length
parameter ;4. The filtered triangle set is denoted 7.

C. Triangular Mesh Region Extraction

An iterative plane extraction procedure inspired from [21]
generates subsets of 7 that are spatially connected. These
subsets are denoted 7, which represent triangular mesh regions.
A spatial connection between triangles exists when they share
an edge. A random seed triangle is selected from 7y where a new
region is created and expanded by its adjacent edge neighbors
from the halfedges data structure. Region growth halts when no
more triangles in 7y connect to the region. The process repeats
with another seed triangle until all triangles in 7; have been
examined.

Fig. 3(a) shows triangular mesh region examples. Distinct
regions are shown in orange and blue; light grey edges denote
triangles that have been filtered out. The output of this step is
a set of spatially connected triangular mesh regions, 7, where
each specific region, 7y, is a set of triangle indices. We denote
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Fig. 4. (a) The boundary half-edge set is marked in blue and point index 21
(PI21), the farthest point on the x-axis, is noted. (b) A sample of the resulting
point index hash map, PtE is shown. Note that the display order has been
arbitrarily chosen.

the set of m triangular mesh regions as:
TR = {?-V’-',.]: ?;'12')"')7;",1’?1} (3)
ﬁslz{th"':t_f} (4)

D. 2D Polygon Extraction

Polygon extraction has three steps: data structure initializa-
tion, concave shell extraction, and hole(s) extraction. Each of
these steps is described below. Note that polygon extraction is
independent of the specific triangular mesh regions 7;;, thus
subsequent notation will drop the 7 index for brevity when used
in algorithms. The following steps are executed for each of the
m regions in Tg to generate m polygons.

1) Data Structure Initialization: Data structure initialization
is shown in Algorithm 1 which produces three data structures: a
boundary half-edge set, a point index hash map, and the extreme
point. A visual example of these data structures is shown in
Fig. 4. Boundary half-edge set HE contains the half-edge indices
that are on the exterior border of a region, marked in blue in
Fig. 4(a). A half-edge is marked as a boundary if it has no
opposite half-edge (meaning it is on the convex hull of the full
triangulated set) or if its adjacent triangle is not in 7; ;. The last
check is important because a half-edge may share an edge with
an interior triangle that is not part of 7 ; as seen in the rightmost
edge for the blue region in Fig. 3(a). The halfedges data structure
is fixed at triangulation and is not aware of filtered triangles or
the regions discussed in Section I'V-C.

The second data structure is a point index hash map, PtE,
whose keyis a pointindex and value is a list of outgoing boundary
half-edges from the keyed point index. This unordered hash
map is represented in Fig. 4(b); note the keyed point index 7
mapping to the single element list containing half-edge 84. The
final data structure represents an extreme point in the triangle
mesh, referring to the point farthest to the right on the z-axis.
This point will be used as the starting pointindex when extracting
the concave hull to help ensure extraction does not start on a
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Algorithm 1: Initialize.
Input : Triangular Mesh Region , 7, = {¢;,...
Shared Halfedges, hal fedges
Triangles Point Index, triangles
Output: Half Edge Set , HE = {he;, ..., he,}
Point Index Hash Map, PtE
Extreme Point, pi,y,

vtk}

1 HE=0; // boundary half-edge set
2 PtE=0; // Point to half-edge hashmap
3 Pigp =0 // will be overwritten
4 for t; € T, do
5 for he; € t; do
6 he; = halfedges|he;]; // opposite edge
7 t; = floor(he;/3) ; // adjacent tri
8 if t; ¢ 7, then
9 HE = HE + he; ; // boundary edge
10 pi = triangles|he;]
11 Plap = TrackXp(pi, pizp)
12 if pi ¢ PtE then

/+* create half-edge list */
13 PtE[pi] = [he;]
14 else
15 | Append(PtE[pi], he;)
16 end
17 end

-

8 return HE, PLE, piy,

hole edge. Multiple points may exist on the extreme edge; the
algorithm will track the first one found in this case.

2) Concave Shell Extraction: Outer shell extraction begins
by traversing the half-edge graph, starting with the half-edge
provided by the extreme point. As the edges are traversed the
point indices are recorded in a list representing the linear ring of
the concave hull. Edges are removed from the half-edge set, HE,
as they are traversed. In Fig. 4(a) the extreme point index is PI21
and the starting half-edge is HE70. This starting half edge and
start point index are arguments to the ExtractLinearRing
procedure in Algorithm 2, with the procedure halting when edge
traversal returns back to the starting point index, indicating a
closed linear ring has been extracted. The hole in this shape,
represented by edges (HE28, HEO, HE14, HE44), with a shared
vertex at PI10, must be carefully handled as explained below.
This is an example of an non-manifold mesh.

The example in Fig. 4 begins with HE70 traversing to PI10.
The outgoing boundary half-edges for this point index are de-
termined from PtE which provides a list of both HE28 and
HE42. However HE28 is an edge for a hole in this polygon while
HEA42 is the correct half-edge to traverse for the outer shell. The
SelectEdge procedure determines which of these edges to
choose and is visually outlined in Fig. 5(a). Angles between
the proposed edges and previous edge HE70 are calculated and
the edge with the largest angle is chosen which guarantees the
largest concave hull. This edge cannot be a hole edge because
that would imply that the hole is outside the concave shell, which
is invalid.
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PtE[PI3] = [HE1, HE2]
HE1 = Hole Edge
HE2 = Hull Edge

(&)

Fig.5. (a) Edge selection for Fig. 4(a). HE70 leads to point index PI10 during
shell extraction. Half-edges HE28 and HE42 leave PI10. The correct edge to
follow (HE42) has the greatest angle with HE70. (b) If the extreme point has
two outgoing edges (HE1, HE2), choose the edge with largest angle difference
with the unit vector [0,1]. This is edge HE2.

Algorithm 2: ExtractLinearRing.
Input : Half Edge Set , HE = {he;, ..., he,}
Point Index Hash Map, PtLE
Starting half-edge, he
Start point index, startPI
Triangles Point Index, triangles
Output: Linear Ring , Ir = [pi1, ..., pig]
1ir=1[]; /* empty linear ring =/
2 while True do
3 HE =HE\ he
he; = NextTriangleEdge(he)
pi = triangles|he)
Append(ir, pi)
if pi is startPI then
/+ closed linear ring */
break
9 | nextEdges = PtE[pi]
10 | he = SelectEdge(he, next Edges)
1 end
12 return Ir

~ &t

On rare occasions the extreme point may have more than
one outgoing half edge, meaning that a hole is connected to
it. This can be handled in the same way stated above by using
the SelectEdge procedure. The only difference is that the
previous hull edge is not known (the procedure has just started),
but since we know we are on the far right of the hull we can
substitute the previous edge for the unit vector [0,1] per Fig. 5(b).
This unit vector is guaranteed to provide a stable order of the
angle differences which would have been provided by the actual
previous hull edge.

3) Hole(s) Extraction: After the outer shell of the concave
hull has been determined, only the holes remain to be found
(if any holes exist). Any edges that remains inside HE are hole
edges and will be extracted using Algorithm 3. A half-edge is
randomly chosen from HE for which the same ExtractLin-
earRing procedure is run. Fig. 6(a) shows a corner case of a
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Fig. 6. (a) Edge case of two holes sharing the same vertex at PI16. The outer
shell (green) is already extracted. (b) When traversing from HE19 to point index
PI16, two outgoing edges (HEO and HE29) are found. Edge HE29 with the
largest angle difference from HE19 is chosen.

Algorithm 3: Extract Holes.
Input : Half Edge Set , HE = {he;,..., he,}
Point Index Hash Map, PtE
Triangles Point Index, triangles
Output: Set of Linear Ring Holes , HR = {lry,...,lrg}
HR=10; /» empty hole set x/
while HE is not empty do
he = RandomChoice(HE)
pi = triangles|he]
Ir =
ExtractLinearRing(HE, PLE, he, pi, triangles)
6 HR =HR +1Ir
7 end
8 return HRR

ok W b=

non-manifold mesh that must be handled if two holes share the
same vertex. The previously extracted concave shell is displayed
in green while the remaining half-edges to be processed are in
blue; note the shared vertex at PI16. Fig. 6(b) shows the event
when HEI19 is randomly chosen for hole extraction leading
to PI16. HEO or HE29 is chosen in the manner previously
discussed: the edge with largest angle guarantees the smallest
hole thus is chosen. If the other edge was chosen this would
indicate a hole inside a hole which is invalid.

V. BENCHMARKING COMPARISONS

This section benchmarks Polylidar against other common
concave hull extraction methods which also extract holes; all
code is open source.! Three other implementations are tested:
CGAL’s Alpha Shape function and the ST_ConcaveHull func-
tion from PostGIS and Spatialite. For uniformity, Polylidar and
CGAL are set to use the same « parameter to guarantee exact
shape reproduction. Note that CGAL’s Alpha Shape returns
an unordered set of boundary edges; it does not convert these
edges into a valid (multi)polygon. These edges produce the same
shape as Polylidar when drawn on a canvas, but lack the desired

Uhttps://github.com/JeremyBY U/concavehull-evaluation
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TABLE II
PARAMETERS FOR TEST CASES

Algorithm Parameter RGBD CA HI Alph.

CGAL/Polylidar o 2p, 1 2p, 1 2py 1 2p, 1
Spatialite c 3.0 2.0 2.0;1.3 3

PostGIS target % Varies  0.76;0.72 - Varies

polygon semantic data structure. PostGIS’s concave hull imple-
mentation only returns single polygons, so MultiPolygon test
cases are notevaluated against it. Both PostGIS and Spatialite are
databases which require upload of the point set prior to algorithm
execution; benchmark timing does not include data upload time.

Section V-A provides a benchmark from plane segmented
point clouds produced by an RGBD camera. Section V-B gen-
erates synthetic 2D point sets from the state shapes of Cali-
fornia (CA) and Hawaii (HI) to explore how the algorithms
scale with respect to point size. Section V-C shows a similar
benchmark but with the English alphabet. All utilize ground
truth (multi)polygon shape GT to evaluate shape accuracy. Each
implementation takes as input a point set and produces a concave
shape, C'S, which is similar to the ground truth polygon. The
L? error norm, the area of the symmetric difference between

GT and CS, is computed to enable evaluation of shape error
area((GT-CS)U(CS-GT))
area(CS) :

Each implementation contains its own parameter(s) modified

to minimize L? error. Shape accuracy is therefore subject to
parameter selection. Table Il displays the parameters chosen and
used for all test cases (RGBD, CA, HI, Alphabet). Rows with
two parameters separated by a semicolon indicate parameters
for use with non-hole and hole cases. Polylidar and CGAL use
the same o parameter adjusted on a case by case basis. For
each case we calculate point density pg and compute parameter
o as 2p§1. This gives reasonable but not necessarily optimal
results. Spatialite’s concave hull implementation has parameter
C which at its default value (C' = 3) produces excellent results.
C is adjusted as needed (for CA, HI) to further reduce error.
PostGIS’ target percent is set to provide the optimal accuracy
based on percent area reduction required. The most important
takeaway when interpreting accuracy is thus trends in accuracy,
not small numerical differences.

A. Plane Segmented Point Clouds From RGBD Images

Point clouds were generated with an Intel RealSense D435i
camera at 424X240 resolution from eleven different scenes.
Ten scenes were taken with the camera 1.5 m above ground
level pointing directly downward as shown in the top of Fig. 8.
Floor obstacle positions and orientations were changed in each
scene. The camera was placed higher and angled for the eleventh
scene shown in the bottom of Fig. 8. The floor can be quickly
segmented using planar segmentation techniques [4], [5]. How-
ever for this experiment the floor was manually segmented,
rotated to align with the XY image plane, and subsequently
projected. This creates a 2D point set of the floors 3D point
cloud. The ground truth polygon of each segmented point cloud
was labeled by hand to provide accuracy scores. The average size
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Concave hull extraction results. Rows from top to bottom correspond to outlines of California (CA) (a, b, c), and Hawaii (HI) (d, e, f) with random holes

inserted. The first column shows ground truth polygons with circular holes in orange. The second column shows execution time as a function of number of 2D
points provided. The third column shows shape error as a function of number of 2D points provided. Dashed lines show results where holes were placed inside the
polygon outline, while solid lines show results with no holes. PostGIS cannot handle MultiPolygons thus was not tested for HI.

Y

Fig. 8. Two example scenes (top/bottom) from RGBD benchmark. A point
cloud is generated from depth image (right) and manually segmented to include
only the ground floor. The polygonal output of Polylidar is shown in the RGB
image (left). Green is the hull, orange represents holes.

TABLE III
RGBD PLANE SEGMENTED POINT CLOUDS

L? error % Time (ms)
Algorithm mean std max mean std max
Polylidar 22 15 6.4 479 4.3 509
CGAL 22 15 64 248.3 25.0 267.7
PostGIS 75 16 99 2734.7 2493 2939.9
Spatialite 22 1.5 63 133330 2486.6 16386.5

of the eleven segmented point clouds is 83,184 points. Table III
displays the aggregate execution timings and accuracy results of
all eleven points clouds for each algorithm. Polylidar is fastest.
Polylidar, CGAL, and Spatialite have similar accuracies. Note

that Polylidar and CGAL are configured to produce the same
shape and therefore have the same L? error values.

B. State Shapes

Fig. 7 shows CA and HI test case geometries (first column),
execution times (second column), and error results (third col-
umn). Each state shape is processed with and without random
holes ; dashed lines indicate results where holes are included
in the ground truth polygon. Point sets are randomly sampled
from the state shapes. Each test was run 10 times with input
point set sizes ranging from (2, 4, 8, 16, 32, 64) thousand
points with mean timing and error plotted. Confidence intervals
are provided for execution timing, however they are almost
imperceptible because the variance is low at this scale. Polylidar
and CGAL are significantly faster than the other methods, with
Spatialite having the slowest implementation. An inset (zoomed)
box that focuses solely on CGAL and Polylidar is shown in
the second column, showing that on average Polylidar is ~ 4
times faster than CGAL. The presence of holes affected each
method differently: decreased time in Spatialite (fewer triangles
to union), increased time for PostGIS (a decrease in farget
percent increases run-time). No significant changes were noted
for CGAL and Polylidar.

Spatialite produced shapes with the least error, followed by
Polylidar/CGAL and then PostGIS. Spatialite has the lowest er-
ror because it incorporates triangle edge length statistics into its
triangle filtering which better handles random sampling. In con-
trast, Polylidar/CGAL offer comparable accuracies with RGBD
data due to the more uniform point distribution in top-down
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Fig.9. Concave polygon output from Polylidar/fCGAL (left), Spatialite (cen-

ter), and PostGIS (right). Input to each algorithm was a 4000 point set sampled
from the California (CA) polygon with holes per Fig. 7(a).

TABLE IV
ALPHABET LETTER RESULTS, 26 SHAPES

L2 error % Time (ms)
Algorithm  mean std max mean std max
Polylidar 128 18 168 1.2 0.3 2.4
CGAL 128 1.8 168 54 0.9 72
PostGIS 365 99 537 130918 7500.6 28451.0
Spatialite 1.2 45 221 230.2 6.3 242.9

RGBD imagery. PostGIS error increased markedly with holes
since it did not accurately reproduce them. Fig. 9 shows a visual
comparison of CA concave polygon outputs for each algorithm.

C. Alphabet Shapes

Polygons from 26 capital letters of the English alphabet were
generated and 2000 points randomly sampled inside. The “A”
in Fig. 1(b) shows an example capital letter with the output of
Polylidar’s concave hull. Table IV provides aggregate statistics
of all 26 test cases. Polylidar continues to lead in speed. Spatialite
leads in accuracy by a marginal amount. The alphabet shapes are
significantly more concave than previous benchmarks. Docu-
mentation of PostGIS indicates that the run time grows quadrat-
ically as concavity increases leading to the high execution times
observed [15].

VI. RANDOM POLYGON TESTS

More than 19,600 polygons were randomly generated to
test Polylidar. Half the test cases had random holes. Polygon
complexity is characterized by convexity metric

Area(P)

oV = Area(CH(P))

where P is the polygon and C'H () is the convex hull function.
A convexity of 1 indicates the sample polygon is its convex hull.
8,000 points were randomly sampled for each polygon and input
to Polylidar with the o parameter from Table II. Execution time
and accuracy are summarized in Table V. The table is partitioned
into high, medium, and low ground truth polygon convexity
defined by C'V > 0.75, 0.75 < CV > 0.55, and CV < 0.55
respectively. Every polygon produced by Polylidar was con-
firmed valid independently by the GEOS geometry library. As
polygon convexity (C'V') decreases Polylidar shape estimation
accuracy also decreases. Polygons in our “low” convexity class
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TABLE V
RANDOM TESTS; CV = CONVEXITY METRIC

L2 error % Time (ms)
CV mean std max mean std max
hi 4.4 0.5 6.1 4.6 0.1 5.0

13.0 4.6 01 81
25.0 4.7 02 99

£

@ (b)

mid 8.0 1.1
low 155 3.0

5N

L

1AM

Fig. 10. (a) Example of a high convexity polygon; CV = 86.1% (b) and a low
convexity polygon; CV = 26.2%.

have extremely non-convex shapes, the lowest with CV = 0.26
per Fig. 10.

VII. DISCUSSION

The benchmarks above indicate that Polylidar is the faster
concave (multi)polygon extraction algorithm with the possibility
of holes. This section discusses why Polylidar was faster in
comparison to others. We specifically analyze the execution
time of the major steps in Polylidar in comparison to other
triangulation-based methods, namely CGAL and Spatialite. The
three major steps are:

1) Triangulation - The point set is triangulated creating a

mesh of faces, edges, and vertices.

2) Shape Extraction - Mesh simplices are removed based
upon the o parameter or edge length. Remaining triangles,
edges, and vertices represent the “shape”.

3) Polygon Extraction - The “shape” is converted to a
(multi)polygon with the possibility of holes.

Triangulation All perform Delaunay triangulation using ro-
bust geometric predicates but use different libraries to do so.
Polylidar uses Delaunator, CGAL uses its own 2D triangulation,
and Spatialite uses GEOS.

Shape Extraction Polylidar and Spatialite are most sim-
ilar, focusing only on filtering triangles in the mesh. How-
ever Polylidar goes further with region growing (Section IV-C)
that isolates disconnected regions in the mesh. For memory
efficiency and speed we represent the filtered triangle set 7
as a bit array with 1/0 indicating in/out of set. This allows
rapid triangle filtering and region growing which was previ-
ously profiled to be slower when using hashmaps. On the other
hand CGAL first creates “interval hashmaps™ for its simplices,
including triangles, edges, and vertices. These hashmaps store
data detailing at what a-interval a specific simplex would be
in the c-complex. These ordered hashmaps give the ability to
more quickly compute a family of a-shapes from a point set.
These data structures are implemented as C++ multimaps with
O(log n) for insertion/look-up in comparison to unordered maps
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TABLE VI
ALGORITHM TIMINGS - MEAN OF 30 RUNS IN MILLISECONDS

. . . shape polygon
Algorithm  triangulation extraction  extraction total
Polylidar 36.0 4.4 1.0 41.4
CGAL 445 154.0 - 198.5
Spatialite 2342 135.3 10788.7  11158.1

having O(1). This design choice leads to shape extraction having
an O(nlogn) complexity for CGAL. By creating hash maps
for edges and vertices CGAL can also return the singular points
and edges which are isolated and not attached to any triangle
in the a-complex (e.g., a single point far removed from all
others). Polylidar need not do this because singular points and
edges cannot be polygons thus are not required steps in shape
extraction.

Polygon Extraction Polylidar independently converts each
region into a polygon. Algorithm 2 quickly identifies all bor-
der edges and uses efficient unordered contiguous memory
hashmaps to store this information in HE and PtE. The essence
of Algorithms 3 and 4 are entirely border-edge based leading to
a significant speed up compared to triangle based methods (i.e.,
perimeter vs. area). Spatialite uses GEOS to take the union of
all unfiltered triangles to generate a valid multipolygon. CGAL's
Alpha Shape produces an unordered list of the boundary edges
of the a-shape. However CGAL does not provide any explicit
function to convert this list to a valid (multi)polygon.

Table VI summarizes mean execution timings for each of the
main steps for Polylidar, CGAL, and Spatialite. The 64,000 point
set in the shape of California (with holes) is used, with each
algorithm executed 30 times with the mean presented. Relative
execution times with other point sets are similar. Delaunator in
Polylidar triangulated this specific point set fastest with CGAL
a close second. Polylidar achieves a more significant speed-up
in shape extraction for which Polylidar is 35 and 32 times
faster than CGAL and Spatialite, respectively. Also, Polylidar’s
polygon extraction is about four orders of magnitude faster than
Spatialite whereas CGAL does not extract polygons. CGAL
instead offers a general purpose a-shape construction routine
to compute a family of shapes from different a-values.

VIII. CONCLUSION

This paper has introduced Polylidar, an efficient 2D concave
hull extraction algorithm which produces (multi)polygon output
with holes. Comparison benchmarks of numerous test sets,
similarly done in [11], show Polylidar is faster than competing
approaches with comparable or better accuracy. Additionally
we perform random polygon tests that confirm every polygon
produced by Polylidar is valid. In future work we will extend
Polylidar to operate directly on 3D point cloud data by perform-
ing both planar segmentation and polygon extraction. We will re-
move Polylidar’s reliance on Delaunay triangulation when used
with organized point clouds (e.g., range images) similar to [9].
Triangulation can be performed in O(n) time by exploiting the
spatial relationship inherit in range images. The OpenMP library

will be used to parallelize iteration independent loops such
as triangle filtering. Additionally we will explore task-based
parallelization by making use of the data independence between
polygons, i.e., spawning polygon extraction tasks immediately
after a plane is segmented [22].

REFERENCES

[1] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger, and
J. Poppinga, “Online three-dimensional SLAM by registration of large
planar surface segments and closed-form pose-graph relaxation,” J. Field
Robot., vol. 27 no. 1, pp. 52-84, 2010.

[2] S. Malihi, M. J. Valadan Zoej, M. Hahn, M. Mokhtarzade, and H. Arefi,
“3D building reconstruction using dense photogrammetric point cloud,”
Int. Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. 3, pp. 71—
74, Jun. 2016.

[3] M. Himmelsbach, F. v. Hundelshausen, and H.-J. Wuensche, “Fast seg-
mentation of 3d point clouds for ground vehicles,” in Proc. IEEE Intell.
Veh. Symp., 2010, pp. 560-565.

[4] C.Feng, Y. Taguchi, and V. R. Kamat, “Fast plane extraction in organized
point clouds using agglomerative h. clustering,” in Proc. IEEE Int. Conf.
Robot. Autom., May 2014, pp. 6218-6225, ISSN: 1050-4729.

[5]1 T. T. Pham, M. Eich, . Reid, and G. Wyeth, “Geometrically consis-
tent plane extraction for dense indoor 3D maps segmentation,” in Proc.
IEEE/RSJT Int. Conf. Intell. Robots Syst. (IROS), Daejeon, South Korea,
Oct. 2016, pp. 4199-4204.

[6] A. Schaefer, J. Vertens, D. Buscher, and W. Burgard, “A maximum
likelihood approach to extract finite planes from 3-D laser scans,” in Proc.
ICRA, Montreal, QC, Canada, May 2019, pp. 72-78.

[7] J. Biswas and M. Veloso, “Planar polygon extraction and merging from
depth images.” in Proc. IEEE/RSJ IROS, Oct. 2012, pp. 3859-3864, ISSN:
2153-0858.

[8] T-k. Lee, S. Lim, S. Lee, S. An, and S.-y. Oh, “Indoor mapping using
planes extracted from noisy RGB-D sensors,” in Proc. IEEE/RSJ IROS,
Oct. 2012, pp. 1727-1733.

[9] D. Holz and S. Behnke, “Fast range image segmentation and smoothing
using approximate surface reconstruction and region growing,” in Sukhan
Lee, editor, Intelligent Autonomous Systems 12, vol. 194. Berlin, Germany:
Springer Berlin Heidelberg, 2013, pp. 61-73. Advances in Intelligent
Systems and Computing.

[10] Github - Polylidar, 2019. [Online.] Available: https://github.com/
JeremyBY U/polylidar, Accessed: 2019-01-05.

[11] M. Duckham, L. Kulik, M. Worboys, and A. Galton, “Efficient gen-
eration of simple polygons for characterizing the shape of a set of
points in the plane,” Pattern Recognit., vol. 41 no. 10, pp. 3224-3236,
2008.

[12] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a
set of points in the plane,” IEEE Trans. Inform. Theory, vol. 29 no. 4,
pp. 551-559, Jul. 1983.

[13] A. Furieri, “Spatialite,” 2017. [Online.] Available: https://www.gaia-gis.
it/fossil/libspatialite/index, Accessed: Jan. 14, 2017.

[14] D. Hipp, D. Kennedy, and J. Mistachkin, “SQLite (Version 3.28) SQLite
Development Team.” [Online]. Available: https://www.sqlite.org/index.
html. Accessed on: Feb. 2, 2020.

[15] OSGeo, “Postgis,” 2019. [Online.] Available: https://postgis.net/docs/ST_
ConcaveHull.html, Accessed on: Jan. 14, 2019.

[16] The CGAL Project, CGAL User and Reference Manual, CGAL Editorial
Board, 4.14 edition, 2019.

[17] J. R. Herring, “OpenGIS implementation specification for geographic
information-Simple feature access- Part 1: Common architecture,” Open
Geospatial Consortium, p. 95, 2006.

[18] Github - Delaunator, 2018. [Online.] Available: https://github.com/
mapbox/delaunator, Accessed: Jan. 5, 2018.

[19] Github - Port of Delaunator to C++, 2018. [Online.] Available: https:/
github.com/delfrrr/delaunator-cpp, Accessed: Jan. 5, 2018.

[20] J. R. Shewchuk, “Adaptive precision floating-point arithmetic and fast
robust geometric predicates,” Discrete Comput. Geometry, vol. 18 no. 3,
pp. 305-363, 1997.

[21] R. Cao, Y. Zhang, X. Liu, and Z. Zhao, “Roof plane extraction from
airborne lidar point clouds,” Int. J. Remote Sens., vol. 38 no. 12,
pp. 3684-3703, 2017.

[22] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-taskflow: Fast task-
based parallel programming using modern c++,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., May 2019, pp. 974-983.


https://github.com/JeremyBYU/polylidar
https://www.gaia-gis.it/fossil/libspatialite/index
https://www.sqlite.org/index.html
https://postgis.net/docs/ST_ConcaveHull.html
https://github.com/mapbox/delaunator
https://github.com/delfrrr/delaunator-cpp


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


