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Abstract—This paper studies a defense approach
against a swarm of adversarial agents. We employ
a closed formation (‘StringNet’) of defending agents
around the adversarial agents to restrict their motion
and guide them to a safe area while navigating in
an obstacle-populated environment. Control laws for
forming the StringNet and guiding it to a safe area
are developed, and the stability of the closed-loop
system is analyzed formally. The adversarial swarm
is assumed to move as a flock in the presence of
rectangular obstacles. Simulation results are provided
to demonstrate the efficacy of the approach.

I. Introduction
Swarm technology has seen a rapid growth recently.

Safety-critical infrastructure such as government facil-
ities, airports, military bases are at increased risk of
being attacked by swarms of adversarial agents (e.g.,
aerial robots). This creates a need for defending safety-
critical infrastructure from attacks of adversarial swarms,
particularly in crowded urban areas.

Counteracting an adversarial swarm by means of phys-
ical interception [1], [2] in an urban environment may
not be desired due to human presence. Under the as-
sumption of risk-averse and self-interested adversarial
agents (attackers) that tend to move away from the
defending agents (defenders) and from other dynamic
objects, herding can be used as an indirect way of guiding
the attackers to a safe area.

In this paper, we consider a problem of defending a
safety-critical area (protected area) from an adversarial
swarm. We address this as a problem of herding a swarm
of attackers to a safe area, while avoiding the static
rectangular obstacles of the urban environment.

The herding approach to herd a flock of birds away
from an airport in [3] uses an n-wavefront algorithm,
where the motion of the birds on the boundary of the
flock is influenced based on the locations of the airport
and the safe area. Stability and performance guarantees
under directed star communication graph are provided in
[4], and experimental results in [5]. In [6] a circular arc
formation of herders is used to influence the nonlinear
dynamics of the herd based on a potential-field approach.
The authors design a point-offset controller to guide the
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herd close to a specified location. In [7], biologically-
inspired strategies are developed for confining a group
of mobile robots. The authors develop strategies based
on the "wall" and "encirclement" methods that dolphins
use to capture a school of fish. Regions from which this
confinement is possible are also derived; however, the
results are limited to constant velocity motions. A similar
approach of herding by caging is adopted in [8], where
a cage of high potential is formed around the sheep
(attackers). An RRT approach is used to find a motion
plan for the agents while maintaining the cage. However,
the formation is assumed to have been already formed
around the sheep. Furthermore, the caging of the sheep
is only ensured with constant velocity motion under
additional conservative assumptions on the distances
between the agents. In general, most of these works lack
a proper modeling of the adversarial agents’ intent to
reach or attack a certain protected area.

In [9], [10] the authors discuss herding using a switched
systems approach; the herder (defender) chases targets
(attackers) sequentially by switching among them so that
certain dwell-time conditions are satisfied to guarantee
stability of the resulting trajectories. However, the as-
sumption that only one of the targets is influenced by
the herder at any time is conservative for the problem
of defending against a swarm of attackers. The authors
in [11] use approximate dynamic programming to obtain
near-optimal control policies for the herder to chase a
target agent to a goal location.

The aforementioned approaches assume some form of
potential field to model the repulsion of the attackers
from the defenders, and develop herding strategies for
the defenders based on this potential field. Hence, such
approaches may fail to create a proper potential barrier
around the attackers if the potential field of the attackers
is unknown to defenders, or is modeled inaccurately.
In addition, most of the earlier work does not consider
obstacles in the environment. In our prior work [12], we
developed a strategy for herding a single attacker to a
safe area in the presence of rectangular obstacles.

In this paper, we propose what we call ‘StringNet
Herding’, in which a closed formation of physical strings
called ‘StringNet’ is formed by the defenders around
the swarm of attackers. It is assumed that the string
between two defenders serves as a barrier through which
the attackers cannot escape. The StringNet is controlled
collectively to herd the swarm of attackers. The proposed
approach only assumes that the attackers avoid collisions
with defenders and barriers, while the control actions of
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the attackers are not known a priori. To demonstrate
the proposed approach, we use flocking behavior for the
attackers, which however is not known to the defenders.

We build on earlier work [13]–[17] to develop a flocking
controller for the attackers in the presence of rectangular
obstacles. The controller uses the β-agent strategy [14],
[15], in which a virtual agent called β-agent is assumed to
move on the boundary of the obstacle, and the control
action is designed to maintain a certain distance from
this β-agent using a potential function approach. We
generate β-agents along a superelliptic curve that is
at least C1 around the rectangular obstacles. Also, in
contrast to earlier work [6], [8] that treats robots as point
masses, we assume agents with known circular footprints.
Furthermore, no constant velocity assumption is made
about the attackers as is done in [7], [8].

In summary, the novelties and the contributions are:
(i) A ‘StringNet’ formation to restrict the motion of the
attackers inside the StringNet and to herd them towards
a safe area. We develop provably-correct control laws for
the defenders to form the StringNet in finite time, and
to herd the entrapped attackers to safe area. (ii) The
definition of β-agents along superelliptic contours around
rectangular obstacles with C1 velocity profile for obstacle
avoidance in flocking.

The rest of the paper is structured as follows: Section II
describes the mathematical modeling and problem state-
ment. The flocking and herding algorithms are discussed
in Section III and IV, while simulations are provided in
Section V. The conclusions and the ongoing work are
discussed in Section VI.

II. Modeling and Problem Statement

Notation: Vectors and matrices are denoted by small
and capital bold letters, respectively (e.g., r, P). Script
letters denote sets (e.g., P). ‖.‖ denotes Euclidean norm
of its argument. |.| denotes absolute value of a scalar
argument and cardinality if the argument is a set. The
function sigα is defined as: sigα(x) = x ‖x‖α−1. R≥0 =
{x ∈ R|x ≥ 0}. Rı = ‖rı − r‖ and Eıok are the Euclidean
distance between object  and ı, and the Super-elliptic
distance between ı and Ok, respectively. A blending
function [18], σı(δ), characterized by a doublet (δı, δ̄ı )
with δı < δ̄ı is defined as:

σı(δ) =


1, δ ≤ δı;

Aıδ
3 +Bıδ

2 + Cı δ +D
ı , δı ≤ δ ≤ δ̄ı ;

0, δ ≥ δ̄ı ;
(1)

where δ is the distance between the objects ı and . The
coefficients Aı, Bı , Cı , D

ı are chosen as: Aı = 2
(δ̄ı−δı)3 ,

Bı = −3(δ̄ı+δ

ı
)

(δ̄ı−δı)3 , Cı = 6δ̄ıδ

ı

(δ̄ı−δı)3 , D
ı = (δ̄ı)

2(δ̄ı−3δ
ı
)

(δ̄ı−δı)3 , so
that (1) is a C1 function. The argument δ is either
the Euclidean distance or the Super-elliptic distance,
depending on the objects under consideration, and will
be omitted when clear from the context.

We consider Na attackers Ai, i ∈ Ia = {1, 2, ..., Na}
and Nd defenders Dj , j ∈ Id = {1, 2, ..., Nd}, operating
in a 2D environment W ⊆ R2 with No rectangular
obstacles, a protected area P ⊂ W defined as P = {r ∈
R2 | ‖r− rp‖ ≤ ρp}, and a safe area S ⊂ W, defined
as S = {r ∈ R2 | ‖r− rs‖ ≤ ρs}, where (rp, ρp) and
(rs, ρs) are the centers and radii of the corresponding
areas, respectively. The agents Ai and Dj are modeled
as discs of radii ρa and ρd ≤ ρa, respectively and have
Double Integrator (DI) dynamics with a linear drag term:

ṙai = vai, v̇ai = uai − Cdvai; (2)

ṙdj = vdj , v̇dj = udj − Cdvdj ; (3)

where Cd is a drag coefficient, for ı = ai and ı = dj
rı = [xı yı]T , vı = [vxı vyı ]T are position and velocity
of Ai and Dj , respectively, and uı = [uxı uyı ]T is
acceleration input (control input) of Ai and Dj , respec-
tively. We assume that the control action of Ai satisfies
‖uai‖ < uma. This model poses a realistic speed bound
on each attacker with limited acceleration control, i.e.,
vai = ‖vai‖ < vma = uma

Cd
. We assume that every

defender Dj senses the position rai and velocity vai of
the attacker Ai when Ai is inside a circular sensing-
zone Zsd = {r ∈ R2| ‖r− rp‖ ≤ ρsd} around P. Each
attacker Ai has a similar local sensing zone Zsai = {r ∈
R2 | ‖r− rai‖ ≤ ρsai}.

We consider static obstacles Ok of rectangular shape,
with their edges along the x-axis (̂i) and y-axis (̂j) of a
coordinate frame Fgi, defined as:

Ok = {r ∈ R2| |x− xok| ≤
wok
2 , |y − yok| ≤

hok
2 }, (4)

where rok = [xok yok]T is the center, wok and hok are the
lengths along î and ĵ of Ok for all k ∈ Io = {1, 2, ..., No}.
The attackers aim to reach the protected area P as

a flock, and the defenders aim to herd the flock to the
safe area S before it reaches P. Formally, we consider the
following two problems.
Problem 1 (Flocking): Design control actions uai,

∀i ∈ Ia such that A’s reach P as a flock formation while
avoiding the static rectangular obstacles.
Problem 2 (Herding): Find control actions udj , ∀j ∈

Id to accomplish: 1) StringNet formation around the
swarm of attackers in finite time. 2) Once the StringNet
is formed, move the StringNet to the safe area S while
avoiding the obstacles Ok.

III. Flocking

The neighboring graph [17] for the attackers is denoted
as Ga = (Va, Ea), where Va = {A1,A2, ...,ANa} is
the set of vertices and Ea is the set of edges. Each
attacker Ai communicates with its neighbors N a

ai =
{i′ ∈ Va|(Ai,Ai′) ∈ Ea}. We define a potential function
V ı : R≥0 → R≥0 as:

V i (Rı) = ln
(

R̃ı

Rı − R̂ı
+ Rı − R̂ı

R̃ı

)
, (5)
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where R̃ı > R̂ı is the desired distance between agent
ı and agent , and R̂ı is the minimum safety distance
between agent ı and agent . We have that as Rı ap-
proaches R̂ı , the potential V ı tends to ∞. A control
action corresponding to V ı is defined as:

up(xı) = −ζı (vı − v)− µı · ∇rıV

ı (6)

where xı = [rTı ,vTı , rT ,vT ]T , ζı and µı are control gains.
The swarm of attackers aims to reach the protected

area P while avoiding the static obstacles Ok and main-
taining a flock described by potential functions V ai′ai for
all i, i′ ∈ Ia over the graph Ga. The control action for the
flock of the attackers is defined as [17], [19]:
ufai = kra(rp − rai) +

∑
i′∈Na

ai

up(xai
′

ai ) +
∑
k∈No

ai

σokai · up(x
βik
ai )

(7)
where xβikai = [rTai,vTai, rTβik,vTβik]T , where rβik and vβik
is the position and velocity of the β-agent on the bound-
ary of Ok corresponding to Ai that is used for avoiding
Ok. The blending function σokai allows smooth transition
to the obstacle avoidance part of the controller, and is
characterized by the doublet (ξo

a
, ξ̄oa). N o

ai is a set of
neighboring obstacles defined as: N o

ai = {k ∈ Io|σokai >
0}. The center rp of the protected area P acts as a γ-
agent [15] providing navigational feedback.

A. β-agents around Rectangular Obstacles

Fig. 1: β-agent around rect-
angles for obstacle avoidance

The position rβik =
[xβik, yβik]T of the
agent βik is defined as
the projection of rai
on the superelliptic con-
tour SEok of level ξmok
[20], defined as: SEok ={

r ∈ R2|Eok = ξmok
}
and

the velocity vβik as the
projection of vai along
the tangent to the su-
perelliptic contour SEok
at rβi along the direc-
tion of motion of Ai.

The superelliptic distance Eok is defined as:

Eok =
∣∣∣∣x− xokaok

∣∣∣∣2nok +
∣∣∣∣y − yokbok

∣∣∣∣2nok − 1. (8)

The projection rβik of rai on the SEok is the closest point
on SEok such that the unit tangent t̂ok(rβik) to SEok at
rβik is normal to rai − rβik, and is found by solving:∣∣∣∣xβik − xokaok

∣∣∣∣2nok +
∣∣∣∣yβik − yokbok

∣∣∣∣2nok − 1 = ξmok, (9a)

−b
2noksig2nok−2(xβik − xok)
a2noksig2nok−2(yβik − yok) ·

yβik − yai
xβik − xai

= −1. (9b)

where sigm(x) = x |x|m. Fig. 1 shows the projection rβik
(green square) of rai (red circle). The velocity vβik can
be then obtained as: vβik =

(
vai · t̂ok(rβik)

)
t̂ok(rβik).

B. Avoiding Dynamic Obstacles during Flocking
1) Avoiding the Defenders: In addition to avoiding

static obstacles, the attackers apply the following control
action to avoid the defenders:

udai =
∑
j∈Nd

ai

σdjai · up(x
dj
ai), (10)

where σdjai is characterized by the doublet (Rda, R̄da). N d
ai

is a set of defenders in the sensing zone of Ai defined as:
N d
ai = {j ∈ Id|Rdjai < ρsai}, and R̃

dj
ai > R̄da.

2) Avoiding the Strings: The strings (string barriers)
are line segments between defenders. The attackers can
sense these strings in their sensing zone and react to them
using the control action:

ubai =
∑
s∈N b

ai

σbsai · up(xbsai), (11)

where up is given by (6) and V bsai is a potential function
for Ai corresponding to its projection (rbs, vbs) on the
string barrier Bs (Fig. 2). σbsai and N b

ai are defined similar
to σdjai and N d

ai. The combined bounded control action for
the attackers’ flock is given as:

uai = σa

(
ufai + udai + ubai + Cdvai

)
, (12)

where saturation function σa(u) = min(uma, ‖u‖) u
‖u‖ .

Remark 1: The convergence analysis for flocking of the
attackers under the control (7) is provided in [14], [15],
[17] when the first term is absent i.e. no navigational
control command. Similar analysis can be done for the
flock’s convergence to rp. Since flocking is not the focus
of this paper we omit the analysis in the interest of space.

IV. Herding

To herd the flock of attackers to S, we propose
‘StringNet Herding’. StringNet is a closed net of strings
formed by the defenders as shown in Fig. 2. The strings
can be actual physical strings (ropes) or some mechanism
that does not allow the attackers to pass through them. It
is assumed that even after being connected by the strings,
the motion of defenders is not restricted. The underlying
graph structure for the ‘StringNet’ is defined as:
Definition 1 (StringNet): The StringNet Gs = (Vs,

Es) is a cycle graph consisting of: 1) the defenders as the
vertices, Vs = {D1,D2, ...,DNd}, 2) a set of edges, Es =
{(Dj ,Dj′) ∈ Vs × Vs|Dj

s←→ Dj′}. The operator s←→
denotes a physical string barrier between the defenders.

The StringNet herding consists of three phases: 1)
Gathering, 2) StringNet formation and 3) Herding the
StringNet to S. These phases are discussed as follows.

A. Gathering
Once the adversarial attackers are sensed in the sens-

ing zone Zsd , the defenders are tasked to herd them. The
defenders first converge to an open semicircular forma-
tion in the expected path of the attackers (shortest path
for the attackers) and establish strings such that Ai is
connected to Ai+1 by a string for all i = {1, 2, ..., Nd−1}
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(Fig. 2). The desired position ξgdj of Dj on the stationary
semicircular formation F g

d (Fig. 2) is designed as:
ξgdj = rgdf + ρsdf ô(θdj), where θdj = θg∗df + π(j−1)

Nd−1 , (13)

where ô(θ) =
[
cos(θ)
sin(θ)

]
is the unit vector making an angle

θ with x-axis, rgdf = ρgdf ô(θ∗ac) is a location such that
ρgdf > ρp + dmaxac , where dmaxac is the maximum distance
attacker’s center of mass (ACoM, rac = 1

Na

∑Na
i rai) can

travel towards P during the StringNet formation phase,
discussed next, and θg∗df = θ∗ac − π

2 , where θ∗ac is the
expected direction of motion of the ACoM on the shortest
path from the initial position of ACoM to P. We have
ξ̇gdj = ηgdj = 0 and η̇gdj = 0. We assume the following.
Assumption 1: (a) The desired position of Dj , ξgdj , is

such that Edj,desok > ξ̄od,∀j ∈ Id,∀k ∈ Io, where E
dj,des
ok is

super-elliptic distance between ξgdj and the obstacle Ok.

(b) ρsdf

√
2− 2 cos

(
π

Nd−1

)
> R̄dd, ρsdf > ρac + R̄δcd where

R̄dd and R̄δcd are the parameters of the blending functions
σdj
′

dj and σδcjdj respectively.
To converge to ξgdj , a finite-time stabilizing controller

is defined as:
udj = u0

dj + ucoldj + η̇gdj , (14)
where
u0
dj = Cdvdj − k2sigα2(vdj − ηgdj)− k1sigα1(rdj − ξgdj)

ucoldj =
∑

j′∈Nd
dj

σdj
′

dj · up(x
dj′

dj ) +
∑
k∈No

dj

σδjkdj · up(x
δjk
dj ) (15)

where k1, k2 > 0. xδjkdj = [rTdj ,vTdj , rTδjk,vTδjk], where rδjk
and vδjk are the position and the velocity of a virtual
δ-agent, similar to β-agent, corresponding to Dj around
the obstacle Ok. V dj

′

dj , V δjkdj are potential functions to
avoid collision, respectively, with Dj′ and δ-agent on the
boundary of Ok. We have R̃dj

′

dj > R̄dd and R̃δjkdj > R̄dd to
ensure collision avoidance for Dj .

B. StringNet Formation
The attackers are assumed to stay within a connectiv-

ity region of radius ρac (< ρmaxsn ) around ACoM . Once
the semicircular formation is in place, the defenders wait
until attackers come close, i.e.,

∥∥∥rgdf − rac
∥∥∥ < ε, where ε

is a small number. To trap the attackers inside StringNet,
a desired regular-polygon formation is designed around
the connectivity region of the attackers as shown in
Fig. 2. The defenders start tracking their desired posi-
tions around the attackers and once D1 and DNa reach
within bd distance from their respective desired positions
they get connected via a string. The desired position ξsdj
of Dj on the StringNet Gs (Fig. 2) is chosen on the circle
with radius ρsn centered at rac as:
ξsdj = rac + ρsnô(θdj), where θdj = θs∗df + π(2j−1)

Nd
, (16)

for all j ∈ Id, where θs∗df = θg∗df . The radius ρsn should
satisfy, ρac + bd < ρsn ≤ ρmaxsn − bd, where ρmaxsn is
the maximum footprint of a formation that can pass
through the obstacle-free space in the environment. The

parameter bd is the maximum position tracking error
when the defenders converge to the StringNet formation
as obtained in Theorem 1. We have ξ̇sdj = ηsdj = ṙac =
vac. The control action for Dj during this phase is:

Fig. 2: Desired Positions of the Defenders

udj = Cdvdj − k2 · (vdj − ηsdj)− k1 · (rdj − ξsdj)
+σδcjdj · up(x

δcj
dj ) + ucoldj ,

(17)

where rδcj and vδcj are the position and the velocity of
the δ-agent corresponding to the Dj on the boundary of
the connectivity region of the attackers. The StringNet
is achieved when ‖rdj − ξdj‖ ≤ bd for all j ∈ Id during
this phase. To ensure enough space for the movement
of the attackers inside the StringNet, the minimum
number of defenders require to herd the given number
of attackers with connectivity region of radius ρac is:

Nmin
d =

⌈
π

cos−1
(

ρac+bd
ρmaxsn −bd

)⌉, where d·e gives the smallest

integer greater than or equal to its argument.
C. Herding: Moving the StringNet to safe area

Once the defenders form a StringNet around the at-
tackers, they move while tracking a desired rigid closed
formation Fh

d centered at a virtual agent rdf . The vir-
tual agent’s dynamics are governed by the DI dynamics
similar to (3) with acceleration,

udf = σdh

(
−k1(rdf − rs) +

∑
k∈No

df

σδfkdf up(xδfkdf )
)
, (18)

where δfk refers to the δ-agent on the obstacle Ok
corresponding to virtual agent at rdf , and σdh(u) =
min(uhmd, ‖u‖) u

‖u‖ . We choose uhmd < uma to ensure that
the attackers are able to react to the motion of the
defenders. The desired positions ξhdj of the defenders on
the desired closed formation Fh

d satisfy:
ξ̇hdj = ηhdj , η̇hdj = udf − Cdvdf ;
ξhdj = rdf + ρsnô(θdj), where θdj = θs∗df + π(2j−1)

Nd
.

(19)

The control (14) is appropriately modified to track (ξhdj ,
ηhdj) by replacing ξsdj ,ηsdj , η̇sdj by ξhdj ,η

h
dj , η̇

h
dj , respectively.
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D. Convergence Analysis
Theorem 1: The StringNet Gs centered at rac is

formed around the attackers in finite time from almost
all initial conditions under the control action in (14)
(gathering phase) and (17) (StringNet formation phase),
while avoiding collisions.

Proof: For almost all initial conditions1 such that
Rdj

′

dj > R̂dj
′

dj , we have
∂V dj

′
dj

∂Rdj
′

dj

→∞ as Rdj
′

dj → R̂dj
′

dj implying
infinite acceleration applied on Dj in the direction away
from D′j which ensures Rdj

′

dj > R̂dj
′

dj at all times and
hence ensures no collision among the defenders. A similar
argument can be used to show obstacle avoidance.

During the gathering phase, when the defenders are
not in conflict with other defenders or obstacle (i.e.,
σdj
′

dj = σδjkdj = 0, ∀j, j′ ∈ Id; k ∈ Io), the dynamics read:
ṙdj = vdj
v̇dj = −k2sigα2(vdj − ηgdj)− k1sigα1(rdj − ξgdj)

(20)

The origin rdj−ξgdj = vdj = 0 of (20) is finite-time stable
[21] if α1 = α2

2−α2
. Let the convergence time be T gd .

Similarly during the StringNet formation phase, when
Dj is not in conflict with any other defenders or obstacle,
the error dynamics read:

ėdj =
[
ėrdj
ėvdj

]
=
[

0 1
−k1 −k2

] [
erdj
evdj

]
+
[

0
η̇sdj

]
= Aedj + gdj

(21)
where erdj = rdj − ξsdj , evdj = vdj − ηsdj , and

∥∥∥η̇sdj∥∥∥ =
‖v̇ac‖ ≤ uma which implies the disturbance term gdj is
bounded: ‖gdj‖ ≤ uma. The nominal system in (21),
ėdj = Aedj , is exponentially stable for k1, k2 > 0.
From Theorem 4.6 in [22], there exists a positive definite
matrix P that satisfies the Lyapunov equation ATP +
PA = −Q, for any given positive definite matrix Q.
The Lyapunov function Vdj = eTdjPedj satisfies the con-
ditions as required in Lemma 9.2 in [22] with constants
c1, c2, c3, c4 given in terms of the eigenvalues of P and Q
as: c1 = λmin(P), c2 = λmax(P), c3 = λmin(Q) and c4 =
2λmax(P). From Lemma 9.2 in [22], if ‖gdj‖ ≤ uma <
c3
c4

√
c1
c2
c0ē for all t > 0, all edj ∈ D = {edj ∈ R4| ‖edj‖ <

ē} with c0 < 1, then for all ‖edj(0)‖ <
√

c1
c2
ē, the solution

edj(t) of the perturbed system in (21) satisfies:

1) ‖edj(t)‖
‖edj(t0)‖ ≤

√
c2
c1
e

(
− (1−c0)c3

2c2
(t−t0)

)
, ∀t0 ≤ t < t0 +Tdj ,

2) ‖edj(t)‖ ≤ bdj = c4
c3

√
c2
c1
uma
c0

, ∀t ≥ t0 + Tdj ,
for some finite time Tdj . That is, Dj tracks the desired
trajectory (ξsdj , ηsdj) within the error bound bdj . Denote
bd = maxj∈Id bdj . After the first two phases, all the
defenders reach their desired locations within bd neigh-
borhood in finite time T ≥ T gd + maxj∈Id Tdj and hence
the StringNet is formed in finite time.

1Except for those in the set M0 = {rdj , vdj ∈ R2 ∀j ∈ Id|vdj =
0, udj = 0 as per (14), (17)}, and the initial conditions from which
the defenders’ trajectories approach M0; the latter depends on the
desired states. A formal characterization of this set is left open for
future research.

Remark 2: All the attackers get entrapped inside the
StringNet if the defenders form F g

d before the attackers
reach within ρgdf + ρsn distance from P.

Theorem 2: Once the defenders form the StringNet
Gs, they herd all the attackers trapped inside Gs to the
safe area S (ρs > ρmaxsn ) while avoiding the obstacles
by tracking desired positions governed by (18) under the
appropriately modified control action in (14).

Proof: Since the desired formation Fh
d moves as a

rigid formation, we only consider the virtual agent at rdf
with size ρsn + ρd whose dynamics are:

˙̄rdf = vdf , v̇df = σdh(uhdf )− Cdvdf , (22)

where uhdf = −k1r̄df +
∑
k∈No

df

σδfkdf up(xδfkdf ) and r̄df =

rdf − rs. Using similar arguments as in Theorem 1, we
can ensure the safety of Fh

d if R̂δokdf > ρsn+ρd+ ρ̄, where
ρ̄ = uhmd(1−log(2))

C2
d

is the maximum distance the formation
can travel in the worst case motion of the formation
toward the obstacle with the bounded acceleration. The
formation will leave the locally active potential fields
around the static obstacle in some finite time. In the
absence of any obstacle’s local potential field, we have
uhdf = −k1r̄df . We define a candidate Lyapunov function:

V =
{
k1‖r̄df‖2

2 + ‖vdf‖2

2 , if ‖r̄df‖ < uhmd
k1
,

uhmd ‖r̄df‖+ ‖vdf‖2

2 − (uhmd)2

2k1
, otherwise.

(23)
V is 0 at r̄df = vdf = 0, is positive definite, continuous
and its time derivative along the trajectories of (22) is:

V̇ =
{
−Cd ‖vdf‖2 if ‖r̄df‖ < uhmd

k1
,

−Cd ‖vdf‖2 otherwise.
(24)

V̇ is negative semi-definite and we have from the dy-
namics (22) that the largest invariant subset in Q =
{r̄df ,vdf ∈ R2|V̇ = 0} is the origin r̄df = vdf = 0. Using
Lasalle’s Invariance Principle (Theorem 4.4 in [22]), the
trajectories of the system (22) converge to r̄df = vdf = 0,
i.e, the center rdf converges to rs and so does the desired
formation Fh

d . From Theorem 1, the defenders track
these desired trajectories under appropriately modified
(14) and hence herd the attackers to S.

V. Simulations

We provide a simulation of 5 defenders herding an
adversarial swarm of 4 attackers to S with saturated
control inputs whose theoretical analysis is currently an
ongoing work. The trajectories of all the agents are shown
in Fig. 3. As observed, starting from the given initial
conditions, the defenders are able to gather before the
attackers reach close to P, form the StringNet around
the attackers and herd them to S. The safety is assessed
in terms of critical distance ratios:

∆d
d = max

j 6=j′∈Id

R̂dj
′

dj

Rdjdj′
,∆d

a = max
i∈Ia,j∈Id

R̂aidj
Raidj

,∆a
a = max

i6=i′∈Ia

R̂ai
′

ai

Rai
′

ai
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∆o
a = max

i∈Ia
max
k∈No

ai

ξmok
Eaiok

, ∆o
d = max

j∈Id
max
k∈No

dj

ξmok
Edjok

,

where Eaiok, E
dj
ok are super-elliptic distances from Ok de-

fined as per expression in (8). These ratios have to be less
than 1 for no collisions. As observed from Fig. 4 all these
ratios are less than 1 for all times ensuring no collisions.

Fig. 3: The herding paths.

Fig. 4: Inputs and critical distances.

VI. Conclusions and Ongoing Work
We proposed a herding method for defending a pro-

tected area against an adversarial swarm. A closed
formation is formed by the defenders around the at-
tackers, restricts their motion and herds them to the
safe area while avoiding the static rectangular obstacles.
We provided formal analysis for the proposed approach
and simulations with saturated control actions whose
theoretical analysis and experimental investigation is a
part of an ongoing work.
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