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ABSTRACT: The dawn of the 21st century has brought with it a surge of research 29
related to computer-guided approaches to catalyst design. In the past two decades, ‘
chemoinformatics, the application of informatics to solve problems in chemistry, has A% C
increasingly influenced prediction of activity and mechanistic investigations of organic

LFER - e
reactions. The advent of advanced statistical and machine learning methods, as well as . Multivariate >y

“._Regression _ . }N

) Y
dramatic increases in computational speed and memory, has contributed to this cree=
emerging field of study. This review summarizes strategies to employ quantitative QSSR —
structure—selectivity relationships (QSSR) in asymmetric catalytic reactions. The €M™~ _~Machine * 1%
coverage is structured by initially introducing the basic features of these methods. 1) ;o mi  Learning uvfg.ﬁ'
Subsequent topics are discussed according to increasing complexity of molecular OO Son ’/\
representations. As the most applied subfield of QSSR in enantioselective catalysis, the O @Ti} gz

application of local parametrization approaches and linear free energy relationships 8 2
(LFERs) along with multivariate modeling techniques is described first. This section is

followed by a description of global parametrization methods, the first of which is

continuous chirality measures (CCM) because it is a single parameter derived from the global structure of a molecule. Chirality
codes, global, multivariate descriptors, are then introduced followed by molecular interaction fields (MIFs), a global descriptor
class that typically has the highest dimensionality. To highlight the current reach of QSSR in enantioselective transformations, a
comprehensive collection of examples is presented. When combined with traditional experimental approaches, chemo-
informatics holds great promise to predict new catalyst structures, rationalize mechanistic behavior, and profoundly change the
way chemists discover and optimize reactions.
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1. INTRODUCTION

1.1. Chemoinformatics in Asymmetric Catalysis

Understanding the correlation of structure to reactivity, a
central tenet of organic chemistry, provides a means to
rationalize and predict chemical transformations. New
reactivity, either serendipitous or hypothesized, tests, informs,
complements, and improves this understanding; over time, a
wide variety of transformations emerge. Within this enterprise,
the synthesis of enantiomerically pure compounds with
substoichiometric quantities of a catalyst is among the most
significant advances in organic synthesis. As recognized by the
2001 Nobel Prize in chemistry and continuing with no
surcease, advances in asymmetric catalysis are at the forefront
of research in synthetic organic chemistry. The field has since
continued to expand, with the number of publications
containing the concept “asymmetric catalysis” increasing
from 1646 from 2001 to over 2500 by 2004, remaining
constant at that point ever since (Figure 1).

Despite this continuing effort, the general strategy for the
development of chiral catalysts has arguably evolved at a much
slower rate. Catalyst design remains primarily reliant on
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Figure 1. References obtained from a Scifinder search including the
words or the concept “asymmetric catalysis” since 1990.

chemical intuition, wherein practitioners qualitatively identify
relationships between catalyst enantiomeric products that may
differ in only a few kcal/mol energy barrier (for example a
97.5:2.5 er corresponds to a difference of ~2 kcal/mol at 298
K). This small energy difference presents a monumental
challenge in the rational design of a catalyst; any of the myriad
molecular effects including conformation, solvation, substrate
interactions, steric and electronic considerations, and even
temperature can alter the balance to affect selectivity. Although
the intuition of a skilled experimentalist is still valued, even the
most experienced practitioner is incapable of analyzing vast
quantities of data and identifying the multidimensional
correlations pertaining to catalyst efficacy. Inherently intu-
ition-guided methods are qualitative; attempts to quantify
relevant catalyst properties responsible for enantioinduction
are typically made after the system is already optimized (if
quantified at all) at which point the important aspects of
catalyst structure have already been intuitively identified.

Quantitatively driven catalyst design is thus exceedingly rare,
given the unquantifiable nature of intuition-guided methods.
As discussed later in this review, quantitative methods relating
selectivity to structural properties have been developed but
have seen limited adoption. With the rise of “big-data”
techniques, these pioneering efforts have laid the groundwork
for the future of this field in the development of tools enabling
expedited catalyst design. Further, more modern tools capable
of analyzing large collections of data are paramount in
discerning the relative importance of catalyst features.

In view of the spectacular improvements in processor speed
and memory capacity, computationally guided methods for
catalyst optimization have become an attractive alternative to
empiricism. The last two decades have witnessed significant
advances in computational methods for catalyst design, as
reflected in the numerous reviews in the area.'** The most
common method is the application of accurate quantum
mechanical calculations to provide mechanistic insight into
reactions of interest that then guide experimentalists’ efforts to
modify the catalysts. This strategy, however, is limited in that
the origin of selectivity must first be established for this
method to be viable. A complementary strategy is the
implementation of chemoinformatics to catalyst design.
Although chemoinformatics does rely on mechanistic
information, it can also be mechanism agnostic or be used to
probe mechanisms of interest. Chemoinformatics-based
protocols are also generally less computationally intensive. It
is therefore possible to evaluate many catalyst candidates
computationally before deciding which to synthesize, whereas
analogous protocols using quantum chemistry and transition
state analysis would be infeasible in many cases because of the
greater computational resources required.

Chemoinformatics methods have long been used in the
development of pharmaceutically relevant molecules.””** In
this application, certain structural features of molecules are
correlated with biological activity using statistical methods to
guide optimization. This concept, known as quantitative
structure—activity relationships (QSAR), is a subfield of
chemoinformatics that has been used extensively in biological
systems (wherein “activity” refers to biological activity of a
compound). This concept has also been employed with other
applications, in which the reactivity (QSRR), a chemical
property (QSPR), or, as in enantioselective catalysts, the
selectivity (QSSR) of a molecular entity is probed. Although
these terms are sometimes used interchangeably in the
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chemoinformatics literature, the subfield this review most
pertains to is QSSR in enantioselective catalysis. Applications
that involve the 3D structure of molecular entities benefit from
a subfield of QSSR termed 3D-QSSR. In 3D-QSSR, three-
dimensional descriptors are used to correlate structural features
of the activity and selectivity of catalysts. It is then possible to
predict the outcome of new, untested catalysts and to identify
their important structural properties. In our opinion, 3D-QSSR
methods have the greatest potential for capturing the subtle
features of catalytic entities responsible for highly selective
catalysis. Over the past two decades, a new paradigm has
emerged to quantitatively supplement the “chemists’ intuition”.
The fundamentals of this paradigm are outlined in the lower
half of Figure 2. The search for an optimum catalyst begins by

1622

considering a library of potential candidates (exemplified here
by a binaphthylphosphoric acid scaffold) with varying
substituents (red, blue). It is assumed that there is an inherent,
quantifiable correlation between catalyst structure and catalyst
selectivity. The first step to uncover this correlation is the
conversion of the catalyst “chemical structure” to a “numerical
structure” by describing the molecule in terms of physical
descriptors (for example, as Hammett parameters, Taft steric
values etc.). Following this, mathematical models can be
constructed to relate these descriptors to an observable (in this
case, enantioselectivity). If a consistent correlation is found, a
mapping of the descriptor space to selectivity is obtained,
enabling the prediction of new descriptor values that
correspond to catalyst structures providing improved perform-
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ance. In this review, we will cover the various strategies by
which this workflow can be implemented.

1.2. Scope and Organization

This review will concentrate on soluble, small-molecule
catalysts. Experimentally measured parameters used as
descriptors in QSSR will not be exhaustively discussed because
the focus of this review is on theoretical molecular
descriptors.”® We have allowed some “spillover” into methods
that are not rigorously considered QSSR, including most
methods that correlate a calculable property derived from the
3-dimensional structure of a molecule to experimental
enantioselectivity. We also offer our own opinions and
perspectives on the various subfields and the direction of the
QSSR-related methods and their pertinence to catalyst design.
It is also noteworthy that many methods mentioned in this
review were first developed in biological settings. Only small
molecule catalysts are considered, with most cases of
enzymatic transformations ignored. To learn more about his
field, we direct the reader to other resources already available
on the topic.”***°

The organization of this overview aims to introduce topics
that incorporate increasingly complex methods for describing
molecules. First, we begin with a brief introduction to the
mathematical terms used throughout the review. Then, the
review progresses from linear free energy relationships (LFER)
with “local parametrization” of molecules to molecular
interaction field (MIF) based methods, which we view as a
“global parametrization” approach. The order of presentation
has been designed not necessarily with preference to
chronology, but rather with a view to assist a clear
understanding of concepts, especially for nonspecialists.
Indeed, we hope the review stimulates a wider adoption of
chemoinformatics methods by the synthetic organic chemistry
community to complement traditional discovery approaches in
asymmetric catalysis.

1.3. Mathematical Background

Numerous modeling methods have been used in the studies
detailed in this review. Although different experts might not
agree on what constitutes a machine learning method, one
could consider most methods used in this field as supervised
learning methods. The goal of supervised learning is to relate
independent variables to dependent variables (regressors and
regressands in regression models, respectively). In the context
of enantioselective catalysis, the descriptors are the regressors,
and enantioselectivity is the regressand. A supervised learning
model is trained by “mapping” the relationship between
descriptors and selectivity in a subset of data called a training
set. At the highest level of abstraction, the process by which the
“mapping” occurs differentiates statistical learning techniques.

The simplest example of such a method is univariate linear
regression (y = mx + b). In this equation, the independent
variable is “mapped” to the dependent variable through a
coefficient (m, the slope) and an intercept (b). An example of
such a univariate relationship would be the relationship
between Hammett parameters and enantioselectivity. If a
Hammett plot is established, one might use this equation to
predict the enantioselectivity of a new molecular entity that has
not yet been explored with a corresponding Hammett
parameter. Thus, there is one descriptor and it is being used
to make predictions for enantioselectivity.

As the stereochemical outcome of a chemical reaction is
dependent on numerous factors, many dependent variables of
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interest also are not dependent on only one factor. A number
of statistical tools exist for dealing with such situations, many
of which have been applied to chemical systems. Because
detailed descriptions of these statistical learning methods are
already given in these references, the discussion herein will be
brief, and the interested reader is directed to these resources if
they are interested in a more in-depth treatment of this subject
matter.”’

Multiple linear regression is the simplest approach to
modeling problems with multiple independent variables. It
has the same form as the univariate linear regression model,
but each new descriptor is added into the model with its own
coefficient (y = ax + bz + c). In multiple regression, the
coeficients for each variable are optimized in a model training
process by adjusting these coefficients to minimize a loss
function. For example, in ordinary least-squares regression the
loss function is the sum of squares of residuals. This model
type assumes a linear relationship between the independent
and dependent variables. Because this model type suffers from
complications such as multicollinearity (independent variables
that are correlated), other methods such as Ridge, Lasso, and
ElasticNet have been developed. These models are similar in
that they add a penalty function to the loss function of the
ordinary least-squares regression. Lasso allows coefficients to
shrink to zero, resulting in the elimination of correlated
descriptors, whereas Ridge minimizes the variation in the
predictions given by a model for a particular data point.
ElasticNet is a hybrid of these two methods. These models still
assume a linear relationship between regressand and regressors.
A method by which nonlinearity is dealt with in practice is by
the inclusion of interaction terms (the product of different
descriptor values) or with polynomial terms (a descriptor value
raised to the power of n).

Another modeling method capable of dealing with non-
linearity is the use of decision trees. Decision trees are
conceptually easy to understand; they can be thought of as a
flowchart of different “if/then” statements. These models can
be used for both classification and regression applications but
are prone to overfitting and have higher error rates owing to
both bias and variance. Random forest models alleviate this
problem by considering the aggregate of many decision trees,
reducing overfitting and bias error.

Support vector machines (SVM) can also be used to
construct regression models. Support vector regressors
essentially seek to optimize a hyperplane that minimizes the
error between the hyperplane and the training data (the
hyperplane is conceptually similar to a best fit line on a 2D-
plot). The model is optimized by generating a hyperplane that
includes a maximum number of points within a certain error
limit of the hyperplane. If nonlinear modeling is necessary, a
kernel can be used that projects the data set in a higher
dimensional space in which a hyperplane may be optimized.

Finally, neural networks are a modeling method designed to
simulate the way the human brain learns and recognizes
patterns. Neural networks are assembled of individual units
called neurons. These neurons are assembled in layers, in
which the first layer is termed the input layer and the last layer
of the network is called an output layer. Any layers in between
are called hidden layers, and more than one hidden layer
qualifies the neural network as a deep neural network. Many
network architectures have been developed for different
applications and will not be covered in this review. In a
simple, feed-forward neural network consisting of an input
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layer, hidden layer(s), and an output layer, the input data are
received by the input layer. Each neuron in the input layers is
connected to each neuron in the next layer (i.e., the first
hidden layer). An alternative way of phrasing this is that there
is a unique connection between every pairwise combination of
neurons from the input layer and the hidden layer. Each
connection is associated with an activation function. The input
value is passed through this activation function, and if it
reaches a certain threshold value, the neuron fires, passing the
new value to the next neuron. If the value is below the
threshold value, the neuron does not fire. This process
propagates through each layer until it reaches the output layer,
which in turn gives the output of the regression analysis.

Often, in cases wherein many descriptors are available, it is
advisible to reduce the dimensionality of the descriptor space
to avoid overfitting. To achieve this goal, two general
approaches are used—descriptor selection or dimensionality
reduction. In the former, an algorithm is applied to select a
subset of descriptors that give an acceptable model. In the
latter, the descriptor space is transformed into a space with
fewer dimensions while preserving the variance in the data.
Some examples of descriptor selection mentioned in this
review are forward selection, backward selection, stepwise
selection, selection using Lasso or a linear support vector
regressor (termed 11 selection), ranking feature importance in
random forest models, and genetic algorithms. For interested
readers, a more complete summary of these concepts is
available elsewhere.*>™**

Forward selection begins with a model that contains only an
intercept which is the average of the regressands. Independent
variables are added sequentially, each iteration adding the
descriptor which improves the model the most. This process
continues until a termination condition is met. Backward
selection is the opposite, in which the model first contains all
descriptors and removes the least informative descriptor
iteratively. Stepwise selection is similar to forward selection,
except that it also allows for variables to be removed. At each
step, the significance of each variable is assessed. If a variable is
identified as insignificant, it is removed from the model. A
limitation of these methods is that they are dependent on
sample size; too many descriptors with too few observations
will likely identify a “good” model that is fit on the randomness
in the data.

A more modern method for descriptor selection uses 11-
regularization to eliminate descriptors. An example of 11-
regularization is Lasso, in which the loss function has an added
term that allows the coefficients of a given descriptor to shrink
to zero, thus removing that descriptor from the model
Random forest models are capable of ranking descriptors in
terms of importance and can also be used to select important
descriptors.

Finally, genetic algorithms solve optimization problems in a
method meant to mirror natural selection. Genetic algorithms
can be used to solve a variety of optimization problems; in the
case of selecting the best model given many descriptors, it
identifies the optimal descriptor set to make the best model.
The algorithm has a set of individuals (models in this case)
that make up a population. Each individual is evaluated by
some ranking metric (R?, Q?, etc.), wherein the best individuals
are assigned a high fitness value. Individuals with high fitness
values (better models) have a higher likelihood of being
selected as parents for the next generation. In this step, two
parents (models) are crossed to make two individuals, which
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potentially results in the creation of a superior individual. In
this way, individuals with good traits (the best descriptors) are
kept and individuals with bad traits (inferior descriptors) are
eliminated, eventually converging on an acceptable solution.

Dimensionality reduction is an alternative to descriptor
selection methods. A prominent example of this type of
transformation is principal component analysis (PCA). In
PCA, the descriptor space is transformed to a new set of
uncorrelated variables in a manner which maximizes the
variance per principal component. This operation mandates
that the first principal component contains the most variance
in the data, followed by the second, until the number of
principal components is equal to the input dimensionality. The
first n principal components can then be selected and used for
various application such as modeling or data visualization. It is
noteworthy that PCA considers only the descriptors (it is
unsupervised). Projection to latent structure (PLS) can be
thought of as the supervised analog of PCA. PLS constructs
latent variables that are linear combinations of the original
descriptors but are also related to the regressand. A more in-
depth discussion of these methods is available.”

To generalize or interpret models, it is imperative that they
are validated. Two general types of validation are used: internal
and external. An example of internal validation is k-fold cross-
validation. In k-fold cross-validation, the input data are divided
into k equally sized folds (ie., if there are 100 input data
points, 10-fold cross-validation will divide the data randomly
into 10 groups of 10). Then k — 1 of the folds are used as the
training set, and the remaining fold is used as the test set. This
process is repeated until each fold is used as the validation set
one time. The average of the model during cross-validation is
summarized by Q? which is the cross-validated R* (i.e., the R®
of the predicted values). Leave-one-out cross-validation
(LOO) is a specific kind of cross-validation in which k is
equal to the number of samples and each sample is held out
once. This method is typically considered inferior to k-fold
cross-validation because the training sets in each iteration are
very similar (only one point at a time is held out). Thus, the
models made are strongly correlated and noise is not averaged
away as it would be in, for example, 10-fold cross-validation.
Thus, LOO can give overoptimistic Q> values. Typically,
internal validation is not sufficient to fully validate a model.
This assertion is especially true if cross-validation is used to
tune model parameters. In these situations, it is necessary to
use external validation in addition to internal validation.
External validation is the use of an external test set, in which a
partition of data points is withheld from the model training and
cross-validation process. Once the final model is obtained after
cross-validation, the test set is used only one time to evaluate
the model. Note that changing model parameters after
evaluating a test set to improve accuracy should be avoided.
Making iterative changes to a model to increase the accuracy of
an external set can cause overfitting and is not strictly an
example of external validation.*®

2. LINEAR FREE ENERGY RELATIONSHIPS (LFERS)
WITH 3D-DESCRIPTORS

2.1. Introduction to LFERs

As a textbook concept in physical organic chemistry, linear free
energy relationships (LFERs) represent a classical method to
uncover a correlation between a substituent characteristic and
reactivity. Briefly, for a reaction class, the variable substituent is
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described (parametrized) most commonly in electronic or
steric terms and is correlated directly or indirectly with
reaction rates. The descriptor may be experimentally or
computationally determined. For example, in a classical
Hammett correlation, the o descriptor derives from the
relative acidity of substituted and unsubstituted benzoic and
phenylacetic acids. The key here is that the substituent (a
structural element) is effectively transformed to a “number”
(the o descriptor). The extension of this concept to
asymmetric catalysis involves correlating descriptors of catalyst
substituents to the enantioselectivity conferred by those
catalysts in a synthetic transformation with the aim to uncover
mechanistic information as well as predict the performance of
untested catalysts. In general, only specific subunits of the
catalysts, the varying substituent, are provided a descriptor. In
that sense, such an approach involves only a “local para-
metrization” of the catalyst structure.

Here, we concentrate on models employing calculable, 3D
descriptors. For example, Hammett parameters®*" and Taft
steric parameters”*' are derived from experimental values
and will not be a focus of discussion, but Charton values**~>*
will be considered (however, whether they are truly 3D
descriptors is open to debate). The application of linear free
energy relationships to asymmetric catalysis with calculable,
tailored parameters represents the largest class of applications
in which statistical methods are employed. Because multiple
publications already exist detailing these endeavors, discussion
of this section will be less comprehensive.”” >’ Finally, many
studies included are not typically thought of as QSAR. For
example, most chemists would not consider a univariate
relationship between selectivity and a molecular property (e.g.,
selectivity vs Hammett parameters) as QSAR. However, in the
broadest sense, a molecular descriptor is quantitatively
correlated to catalyst activity; thus, one could argue that this
type of correlation is a QSAR. To give context to the field, we
elected to include some studies wherein 3D descriptors are
used. First, examples of univariate LFER in asymmetric
catalysis will be briefly discussed followed by a summary of
multivariate methods.

2.2. Selected Univariate Free Energy Relationships in
Asymmetric Catalysis

Multiple descriptors, for example, atomic charges, van der
Waals radii, polarizability, cone angle, etc. can be assigned to a
substituent. Subsequent LFERs may be constructed by using
either a single descriptor or an algebraic combination of
multiple descriptors. These two cases result in a univariate or
multivariate relationship, respectively. Obtaining every example
describing a linear relationship between a calculated property
and enantioselectivity is a daunting task. Thus, the aim of this
section is not to provide a comprehensive collection of every
example of univariate LFERs but rather to select representative
illustrations.

Steric effects imposed by catalyst substituents are often
critical in enforcing high enantioselectivities. Such effects are
easy to intuitively recognize and predict, especially once a
reasonable transition state model is hypothesized. Likewise, a
campaign for catalyst library synthesis commonly has the
objective of covering substituents that differ widely in their
steric contribution. LFERs that attempt to explicitly relate
catalyst steric properties with enantioselectivity naturally
become good starting points to test the application of QSSR
in asymmetric catalysis. Although a variety of steric descriptors
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can be used, Charton values and Sterimol parameters have
emerged as the most popular (Figure 3).°”°" Charton values
are derived from Taft steric parameters, which in turn are
derived from the relative influence certain groups have on the
rate of hydrolysis of methyl esters. Charton was able to fit these
measurements to calculated values derived from the van der
Waals radii of the substituent. Sterimol parameters, developed
by Verloop,” are calculated from the size of substituents with
respect to a primary axis. The Bl parameter is the smallest
radius accessible to a group of interest as it rotates around a
central axis, the BS parameter is the widest radius possible to
that group, and the L parameter is the length from the
attachment point of the group to the distance away, linearly.

Charton parameters

(0]

" OH correlated to minimum
®)kOMe HsO OMe __VanderWaals @
+
OH2 radii assumlng a

: . symmetric R group
rate of acid catalyzed hydrolysis of

methyl esters - Taft steric parameter

Charton values

Sterimol parameters

isopropyl group

L = maximum distance from attachment point
B, = shortest distance perpendicular from axis of attachment
Bs = longest distance perpendicular from axis of attachment

Figure 3. Charton and Sterimol steric parameters. Reproduced from
Brethomé, A. V.; Fletcher, S. P.; Paton, R. S. Conformational Effects
on Physical-Organic Descriptors: The Sterimol Steric Parameters.
ACS Catal. 2019, 9, 2313—2323. Copyright 2019 American Chemical
Society.

2.2.1. Univariate LFERs Based on Charton Values.
Miller and Sigman reported the use of Charton values to
construct LFERs in enantioselective Nozaki-Hiyama-Kishi
(NHK) allylation reactions.”® In view of the sensitivity of the
proline carbamate moiety in the catalyst scaffold to conferred
enantioselectivity, five catalysts with differing carbamate groups
(G) were evaluated (Figure 4). In the reaction of three
different substrates, a linear relationship is obtained when
substituent Charton values are plotted against the logarithm of
product enantiomeric ratios. This trend is consistent with the
empirical observation that increasing size of the G group
results in enhanced selectivity.

In the same report, the authors explored the generality of
this correlation approach. Three reactions from the literature
were selected to study the relationship between the Charton
value of a key substituent and enantioselectivity: (1)
palladium catalyzed, enantioselective, allylic alkylation reac-
tions,** (2) enantioselective cyclopropanation of allylic
alcohols,®” and (3) the Mn-salen catalyzed enantioselective
aziridination of styrenes (Figure 5).°° In the first two examples,
substituents on the catalysts are varied. In the third,
substituents on the f-position of the styrene substrate are
varied. All three examples produce linear relationships between
the free energy differential of diastereomeric transition
structures and the Charton value. Note that in the third
example, the descriptor is for a variable substituent on the
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Sons.

styrenyl substrate rather than the catalyst; in principle, a LFER
can be investigated by considering any consistently varying
substituent on any component in the reaction system.

In the plots in Figure S, the slope, designated as y, provides
information about the relative influence of the varied
substituent and whether selectivity increases or decreases
with substituent size. A positive slope indicates that large
groups are associated with increased selectivity, whereas a
negative slope indicates that smaller groups are associated with
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higher selectivity. Thus, this study demonstrated that in these
cases, Charton values are satisfactory descriptors to recapit-
ulate the empirically observed selectivity trends, with the
value as a quantitative indicator of sensitivity.

This method of analysis has been applied to other reactions.
The studies from Pfaltz and co-workers® employing
phosphine oxazoline ligands are contrasted with studies from
Park and co-workers,”” employing oxazolinylferrocene ligands
in an enantioselective, palladium catalyzed, allylic alkylation

DOI: 10.1021/acs.chemrev.9b00425
Chem. Rev. 2020, 120, 1620—1689


http://dx.doi.org/10.1021/acs.chemrev.9b00425

Chemical Reviews

161 Benzaldehyde Allylation 164 Acetophenone Allylation
Catalyst 1.4 ‘Buy £ 1-adamantyl 141
G= 1.24 v=151 , 1.24
~ o . 1.04 R=099 7 y=072 _» 1.0
H | t-Bu 08] 7 R*=0.99 - CEt, 0.8]
‘1, Me S 06 'Pru’ .7 = 06
| [ e 4 L& CH(Pr) g 1 1-adamantyl
Et o 04] ’ » 2 0.4
N 0 P2, At CH(Pr), 20
E } e 021 y=1.15 :
adamantyl 0.0 0.04 ® CEt
: CH(Pr) °
CH(PT)Z -0.24 -0.24 P ° 2
. r
CH(i-Pr), -0.44 -0.44 Me d CH(Pr),
CEtg -0.6 T T T T T T T T 206 t
00 03 06 09 12 15 18 21 24 00 03 06 09 12 15 18 21 24

Charton Value (v)

Charton Value (v)

Figure 6. Catalysts with accompanying LFER plots for benzaldehyde and acetophenone allylation. Reproduced from Sigman, M. S.; Miller, J. J.
Examination of the Role of Taft-Type Steric Parameters in Asymmetric Catalysis. J. Org. Chem. 2009, 74, 7633—7643. Copyright 2009 American

Chemical Society.

s
7N peptide catalyst
tide catalyst R =
pepti y
N N
sy %f Ay
2 A
HO OoH equiv Ac0 HO OAc o ot B NHTS
TrtHN
2.0 204
1-adamantyl® 1-adamantyl =
1.54 1.54
R R 3 3 o
R= R= S g .
R Me PhCH, S0 . FyoH
Et CH,i-Pr £ £ Pr * Ph.CH
SAGULTE % fler T
-Pr 3 3 . *'BuCH
HO OH o-Hex g:z?: <05 1 054 Me CR— oo uCH,
tBu ’
1-adamantyl 00 . . \ 00 . . . . .
04 06 12 14 04 06 08 1.0 12 14

08 1.0
Charton Value
Charton Value

Figure 7. LFERs for desymmetrization of bisphenol substrates with a peptide catalyst (top). Reproduced from Sigman, M. S.; Miller, J. J.
Examination of the Role of Taft-Type Steric Parameters in Asymmetric Catalysis. J. Org. Chem. 2009, 74, 7633—7643. Copyright 2009 American

Chemical Society.

reaction (in both cases the substituent varied was on the 4-
position of the oxazoline). The oxazolinylferrocene ligands (y
= 0.75) are more sensitive to steric effects than the phosphine
oxazoline ligands ( = 0.35). The enantioselective alkylation of
aryl aldehydes with chiral Ti-TADDOL complexes by Seebach
has also been analyzed. A substantial LFER is found for the
substituents geminal to the Ti-ligating oxygens (w = 1.85). o8
The enantioselective, vanadium-catalyzed epoxidation of allylic
alcohols reported by Wu and Wang is demonstrated to have a
negative LFER (y = —O0. 30), mth smaller groups associated
with more selective reactions.*” Finally, Quintard and Alexakis
investigated substrate steric effects in the enantioselective,
organocatalytic addition of aldehydes to cis-1,2-bis-
(phenylsulfonyl)ethene, which subsequently undergoes a 1,2-
sulfone rearrangement to give geminal sulfones on the y-
carbon with respect to the aldehyde.”” The Charton value of
the substituent at the a-carbon of the aldehyde substrate is
found to correlate with both selectivity and yield, with y values
of 0.45 and 3.54, respectively.

2.2.2. Limitations of Charton Values. It is important to
note that Charton values approximate substituents as spherical.
This assumption may be reasonable for symmetric substituents
such as H or Me but is clearly incorrect for anisotropic
substituents like n-Bu or Ph. The following cases highlight
situations in which Charton values prove inadequate to obtain
a reliable and consistent correlation.
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The enantioselective hydrogenation of a-(acylamino)acrylic
derivatives with P-stereogenic, bidentate, C,-symmetric
phosphine ligands is observed to have a negative correlation
with the Charton parameter of a substituent on phosphorus (¥
= 0.73) (the other substituents are a methyl and an ethylene
linker connecting the phosphorus atoms). However, the
authors also highlight important considerations while executing
this protocol. For example, phenyl substituents have two
Charton parameters (in-plane of 0.57 and out-of-plane of 1.66)
that must be judiciously selected in addition to having other
electronic influences that have not been accounted for.
Furthermore, groups such as n-Pr, n-Bu, and i-Bu all have
the same Charton parameters, but the behavior of these
residues in all settings is not identical. Finally, results from
LFERs with limited data sets must be analyzed with caution; it
is reccommended that either substituents with a broad range of
Charton values are used or many subunits in a narrow range of
Charton values are used to ensure the validity of the LFER.

Sigman and Miller revisited the enantioselective NHK-
reaction as well as other literature examples to challenge the
LFER protocol.”" In the NHK-reaction, additional catalysts
were synthesized to test if the linear relationship between
Charton values and enantioselectivity persisted with larger
Charton values leading to a more selective catalyst (Figure 6).
Combining these new catalysts with those from the first study
reveals a break in the plot interpreted to arise from a change in
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the conformation of the catalyst (analogous to how breaks in
Hammett plots can indicate a change in mechanism).
However, in later publications, the authors attribute this
break to a limitation of Charton values resulting from their
derivation from rates associated with a specific transformation
wherein the substituents can be approximated as spherical.”’
An example of Charton values underperforming with respect
to other steric parameters is demonstrated by Gustafson,
Sigman, and Miller.”” In this work, the remarkable influence of
a remote substituent in the desymmetrization of 4,4'-
methylenediphenol derivatives with a peptide catalyst is
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analyzed with various LFERs using different steric parame-
ters.”” When substituents bearing steric bulk close to the
benzylic carbon are present, a good correlation between the
free energy differential and Charton parameter is observed (y
= 1.39). It is postulated that steric bulk at the benzylic position
orients the phenol rings in a rigid, propeller-like conformation,
enabling selective enantiodifferentiation. When substituents
presenting steric bulk farther away from the benzylic position
are employed, the resulting correlation is poor, likely because
the Charton values do not capture the perturbation of the
substituent on the rings (Figure 7). Other steric parameters
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such as A-values’* and interference values’”> give stronger
correlations than Charton values. However, a full analysis of all
different substituents could not be carried out, as both values
are experimentally measured and not available for all
substituents used in this study. This exercise demonstrates
that descriptor selection in LFERs can be done critically with
consideration of how the values are derived.

2.2.3. Beyond Charton Values: Electronic Descriptors
and Sterimol Parameters. In addition to steric factors, a
catalyst substituent may influence transition state geometry
and energy through charge stabilization, inductive effects,
dipole minimizations or other effects. In such cases, the use of
appropriate electronic descriptors is desirable to capture an
electronic contribution important for catalyst selectivity.

Jacobsen and co-workers employed LFERs to identify
important noncovalent interactions in thiourea-catalyzed,
polyene cyclization reactions.”””” The authors find that
incremental increases in the size of the arene unit proximal
to the amide residue of the catalyst correlates with increasing
enantioselectivity (Figure 8). To better understand the origin
of enantioselectivity in this system, the selectivity of each
catalyst is plotted against the polarizability and the quadrupole
moment of the corresponding arene subunit. A strong linear
relationship is found, supporting the authors hypothesis that
these larger arene surfaces afford more stabilization to the
transition structure leading to the major stereoisomer through
a cation—7z interaction, resulting in high stereoselectivity
(Figure 8).

Zuend and Jacobsen provide an elegant demonstration of
how a carefully considered LFER can reveal mechanistic
information in the thiourea-catalyzed, enantioselective Strecker
reaction.”® Computational studies suggested that the rate-
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determining step of the transformation is a rearrangement of
the iminium and cyanide ions stabilized by the thiourea
catalyst. For eight different catalysts, cumulative H-acceptor
interatomic distances for the hydrogen bond network in the
disfavored transition structure (leading to the S-stereoisomer)
correlate well with the experimental enantioselectivity (ex-
pressed as free energy) (Figure 9). This correlation suggests
that in selective catalysts, the intermediate iminium ion leading
to the S-stereoisomer is destabilized relative to the R-
stereoisomer, and this destabilization is reflected in the
respective transition structures leading to each enantiomer.

A relatively early example of univariate LFERs in
enantioselective catalysis using 3D descriptors is the use of
calculated atomic charges and the Sterimol B1 parameter” to
identify important structural features in the ruthenium-
catalyzed, enantioselective, transfer hydrogenation of aromatic
ketones.”” To deconvolute electronic and steric contributions,
three LFERs were reported, two of which used the sum of
atomic charges on the substrate arene as descriptors. The third
LFER considered Sterimol parameters as steric descriptors.
The authors concluded that solvation and dispersion effects are
the most influential in determining selectivity, followed by
electrostatic effects, with only a minor contribution from steric
effects.

As mentioned above, the research summarized in this
section is not an exhaustive summary of univariate LFERs
using calculated parameters in enantioselective catalysis.
However, this section has highlighted the value of these
methods in ascertaining valuable mechanistic information
about catalyst structure without the need for rigorous quantum
chemical calculations and has also provided the context
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necessary for a discussion of multivariate LFERs in the
following section.

2.3. Multivariate Linear Free Energy Relationships

Univariate LFERs can capture the correlation of a single
structural parameter with enantioselectivity and are relatively
easy to execute. However, such a reductionist approach has its
limitations because multiple electronic and steric effects are
often important in asymmetric catalysis, and ideally, a QSSR
should take into account all such contributions. Furthermore,
because selective catalysis is generally affected by an interplay
of these factors, individual LFER studies with single descriptors
may be ineffective or misleading. Thus, multivariate LFERs can
be considered as the logical next step in QSSR studies. In a
multivariate approach, a function constructed from an algebraic
combination of more than one descriptor is correlated with
enantioselectivity. In this way, multiple, interdependent
contributory effects can be identified and the relative
contributions of effects represented by these descriptors may
be estimated. The multivariate LFER approach offers the
potential to delineate nonobvious contributions, perhaps
beyond the chemists’ empirical intuition. However, caution
must be exercised on the choice and number of descriptors
employed; the risk of overfitting the correlation increases with
increasing number of descriptors. On the contrary, inadver-
tently omitting the causative variable can result in erroneous
interpretations of models. For example, omitting a causative
variable but including a variable correlated with the omitted
variable will incorrectly assign the significance to the correlated
variable. In this case, accurate predictions could be made
within the domain of the model but the correlated variable
might be misinterpreted as causative. Further, the omission of
important variables will not be readily apparent during the
model development phase. Clearly this phenomenon could be
detrimental to the interpretability of a model.

The first example of the application of multivariate
regression analysis applied to the prediction of the free energy
differential between competing, diastereomeric transition
structures in enantioselective catalysis was reported by Norrby
and co-workers.*® In this work, the isomeric ratio of various
nucleophilic substitution reactions on palladium #*-allyl
complexes was predicted. Descriptors used in the model
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included various structural features of ligated, #’-allyl
palladium complexes such as bond angles and dihedral angles.
A model was generated that was used to predict the isomeric
mixture of reactions resulting in different constitutional
(branched vs linear) or enantiomeric ratios. The model was
assessed with different internal validation scores, with Q* >
0.85 in all cases, constituting the first example of 3D-QSAR in
enantioselective catalysis.

Arguably the most influential work to date in the widespread
adoption of statistical methods for enantioselective catalyst
development has been the application of multivariate
regression techniques by Sigman and co-workers.”® Through-
out this body of work, multivariate linear regression is used to
construct relationships between experimental outcome and the
descriptors. In their seminal report, Harper and Sigman used
multivariate regression techniques to further analyze selectivity
in the NHK allylation of benzaldehyde (introduced in the
previous section).®" Charton values at two variable positions (a
bivariate regression) of proline-oxazoline catalysts are corre-
lated to enantioselectivity. In this study, 25 different catalysts
are tested and a model constructed as a proof of concept,
wherein the best catalysts are predicted as such. However,
rigorous validation is not reported. Graphically, a multivariate
regression can be imagined to represent a surface whose
dimensionality depends on the number of parameters utilized.
In this case, the correlation is visualized as a 3D surface (Figure
10).

After collecting preliminary results, the following design
considerations are used during predictive model generation:
(1) a training set of data covering the range of possible
descriptor values can be used to generate models in which
future predictions are interpolative, increasing the confidence
in those predictions, and (2) a uniform response variable (e.g.,
enantioselectivity data) distribution in the training set tends to
give stronger models than highly skewed data sets. With this in
mind, a nine-member subset (the training set) from the full 25
member set is selected for identifying a correlation. A critical
test for the validity of the derived model is to check if accurate
selectivity predictions are obtained for ligands not included in
the nine-member training set. From this exercise, the model
does provide an accurate prediction for the best ligands (X =
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Et and i-Pr, Y = t-Bu). Predicted versus observed selectivities
are 84:16 versus 90.5:0.5 and 83:17 versus 92:8, respectively,
although predicted values for the other ligands are not
provided.

This protocol is repeated for the allylation of acetophenone
and ethyl methyl ketone; the model for the former predicts the
best catalyst even though it is not included in the training set
(X = i-Pr, Y = t-Bu, predicted 92:8, observed 95.5:4.5). The
selectivity surface for the NHK-reaction of ethyl methyl ketone
indicates that no selective catalyst derived from the proline-
oxazoline scaffold exists (i.e., the selectivity surface has no high
selectivity maxima), thus prompting the authors to abandon
optimization of that scaffold for that substrate. Although this
work does not lead to the design of a better catalyst, it serves as
a proof-of-concept for the simultaneous analysis of multiple
variables in linear free energy relationships.

The design considerations laid out in the first publication
were later used for the optimization of enantioselective
propargylation of ketones.*” The original set of nine ligands
from the previous work is used to collect experimental data and
construct a mathematical model relating Charton values to
enantioselectivity. However, a flat selectivity surface led the
authors to abandon this scaffold (Figure 11). This negative
result is a critical design element; the authors reported that
obtaining experimental data for the nine training ligands and
construction of a model took one week. Thus, the decision to
explore new ligand scaffolds rather than continuing to try
different permutations of the same scaffold is made rapidly,
accelerating the rate of discovery. Guided by empirical
modifications, the authors selected a quinoline-proline based
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architecture as the new scaffold (QuinPro), wherein electronic
properties can be modified by the substituent on the quinoline
ring and steric modifications can be made on the basis of the
identity of the carbamate group at the proline residue. Nine
training catalysts are selected by picking substituents such that
the 2D chemical space constructed from Hammett parameters
and Charton values is spanned evenly. Of these nine catalysts,
one (E = OMe, S = t-Bu) that displays highly selective
propargylation of aromatic, vinyl, and aliphatic ketones (17
examples, all over 85:15 e.), is chosen. A model is constructed
which suggests that the training set catalyst is the most
selective catalyst in the space; however, validation data are not
provided. Although the model itself does not lead to
identification of a selective catalyst, the experimental design
of catalyst selection spanning the breadth of a meaningful
chemical space facilitates optimization of a previously under-
performing reaction.

This method has also been employed in the optimization of
an enantioselective Heck arylation catalyzed by palladium
pyridineoxazoline (PyrOX) complexes.*® The reaction involves
the coupling of aryldiazonium salts with unsaturated alcohols
wherein the alkene moiety migrates to the distal hydroxyl
group through a chain-walking mechanism. For modeling
selectivities, a nine-member catalyst set is selected on the basis
of steric parameters of the substituent at the 4-position of the
oxazoline ring and the electronic nature (using Hammett
parameters) of the substituent on the pyridine ring. In analogy
to the previous study, a selective catalyst is identified in the
training set. However, a comparable catalyst predicted by the
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model is used because it can be prepared from a more readily
available starting material (Figure 12).

As alluded to in the univariate LFER section, observation of
breaks in Charton plots led to a more rigorous exploration of
different steric parameters that are more broadly applicable.”
The authors thus turned to Sterimol parameters to reexamine
previous systems wherein Charton values give anomalous
results. By re-examining the enantioselective NHK reaction of
benzaldehyde and acetophenone, improved models are
constructed wherein the Sterimol Bl parameter correlates
well with the free energy difference between the competing,
diastereomeric, transition structures. Although the previous
study using Charton values reveals a break in the Charton plot,
no break is observed when Sterimol parameters are used for
both the benzaldehyde and acetophenone examples, changing
the interpretation of the analysis.

Revisiting the desymmetrization of 4,4’-methylenediphenol
derivatives gives similar results, wherein Sterimol Bl and L
parameters are used to generate an improved model with
respect to the original method. These parameters also allow for
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a more straightforward interpretation of the model; the
importance of the B1 parameter indicates that the substituent
is not freely rotatable, consistent with the hypothesis of the
group biasing the phenol rings in an orientation that can be
differentiated by the catalyst (such a rigid system would not be
freely rotatable as depicted by Charton values). The
importance of the L value suggests that groups that are too
long disrupt the interaction between the catalyst and the
substrate, leading to reduced selectivity. In general, Sterimol
parameters can be considered to be superior to Charton values
in accounting for steric contributions and should be the
preferred descriptor for modeling studies.

The work described in the preceding study inspired a related
investigation in which steric parameters of N-substituents are
correlated to enantioselectivities in the alkylation of
benzaldehyde with diethylzinc.** In that study, chiral 1-
amino-2-phosphinamidocyclohexane ligands are employed in
which the sizes of the amine substituent are represented with
different steric parameters to uncover LFERs. With NR'R? and
CHR'R?> Charton values (the former derived from the
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hydrolysis of the corresponding amides and the latter linearly
related to the amine hydrolysis), LFERs are constructed for
secondary amines. However, when tertiary amines are
included, the relationships break down. Turning to Sterimol
values and using stepwise linear regression analysis, a
relationship can be identified wherein the Sterimol Bl
parameters for each substituent on the amine residue correlates
with enantioselectivity (Figure 13).

The negative coefficient on the parameter for substituent X
(—1.678) is interpreted as the interference of larger groups
with ligand—metal binding, lowering the degree of enantioin-
duction, whereas the positive coefficient for the Sterimol
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parameter of substituent Y (+1.867) indicates that a large
group is necessary on the amine. Another plausible
explanation, which was not discussed in the manuscript,
relates to the distribution of the two, in situ-generated
diastereomeric (in which the coordinating nitrogen is stereo-
genic) ethylzinc—diamine complexes, which are the active
catalysts. Perhaps the disparate sizes of X and Y substituents
affects such a distribution favorably toward the isomer
providing higher selectivity. The stereocenter proximal to the
catalytic center could also be responsible for enhanced
enantioselectivity. It is worth noting that neither internal nor
external validation of the model was performed; doing so
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would increase the confidence of these conclusions. This work
was later expanded to include ketones as substrates with similar
results and molar refraction was also demonstrated to be a
suitable descriptor for the LFER.*®

With new, robust steric parameters identified, Harper,
Vilardi, and Sigman sought to obtain models capable of
predicting reaction outcome for a range of substrates and
obtain mechanistic insight on the origin of enantioinduction in
new reactions.”® As a proof of concept, the enantioselective
propargylation of aliphatic ketones is used as a model system
(Figure 14). Sterimol parameters (B;, B, and L) and cross-
terms are used for pyridine-proline based catalysts (in which
the protecting group on the proline residue is varied) and the
substituent of different aliphatic, methyl ketones is also varied.
A combination of six catalysts and five substrates provides a
training set of 30 compounds, which is used to generate a
model. The model is externally validated by pairwise
combination of four external substrates with two external
catalysts (8 external validation reactions in total). The small
error (all external validation cases are predicted within 0.2
kcal/mol) supports the hypothesis that this method can
predict the outcome of new substrates excluded from the
training data. To expand the utility of this protocol beyond
methyl ketones, a new model is derived for predicting the
results from cyclic ketones as substrates. However, because
only steric parameters are employed, the model failed to
predict enantioselectivities of electronically disparate sub-
strates. The authors suggest that implementing steric and
electronic descriptors would lead to more robust models.

Song and co-workers employ Sterimol parameters to aid in
catalyst optimization of an enantioselective Henry reaction
using chiral 1-amino-2-phosphinamido ligands in the presence
of dimethylzinc.”” An original set of 12 1-amino-2-
phosphinamido ligands was used as a training set, with
selectivity values ranging from 39.3:60.7 to 95.8:4.2 er. With
B1, BS, and L Sterimol parameters for both substituents on the
amine residue of the catalyst, a model is constructed with a
strong, negative dependence on the Bl parameter of the X
substituent, and a smaller, positive dependence on the Bl
parameter of the Y substituent (Figure 15). On the basis of
validation results with an external test set, the authors postulate
that a significant size difference of the nitrogen substituents is
necessary for stereoinduction. A noteworthy observation is that
all selective catalysts contain a secondary amine (X = H in
Figure 15), which is likely deprotonated under the reactions
conditions. This process would change the coordination
environment around the zinc which may also be necessary
for stereoinduction. The dependence of the B1 parameter on X
arises because X must be H for the catalyst to be selective, in
which case the only catalyst tuning would be the identity of Y.

Another example of using LFERs to aid in mechanistic
understanding of enantioselective reactions is the silylation-
based kinetic resolution developed by Wiskur and co-
workers.*® In this work, LFERs are used to probe the
mechanism of the tetramisole-catalyzed, kinetic resolution of
secondary alcohols by selective silylation with silyl chlorides.
Steric and electronic factors are probed by plotting the log of
the s-factor against Charton and Hammett values for the
substituents on the silyl chloride. The electronic effects are
probed by variation of electronically disparate substituents at
the 4-position of various triarylsilyl chlorides, and the Charton
values for these substituents are used to probe steric effects.
Electronic effects are found to be dominant, whereas steric
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effects are observed only when electronically similar but
sterically disparate groups are employed (e.g, methyl vs t-
butyl). By combining these terms, the authors construct a
multivariate free energy relationship relating the stereo-
specificity to 0,,,, and Charton values (log(s) = —0.60,,, +
0.09v), in which the larger magnitude of the electronic term is
indicative of the relative importance of the electronic effects
with respect to steric effects. The authors conclude that
positive charge is decreasing in the selectivity-determining
transition structure, likely because the tetramisole catalyst is
being displaced by the secondary alcohol. Electron donating
groups on the silicon electrophile thus cause a later transition
structure, in which the silicon—oxygen interatomic distance
should be relatively shorter. Because the involvement of the
alcohol in this transition structure is greater than in the case
wherein electron-withdrawing groups are attached to silicon,
the energy differential between diastereomeric transition
structures is greater, corresponding to higher selectivity.

Although most parameters in physical organic chemistry
seek to isolate the effects of specific interactions, Sigman and
co-workers sought to devise a parameter set capable
quantifying simultaneous, nonadditive interactions.”” In this
work, molecular vibrations are identified as a descriptor set that
could quantify the interaction important for selectivity while
capturing the interplay of multiple steric or electronic
interactions (Figure 16). To evaluate the effectiveness of
these features, the desymmetrization of bisphenols discussed
above was studied.”” In the original work, only steric
parameters were included and the substituents studied were
different in steric but not electronic character. However, when
the electronically dissimilar CCl; substituent is tested, the
enantioselectivity is much lower than would be expected from
steric considerations alone. Thus, the authors include
molecular vibrations of the aromatic ring (1700—1500
wavenumber region) in addition to Sterimol parameters to
construct a model capable of identifying both steric and
electronic properties responsible for enantioinduction. As
illustrated in Figure 16, the model that includes molecular
vibrations more accurately describes electronically dissimilar
substrates than the original model.

In a second study from the same publication, the
enantioselectivity of iridium-catalyzed hydrogenation of a-
substituted styrenes is correlated with vibrations of the
substrate molecule. In this case, intensities rather than
frequencies are identified as the most important descriptors
in construction of a predictive model that is externally
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validated. Finally, a third study in the same publication assesses
if vibrational analysis could serve as an alternative to Hammett
analysis for situations in which aromatic rings are substituted
with multiple groups or bore ortho substituents. The reaction
employed in this study is the enantioselective, redox-relay
Heck reaction. Because the models are used to predict site
selectivity instead of enantioselectivity, this section will not be
thoroughly discussed as it is outside the scope of the review.
However, the authors are able to use molecular vibrations to
construct models accurately predicting the site-selectivity.

Sterimol values and molecular vibrations have also been
used in the design of a substrate library to create a workflow to
quantitatively assess substrate scope.”’ For development of a
prototypical workflow, the enantioselective NHK reaction for
the propargylation of ketones was used as a model system. This
workflow consists of four steps: (1) identification of adequate,
numerical representations of compounds that capture the
relevant physical properties of those compounds, (2) selection
of a set of substrates distributed evenly in the space
constructed from those physical properties and measuring
their experimental outcome, (3) construction of a mathemat-
ical model relating the descriptors to the experimental
outcome, and (4) external validation of the model with new
substrates.

The substrate space is first defined by tabulating Sterimol
values and calculating the carbonyl IR stretching frequency for
52 different methyl ketones. Of these, eight are selected in a
fashion analogous to design of experiment (DoE) sampling.
The eight substituents on the ketones are then used to
construct 28 differentially substituted ketones (now no longer
methyl ketones, but ketones derived from pairwise combina-
tions of the substituents), for which differential Sterimol values
and IR frequencies are calculated, defining the relevant ketone
space. This space is populated with substrates spanning the
defined dimensions. To evaluate the library, the ketones
representative of the substrate space are tested in the rhodium-
catalyzed, asymmetric transfer hydrogenation (ATH) reaction,
in which dialkyl and aryl/alkyl ketones are modeled separately.
In model development, a different set of descriptors is used,
including various IR frequencies, atomic charges of the
carbonyl oxygen, carbonyl carbon, and both a-carbons, and
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Sterimol parameters. Predictive models for both classes of
ketones are constructed and externally validated with high
accuracy for both external aryl/alkyl and alkyl/alkyl ketones
(R* = 097 and 0.95, respectively). Thus, by using a
strategically selected initial set of substrates, it is possible to
quantitatively predict reaction outcomes of new substrates.

An interesting extension of this work would be to compare
different methods of defining substrate space and selecting
representative substrate sets. For example, in this work, the
relevant substrate space is constructed using a different set of
parameters than were used to construct a model. Thus, it
becomes difficult to say if new predictions are interpolative in
the chemical space used by the model. It would be interesting
to use descriptor inputs for the stepwise regression algorithm
and select a subset from the high-dimensional space.
Alternatively, principal component analysis (or other variable
selection/dimensionality reduction methods) could be used on
this space to reduce the dimensionality and a subset could be
selected from this set. Although in this application the current
method is clearly sufficient, a more thorough comparison could
be worthwhile in other settings.

Using stepwise linear regression to facilitate catalyst
optimization has been employed in multiple settings. One
such example is optimization of a PyrOx for the dehydrogen-
ative Heck reaction between trisubstituted alkenes and indoles
reported by Sigman and co-workers.”' In this report, the
authors initially use the PyrOx ligand identified in an earlier
study (Figure 17).%* However, when this ligand is tested in the
dehydrogenative Heck reaction, the selectivity is found to be
sensitive to the substitution on the trisubstituted alkene. Thus,
a series of ligands are tested and a relationship established in
which the NBO charge on the oxazoline nitrogen is correlated
with selectivity. This observation prompted the authors to
design a catalyst predicted to have greater selectivity on the
basis of this relationship, leading to a more selective catalyst.

An example of the use of statistical methods to identify
structurally relevant features of catalysts has been described as
part of a collaboration between the Toste and Sigman
laboratories.”” In this work, a chiral-phosphoric-acid catalyzed,
dehydrogenative C—N coupling is investigated, wherein 12
substrates and 11 catalysts are systematically selected, and
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experimental data is collected for every pairwise combination
(Figure 18). For each substrate and catalyst, descriptors are
tabulated including Sterimol parameters, interatomic distances
in optimized geometries, vibrational frequencies, and vibra-
tional intensities. Empirical trends are examined for each
substrate-catalyst pair. The combination of every catalyst with
one substrate and vice versa was used to construct models.
Results from this analysis stimulated the formulation of
multiple mechanistic hypotheses on the origin of enantiose-
lectivity. These hypotheses include: (1) the triazole ring at the
3,3'-positions of the BINOL-phosphoric acid (present in the
most selective reactions) is engaged in a z-interaction with the
substrate, (2) the strength of this interaction is modulated by
the steric and electronic properties of the triazole substituents,
(3) m-interactions are strengthened by heteroatoms, which is
why triazole-containing catalysts are more effective than those
with two or zero nitrogen atoms in the ring, and (4) benzyl
and remote aryl groups on the substrate participate in z-
interactions with the catalyst. Observations supporting these
hypotheses include: (1) the triazole vibrational frequency and
the torsion angle between the triazole ring and its substituent
are selected as important parameters in catalyst models, and
(2) the selection of various descriptors capturing perturbations
on the benzyl or distal aromatic ring are selected in substrate
models.

With 108 catalyst/substrate combinations, a model is
constructed with 54 of the 108 total reactions, and the
remaining 54 were used as an external validation set. This
model is used to guide the selection of catalysts used to further
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validate the mechanistic hypotheses. First, a catalyst is selected
in which the aromatic substituent on the triazole ring is a
pentafluorophenyl group (R? on triazole substituent in Figure
18). The selectivity with this catalyst is predicted to be similar
to catalysts with 2,6-difluorophenyl, 2,6-dimethoxyphenyl, and
l-adamantyl substituents, suggesting that this substituent
provides only a steric contribution; the electronic contribution
is negligible. This hypothesis is experimentally validated. A
second catalyst is selected such that only the 2-position of the
aromatic substituent of the triazole bears an isopropyl group,
probing the hypothesis that bulky groups at both the 2 and 6
positions on the aromatic residue bound to the triazole interact
unfavorably with benzyl groups containing substituents at their
para-positions, thus disrupting the 7-interaction responsible for
enantioinduction. This catalyst is both predicted and observed
to be more selective than the catalyst analogs with 2,6-
disubstituted aromatic residues, supporting this hypothesis.
Finally, to test if structural modifications suggested by the
model could lead to a higher selectivity catalyst, namely
through modulation of the torsional angle between triazole and
its substituent, a catalyst is selected with a torsional angle close
to 90°, which is more selective than a previous catalyst for the
class of substrates with 4-benzyl substituents, validating the
hypothesis that the torsional angle between the triazole and its
substituent is necessary for high selectivity.

To more accurately probe noncovalent contributions, new
parameters have been developed to quantify z-interactions.”
These parameters, termed Ex and Dz, can be calculated for -
stacking interactions (°Ex and *Dz) and T-shaped C—H-x
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Society.

interactions (TEx and TDz), wherein Ez is the interaction
energy between the arene substituent in question and a probe
n-surface (such as benzene) and Dr is the distance between
the midpoints of the arenes in the optimized geometry. These
descriptors are used to analyze important noncovalent
interactions in a well-understood kinetic resolution of chiral
benzylic alcohols”*” as well as the enantioselective fluorina-
tion of allylic alcohols in which the mechanism of
enantioinduction is less well understood (Figure 19). In the
first reaction, a multivariate relationship is identified in which
the D7 parameter and the Dz SEz cross-term are found to be
significant, consistent with what is previously reported, thus
validating the new descriptors. The authors then apply these
descriptors to understand the enantioselective fluorination of
allylic alcohols. Multidimensional modeling reveals the
significance of the "Dz term, suggesting the importance of a
T-shaped C—H-r interaction in the stereodetermining step.
This interaction is validated by DFT studies, which indicate
that aromatic C—H bonds interact with the z-system in the
case of 2- or 4-substituted boronic acids and that C—H bonds
of the 3-methoxy substituent on boronic acids are involved in
this interaction, thus rationalizing the inversion of selectivity
upon inclusion of boronic acids as additives.

Yu, Sigman, and co-workers report the use of these
multivariate regression methods to identify a descriptor set
for amino-acid-palladium complexes as well as to select a set of
compounds with which to start screening campaigns for
diverse reactions (Figure 20).”® Descriptors are derived from
either amino acid derivatives bound to the palladium complex
or from the free amino acids. Parameters including Sterimol
parameters, torsional angles, percent buried volume, NBO
charges, and vibrational frequencies are used to construct
predictive models in each case. These studies include the
enantioselective C,,,-H activation and functionalization of
substituted pyridines and carboxylates as well as the
enantioselective Cy;-H activation of triflimide or amide
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substituted cyclopropanes. In each case, predictive models
are calculated, which are internally or externally validated, and
descriptors from the amino-acid-bound complex give the best
performance. Using the information from these models, the
authors select five amino acid side chains representing a broad
range in the dihedral angle of the amino acid backbone as well
as five N-protecting groups according to NBO charges of the
corresponding carbonyl oxygens. Assuming the pairwise
combinations of these two groups span the breadth of
descriptors space relevant to stereoinduction, the authors
suggest a subset of compounds with which to begin screening
campaigns.

Sigman, Toste, and co-workers have applied multivariate
methods to the analysis of chiral, phase transfer catalysts in the
enantioselective Pummerer reaction (Figure 21).97 Using the
standard set of descriptors applied in previous publications, the
authors probe substrate and catalyst features. Steric parameters
of the substituent at the 3,3’-positions of the chiral catalyst are
identified to be important for catalyst selectivity. Similarly
substrates are evaluated, and the average charges on aliphatic
atoms and the size of the aromatic substituent on the N-
protecting group are found to be associated with catalyst
efficacy.

Linear free energy relationships have also been applied to
the enantioselective, palladium-catalyzed substitution of allylic
alcohols with unsymmetrical 1,3-dicarbonyl nucleophiles and
chiral diamine catalysts (Figure 22).”* The authors devise what
is described as a double layer Sterimol model in which
parameters of the diamine catalyst subunit are described with
two parameters intended to represent the “inner sphere” and
“outer sphere” steric effects of the substituent of interest. The
inner sphere is a single substituent on the carbon attached to
the nitrogen atom whereas the outer sphere refers to the
Sterimol parameter of the entire substituent on the tertiary
amine (each described with the Bl parameter). Multiple
models are constructed with the best model trained on seven
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data points and externally validated with five data points (two
as an external test set and three synthesized as an expansion of
the external set after construction of the model), although the
structural diversity of both sets is limited. The authors suggest
the larger “inner sphere” group reflects the inability of the

amine substituent to rotate away from the nucleophile, thus
blocking one face more effectively and leading to increased
stereoinduction.

A recent example in which subunit-derived descriptors are
used to predict the enantioselectivity of reactions is in the
enantioselective benzoin condensation catalyzed by N-
heterocyclic carbenes (NHCs) (Figure 23).”” In this work,
dynamic modulation of the chiral environment around the
catalyst is achieved by complexation of a free hydroxyl residue
with the boronic acid additive under the reaction conditions.
Multivariate regression with stepwise variable selection was
employed to understand the influence of substrate structure on
enantioselectivity. Features including Hammett values, Ster-
imol parameters, vibrational frequencies, vibrational intensities,
NBO charges, and components of the dipole moment in an
aligned coordinate system were considered as independent
variables. Three variables are selected to form a cross-validated
model (Q* = 0.83, R* = 0.92 for predicted vs observed): (1)
the Sterimol By parameter, (2) the Sterimol L parameter and,
(3) the dipole moment on the axis of maximal length. It was
postulated that the dipole moment component would reflect
the electron withdrawing nature of the aromatic residue, thus
correlating to the configurational lability of the product.
Hence, as the value of this variable increases selectivity should
go down. This the By parameter is actually related to an
electrostatic interaction with the aromatic residue of the
catalyst. This hypothesis is experimentally probed by
comparing the selectivity values of two substrates, 3-
carbomethoxybenzaldehyde and 4-cyanobenzaldehyde, with
three catalysts with different aromatic residues: phenyl,
pentafluorophenyl, and mesityl. The results with 3-carbome-
thoxybenzaldehyde are influenced by the identity of the
aromatic residue and the phenyl-substituted catalyst is more
selective than the pentafluorophenyl substituted catalyst. In
contrast, the reaction outcome with 4-cyanobenzaldehyde is
not influenced. Perhaps an electrostatic descriptor that
captures this interaction can be added to the analysis; such a
feature may serve as a mediator of the interaction and
identifying it would strengthen this hypothesis.
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Figure 21. Multivariate LFER for an enantioselective Pummerer reaction. Adapted with permission from ref 97. Copyright John Wiley and Sons.
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The inclusion of the L parameter is not discussed, and it
would be interesting to see if this parameter were selective if a
different variable selection algorithm were used. In the analysis
of boronic acid additives, a linear model could not be
identified; instead, a regression tree was constructed. Catalyst
features identified as the most important include: (1) the
torsion angle between the boronic acid moiety and the
aromatic residue, (2) the dipole component along the width
axis, and (3) the dipole component along the axis of longest
length. The authors comment that although the model is
predictive, it is difficult to obtain mechanistic information from
this model given that two factors influence selectivity—benzoin
formation and racemization of the product. This study serves
as an excellent example in which statistical methods and
experimentation are used in concert to probe the origin of
stereoinduction.

Carbo and co-workers describe an interesting strategy for
devising steric descriptors for chiral oxazoline ligands in the
copper-catalyzed, enantioselective cyclopropanation of styrenes
with diazo esters.'”” The authors suggest that quadrant
diagrams,'®" which are often used in asymmetric catalysis to
understand catalyst selectivities, may also be employed to
quantify steric properties around a reactive center. Data
obtained from previous experimental studies'®*~'%* were used
to develop the parametrization of the chiral complexes (Figure
24).

Construction of the descriptors for the quantitative quadrant
model proceeds first by placing the ligand—metal complex
(using a cationic copper complex bound the = CH, in silico) in
the xz plane of a Cartesian coordinate system, with the copper
atom placed at the origin and the coordinating nitrogen atoms
in the xz plane with negative values of z. The xy plane can then
be divided into four quadrants (each combination of positive
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and negative values of x and y). The steric parametrization of
each quadrant is then dictated by the distance-weighted
volume parameter (V,,), described by the following equation:

=Z%

i=1 i (1)

In this expression, V,,;; is the distance-weighted volume, r is
the van der Waals radius of a given atom in a quadrant, d is the
distance between that atom and a reference atom (in this case,
the copper atom), and k and ! are exponents that can have
values 0, 1, 2, or 3. Thus, the distance-weighted volume for a
quadrant is the summation of the van der Waals radii divided
by the respective distance between that atom and the copper
center for every atom in the quadrant. In this analysis, only
atoms with positive values along the z coordinate are
considered (in which the copper atom is the origin and the
ligand nitrogen atoms are in the negative z-direction). For
comparison, Taft-Charton values are also used as steric
parameters wherein the value of the substituent at the 4-
positions of the oxazoline is used for the corresponding
quadrant (Figure 24).

Three PLS regression models are constructed from 30
experimental results using either Charton parameters, V5, or
Vi3 for each quadrant as descriptors. Using Q* as a metric to
assess model efficacy, the model with Charton values (Q* =
0.78) outperformed those constructed with Vy5, or Vi, 5 (Q?
= 0.76 and 0.70, respectively). Similarly, models including
cross-terms between quadrants followed similar trends, with
Charton values outperforming Vy3, or Vyy; 5 (Q* = 0.88, 0.76,
and 0.70, respectively). Thus, using steric parameters that
characterized the environment of specified regions around a
reactive center, QSSR models are constructed relating the
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weighted volume and Charton-Taft values (bottom).

energy differential between diastereomeric transition structures
to these structural features. This proof-of-concept study has
interesting implications—for example, it is possible that the
reason models with Charton values give the best performance
is that the value inherently considers flexibility of the
substituents residing in a particular quadrant. A suggested
future experiment would be to use Sterimol parameters for
each quadrant or to use a conformer-dependent Vy,, parameter
to see if improved models could be constructed thus increasing
the accuracy of the quantitative quadrant model. This
procedure would facilitate calculation of the parameter (an
advantage of Vy, over Taft-Charton values) without loss of
accuracy.

A final, recent advance is the development of conforma-
tionally weighted Sterimol parameters, developed by Fletcher
and Patton.”' In this work, open source software is used to
calculate parameters that that are derived from a conformer
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distribution of structures. For rigid systems, the descriptors
perform similarly to previously published work, but for flexible
scaffolds a significant improvement is observed. Further, the
software is easy to use and freely available thus allowing access
to the calculable parameters for nonexperts. This enabling
technology will likely increase the use of LFERs in catalyst
design, owing to the new found accessibility of the parameters.

Selected cases described in this section illustrate the method
and results obtained from a multivariate LFER analysis of
enantioselective transformations. Additional examples are
listed in Table 1; these reports are instructive for readers but
are not described in detail because they are constructed using
the same workflow.' %>~

2.4. Perspectives on Linear Free Energy Relationships

The previous examples illustrate how descriptors for catalyst
substituents can be used to identify a correlation of catalyst
structure to selectivity. In these cases, only the variable
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Figure 25. Chiral Lewis acid catalyzed, enantioselective Diels—Alder reactions. (a) CCM versus dihedral angle for 2,2'-biaryldiols. Sets a, b, and ¢
refer to the different ester residues in the starting material. (b) Biphenyl dihedral angle and CCM as they relate to enantioselectivity. Reproduced
from Gao, D.; Schefzick, S.; Lipkowitz, K. Relationship between Chirality Content and Stereoinduction: Identification of a Chiraphore. J. Am.
Chem. Soc. 1999, 121, 9481—9482. Copyright 1999 American Chemical Society.

substituents on a fixed structural scaffold are parametrized
(local parametrization, see Figure 2). Such an approach
assumes that the overall catalyst structure remains constant
despite the changing substituents. Although this assumption
may hold in certain cases, the parametrization of the entire
catalyst structure may be ideal in other cases. Further, this
approach assumes that all descriptors relevant to enantioin-
duction have been incorporated in the model. However, as
previously described, omitting variables contributing to
enantioinduction can still result in predictive models that do
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not have straightforward interpretations. Additionally, it is
possible that different selection algorithms could identify
different variables, thus resulting in predictive models
generated with different interpretations. Finally, it is unlikely
that the investigator is aware that an important variable has
been omitted; if this were easily assessed, the variable likely
would have not been omitted in the first place. These concerns
do not imply that the use of subunit-derived descriptors to
construct LFERs is not a valuable method by which
mechanistic information can be garnered, simply that
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researchers interested in using these techniques must be aware
of the limitations and analyze their models critically. A global
parametrization (see Figure 2) can potentially account for
effects caused by subtle changes in the overall catalyst structure
when various substituents are incorporated and can avoid the
problems associated with missing variables. Strategies reliant
on this approach are introduced in the next section.

3. CONTINUOUS CHIRALITY MEASURE

3.1. Background of the Continuous Chirality Measure

Continuous chirality measure (CCM) was first described by
Avnir and co-workers as an extension of the related continuous
symmetry measure (CSM).""™'** The crux of this concept
eschews the classical definition of chirality as a binary property
of a molecule (i.e., either present or not present), but instead
posits that the “degree of chirality” is a quantifiable property of
a chiral molecule. Lipkowitz eloquently describes this concept
using unszfmmetrically substituted aryls (e.g, BINOL) as an
example.'”> When the biphenyl is perfectly planar (dihedral
angle of 0° between the two aromatic rings), the molecule is
achiral. If this dihedral is rotated an infinitesimally small
amount away from 0°, the molecule becomes chiral. Intuitively,
if a molecule possessing such a small structural perturbation
away from planarity (~1°) were isolable, the structure would
likely be ineffective in stereodifferentiating reactions. However,
as the dihedral angle increases, efficient stereodifferentiation
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becomes more likely because the molecule is becoming “more
chiral” up to a certain point, until continuing to increase the
dihedral approaches an achiral molecule once again.

Avnir constructed a mathematical formula capable of
calculating this degree of chirality, derived from CSM as

I+ A2
$'(G) ==Y B - B
miz ()

wherein G is a given symmetry group, P; is the original set of
points, P; is the corresponding points in the nearest G-
symmetric configuration, and n is the total number of
configuration points. The interpretation is best described by
the original authors:A122 “The meaning of eq 2 is the following:
find a set of points P; which possess the desired symmetry (G
symmetry), such that the total (normalized) distance from the
original shape P; is minimal.” Because chirality is the absence of
improper symmetry, searching over all achiral symmetry
groups will give a minimal distance to achirality. Thus,
molecules with a greater minimal distance to achirality (larger
values of §'), that is a higher CCM, are more chiral.'** CCM is
thus a conceptually simple approach to provide a global
parametrization of a chiral molecule.

3.2. Continuous Chirality Measure in Asymmetric Catalysis
Intuitively, it may be hypothesized that selective catalysis

requires the catalyst to have at least a certain value of CCM,
with larger values suitable for higher selectivity. Lipkowitz and
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Figure 27. Four distortions studied in ref 128 and their relation to CCM. The numbering system described in the original work has been included

for reference.

co-workers were the first to explore the relationship between
CCM and enantioselectivity."”> Under the premise that the
chirality content of a molecule should correlate with
enantioselectivity in asymmetric reactions, the enantioselective
Diels—Alder reaction developed by Harada and co-workers,
employing a chiral 2,2’-biaryldiol-ligated Lewis acid catalyzed
was studied (Figure 25)."** In this work, ten different catalysts
were evaluated with three sets of substrates.

In both the original work and the work by Lipkowitz and co-
workers, the calculated dihedral angle between the two arenes
is strongly correlated to the observed enantioselectivity, with
an optimal angle identified as ~60°. As the dihedral angle is
correlated linearly with CCM, the maximum selectivity is
observed along the CCM coordinate, followed by a subsequent
decrease in catalyst selectivity (Figure 25). The authors
attribute this observation to the fact that not all atoms in a
molecule contributing to overall chirality also contribute to
enantiodifferentiation. Identifying subunits of the molecule
with CCM values that best correlate to enantioselectivity thus
identifies a “chiraphore”, the subunit of a molecule responsible
for its selectivity analogous to a pharmacophore. In this
seminal work, the authors identified the biaryl moiety and its
immediately attached atoms as the chiraphore responsible for
enantioinduction.
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Although this was intentionally obvious, it demonstrates the
development of a tool capable of identifying which structural
elements of catalysts are responsible for stereoinduction.

A similar approach was pursued by Lipkowitz, Schefzick, and
Avnir in which CCM was employed to identify the structural
features of bisoxazoline ligands responsible for stereoinduction
in an enantioselective Diels—Alder reaction (Figure 26).12°
Calculation of the CCM of the four ligands reveals a linear
relationship between CCM and enantioselectivity (R* = 0.98).
With this relationship identified, coordinates of ligand
distortions are scanned to identify which structural perturba-
tions are most associated with CCM. Three distortions are (1)
twist, (2) bite, and (3) pucker. The bite distortion is attributed
to deformations associated with backbone identity (hence the
nonuniform CCM differentials between catalysts), whereas the
twist angle distortion causes the largest change in variance,
leading the authors to suggest that design of new ligands
should focus on exaggerating this twist motion to maximize
enantioselectivity.

A later study examining subunits of the whole structure
identified the chiraphore to be the copper, the nitrogen atoms,
the substituents on the bisoxazoline core, and parts of the two
triflate units ligated to the copper center."”® This method
identifies the important subunits and molecular distortions
correlated to stereoinduction for this specific reaction.
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However, application of such an analysis to any other
asymmetric reaction has not yet been examined to assess the
generality of these findings for other bisoxazoline-catalyzed
transformations.>’

This method has also been employed in an analysis of the
Katsuki-Jacobsen epoxidation reaction (Fi%ure 27)."*% The
catalyst is a manganese—salen complex,'””"*" the selectivity of
which is perplexing given the planar structure of the catalyst."”’
Wiest and Plattner found that the triplet and quintet spin states
of the complexes are geometrically distorted with respect to
the singlet state,"*” as reflected in the chirality content of the
compounds. Under the assumption that these distortions are
responsible for the high enantioselectivity, the effects of these
distortions on CCM were examined. Four distortions are
identified to have a substantial impact on the chirality content
of the salen complex: (1) the C(1)—C(2) bond length, (2)
puckering (cup—up or cup—down) of the complex, (3) a “step-
induced” distortion (minimization or exaggeration of the step-
like geometry), and (4) the dihedral angle between the two
aromatic planes (Figure 27). The authors conclude that
elongating the linker (C(1)—C(2)) increases the chirality
content, puckering decreases CCM, step-like distortions
increase CCM, and the twist motion increases CCM, with
twist and step distortions having the greatest influence,
followed by linker distortions and then puckering.

Bellarosa and Zerbetto introduced a modification to the
CCM method termed electronic chirality measures (ECM) to
asymmetric catalysis wherein the chirality is measured from the
electronic wave function.'* Although the concept of ECM was
suggested earlier,"**"** this first application sought to evaluate
the “amount” of electronic chirality in structures and relate it
to the enantioselectivity of asymmetric aminohydroxylation
reactions.'*> The authors assumed that the chirality content of
the products reflected the chirality content of the stereo-
determining transition structures and calculated chirality
content for six products of varying experimentally observed
enantiomeric purity. The ECM had a much stronger
correlation with enantiomeric purity than the analogous
CCM values, thus validating ECM as a calculable feature
capable of quantitatively reflecting the chiral character of
molecules.

Continuous chirality measures have also been used to
analyze stereodifferentiation at critical points along the
reaction coordinate of a ruthenium-catalyzed, enantioselective,
transfer hydrogenation reaction.'*® The authors examined two
different substrates and four different permutations of catalyst
structure. With acetophenone as the substrate, all eight
possible reaction coordinates were examined (each catalyst
approaching the Re and Si faces of the ketone), whereas for 2-
hexanone, only two coordinates were examined (Figure 28).

In the reactions with acetophenone, catalyst 1b is calculated
to have much higher energy barriers than the other catalysts,
and was removed from analysis. Therefore, the remainder of
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the discussion includes only catalysts 1a, 2a, and 2b. The CCM
is calculated at each stationary point along the energy profile
for each of these catalysts, starting from isolated starting
materials and products, then the precoordination complex of
the substrate to the catalyst, followed by the hydrogenation
transition structure, and finally the posthydrogenation
complex. The quantum chemical calculations alone are
sufficient to reveal the greater observed selectivity of 1
compared with 2. The two competing diastereomeric
complexes 2a and 2b are in equilibrium and both are
catalytically competent. However, these two diastereomers of
the active catalyst lead to different stereoisomers of the
product. The observed selectivity is the average of the two
catalysts and is thus lower compared to the results from
catalyst 1. As previously stated, complex 1 has only one
catalytically competent diastereomer (1a). Because there is no
competition with the other diastereomer of the catalyst, the
observed selectivity is higher with respect to complex 2.

To understand the differences in substrate selectivity, a more
thorough analysis is necessary. The CCM values of both
acetophenone and 2-hexanone are calculated using the
geometry of the starting materials in the stereodetermining
transition structure. Comparison of CCM values for
acetophenone and 2-hexanone suggests that the acetophenone
is forced into a state of higher chirality than 2-hexanone and is
thus more amenable to enantiodifferentiation. Therefore, the
ideal catalyst for the enantioselective, transfer hydrogenation
reaction with 2-hexanone would distort the substrate such that
chirality is maximized in the transition structure. By scanning
the dihedral angle between the hydrogen being transferred, the
carbonyl carbon, and the two subsequent methylene units of
the butyl subunit of 2-hexanone, the authors identified a H—
Cearbonyi—C-C dihedral angle between —20° and 30° in which
the substrate is most chiral. The authors go on to suggest that
the design of a catalyst forcing the substrate into this
conformation in the transition structure should enhance the
selectivity of the reaction. Unfortunately, this prediction was
not validated experimentally.

Denmark and Zahrt have investigated the use of CCM as a
single parameter in predicting reaction outcomes of
enantioselective reactions."”” In this work, a data set from a
previous study on the enantioselective addition of thiols into
aldimines with chiral phosphoric acid catalysts was used in an
attempt to construct a linear relationship between CCM and
enantioselectivity of the chiral N,S-acetal formed (Figure
29)."*% In contrast to previous studies, this univariate
representation of molecules did not correlate to enantiose-
lectivity (Figure 30). Additionally, conformer-dependent CCM
parameters were developed, in which the average CCM of a
conformer ensemble (with and without Boltzmann weighting)
was used as the univariate measure. The standard deviation of
the ensemble was also tabulated, considering large variation in
CCM could be a measure of molecular flexibility. No
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conformer dependent method had a univariate, linear relation-
ship with enantioselectivity. It was postulated that when vastly
different molecular subunits critical for enantioselectivity are
present in the data set, this simple representation does not
contain the requisite information to make accurate predictions
of selectivity. However, it was postulated that this measure
could be a representation of molecular shape and thus could be
used to augment other descriptor sets capable of representing
subunit steric and electronic parameters.

Thus, Sterimol parameters are used to represent the key
subunits of the 3,3'-positions of the phosphoric acid catalyst
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and random forest models are constructed to evaluate if the
inclusion of CCM parameters result in significant improvement
in the predictive performance of the model. Models are
constructed using only CCM derived parameters, only
Sterimol parameters, and both CCM and Sterimol parameters
as catalyst features. The Sterimol parameter model is
significantly better than the CCM parameter model
(determined by ANOVA with Tukey posthoc test) with
MADs of 0.21 and 0.29 kcal/mol, respectively. Including both
CCM and Sterimol parameters results in the construction of
significantly more accurate models with MADs as low as 0.176
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kcal/mol. However, it was noted that models with conformer
dependent or one-conformer CCM representations are
generally not significantly different from one another. This
study thus demonstrated three primary points: (1) CCM
cannot be used as a univariate method to predict catalyst
efficacy in some enantioselective reactions, particularly when
large differences between important subunits dictate reaction
outcome, (2) it may be possible to use CCM to augment other
subunit-based descriptors to improve the predictive perform-
ance of models, although immediate mechanistic interpretation
of the model will likely not be possible, and (3) CCM can
perhaps be treated as a shape index for chiral molecules, but
mechanistic interpretations of the significance of this index are
not straightforward.

3.3. Perspective on CCM

Although CCM has received limited application in asymmetric
catalysis, using CCM seems to have potential in identifying
important structural features of catalysts responsible for
stereoinduction. However, perhaps the most serious limitation
of CCM is that it is not necessarily linearly related to
enantioselectivity across the entire range of enantioselectivity
values. Thus, studies in which authors make extrapolative
predictions with respect to CCM in univariate models must be
validated experimentally in each unique case. To date, no
experimental validation has been reported. Further, no
examples are on record in which the predictions made on
the basis of CCM measures resulted in the design of a more
highly selective catalyst. However, this is not to say that CCM
is not useful in catalyst design, rather, that the applications of
CCM in the design of more selective catalysts remain to be
demonstrated. Experimental validation of this method is
facilitated by the availability of a Web site for the calculation
of CSM and CCM."*” This program therefore could easily be
used by others interested in implementing CCM-guided
workflows for the development of new, more selective
catalysts.

4. CHIRALITY CODES

4.1. Introduction to Chirality Codes

Aires-de-Sousa and Gasteiger have developed chirality codes to
represent chiral compounds.*”'*' Depending on the need to
consider specific molecular conformations, these representa-
tions are termed conformer independent chirality codes
(CICC) and conformer dependent chirality codes (CDCC).
Both chirality codes are constructed by transforming the 3D
molecular structure into a fixed-length vector.'*” A design
element in these molecular representations is the ability to
account for the absolute configuration of a chiral molecule. In
CICC, this feature is achieved by including a chirality signal
(represented as Sijkl), which is derived from user-specified
properties (e.g., atomic charge) and atomic coordinates of sets
of four atoms. The molecular environment is then represented
by a term E, which is derived from user-specified properties
of atoms and the distances between those atoms. For the
representation to be conformer independent, the distance
between two atoms is defined as the summation of the bonds
connecting those two atoms rather than interatomic distance.
Using these two terms, a function is constructed. This function
is scanned at uniform increments to calculate the descriptors;
thus, the number of increments dictates the dimensionality of
the molecular representation (Figure 31).
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Figure 31. CICC calculations. Reproduced from Aires-de-Sousa, J.;
Gasteiger, J. New Description of Molecular Chirality and Its
Application to the Prediction of the Preferred Enantiomer in
Stereoselective Reactions. J. Chem. Inf. Comput. Sci. 2001, 41, 369—
37S. Copyright American Chemical Society.

A more detailed description of the calculation of these
descriptors is available in the Supporting Information. Further,
because only CICC has been applied to asymmetric catalysis
CDCC will be discussed as a future direction and is also
available in the Supporting Information.

4.2, Application of CICC

Aires-de-Sousa and Gasteiger first reported the use of CICC to
predict the absolute configuration of secondary alcohols
resulting from the enantioselective addition of diethylzinc to
benzaldehyde and for the enantioselective reduction of ketones
by (—)-DIP-chloride ((—)-B-chlorodiisopinocampheyl-
borane)."*” For each example, literature data are used to
train a counterpropagation neural network that is then used to
predict the major enantiomer of the transformation. A
counterpropagation network is constructed of two parts, a
Kohonen layer (the input layer) and an output layer. The
Kohonen layer and output layer are linked and thus can be
used as a look-up table; a neuron in one layer (e.g, the
Kohonen layer) is linked to a corresponding vector in other
layer (e.g, the output layer). A more detailed description of a
counterpropagation network is available in the Supporting
Information.

For the enantioselective addition of diethylzinc to
benzaldehyde, CICC is calculated at 75 evenly distributed
values for a series of 50 amino alcohol catalysts for which
literature data are available for the transformation of interest
(Figure 32). Thus, each molecule is represented by a 75-
dimensional vector. These vectors are used as input into a
counterpropagation neural network, which is trained with 45
catalysts and tested with five catalysts. For the training set,
catalysts that give the (+)-enantiomer of the product are given
an output value of +1 and catalysts that give the
(—)-enantiomer of the product are given an output of —I.
For the test set, the absolute configuration of the product is
predicted on the basis of the sign of the output value. In each
case, the network is able to successfully predict the major
stereoisomer from the reaction (Figure 33).

For the enantioselective reduction of ketones by (—)-DIP-
chloride, literature data for 50 different ketones are obtained
for which the absolute configuration of the corresponding
secondary alcohol is available (Figure 34). The input vectors
are derived by calculating CICC at 31 evenly spaced points for
each enantiomer of the product alcohol. If the configuration of
the input alcohol structure corresponds to the major isomer
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formed, the output value i set to +1. If the opposite
configuration of the alcohol (with respect to the input
structure) is formed preferentially, the output value is set to
—1. This training protocol is used for 45 alcohol pairs (the two
possible enantiomers for each parent ketone). The trained
model is evaluated with the five remaining alcohols pairs and
four of the five test cases are predicted correctly. The incorrect
prediction is attributed to the configurational variability
obtained from the reduction of fluorinated substrates by
DIP-chloride.

This seminal publication on the utility of CICC to predict
the absolute configuration of products represents a unique
application of chemoinformatics in asymmetric catalysis.
Typically, selectivity is predicted as a continuous variable
wherein experimentalists search for a maximum. This example
highlights the ability of chirality codes to store information
related to the absolute configuration of a catalyst in a way that
is conformation independent and alignment independent, a
unique capability absent from other descriptor classes.'*>'**

Aires-de-Sousa and Gasteiger later applied CICC in a
regression analysis to predict enantioselectivity in the addition
of diethylzinc to benzaldehyde, wherein enantiomeric excess
(% ee) is the regressand.'* In this work, the authors employ a
number of modeling methods including feed-forward neural
networks, perceptrons (neural networks with no hidden
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layers), multilinear regression, and support vector machines
to predict the continuous selectivity output. In the reaction
system developed in a previous study,'** five different racemic
amino alcohol ligands are used simultaneously with 13
different enantioenriched amino alcohol additives (Figure
3S). This set, containing 65 experimental data points, is used
to evaluate if CICC could predict a continuous output. The
enantioenriched chiral additives are represented by 101-length
chirality codes, whereas the racemic catalysts are represented
by the absolute value of the 101-length chirality code of a
single enantiomer. Prior to modeling, all low variance features
are eliminated, leaving only 28 parameters per reaction. Using
these descriptors, a neural network is used to identify the
relative weights of each individual feature, allowing the number
of variables to be reduced further to 11 features per reaction.
Following this, the different modeling methods are evaluated,
with feed-forward neural networks providing the best perform-
ance with a combined three-fold cross-validated R* of 0.923
and an RMSE of 6.9% ee. Notably, this example uses % ee
rather than er. or free energy differential as the regressand.
Thus, in this case and all other cases in which this is true, it is
possible to calculate predicted values of % ee that are over
100%. Because this value exceeds the theoretical maximum,
these are simply interpreted as very selective predictions.
Alternatively, generating models with other regressands such as
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er. or free energy differential removes the possibility of
producing physically meaningless values. This work thus
demonstrates the capacity of CICC to predict a continuous
output using data from combinatorial experimentation. The
approach is particularly appealing given the conformer and
alignment independence of CICC.

Another example of the application of CICC to asymmetric
catalysis is enantioselective transfer hydrogenation.'*” In this
work, a published data set'** is used to determine if CICC
with counterpropagation neural networks could be used to
identify an optimal catalyst by experimentally testing only a
small number of catalysts. In the original work by Bellefon and
co-workers,"** selectivity and conversion data for a combina-
torial library of 1914 catalysts are experimentally measured in
the enantioselective transfer hydrogenation of acetophenone
catalyzed by chiral, metal-amino alcohol complexes (Figure
36). A genetic algorithm is then used to identify selective
catalysts on the basis of a normalized performance factor
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(NPF), calculated by multiplying the conversion by two then
adding that product to the enantiomeric excess. The value is
then normalized to the catalyst with the highest NPF; thus,
each catalyst has an NPF value between 0 and 1. By using a
genetic algorithm to guide catalyst selection, Bellefon and co-
workers are able to identify at least five of the top ten catalysts,
on average, by only testing 10% of the total library.
Subsequently, Xu and co-workers calculated CICC for the
complexes in the following manner: (1) the CICC for the
amino alcohol portion are encoded with a S1-dimensional
vector (corresponding to CICC with 51 different increments),
(2) the CICC corresponding to the N-protecting group, (B)
are calculated using 63 increments, yielding a 63-dimensional
vector, (3) the metal complexes are encoded by a binary, 6-
dimensional indicator vector in which each dimension
corresponds to the presence of one metal precatalyst (thus,
for each complex, five dimensions zero and one dimension is
1), and (4) these descriptors are then concatenated
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combinatorially, yielding 120-length vectors for each member
of the combinatorial library. Dimensions in which every
catalyst had a value of zero are removed, reducing the
dimensionality of the final vector to 108. These vectors can
then be used as input to a counterpropagation network, in
which the weight of the output layer associated with the
winning node moves toward the NPF associated with the input
catalyst vector.

The authors select a training set of 198 compounds
semirandomly, with the conditions that each metal complex
appears 33 times, each amino alcohol portion appears 18 times,
and each N-protecting group appears either 6 or 7 times to
ensure an even representation of the different possible catalyst
permutation. The remaining 1716 catalysts are then used as a
test set. Performance is evaluated by calculating a hit number
(N), defined as the percentage of the top 10 catalysts (termed
target catalysts) in the combinatorial library that would have
been uncovered by the simulated optimization. For example, if
198 catalysts are used to train a network, the network could
then rank the remaining 1716 catalysts. The top S0 are then
“selected”, simulating the next set of catalysts that would be
synthesized and tested in a real optimization campaign.
Inclusion of one of the top ten catalysts in the data set, as
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according to NPF, is defined as a successful end to the
simulated optimization and the number of top ten catalysts
identified in the 50 selected catalysts is thus a metric of success.
As an example, inclusion of one of the top 10 catalysts would
give N = 10% for 246 reactions (198 training and 50 top
predicted). This process is repeated multiple times with
different selections of training data to remove error associated
with random selection of training data.

On average, random selection of 198 (10% of the
combinatorial library) gives a success rate of N = 9%, far
below the success rate of N = 50% observed in the original
report employing a genetic algorithm. Using a counter-
propagation neural network, success rate is increased to N =
78.5% on average by “screening” the top 200 predicted
catalysts from the test set (totaling 20.8% of the entire
combinatorial library). The dimensionality of the input vectors
are reduced by a genetic algorithm, and these new descriptors
are used with 20.8% of the combinatorial library to achieve a
success rate of N = 85.5%. The number of catalysts surveyed
could be reduced to 13% of the total library (198 training
catalysts and top S0 test catalysts) to achieve a success rate of
55%, a similar level of success when compared with the original
study. Because the training data is 10% of the combinatorial
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library, a direct comparison with this method and the original
method is not possible. However, this report does represent an
alternative method by which new enantioselective methods
could be optimized with significantly greater success over
random sampling alone.

In a continuation of this work, Xu and co-workers use a
subset of this data set in regression modeling to predict the
performance of an external test set of catalysts.'*” Only
reactions in which the yield is over 5% and some
enantioinduction is observed are considered in the study,
limiting the data set size to 296 catalysts. Both a regression tree
and a random forest regressor are trained on 237 members of
the data set and used to predict the remaining S9 catalysts,
which are used as a test set. For the regression tree, the
predictivity is low with R* = 0.71 and 0.56 for training and test
sets, respectively. Random forest models performed signifi-
cantly better, with R* = 0.71 and 0.77 for training and test sets,
respectively. Using a genetic algorithm to reduce the
dimensionality of the input vectors to 28 further increased
the predictivity of the resulting model, with R* = 0.77 and 0.82
for training and test sets, respectively, with RMSE = 9.96% ee.
Predictivity observed with this method is limited, but it
demonstrates the capability to use machine learning methods
with a vector representation of a molecule that (1) is not
fragment based, (2) is alignment independent, (3) is
conformer independent, and (4) can account for the absolute
configuration of the catalyst.

4.3. Other Chirality Codes

Zhang and co-workers have also developed variants of chirality
codes for the prediction of the major isomer of enantioselective
reduction of ketones to form secondary alcohols.””’ The
authors propose a physicochemical atomic stereodescriptor
derived from numerous topological properties that are taken
from the groups attached at the stereogenic carbon of the
secondary alcohol. In particular, the two substituents other
than the —H and —OH groups are described arbitrarily as
“right” and “left” groups, and are used to generate the
individual codes. The vector representation of the molecule is
constructed from the concatenation of right and left groups,
which in turn comprises: (1) the number of atoms in the
group, (2) the number of atoms three bonds away from the
stereocenter, (3) the distance (in number of bonds) the
farthest atom is away from the stereocenter, (4) the maximum
distance (in number of bonds) between two atoms in the
group, (5) atomic charge, (6) sum of atomic charges, (7)
atomic polarizability, (8) electronegativity, (9) charge density,
(10) total charge density, and (11) a steric hindrance
parameter. To account for chirality, chiral connectivity
indices'>' and chiral topological charge indices'*>'*’ are
employed.

Data sets used to benchmark this new chirality code are the
enantioselective reduction of ketones by (—)-DIP chloride'*’
and the enzymatic resolution of racemic alcohols with a
lipase."** In case of the former, the 100 possible stereoisomers
derived from the 50 parent ketones are divided into two
groups: Group A contains the experimentally observed, major
stereoisomer of the alcohol whereas Group B consists of the
minor stereoisomer. A random forest classifier is used to
predict which would be the major isomer of the reduction,
which could be improved by feature reduction with a genetic
algorithm. After being trained on 40 alcohol pairs, the classifier
achieves a 90% success rate classifying the remaining 10 pairs
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of alcohols. The same workflow is implemented for the
enzymatic resolution of alcohols with a lipase, which achieved
an 87% success rate classifying a test set of 15 pairs after being
trained on 52 pairs.

Zhang and co-workers later developed a simpler permuta-
tion of chirality codes designed to facilitate the generation of
an empirical rule governing the preferred enantiomer of the
product formed in the same reactions discussed above.'>®
Using the same data sets, codes for chiral secondary alcohols
are generated as 12-dimensional bits derived from the carbons
attached to the stereogenic carbon of the secondary alcohol (6-
bits for each substituent). The bits are binary indicators
categorizing the carbon atom into one of six groups: (1) sp
carbon, (2) sp® carbon, (3) sp® carbon with four degrees of
branching (sp°D4, i.e., tert-butyl group), (4) sp® carbon with
three degrees of branching (sp°D3, i.e., iso-propyl group), (5)
sp® carbon with two degrees of branching (sp°D2, i.e., an ethyl
group), and (6) sp® carbon with one degree of branching
(sp°D1, i, a methyl group). These vectors are used as input
for Fischer linear discriminant analysis, a pattern recognition
supervised method, to build a classification model. Using 40
alcohol pairs as training data, the model is able to categorize
the 10 test alcohol pairs with 100% accuracy, marking the best
performance on the data set to date. The authors use the
model to inform a ranked list of significance, as follows: sp°D4
> sp® > sp°D3 > sp°D1 > sp’D2 > sp. Using this list, the
authors suggest what they term the “PT rule”, consisting of two
situations: (1) if the category for the “left” substituent is
greater for than the “right” substituent (“left” and “right”
defined with respect to the positions of the alcohol residue and
hydrogen atom on the stereogenic carbon atom, depicted in
Figure 37), the isomer of the alcohol being analyzed is
predicted to be the major product, and (2) if the values of
“left” and “right” substituents are identical, the relative sizes of
those substituents dictate the enantiomer of the product
formed wherein a larger “left” substituent indicates the isomer
of the alcohol being analyzed is predicted to be the major
enantiomer.

HO H

X

R™ R
"left”  "right"

sp3D4 > sp2 > sp3D3 > sp3D1 > sp3D2 > sp

Selectivity Rules
If "left" > "right", the isomer being analyzed is the product formed
if "left" = "right", the size "left" > size of "right" indicates the isomer
being analyzed is the product formed.

Figure 37. Designation of “left” and “right” substituents used in ref
15S.

4.4. Conclusion and Perspective

The primary limitation of CICC is that it necessitates the
definition of neighborhoods, which in turn necessitate the
presence of a tetrahedral, stereogenic center in the molecules
of interest. Thus, certain classes of chiral compounds (i.e.,
atropisomers) cannot be described by the above representa-
tion. To address this limitation, CDCC was developed. CDCC
differs from CICC in that a chirotopic atom is not explicitly
considered; rather all atoms are considered. Further, the
interatomic distances in the form of through-space Cartesian
distances are used, rather than the summation of bond length
separating the atoms. As a result, the chirality code becomes
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Figure 38. Alignment-dependent MIF workflow to represent a molecule with a grid based descriptor.

dependent on molecular conformation. A more detailed
description of CDCC is available in the Supporting
Information.

The application of CDCC to asymmetric catalysis would
expand the scope of compounds that can be described using
chirality codes. However, no application of this representation
in asymmetric catalysis has been demonstrated. Given the
initial success of CICC, it is surprising that CICC and CDCC
have not attracted more widespread implementation in
enantioselective catalysis. A possible explanation for this is
the inaccessibility of these descriptors; to the best of our
knowledge, no open source implementations of this
representation exist. We anticipate that an open source version
(ie, a downloadable module on GitHub) would facilitate
more widespread adoption of this molecular representation.
Another limitation of CDCC is its interpretability. This
representation is not intuitive—thus, it is difficult to conceive
of a way to garner insight regarding the origin of stereo-
induction with CDCC. Other chirality codes may be more
interpretable but are not readily applicable to a wide array of
chemical systems.

5. MOLECULAR INTERACTION FIELD (MIF) BASED
METHODS

Among strategies to provide a “global” description of catalyst
structures, comparative molecular field analysis (CoMFA)"*°
has emerged as a popular 3D-QSAR method. CoMFA aims to
enable a common description of structures in a catalyst library
regardless of specific substitution patterns or ideally, even gross
structural changes. Such a description should implicitly
account for varying steric and electronic effects in the library
members. Although other molecular interaction field (MIF)-
based descriptors are known, most conceptually resemble
CoMFA; thus, an overview of CoMFA will be given here to
provide a reference for other methods. This section will be
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divided into two subsections: alignment dependent methods
and alignment independent methods.

5.1. Alignment Dependent MIF Methods

5.1.1. Background to Alignment Dependent MIF
Methods. The comparison of two library members is naturally
simplified if a common reference frame is employed. For
example, in a library of BINOL derived phosphoric acids, the
common BINOL core can be used as a fixed reference.
Intuitively, it is expected that two members differing only in
substitution pattern around the core will share many of the
descriptors for common structural regions. For this to occur in
practice, it is necessary to align the structures and attain a
common reference frame (in this case, the BINOL core). A
general description of such alignment dependent protocols is
depicted in Figure 38. First, the molecules of interest are
aligned to allow comparison of analogous regions of space
around the core structures. Next, molecules are placed into
common grids with defined grid spacing. Probes are placed at
each grid point to calculate the steric or electronic interaction
between the probe and the molecule at a specific point in
space, thus achieving a “global”, grid-based molecular
description. These interaction energies are then used as
descriptors to make a mathematical model relating the
calculated properties to an outcome of interest, and this
model is validated either by internal or external validation (or
both). On the basis of a validated model, it is then possible to
either identify important catalyst properties for enantioinduc-
tion or to predict the activity of catalysts that have not yet been
synthesized. For the steric interaction energies, traditionally
Lennard-Jones potentials'>” are employed with some reference
atom at each grid point. The electronic MIF is typically
constructed from Coulombic interaction of each structure with
a charged particle at each grid point. Model validation can be
performed with either cross-validation methods (internal),
wherein a set number of entries from the training set (the set
of compounds originally used to make the model) is excluded
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from model generation iteratively until all entries have been
excluded once, or by attempting to predict the observed
properties of a test set not used in model generation (external).
However, best practices recommend using both internal and
external validation for evaluating models.’

5.1.2. Applications of Alignment Dependent MIF-
Based Methods in Asymmetric Catalysis. The first
example of the application of COMFA to asymmetric catalysis
was reported by Lipkowitz and co-workers in 2003.">* The
aims of this study were to demonstrate that “out-of-the-box”
(meaning readily available from commercial software packages
without extensive optimization) CoMFA could be used to
generate models capable of predicting catalyst selectivity and
to identify which catalyst features were important for
enantioinduction in an enantioselective Diels—Alder reaction
(Figure 39). The authors calculate descriptors using the
workflow described above for 23 different catalysts whose
selectivity values are readily available from the literature, and
span a wide range (55:45 er. to 99.05:0.5 er.).”?71% The
common oxazoline core is used for reference alignment. The
authors perform two different validation protocols: partial
least-squares (PLS) modeling with internal validation (leave-
one-out (LOO) cross-validation) and external validation
(modeling with 18 catalysts, then using this model to predict
the selectivity of the remaining five). Internal validation
methods yield high Q values ranging from 0.533 to 0.840 (Q*
values greater than 0.5 are typically considered to be
acceptable)'*® depending on factors such as grid spacing,
field type, probe type, dielectric function, and number of latent
variables used in PLS modeling. Using external validation (18-
member training set), the authors are able to predict the
external catalysts with exceptional accuracy (R* = 0.94 in the
predicted vs observed plot with slope near unity and y-
intercept = 7.5), thus demonstrating the ability to use readily
available software to make validated QSAR models for chiral
catalysts. The authors then demonstrate the ability to obtain
information pertaining to which structural features of catalysts
are responsible for enantioinduction. Specifically, the aim is to
quantify the relative importance of steric and electronic effects
in determining the reaction outcome. Using the best PLS
models obtained, it is found that 60—70% of the variance in
the data is described by steric effects, whereas 30—40% is
described by electronic effects, suggesting that steric properties
of the catalyst are relatively more important for enantiodiffer-
entiation. From examination of the steric MIF, two important
regions of space are identified where steric occupancy either
enhances selectivity or is detrimental to selectivity (Figure 39).
The region where increased steric bulk enhances enantiose-
lectivity is green, whereas the region which must be devoid of
occupancy for high-selectivity is yellow. The complex depicted
in Figure 39 is the most selective catalyst in the study that fits
these guidelines, supporting the hypothesis that CoMFA can
be used to obtain useful structural information about how
catalyst structure relates to selectivity.

Contemporaneous with Lipkowitz’s report, Kozlowski and
co-workers employed an MIF-based method to predict the
selectivity of #-amino-alcohol-catalyzed alkylation of aldehydes
with organozinc reagents.'®* Rather than using classically
calculated MIFs, semiempirical methods (PM3) are used to
calculate approximate transition structures for the reaction.
These structures are aligned and used to calculate an electronic
MIF again at the PM3 level of theory. A quantitative structure-
selectivity relationship (QSSR) is then calculated using
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Figure 39. CoMFA for enantioselective, Diels—Alder reaction. Most
selective catalyst in ref 158 with areas where high occupancy
corresponds to selectivity (green) and where low occupancy
corresponds to selectivity (yellow). Reproduced from Lipkowitz, K.;
Pradhan, M. Computational Studies of Chiral Catalysts: A
Comparative Molecular Field Analysis of an Asymmetric Diels—
Alder Reaction with Catalysts Containing Bisoxazoline or Phosphi-
nooxazoline Ligands. J. Org. Chem. 2003, 68, 4648—4656. Copyright
2003 American Chemical Society.

different combinations of only two grid points at a time,
resulting in the generation of a “best” two-variable model and
an “average” model constructed by weighting all accepted two-
variable models. The model is validated externally (R*> = 0.90
for averaged model), demonstrating the ability to use
semiempirical calculations to construct MIFs capable of
generating models that predict enantioselectivity to compara-
ble accuracy'® as other high-level (e.g,, DFT) methods (root—
mean—square error (RMSE) = 0.29 kcal/mol).

Kozlowski and co-workers later used a similar method to
evaluate the importance of the A-ring of sparteine for
enantioselectivity in enantioselective lithiation reactions.'®®
Prior work had demonstrated that the D-ring of sparteine had
little impact on the enantioselectivity of lithiation.'®” However,
the A-ring was important in enantioinduction because omitting
the A-ring resulted in a reduction in selectivity from 98.5:1.5 er
to 60.5:39.5 er (Figure 40).168

The researchers sought to determine if the entire A-ring is
necessary for enantioinduction and thus prepared an analog
devoid of the A-ring leaving only the N-methyl carbon and the
carbon affixed to the corresponding stereogenic center on the
B-ring. Interestingly, this analog gives low, opposite selectivity.
To explain this unexpected reaction outcome, a QSSR model is

DOI: 10.1021/acs.chemrev.9b00425
Chem. Rev. 2020, 120, 1620—1689


http://dx.doi.org/10.1021/acs.chemrev.9b00425

Chemical Reviews

1. s-BuLi, L*
Boc 2. TMsCI Boc
N N
Q L Q‘TMS

gorSos )

(=)-sparteine
2.0:98.0 er

-
N “, N
c| D - C
B B
_N

(=)-sparteine-analog
with A-ring omitted*®
60.5:39.5 er

(+)-sparteine mimic#’
95.0:5.0-97.0:4.0 er

compound of interest*®

62.5:27 .5 er

Figure 40. Sparteine and sparteine analogs employed as ligands in
enantioselective lithiation of N-Boc-pyrrolidine.

generated using 16 chiral diamine ligands, employing a similar
method to their original work (vide supra). However, PM3
electrostatic potential MIFs did not give satisfactory results
correlating the calculated descriptors to activity. Thus, the
authors developed G-QSAR in which the electrostatic potential
energy (ESP) MIFs are derived from higher-level methods
(DFT, HF, MP2, etc.) using Gaussian 98. By employing more
accurate ESP calculations (BLYP/6-31G**), predictive models
are generated again using two-point linear regression models
(Q* = 0.68, R* = 0.82). Probe energies at defined regions of
space with respect to the chelated lithium ion correlate well
with observed selectivity.

Figure 41 (sparteine) depicts one example of many possible
chelating diamine ligands, in which the red and blue spheres
represent analogous regions of space in the common core
scaffold. As the interaction energy at the center of the red
sphere decreases (owing to either fewer steric interactions or
the presence of a relatively electronegative group), the
enantioselectivity increases. Conversely, high interaction
energies at the center of the blue sphere are found to be
associated with high selectivity. From these observations, the
authors suggest three guidelines: (1) larger groups below the
ring (e.g, near the blue region) result in high selectivity, (2)
aromatic groups above the ring are associated with higher
selectivity, and (3) large alkyl groups above the ring give rise to
low selectivity. The authors are also able to accurately predict
the outcome of new catalysts using their calculated descriptors.

In a study of the enantioselective addition of organozinc
reagents to aldehydes catalyzed by amino alcohols, Kozlowski
and co-workers used a similar, modified workflow for the
accurate predlctlon of reaction outcome for novel catalysts
(Figure 42)." Rather than use calculated transition structures
as inputs as in the original study,'** a zinc dimer representing
the ground state is used for descriptor calculations to make the
method more agnostic to mechanism. GQSSR and QMQSAR
(MIF calculated with semiempirical methods, ie, PM3)
methods are used for calculating the electronic MIF for 18
training compounds, and k-fold cross-validation (k = 2) are
used in model construction (Q? = 0.85), in which the models
are relatively unaffected by training set compounds (in-
dependence on training set selection is indicative of robust
models). The model is then used to predict the selectivity of
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17 compounds for which experimental data was unavailable, 13
of which were then synthesized and evaluated. The model
accurately predicts the enantioselectivity of new catalysts prior
to their synthesis, an important “first” in this field. However, it
is worth noting that employing external validation sets (a test
set, demonstrated previously)>*'**' is identical to predict-
ing the selectivity of novel compounds, then synthesizing them
and collecting data; data collection before or after model
generation are irrelevant because that data are not used in
model generation in either situation (both are external sets,
only the order of the workflow is different).

enantioselectivity increases as
interaction energy decreases

enantioselectivity increases as
interaction energy increases

Figure 41. Regions with grid points (red and blue) correlated with
catalyst enantioselectivity.

This method was again used by Kozlowski, Hsung, and co-
workers to evaluate the selectivity of a new class of chiral
amino alcohols ligands for the addition of diethylzinc to aryl
aldehydes (Figure 43). 79 3D-QSAR models with semi-
empirical (QMQSAR) and DFT methods (GQSAR) were
employed. With a training set of 17 compounds and the same
computational workflow described above, accurate models
could be generated. These models are then used to predict the
performance of catalysts not yet synthesized at a range of
temperatures by constructing different models using training
data collected at each of the three temperatures.

Kozlowski and co-workers have also used quantum
electronic MIFs to predict the enantioselectivity of a single,
common catalyst with different substrates in the enantiose-
lective addition of diethylzinc to aldehydes.'”" With the same
QMQSAR method as previously described,'*”'”" two different
sets of aldehydes are used to generate models predicting the
reaction outcome. Models are generated for two data sets, the
first with 11 aryl aldehydes and the second with eight aryl
aldehydes, furfural, seven a,f-unsaturated aldehydes, and two
aliphatic aldehydes (Figure 44).

Both data sets generate cross-validated models (Q*> = 0.67
for the first, Q* = 0.61 for both models in the second);
however, in the second data set, the aryl aldehydes and nonaryl
aldehydes must be treated separately to generate robust
models. Although no external validation is done in this study, it
does represent an important proof of concept that QSSR
models could be used to predict reaction outcome for novel
substrates in established systems.

Lower-level methods (using classical rather than semi-
empirical or ab initio methods), such as “traditional” CoMFA,
have also been applied to asymmetric catalysis. Hirst and co-
workers used CoMFA to predict the outcome of enantiose-
lective, phase-transfer-catalyzed reactions.'”> This method
combines high-throughput screening with computational
catalyst evaluation wherein 88 cinchonidinium catalysts are
combinatorially synthesized and evaluated in asymmetric
alkylation reactions (Figure 45).

To rapidly generate data, catalysts are synthesized in situ
through sequential N- and O-alkylation of dihydrocinchoni-
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Figure 42. Sparteine and sparteine analogs employed as ligands in enantioselective lithiation of N-Boc-pyrrolidine.
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dine. Because catalyst permutations are on a common core
scaffold, the authors model only the substituents rather than
the entire catalyst scaffolds in an attempt to decrease the
amount of “noise” in the data resulting from low-variance
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Figure 43. Temperature dependent selectivity predictions in the
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enantioselective diethylzinc addition to benzaldehyde.

demonstrates a catalyst design approach using rapid catalyst
generation combined with chemoinformatic analysis.

Similar substituent-based analyses have been performed with
a different class of biaryl-derived phase transfer catalysts.”” In
this study, Hirst and co-workers use selectivity data measured
from a combinatorial library of 40 catalysts in an
enantioselective alkylation reaction (Figure 46).

Two catalyst scaffolds are identified, denoted as i and ii. The
(+) and (=) forms of the biaryl are assumed to be in
equilibrium in solution and have been designated only for
future discussion—the biaryl precursor used in catalyst
synthesis is achiral. For scaffold i, substituent combinations
from S2Sa through S8Se are synthesized (wherein the Sn
refers to the R’ substituent and Sx refers to the corresponding
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Figure 44. Catalysts for the enantioselective addition of diethylzinc to aryl aldehydes.

chiral, secondary amine shown in Figure 46). For scaffold ii,
catalysts S1Sa through S1Se are synthesized. This 40 member
set gives an observed selectivity range from 65:35 to 4.5:95.5
(S:R) er.

With this set of catalysts, the authors sought to evaluate the
predictive capabilities of 3D-QSAR (CoMFA-like), 3.SD-
QSAR,'”* and 4D-QSAR'”® methods. Both 3.5D- and 4D-
QSAR methods take the conformer distribution of molecules
into account. 4D-QSAR uses a molecular dynamics trajectory
to calculate time-averaged occupancy values at each grid point.
3.5D-QSAR is so named because it can be thought of as a
hybrid between 3D-QSAR and 4D-QSAR. In 3.5D-QSAR,
different conformations are taken from a molecular dynamics
trajectory. These structures are minimized and are all used to
calculate descriptors in a MIF.

To obtain the best 3D-QSAR models, many attempts were
made to select a single, representative conformer. First, five
different conformer selection methods are tested: (1) the
lowest energy conformation of each catalyst, (2) the lowest
energy (+)-backbone configuration for each catalyst, (3) the
lowest energy (—)-backbone configuration for each catalyst,
(4) the opposite backbone configuration of each catalyst with
respect to the lowest energy conformer for each catalyst, and
(5) random conformer selection for each catalyst. It is worth
noting that only the substituent coordinates are used in
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descriptor calculation for 3D, 3.5D, and 4D methods.
Considering only (+) or (—) backbone configurations produce
inaccurate models (R* = 0.68 and 0.54, respectively),
suggesting that both (+) and (—) forms of the backbone are
in equilibrium in solution. The best model is obtained from
considering the global minimum energy conformer (R* = 0.94,
Q> = 0.78). The opposite backbone configuration gives a
similarly correlated, but perhaps overfit model (R* = 0.88, Q* =
0.65) whereas random selection (on average over 100 different
selections) give generally weak models (R* = 0.59, Q* = 0.22).
The best model is compared with 3.5D and 4D methods.
Descriptors for both 3.5D and 4D approaches are calculated
using two methods — MIFs and indicator fields. Indicator
fields differ from MIFs in that rather than calculating a
molecular interaction (MIF), simple metrics are used to
identify occupied regions of space. For example, the steric
indicator field is calculated with a binary metric of occupancy
(1 if a grid point of a conformer overlaps with the van der
Waals radius of an atom, O if it does not). Similarly, the
electronic indicator fields assign the value of the atomic charge
to a grid point within the van der Waals radius of an atom. For
the 3.5D method, a hydrogen bond acceptor indicator field is
also employed, calculated the same way as the steric indicator
field but populated only when the grid point overlaps with a
hydrogen bond donor. When compared with MIFs, these
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Figure 45. Cinchonidinium-alkaloid-catalyzed, enantioselective, phase transfer alkylations along with predicted versus observed plot for training
(diamonds) and test (circles) catalyst sets. Adapted with permission from ref 172. Copyright Royal Society of Chemistry.
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simpler descriptors performed worse in 3D-QSAR, but better
in 3.5D- and 4D-QSAR, likely because they minimized noise in
the data for the latter methods.

To compare 3D-, 3.5D-, and 4D-QSAR methods, two-deep
cross-validation was used.'’®"”” In this study, the authors first
used four-fold (four sets of 10 catalysts), wherein 30 are used
to create a model and 10 were used to validate the model. The
30 training catalysts are then used to make a model, using
LOO cross-validation, and the residuals of the remaining 10
catalysts are used to validate the model. This process is
repeated until all 40 catalysts have been used in the first
validation set. With this more robust method of cross-
validation, 3.5D descriptors including the hydrogen bond
acceptor indicator field give the best models (Q* = 0.73)
followed by 4D descriptors (Q* = 0.71) followed by 3.5D
descriptors with only steric and electronic indicator fields (Q*
= 0.70), with 3D descriptors giving the weakest models (Q* =
0.64). Thus, 3.5D and 4D descriptors may be computationally
more intensive, but also lead to more robust models.

The application of 3D-QSAR in the study of chiral phase
transfer catalysts has been implemented by Denmark and co-
workers.'”*'”” A novel class of cyclopentapyrrolizidinium
catalysts was synthesized by the tandem inter [4 + 2]/intra[3
+ 2] cycloaddition of nitroalkenes with chiral enol ethers
followed by hydrogenolysis. This route allows the synthesis of
160 catalysts that are then tested in an asymmetric alkylation
reaction.

To elucidate the features important for enantiodifferentia-
tion, 3D-QSSR models (CoMFA) were generated. Chemo-
informatics methods using 0D, 1D, 2D, and 3D descriptors
were also calculated and correlated to catalyst activity.
However, because the focus of this review is 3D-QSSR and
its application to asymmetric catalysis, only the study of
enantioselectivity will be discussed here; interested readers are
directed to the original work for more information regarding
catalyst activity.'”*"”’

Following a similar workflow, a global minimum conformer
was located for each catalyst with molecular mechanics that
was later verified with DFT (B3LYP/6-31G*). Because the
global minimum conformer may not be the relevant conformer
in the stereodetermining transition structure, multiple con-
former classes were identified and categorized on the basis of
the scaffold conformation (Figure 47). The core structures are
assigned to different libraries considering their substituents and
the relative conformation of the b ring. To evaluate the best set
of conformers, each library is used to generate QSSRs, in
which the best conformer set is selected according to which
library gives the strongest models.

Molecular charges are calculated with MNDO, and MIFs are
calculated using Coulombic potentials and Lennard-Jones
potentials. Cutoff energies are applied to avoid extraordinarily
large values for grid points within the van der Waals radius of
an atom. Indicator fields have also been explored; instead of a
binary indication of occupancy, grid points overlapping with
the van der Waals radius of an atom are assigned the cutoff
energy value and other are assigned a value of zero. The
conformers in library D (defined in Figure 47) with indicator
fields at a 30 kcal/mol steric cutoff and 15 kcal/mol electronic
cutoff give the best models (R* = 0.924, Q* = 0.778).

QSSR models can be used to identify regions of space
around the catalyst where increasing/decreasing steric or
electronic effects impact enantioselectivity. These contour
maps (Figure 48) are discussed with reference to the
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Figure 47. Different possible conformations of the catalyst scaffold.
(a) aryl = Ph, 1-naphthyl, mesityl. (b) Library containing different
conformer combinations, (c) Conformation of scaffold. Reproduced
from Denmark, S. E; Gould, N. D.,; Wolf, L. M. A Systematic
Investigation of Quaternary Ammonium Ions as Asymmetric Phase-
Transfer Catalysts. Application of Quantitative Structure Activity/
Selectivity Relationships. J. Org. Chem. 2011, 76, 4337—4357.
Copyright 2011 American Chemical Society.

perspective of the actual structure shown on the far left. The
green surfaces on the bottom right next to the methyl group
indicate that steric bulk in that region is necessary to shield
that portion of the b-ring. The green contours overlapping with
the 3,5-positions of the arene ring are consistent with
substitutions here increasing selectivity. The green contour
next to the benzyl substituent (R®) on the oxygen atom is
consistent with the observation that having hydrogen at the R>
position decreases selectivity; if this position is a hydrogen
atom, the arene ring rotates into this region of space. This
arrangement is associated with low selectivity. The yellow
contour near the nitrogen atom indicates that bulky groups at
R* leads to low selectivity, presumably because of shielding of
the electrostatic interactions. The electrostatic potential map
corroborates this analysis, with the blue contour over the a-ring
indicating this region as a productive binding site for the
substrate.

These observations are consistent with the following
stereochemical rationale: each face favors association with
either the Re or Si face of the enolate. Although the extent of
selectivity for Re or Si face may not be perfect, enolate
association is likely at either the a-ring or the b-ring and the
competition in binding is responsible for diminished
selectivity. These findings led to the following design criteria
to optimize this catalyst scaffold: (1) the monopole is not
variable, (2) the dipole can be reinforced by installing
polarizing groups near the nitrogen, (3) R* = aryl may result
in favorable z-interactions that could increase selectivity, (4)
the addition of steric bulk to three of the four faces of the core
should disfavor association to all faces except one, and (S) the
removal of steric bulk from the remaining face should facilitate
selective enolate association.

CoMFA models have also been used to study enantiose-
lective ketone hydrogenation reactions.'® In this study, 25
ruthenium complexes with both chiral diamine ligands and
chiral bisphosphine ligands with known experimental selectiv-
ity values for the enantioselective hydrogenation of acetophe-
none are selected and split into a training set of 20 members
and an external test set of five members."®'~'® The data in this
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Figure 48. Top: steric contour maps from two different perspectives. Green contours indicate regions where steric bulk leads to increased
enantioselectivity, whereas yellow regions indicate regions where less steric bulk leads to increased enantioselectivity. Bottom: Electrostatic contour
maps from two different perspectives. Blue contours indicate regions where increased positive charge leads to greater enantioselectivity, whereas red
contours indicate regions where decreased positive charge (or increased negative charge) leads to increased enantioselectivity. Reproduced from
Denmark, S. E.; Gould, N. D.; Wolf, L. M. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase-Transfer Catalysts.
Application of Quantitative Structure Activity/Selectivity Relationships. J. Org. Chem. 2011, 76, 4337—4357. Copyright 2011 American Chemical

Society.

set ranges from 99.5:0.5 er (R is the major enantiomer) to
0.5:99.5 er (S is the major enantiomer). Steric, electronic, and
H-bond donor MIFs as well as indicator fields are calculated
for each catalyst. The performance of the five member external
test is accurately predicted (R* = 0.974 for the predicted vs
observed plot for the external test set), indicating a strong
model. From this model, contour maps could be developed to
elucidate the structural features of the catalyst responsible for
enantioinduction (Figure 49).

The relative contributions from steric and electronic effects
are found to be 80% and 20%, respectively. The green contour,
where more steric bulk leads to greater selectivity, is localized
around the diamine ligand. The N—H-O interaction
postulated in the stereodetermining transition structure
suggests that increasing steric bulk around the amide residue
will bias one diastereomeric transition structure over another,
leading to enhanced selectivity. Examination of the electronic
MIF suggests that introducing negative charge in the vicinity of
the aromatic rings of the diamine should also increase
selectivity. To test this hypothesis, the authors increased the
electron density in the aromatic ring of catalyst Al
(experimental selectivity = 87% ee, predicted selectivity =
78.1% ee) by installing NH, units on the para positions
(Figure 49). This new catalyst is predicted to have a selectivity
of 84.3% ee.

Unfortunately, the authors did not synthesize this catalyst,
but instead calculated the free energy differential between the
competing diastereomeric transition structures leading to
enantiomers of the product. Whereas the calculated free
energy differential for the two transition structures employing
Al is 1 kcal/mol, the free energy differential for the
corresponding transition structures employing C1 is 2 kcal/
mol. Although experimental validation would provide more
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compelling evidence to unambiguously prove the conclusions
drawn in this report, this example represents a case in which
the selectivity of a chiral catalyst is improved theoretically by
making modifications suggested by 3D-QSSR.

Except for a few reports, most studies described in this
section use projection to latent structure (PLS) modeling for
the QSSR. However, many of the regression coefficients for the
descriptors used in CoMFA and related methods could be
assigned to zero, such as in grid points that reside far away
from the catalytically active entity or points with variance
approaching zero. Yamaguchi and co-workers have used least
absolute shrinkage and selection operator (LASSO)/Elastic net
regressions to construct QSSRs assigning values of zero to
unimportant coefficients.'*® These authors used steric
indicator fields as descriptors as well as calculated electronic
descriptors,"®” including only a global minimum energy
conformer for esterification reactions and the enantioselective
addition of phenylboronic acid to 1-napththaldehyde. How-
ever, as the focus of this review is on asymmetric catalysis, only
the latter will be discussed.

A summary of the catalysts employed and selectivity values
obtained are given in Figure 50. Eighteen catalysts are used in
the training set and five in the external test set. LASSO/Elastic
net regression analysis gives good models (R* = 0.92 for the
predicted vs observed plot of the external test set). In analogy
to the previous discussion, regions in space where steric
occupancy is either beneficial or detrimental to enantiose-
lectivity can be visualized using these methods (Figure S0).
Parts b and d of Figure 50 correspond to a catalyst in which R
= R’ = 3,5-dimethylphenyl. The red region in Figure 50b
designates that occupancy in this region of space is associated
with diminishing enantioselectivity. Thus, the authors synthe-
sized a catalyst in which the methyl groups are removed (R =
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Figure 49. Top left: steric contour map for catalysts in enantioselective ketone hydrogenation reactions. Green contours indicate regions where
steric bulk leads to increased enantioselectivity, whereas yellow regions indicate regions devoid of steric bulk which lead to increased
enantioselectivity. Top right: Electrostatic contour map. Blue contours indicate regions where increased positive charge leads to greater
enantioselectivity whereas red contours indicate regions where decreased positive charge (or increased negative charge) lead to increased
enantioselectivity. Experimental catalyst (A1) and theoretically improved catalyst (CI1). Adapted with permission from ref 180. Copyright Royal

Society of Chemistry.

R’ = 3-methylphenyl, shown in parts a and ¢ of Figure 50. The
selectivity of this catalyst is improved with respect to the
original, validating that LASSO/Elastic Net can be used to
generate QSSRs and the physical information in these
relationships can be used to enhance selectivity. No attempt
was made in this work to further optimize the reaction.

5.1.3. Complete, Chemoinformatics Guided, Catalyst
Discovery Workflow. Recently, our laboratory has developed
a computer-guided workflow that uses chemoinformatics at all
stages of development."”® This workflow consists of the
following components: (1) construction of an in silico library of
a large collection of conceivable, synthetically accessible
catalysts of a particular scaffold, (2) calculation of robust
chemical descriptors for each scaffold, and (3) selection of a
representative subset of the catalysts in this space.

This subset is agnostic to reaction or mechanism as the only
input in the selection algorithm is the intrinsic properties of the
catalysts. Accordingly, it is named a Universal Training Set
(UTS). The next steps are: (4) collection of the training data
and (S) application of modern machine learning methods to
generate models that predict the enantioselectivity of each
member of the in silico library. These models are evaluated
with an external test set of catalysts (predicting selectivities of
catalysts outside of the training data). The validated models
can then be used to select the optimal catalyst for a given
reaction.

As a prototype of this workflow, an in silico library of 806
chiral phosphoric acids is generated. For each member, steric
and electronic descriptors are calculated. The newly developed
steric descriptors, called average steric occupancy (ASO)
descriptors are used which are conceptually similar to Hirst’s
3.5D descriptors.'”” First, a conformer distribution for each
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catalyst in the in silico library is obtained. Second, for each
catalyst, all of the conformers are aligned and individually
placed in identical grids. If a grid point is within the van der
Waals radius of an atom, it is assigned a value of 1; otherwise it
is assigned a value of 0. This process is repeated for n
conformers and upon completion each grid point has a
cumulative value ranging from 0 to n. The values are then
normalized by dividing by n such that all grid points have a
value between 0 and 1. These values comprised the steric
descriptors for the structures. For electronic descriptors, a
calculable parameter arising from the perturbation of the
electrostatic potential energy of trimethylammonium ions by
substituents has been developed which correlates well with
Hammett parameters. Calculation of these descriptors for each
catalyst affords the chemical space on which the Kennard-
Stone subset selection algorithm is applied, yielding the UTS
(Chart 1). These descriptors are also used to digitize the
reactants and products; concatenation of catalyst, reactant, and
product descriptors combinatorially yields an in silico library of
unique reactions.

To validate this workflow, the training set was evaluated on a
previously optimized model reaction. The enantioselective
formation of N,S-acetals (Figure S1A) developed by Antilla
and co-workers was selected.'®® For the selected model
reaction, a four by four grid of imines and thiols is chosen,
resulting in 16 reactions per catalyst (Figure 51A). Evaluating
the 24-member training set with each substrate combination
then results in 384 training reactions that are used for model
development. The range of selectivities covered by the UTS in
the 16 training reactions spans from 28.5:71.5 to >99.5:0.5 er
with the same enantiomer of catalyst, further supporting the
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Chart 1. UTS for Chiral, Phosphoric Acid Catalysts

O Br S|(4-tBUPh)3
o, I
PO POy
e ™ e
Br Si(4-tBuPh)3

hypothesis that this training set selection method covers a
broad range of selectivity-space.

A suite of models is generated and used to predict the
selectivity of three families of test sets (Figure 51B), namely:
(1) a “substrate test set” of reactions generating new products
(i.e., those formed from substrates not included in the training
set), (2) a “catalyst test set” of reactions generating the same
products in the training set but with catalysts not included in
the training data (Figure 51C), and (3) a “substrate/catalyst
(sub/cat) test set” of reactions creating new products also
using catalysts not included in the training set.

Support vector regressors with a second order polynomial
kernel gave the highest performance on the basis of the mean
absolute deviation (MAD) from the combined external test
sets (Figure S2A). The first test set evaluated only the ability of
the models to predict the selectivity of reactions forming new
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products. In this role, the model excelled with an MAD of
0.161 kcal/mol. Next, the same model is used to predict the
selectivity of the external test set of catalysts. The performance
of the model is still highly accurate, with an MAD of 0.211
kcal/mol. Finally, reactions forming new products with the
external test catalysts are predicted with an MAD of 0.236
kcal/mol. The chemical space constructed from the first three
principal components of descriptor space also reveals regions
of high-, medium-, and low- selectivity space, indicating the
ASO descriptors are accurately capturing the catalyst features
responsible for enantioinduction (Figure 52B).

To demonstrate the potential to identify new, selective
catalysts, a situation was simulated in which highly selective
reactions have not been achieved. To do this, only reactions
below 80% ee were used as training data. Deep feedforward
neural networks accurately reproduce the experimental
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Figure 50. Rhodium catalyzed enantioselective addition of phenylboronic acid to 1-naphthaldehyde with depiction of ligand library. (a—d) Space
filling models and digitized structures of two catalysts. The red areas designate regions where steric bulk is associated with diminished selectivity,
and the blue regions designate areas where steric bulk is associated with high selectivity. The circled region in b and d contains the methyl unit that
was removed (it is absent in a and c). Reprinted from with permission from ref 186. Copyright 2017 John Wiley and Sons.

selectivities (MAD = 0.33 kcal/mol, Figure S3A), and the
general trends in selectivity on the basis of average catalyst
selectivity. As shown in Figure 53B, the most selective catalyst
evaluated is predicted as the most selective catalyst. The next
two catalysts are also the second and third most selective
catalysts (the order is inverted, but they are within
experimental error of each other).

5.1.4. Perspective on Alignment Dependent MIF-
Based Methods. Alignment dependent MIF-based methods
and related protocols have the capacity to identify how
perturbations of the steric and electronic environments around
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the active catalytic entity can influence the enantioselectivity of
that scaffold. Moreover, the studies detailed in this subsection
demonstrate the general applicability of this method across
multiple catalyst architectures. Thus, MIF-based methods are
indeed a promising avenue of research if one wishes to identify
a general, chemoinformatics-driven protocol to catalyst
optimization. The most serious limitation of these methods
is the alignment dependency. For comparing variations of
catalysts of the same basic core scaffold, alignment is trivial.
However, if one wishes to compare multiple catalyst scaffolds,
alignment can quickly become challenging. To address this
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Figure S1. (A) Formation of chiral N,S-acetals with train and test substrate combinations. (B) Catalyst and substrate combinations forming
different train and test sets. (C) External test catalysts. Adapted with permission from ref 138. Copyright 2019 American Association for the

Advancement of Science.

limitation, grid independent descriptors (GRIND) have been
developed, which constitute the topic of the next section.

5.2. Grid Independent Descriptors (GRIND)

5.2.1. Introduction to GRIND. To address the necessity of
alignment for the previously described MIF-based methods,
the GRIND class of descriptors was developed.'®” These
descriptors are derived from MIFs that then undergo
processing to generate GRIND. The first step is a
simplification of the MIF of interest by identifying important
regions in space where interaction energies are of large

magnitude (either large negative for favorable interactions or
large positive for unfavorable interactions). These regions are
identified by points (termed nodes in the GRIND
nomenclature) of high interaction energy. Subsequent
selection of new regions is derived from additional points of
high interaction energy outside a predefined distance away
from previously selected regions. Then, the grid points
surrounding the high interaction energy grid points are
included to identify the important regions in space around
the molecule. This process is called filtering and only the
selected grid points (high interaction energy points and
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Figure 52. (A) Predicted versus observed free energies (kcal/mol) of the train and test sets overlaid for a support vector machine using a second
order polynomial kernel. Accuracy metrics are listed in the table below. (B) Selectivity space as represented by the first three principal components
of the full feature-space. Adapted with permission from ref 138. Copyright 2019 American Association for the Advancement of Science.

(A) Predicted vs. Observed:

» Test Set

Predicted AAG
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1 Observed AAG

(B) Average Test Catalyst Selectivity:

Observed
Predicted

96.5 % ee 95.5 % ee 95.1 % ee 92.8 % ee
93.7 % ee 92.0 % ee 93.2 % ee 88.5 % ee

87.2 % ee 86.7 % ee 85.5 % ee 85.0 % ee
87.6 % ee 86.6 % ee 83.6 % ee 83.8 % ee

Figure 53. (A) Predicted versus observed plot for simulated reaction optimization. (B) Average predicted and observed selectivity data for all
catalysts with average selectivity over 80% ee. Adapted with permission from ref 138. Copyright 2019 American Association for the Advancement of
Science.
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Figure 54. Graphical representation of the process for the calculation of GRIND.
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surrounding points) are taken on to future steps. For all the
selected grid points, the pairwise products of all the interaction
energies are calculated and sorted on the basis of the distance
between the two grid points multiplied. For example, all
products from grid point pairs in which the distance between
points is 1—2 A would be one class, whereas products from
grid point pairs in which the distance between points is less
than 1 A could be another class. The highest value(s) in each
class are taken forward and used as a descriptor. Thus, the
number of descriptors per molecule is determined by the
number of distance ranges used and the number of values kept
per distance range (Figure 54). This method was later
augmented with a molecular shape field.'”’
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5.2.2. Applications of GRIND in Asymmetric Catalysis.
The first application of this method to asymmetric catalysis
was reported by Higginson and Morao'”" and sought to
benchmark descriptor performance with Lipkowitz’s CoMFA
models,"*® Kozlowski’s QMQSAR models,'®* and an enantio-
selective reduction of acetophenone with borane catalyzed by
chiral $-amino alcohols reported by Damen and co-workers.'”
GRIND was calculated following the protocol above with
steric, electronic, and hydrogen-bonding MIFs, in which only
the highest value per distance range in the field is kept. When
compared with Lipkowitz’s models, the cross-validated
correlation coeflicient from LOO cross-validation is lower
than reported in the original study (Q* = 0.52 vs 0.84,
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respectively). Although Kozlowski does not provide a Q’ the
two methods predict similar external validation sets, with
Kozlowski’s MAD of 6.25% and Higginson and Morao’s MAD
of 6.75%. It is noteworthy that different modeling methods are
used in each of these studies, confounding whether the
descriptors themselves are comparable or a more advanced
modeling method paired with inferior descriptors gives results
similar to the original study. For the final study, the Q* value
for both the GRIND descriptors and the Damen study are
approximately 0.8, but given that the original report did not
disclose their descriptor calculation method, it is difficult to
draw conclusions from this result. Examining the relative
performance of the GRIND with respect to the three original
studies, the GRIND descriptors at best give similar results, as
suggested in the second two comparisons. When compared
with Lipkowitz’s work, the GRIND gives somewhat
diminished, although still potentially meaningful results.

This protocol has been modified by the use of values
obtained from quantum mechanics from which the descriptors
were calculated.'”® Two fields are calculated from which to
derive GRIND, a molecular shape field (MSF) and a molecular
electrostatic potential field (MEP). The MEP field is calculated
using DFT methods in a way similar to the aforementioned
GQSAR method.'*® The MSF is calculated by using the local
curvature of the molecular surface.'”” Convex areas range from
—1 to 0, whereas concave areas range from 0 to 1. These MIFs
are then subjected to filtering and pairwise multiplication, and
the products sorted by interpoint distance as described in the
general GRIND method. These descriptors are then evaluated
in the enantioselective addition of dialkylzinc reagents to
aldehydes. This reaction is chosen because the set of 18
catalysts evaluated by Kozlowski'®*'® is available for
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comparison and a 40 member set is available using other
literature sources.'””'”> When training on the same 14
catalysts as Kozlowski and Higginson and Morao with the
same four remaining catalysts held out as an external test set, a
MAD of 15.7% ee between the predicted and observed values
for the four test catalysts is found, significantly higher than the
two previous cases (6.25 and 6.75% ee respectively). Moving
on to the 40-member set, this group is divided into a training
set of 30 members and a test set of 10 members. The predicted
versus observed values found in the test set are compared and
the model predicts moderately to highly selective catalysts
accurately but performs poorly when predicting low selectivity
catalysts (Figure 5S). The authors attribute this disparity to the
skew of the data set, wherein most training catalysts have an
energy differential between the diastereomeric transition
structures leading to different enantiomers of the product
greater than 1 kcal/mol.

The relative importance of each selected grid point can also
be calculated to identify important regions of space around
that catalytic entity. The individual contribution of each node
can be calculated by first tabulating the product of the
following three values for each node—node interaction: (1)
QSSR coefficient, (2) the correlogram value (the product of
the interaction energies at two nodes), and (3) the relative
contribution of the node to the correlogram value across all
pairwise combinations of which that node is a part. The
summation of these product values for each node quantifies the
relative importance of that node. These relative importance
values are then attributed to structural motifs on the basis of
the relative proximity of the node to different substituents.
This value is termed the Group Structural Influence (GSI)
ratio, which quantifies the overall contribution of the individual
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Figure 57. Predicted and observed selectivity data for selected catalysts.

group to the enantioselectivity. An example of relative
contributions of each group for selectivity is shown for the
diethylzinc alkylation of benzaldehyde (Figure 5S).

For this structure, the finding that the phenyl substituent
makes no contribution to the observed enantioselectivity is
surprising. Unfortunately, the authors did not report the
synthesis of a catalyst with a different group at this position to
test this conclusion. It is also possible that the phenyl
substituent has a secondary effect of changing the equilibrium
conformation of the O-trityl group and thus this contribution
cannot be detected by the GSI ratio. Another interesting
observation is the high contribution attributed to the ethyl
ligand, given that this residue is constant across all catalysts
examined. Nevertheless, this method does represent an
attempt to quantify the relative importance of groups. Further
development and validation of GSI ratios could facilitate the
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extraction of useful structural information pertaining to catalyst
selectivity.

This method of using GRIND calculated from quantum
mechanically derived MIFs has also been applied to the study
of enantioselective, rhodium-catalyzed hydroformylation re-
actions.'”® This work also studied catalyst activity; however,
because the focus of this review is on asymmetric catalysis only
this section of the work will be discussed. The original
workflow was modified by a second filtering method, in which
the most negative values in the MEP field (points representing
the most basic areas of the catalyst denoted as BAS) are
removed.'”” Thus, four descriptor types could be calculated,
two for each filtering method (filtered on the basis of the most
convex areas of the isosurface as in the original publication or
on the basis of the most negative values in the MEP field).
These include: (1) MSF-MSF_ ey (2) MEP-MEP, .., (3)
MSF-MSFy,, and (4) MEP-MEPy,s. Twenty catalysts were
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selected from the literature to use in modeling and model one at the “front” of the molecule, near the catalytically active
validation (Figure 56).19919 center, and one at the “back”. First consider the situation in
The four descriptor types listed previously are each tested by which a substituent at the front of the catalyst has the highest
modeling the above data set and validating with LOO cross- interaction energy whereas the substituent in the back has the
validation. Neither the MSF-MSF nor the MEP-MEP second highest interaction energy. Second, consider the same
descriptors generated with the BAS filtering method give core catalyst scaffold in which the highest interaction energy is
acceptable models (Q* = 0.12 and 0.41, respectively). Both now at the back of the catalyst and the second highest
MSF-MSF and MEP-MEP descriptors derived from the interaction energy is at the front. Because the sorting of the
filtering method derived from the most convex regions give node—node products is distance based, these catalysts will
good results (Q* = 0.68 and 0.60, respectively). With the MSF- appear nearly identical in GRIND-space. Moreover, if groups
MSEF descriptors from this filtering method five catalysts are responsible for producing the highest and second highest
selected at random from the twenty-member set to be withheld interaction energies give different selectivity values, the
as an external validation set with the remaining 15 used to calculated descriptors will not capture the important relative
construct a model. This process is repeated four-times such spatial information necessary for differentiating the two
that the effect of which training catalysts are used on model compounds. One could argue that selection of the correct
efficacy could be examined (Figure 57). Rounds 1, 2, and 4 number of high interaction energy regions or use of the right
afford moderate success when predicting ligand selectivity in MIF or indicator field could result in stronger models.
that the models generated can typically predict whether a However, this correction will likely require individualized
catalyst will give high, medium, or low selectivity. Round 3 optimization for each new system studied.
shows the worst performance, likely because only one catalyst Another possible explanation could be that constructing the
left in the training set had over 55:45 er. Thus, this region of correlogram introduces more noise into the descriptors. Thus,
high selectivity chemical space may not have been well when GRIND descriptors are used on small data sets, it is
described by the model. The authors are also able to use the much more difficult to construct meaningful QSSRs than with
coefficients from the QSSR to extract some physical their alignment-dependent counterparts. Perhaps using the
information pertaining to how catalyst structure influences standard GRIND-based method on larger data sets could
catalyst performance, identifying regions where steric encum- increase the performance of these methods. Despite being
brance is related to high enantioselectivity. somewhat less explored than alignment dependent methods,
5.2.3. Perspective on GRIND. In general, grid-independ- GRIND has the potential to be very useful in that it becomes
ent MIF-based methods underperform with respect to their possible to bypass the alignment process. Although alignment
alignment dependent counterparts. We hypothesize that during dependent MIF methods may have an advantage over GRIND
the construction of the correlogram, information pertaining to when it is easy to align the molecules of interest, GRIND may
high interaction energies in different regions of space is lost. be the best tool available when evaluating more structurally
For example, one can imagine a hypothetical situation wherein diverse scaffolds in which alignment is not straightforward. In
a catalytic entity has two regions of high-interaction energy— this sense, GRIND, a much younger technology than CoMFA,
1671 DOI: 10.1021/acs.chemrev.9b00425
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Chemical Society.

represents a promising avenue of research that should be
investigated further.

6. OTHER APPLICATIONS OF CHEMOINFORMATICS
IN ENANTIOSELECTIVE CATALYSIS

The previous sections in this review illustrate descriptors
derived from the 3D representation of molecular structures.
Alternatively, lower-dimensional representations can be used
to formulate descriptors for applications in chemoinformatics.
Such representations have several advantages over 3D
descriptors including (but not necessarily limited to) the
following: (1) they can be calculated much more rapidly than
their 3D counterparts, (2) they do not require optimization of
molecular structures, and (3) they do not require conforma-
tional analysis. However, one could argue that these
representations inherently lack critical information about the
3D structure of the molecules of interest and are thus inferior
representations. As the following section will demonstrate, it is
possible to construct predictive models using such descriptors
to represent variable subunits of a common core in a similar
way Sterimol parameters are used in the LFER section. A
commentary on the interpretability of these models will be
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discussed throughout, if applicable, and in the Perspectives
section.

6.1. Topological Indices as Descriptors in Enantioselective
Catalysis

Topological indices, such as those developed by Xu and co-
workers, are an example of 2D descriptors.200 These
descriptors are calculated for a molecule by first defining
three path matrices, termed A, B, and C. A path matrix is a
two-dimensional representation of the connectivity of a
molecule determined by which atoms are bonded to each
other. Thus, each dimension of a matrix is an identical list of
atoms, wherein the matrix element corresponding to the
intersection between two different atoms receives some value
representing the relationship between those two atoms. In this
particular case, matrix A is constructed such that each matrix
element receives a value of 1 if the path between vertices has a
value of 1 (ie., the atoms are separated by one bond). If the
path between vertices is not 1, it receives a value of zero. For
matrix B, if the path between vertices is equal to 2, the matrix
element receives a value of 2 and otherwise receives a value of
0. The same is true for matrix C, wherein a path length of 3
corresponds to a matrix element of 3 and otherwise a value of 0
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Chemical Society.

is assigned. To these matrices are added two columns: (1) the
square root of the vertex degree (i.e, square root of the
number of non-hydrogen atoms bound to the atom), and (2)
the square root of the van der Waals radius of the atom. This
operation results in the formation of three new matrices,
termed G;-G;. These matrices are then multiplied by the
corresponding transpose matrices (i.e., G;G,’), which gives
three new matrices Z;—Z;. The topological indices (Ax;, Axy
and Ay;) are then defined as the largest eigenvalue of each
respective matrix divided by 2 (Figure $8).

You and co-workers used these molecular representations to
predict reaction outcomes in three enantioselective reac-
tions;”*" enantioselective cyclopropanation,202 enantioselective
pinacol coupling” and, enantioselective cross-coupling
reactions with Grignard reagents.””* In each case, multiple
regression analysis is employed.
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The enantioselective cyclopropanation employs a copper-
salen-derived complex (Figure 59). The ligand contains three
groups that are varied, the substituent on the stereogenic
carbon atom of the ligand (R' in Figure 59), the substituent on
the 2-position of the aromatic residue attached to the oxygen-
bearing carbon (R? in Figure 59), and the substituent on the S-
position of the aromatic residue affixed to the oxygen-bearing
carbon (R in Figure 59). Topological descriptors are
calculated for each of the three substituents, generating a
total of nine descriptors for each catalyst. The 17 different
catalyst structures employed are divided such that 16 are used
to develop the linear regression model and the remaining
catalyst is used to validate the model. The regression analysis
yielded a reasonable correlation (R = 0.823, Figure 59) with a
standard error of 8.3% ee. A simple neural network provides

205

slightly diminished performance.
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Figure 61. Diastereoselective pinacol coupling and predictive model of diastereoselectivity. Reproduced from Jiang, C.; Li, Y.; Tian, Q.; You, T.
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American Chemical Society.

A related analysis is then performed using a different
cyclopropanation reaction (Figure 60). In this case, data for
both diastereomers of the product are available; thus, two
different models are constructed to predict the enantiomeric
composition of each diastereomer. In this model, three
topological descriptors are derived from each the styrene
aromatic residue, the identity of the substituent on the ester
residue of the diazo compound, and the identity of the
heteroaromatic residue on the catalyst. In addition to these
nine descriptors, an indicator of either —1 or +1 is given to
specify the configuration of the L- or D-menthyl substituent on
the ester residue, whereas achiral residues receive a value of 0.
Using these 10 descriptors, regression analysis is performed to
predict the reaction outcomes for both possible diastereomers,
the results of which are given in Figure 60. Of the 14 available
data points, 13 are used to construct the model and one
additional data point is used for external validation. This model
is quite accurate giving an R* = 0.908 and a standard error of
4.8% ee for the trans-isomer and an R* = 0.919 and standard
error of 5.0% ee for the cis-isomer. The large coeflicient of the
AS®! term in the regression analysis is interesting. Because this
matrix is associated with three-bond connections, the authors
suggest that this result indicates the importance of the steric
bulk of the styrene substrate to achieve high selectivity (larger
substituents lead to higher selectivity). This interpretation is
surprising given the similar sizes of the R' substituents —C4Hy,
4-MeC¢H;, 4-MeOC4H;, and 4-CIC4Hg. By most metrics, the
latter three substituents would not be considered significantly
sterically different; the most obvious difference among the
groups is the electronic character. Because no electronic
information is available in the descriptors, it is surprising that
the model can accurately identify this trend and make accurate
predictions. One possible explanation is that because the van
der Waals radius is present in the original A, B, and C matrices,
the model developed some method of “penalizing” the
compounds with chlorine atoms (or atoms with larger van
der Waals radii) present and can thus reproduce the trend. An
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interesting challenge to this model would be to prepare the 4-
CF;C¢H; or 4-FC¢H; analogs as external tests for further
validation of this interpretation and potentially exposes
shortcomings in the descriptors used. If the model fails to
predict the 4-FC4H; case, this could suggest the correlation
(and its interpretation) is not founded in the underlying
physics and that the variable with a large coefficient is also
correlated with the actual causative property within the domain
of the model. Such a situation would both confound extraction
of physical meaning from the model and limit the domain of
applicability. Additionally, it would be interesting to include
Hammett parameters in the model and see if the significance of
the other variables decreases. If this is the case, it is likely that
the physical interpretation of the current model is unfounded.

The authors revisited this system to compare the perform-
ance of models generated with linear regression with those
generated by neural networks.”” The neural network
contained two output neurons and could thus predict the
enantiomeric composition for both diastereomers simulta-
neously. Unfortunately, different combinations of the afore-
mentioned topological indices are used in each case making
direct comparisons between the models difficult. Similar
predictive capabilities are observed in each case (trans- and
cis-products) for both modeling methods.

In the second case study, the diastereoselectivity of a pinacol
coupling is predicted using the percentage of dl/(dl+meso) as
the dependent variable (Figure 61). Of the 13 data points
available, 12 are used as training data with one validation case.
Topological indices are calculated for both a variable catalyst
substituent of interest and the variable portion of the aldehyde
substrate (Figure 61). During the regression analysis, all except
two cases are predicted with exceptional accuracy. These two
cases highlight limitations of the topological descriptors used
in the analysis. In the first case, a large error is present in
predicting the selectivity of the 2-BrC¢H,-substituted aldehyde
substrate. Because only the aromatic residue is treated in the
analysis, the 2-Br, 3-Br, and 4-Br substituted phenyl rings are
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identical in the molecular representation. Thus, predicting the
influence of an ortho substituent is impossible. In the second
case, two methylene substituents linking the phenyl ring and
the aldehyde are erroneously predicted to be a competent
substrate and very similar in selectivity to cinnamaldehyde.
This outcome is unsurprising given the nearly identical
topological representations of these groups. Thus, the
descriptors used here are incapable of identifying such changes
and are unable to predict their influence on enantioselectivity.

Finally, the authors examine an enantioselective Kumada
cross-coupling (Figure 62). In this case study, the aromatic
substituent on the phosphine ligand, the chiral amine-
containing substituent of the ligand, and the identity of the
Grignard reagent are used to obtain nine descriptors. The
planar chirality of the ferrocene is included as an indicator such
that +1 designates R and —1 designates S configurations,
respectively. Using these descriptors, 13 data points are used to
construct a multivariate model with good correlation (R* =
0.915) and a standard error of 12.3% ee (one additional point
is used for validation). However, this model excluded two
points with high deviation which the authors postulate to have
mechanistic differences and are therefore difficult to predict
with the current method. An alternative hypothesis could be
that even though the process is mechanistically the same, the
descriptors do not adequately describe an important feature of
the catalyst structure for those two points and thus cannot
accurately predict them. The model is slightly improved with
by the use of neural networks but could still not accurately
predict the problematic points.**®
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Figure 62. Enantioselective Kumada coupling reaction. Reproduced
from Jiang, C.; Li, Y.; Tian, Q; You, T. QSAR Study of Catalytic
Asymmetric Reactions with Topological Indices. J. Chem. Inf. Comput.
Sci. 2003, 43, 1876—1881. Copyright 2003 American Chemical
Society.

Topographical descriptors are beneficial in that they require
minimal computational cost with respect to other 3D
descriptors. However, the descriptors in this work give a
limited representation of the molecules of interest. It is
probable that using more physically meaningful representation
(ie., that contain information about shape and electronic
characteristics of molecules) could lead more robust models.
Further, although the models discussed give reasonable

predictions, they lack rigorous validation likely owing to the
lack of available experimental data.

Later work by You and co-workers examined the
enantioselective addition of diethylzinc to aldehydes.”’® In
this work, the topological descriptors employed are the Randic
index,”®” Kier and Hall index,”® and the Kier shape index.”””
A more detailed discussion of how these descriptors are
calculated is available in the Supporting Information. In
addition to these topological descriptors, AM1”'" charges for
key atoms are also used. The authors used three-layer
feedforward neural networks to construct models in four
different case studies.

The first data set is taken from Pericas and co-workers, in
which a single amino alcohol ligand is used to catalyze the
addition of diethylzinc into a series of aldehydes (Figure
63).”"" Nineteen different aldehydes are represented with
Randic order 2, Kier and Hall order 2, and Kier shape index
order 3. A neural network with three input neurons, three
nodes in a hidden layer, and one output neuron is used to
produce a model to predict enantioselectivity. The model had
acceptable accuracy over the narrow range of observed
selectivity in the training data, with Q* = 0.5245 (5-fold
cross-validation) and R* = 0.857S. It is interesting that the
model can accurately predict the outcome of the reaction with
2-methoxybenzaldehyde as the substrate. Similar substrates,
including 2-chloro and 2-methylbenzaldehyde, give high
selectivity. Given that the descriptors contain no direct
information about electronic contributions, the origin of this
ability to accurately predict the reaction outcome for this
substrate is mysterious.
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Figure 63. Enantioselective addition of diethylzinc to aldehydes using
an amino alcohol ligand.
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The second case study””® employs a data set from Kang and

co-workers in which various amino thiol ligands with different
N-substituents are evaluated as catalysts (Figure 64).21>13
Aldehyde substrates are represented with the Kier and Hall
order 2 index whereas the catalysts are represented with the
Kier and Hall order 2 index for the N-substituent and the
partial charge (AM1) on the nitrogen atom. A set of 28
reactions is used to train a network with three input neurons,
three hidden neurons, and one output neuron. The model is
internally validated with seven-fold cross-validation (R? =
0.8580, Q* = 0.6376). The researchers attempted to use the
model to probe if the size of the R-group on the aldehyde
substrate is necessary for selectivity as suggested by Noyori for
amino alcohol catalysts.”' "> Reaction selectivities are
predicted for substrates with increasing linker distance between
the aldehyde residue and a phenyl substituent to probe the
expected influence of steric bulk of the aldehyde in the
reaction. As expected, less steric bulk correlates to lower
predicted selectivity. However, no experiments are performed
to validate these predictions. Although there is no reason to
believe amino thiols require different substrate features to
achieve high selectivity when compared with amino alcohol
catalysts, experimental validation would be valuable to further
test model robustness by treating the predicted values as an
external test set and assess if the model is still applicable in the
domain of less sterically biased substrates.
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Figure 64. Enantioselective addition of diethylzinc to aldehydes using
amino thiol ligands. Adapted with permission from ref 206. Copyright
2006 Elsevier.

In a third case study,””® You and co-workers employed a
data set from Falorni and co-workers*'®*"” that uses a 2-(2-
pyridyl)pyrrolidine ligand. A set of 15 aldehydes are
represented by Randic order 3 index, Kier and Hall order 3
index, and the partial charge (AM1) on the oxygen of the
aldehyde (Figure 65). Additional features included for each
reaction are the temperature and reaction time. A neural
network with five input nodes, two nodes in a hidden layer,
and one output neuron is trained and internally validated with
five-fold cross-validation (Q* = 0.8570, R* = 0.9334). Using
this model, the authors plotted the relationship between
predicted selectivity over time. A maximum is identified at 40
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h; however, it is likely that this occurs simply because the only
reactions available in the training data that required long
reaction times also had low selectivity. Thus, the longer
reaction time regime for selective reactions is likely outside the
domain of applicability of the model.
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Figure 65. Enantioselective addition of diethylzinc to aldehydes using
a 2-(2-pyridyl)pyrrolidine ligand. Adapted with permission from ref
206. Copyright 2006 Elsevier.

Finally, the You and co-workers experimentally evaluated
histidine-derived catalysts with various N-substituents (Figure
66).>°° This particular scaffold is of interest because of its
multiple potential binding sites. Aldehydes and the catalyst N-
substituent are represented with the Randic order 2 index.
Further, the partial charge of the oxygen atom of the aldehyde
is selected as an input variable. Experimental data is collected
for 11 unique reactions, for which a model is constructed with
internally validation (Q* = 0.5451, R* = 0.8833). The authors
intended to predict a more selective catalyst using this
information, however, the predicted values for two additional
N-substituents (naphthyl and t-butyl) suggested no improve-
ment beyond what is already observed. This conclusion would
benefit from experimental justification—it is likely that the two
new N-substituents are outside the domain of applicability of
the model, especially considering the very small data set used
to train the model. Thus, it is not possible to definitively say
whether the new catalysts could be more selective. The authors
also suggest that further experimental work is necessary;
however, to our knowledge no further experimental study has
been published.

6.2. Other Applications of QSSR in Enantioselective
Catalysis

Damen and co-workers have reported the application of QSSR
to predict the reaction outcome of the enantioselective
reduction of acetophenone with chiral oxazaborolidine
reagents (Figure 67).192 A 24-member training set of different
amino alcohol catalysts is used to construct a model using
partial least-squares regression which is then validated with a
four member external test set (R*> = 0.978, Q> = 0.797).
However, the specific descriptors used in the study are not
specified. The study served as a proof of concept exemplifying
the application of QSSR to enantioselective catalysis.

A similar study performed by these researchers has examined
the catalytic, enantioselective hydrogenation of ketones with
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Figure 66. Enantioselective diethylzinc alkylation, case study 4 from
ref 206. Adapted with permission from ref 206. Copyright 2006
Elsevier.

chiral ruthenium complexes (Figure 68).>'® Thirteen unsym-
metrical benzophenone derivatives are subjected to Noyori
enantioselective hydrogenation and the results are used to
construct a PLS model correlating structure to reaction
outcome. The descriptors employed are obtained using
DRAGON software”'” with 3D-structures as input, then
removing descriptors that are highly skewed. However, the
descriptors actually included are not specified. Two models are
constructed each with different relative conformers of ortho-
substituted aromatic rings in the benzophenone starting
material. A dependence on conformation is observed in
which the first model underperforms with respect to the
second model (average Q* = 0.58 and 0.66, respectively). The
improved model is able to more accurately predict substrates
with ortho-substituents by using a conformation with the
substituent canted toward the ketone residue rather than away.

With improved models identified, numerous predictions are
made for other in silico substrates. The predictions follow
reasonable trends; substrates containing one ortho-substituted
aromatic residue are the most selective followed by meta-
substituted and para-substituted as the least selective.
However, the predicted values are not validated experimen-
tally.

Carnell and co-workers published the development of
quantitative structure—property relationship (QSPR) models
in the study of rhodium catalyzed, enantioselective conjugate
addition of arylboronic acids to acyclic enones (Figure 69).*°
Eighteen different diene catalyst structures are synthesized and
evaluated in the model system. Descriptors are calculated using
DRAGON software from which an optimal three-component
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model is identified using a genetic algorithm for descriptor
selection. At most, a maximum of three dimensions are used in
the model to maximize model robustness by minimizing
overfitting resulting from the inclusion of many parameters.
The model constructed is validated using leave-one-out cross-
validation (LOO), as well as 10-fold cross-validation and the
bootstrap method (Q* = 0.70, 0.70, and 0.76, respectively).
The specific descriptors used in the model are the total number
of tertiary sp® carbon atoms in the catalyst structure, which is
thought to reflect steric parameters, and MATS6i and
MATS3m, which are 2D descriptors thought to reflect the
electronic characteristics of the ligands.”*' The authors note
that interpretation of the significance of these parameters is not
straightforward and thus discerning mechanistic rational from
the model is not possible. However, the model could be used
predictively with substrates for which an ideal catalyst has not
been identified.

6.3. Perturbation Theory QSSR

An interesting subfield of QSSR applied to enantioselective
catalysis is perturbation theory QSSR (PT-QSSR) developed
by Gonzalez-Diaz and co-workers.””” Interested readers are
referred to the original work for the mathematical formulation
of this theory. The significance of this method is the capability
to predict multiple output efficiencies (e.g, yield and
enantioselectivity) simultaneously, if desired. In this method,
the goal is to predict the efficiency of a new chemical
transformation with respect to a known chemical trans-
formation. Thus, the new transformation can be treated as a
perturbation of the original one (for example, a change in
chemical structure). Using this workflow, general equations for
chemical systems can be constructed relating input structures
to performance. As an example of this workflow over 9000
predictions are made for the outcome of the enantioselective
carbolithiation of olefins. However, to the best of our
knowledge no predictions are validated experimentally. The
reader is referred to the original work for a comprehensive list
of predicted values.

A later example of this method is the analysis of
enantioselective Heck—Heck cascade reactions.””’ In this
work, literature data®*™>*! is used to construct a model
capable of predicting both yield and enantioselectivity
outcomes of the Heck—Heck cascade reactions. Descriptors
are calculated with DRAGON software: (1) substrates are
described by their hydrophobic index and topological polar
surface area (N and O contributions only), (2) products are
described by logP, (3) bases are described by logP, (4) ligands
are described by topological polar surface area (N, O, P, and S
contributions), and (5) solvents are described by their dipole
moment. Other nonstructural parameters are included by
multiplying their values by the corresponding descriptors (for
example, amount of base is multiplied by logP of base to obtain
the value of one independent variable). These features are used
to construct a PT-QSRR equation such that subsequent
multivariate linear regression analysis is used to create a
quantitative relationship to yield and selectivity. Multiple
models are generated in this manner and are trained with 520
reactions the best of which had an R? of 0.79, Q” of 0.79, and
standard error of 1.19% ee.

Using this model, the authors performed a simulated
optimization for a nonoptimal reaction (Scheme 1). First,
2000 reaction conditions are screened computationally each
with identical reaction components but different catalyst, base,
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Figure 67. Reaction and catalysts studies in enantioselective acetophenone reduction. Adapted with permission from reference.'”* Copyright 2004

Elsevier.

and ligand loadings. A ternary diagram is constructed with this
data revealing high, predicted selectivity in the region with
2.5—7.5 mol % of palladium catalyst, 7.5—20 mol % of ligand,
and 2.5 to 7.5 equiv of base. It is a curious observation that the
highest catalyst and ligand loadings (10 mol % and 30 mol %,
respectively) are left out of this highest predicted range as one
would not expect diminished performance with increased
catalyst loading while maintaining the catalyst/ligand ratio.
Ligand and substrate structures are then varied resulting in
predicted selectivity values up to 100:0 er. Unfortunately, these
predictions are not validated experimentally. It is unclear if
these predictions are within the domain of the model; thus,

further experimentation is needed to assess the validity of this
approach.

PT-QSSR has also been applied to the chiral Bronsted acid
catalyzed addition of enecarbamates to acyliminium ions
(Scheme 2).** This reaction is performed with numerous
chiral phosphoric acids and triflimide catalysts; BINOL-
derived phosphoric acids catalysts yield the best enantiose-
lectivity but BINOL-derived triflimides produce the highest
yield. Further, unusual temperature effects are observed;
improved enantioselectivity values are obtained around 40
°C with respect to the room temperature reaction. Descriptors
are calculated for reactants, catalysts, and solvents using
DRAGON software and multivariate models are constructed
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Figure 68. Enantioselective hydrogenation reaction studied in ref 218.
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Scheme 1. Enantioselective Heck—Heck Cascade Reaction
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using STATISTICA™ software. A significant multivariate
regression model is constructed with descriptors for substrates,
products, catalysts, nucleophiles, and solvent. Virtual screens
are conducted varying the catalyst structure and the
nucleophile structure to identify a suggestion of optimal
reaction conditions for a target reactant. Though an intriguing
approach, the suggested reaction is not experimentally
validated.

Although the capability of predicting both enantioselectivity
and yield is exciting, rigorous validation of this approach has
not been realized. For example, experimentally challenging the
predictions with an external test set or experimentally testing
the in silico optimized conditions is necessary to demonstrate
the viability of this approach. This validation is especially
important when predictions are made for structures distinct
from those found in the training data, which likely constitute
extrapolative predictions that may not be well described by the
model.

6.4. Perspectives on 0—2D Descriptors in QSSR Applied to
Enantioselective Catalysis

Descriptors not requiring a 3D molecular structure have
multiple advantages over 3D descriptors. These advantages
include rapid calculation and conformer independence.
However, these rapidly calculable descriptors frequently do
not contain the chemical information necessary for many
applications, including for some systems in enantioselective
catalysis.”** Further, when correlations are constructed that are
predictive it is likely that the model is simply recognizing
patterns in features and relating them to experimental
performance. One could argue that this approach is
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Scheme 2. Chiral Bronsted Acid Catalyzed Addition of Enecarbamates to Acyliminium Ions
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fundamentally different than having the model learn the
underlying physics responsible for enantioinduction; the
former does not allow for understandable models that can be
used to form hypotheses about mechanism whereas the latter
could help guide mechanistic investigation. Further, one would
expect a model that has learned the underlying physics of a
system to be more successful in domain adaptation (i.e.,
making predictions for novel substrates, extrapolating into
novel catalyst space, etc.). Despite these limitations, multiple
applications have demonstrated that these readily calculable
descriptors can be used to make predictive models in certain
situations and may be sufficient for specific applications.

6.5. Related Fields

Several areas of research related to using computational
methods to assist catalyst design in enantioselective catalysis
are beyond the scope of this review but warrant mention. Force
field methods represent a class of prominent examples for
which excellent summaries are already available.”*>~**" These
methods are particularly appealing because they allow a virtual
screening of new catalysts and do not require generation of
experimental data. However, the stereodetermining step of the
transformation typically must be known. Similarly, modern
computation and recent advances have enabled screening
campaigns using quantum chemical methods that are reliable,
proceed in a reasonable time frame, and are accessible to the
general community.”*” Other areas of research include various
mapping strategies, wherein molecular properties or structures
are mapped to allow for a visual representation of important
molecular influences, comparison between catalyst structures,
and searches on the basis of similar molecular proper-
ties.”**">*> These methods are particularly useful for under-
standing stereoinduction and could likely be adapted in some
way to merge with QSAR (e.g., derivation of new descriptors)
but are typically not used to make quantitative predictions and
are thus outside the scope of this review.

7. PERSPECTIVES

The dawn of the 21st century brought with it an increased
interest in the application of statistical methods to catalyst
design. In the last two decades, the field has matured beyond
the proof-of-concept stage. Looking to the future, two primary
goals can be identified to motivate the phase of development:
(1) accurate, predictive identification of new, optimal catalysts,
and (2) retrospective rationalization of structural features
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responsible for enantioinduction. Although examples to
achieve these goals exist, most focus on the latter. The
groundwork to achieve the former goal is accumulating but a
true realization of predictive design remains an outstanding
challenge. In our view, success in this endeavor must satisfy
three conditions: (1) an unoptimized reaction needs to be
selected, (2) available catalysts must affect these reactions in
poor to moderate enantioselectivities, (3) a chemoinformatics
model must enable identification of nontrivial determinants of
selectivity from the catalyst performance data and predict new
structures that affect high enantioselectivities, and (4) this
method must be made accessible to nonexperts such that it can
impact routine decision making processes encountered by
bench chemists. A general demonstration of this strategy is a
holy grail in the field and will lead to a revolutionary change in
the way researchers approach catalyst optimization for
asymmetric reactions.

One interesting observation regarding the application of
chemoinformatics to predict more selective catalysts is the
number of publications in which suggestions are made to
achieve a more selective transformation compared to the
number that are experimentally evaluated. For new methods to
be accepted as tools for catalyst optimization they must
demonstrate the capability to optimize a real system which in
turn must be supported by experimentation. One method to
facilitate experimental validation of new computational
predictions would be to construct large data sets that can be
used to benchmark new descriptor sets and modeling methods.
This resource would alleviate the computational scientists’
need for an experimental collaborator in addition to enabling
experimentalists develop new computational tools that can be
directly compared with the same data set. Of course, the
interface between statistical analysis and enantioselective
catalysis is an exciting opportunity for collaboration given
the interdisciplinary nature of the field. With increasing
interest, the emergence of tools tailored to optimization rather
than interpretation can be expected in the immediate future.

Given the preliminary success of a variety of approaches
toward making predictions of more selective processes, it
seems likely that the adoption of such tools by those engaged
in asymmetric catalysis is imminent. The need for expert
knowledge for the implementation of chemoinformatics is
perhaps the greatest limitation to its widespread adoption.
However, given the recent work focused on making computa-
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tionally guided methods more accessible to the bench chemist,
optimization campaigns employing these methods will assist
more widespread adoption.”"*"***** Optimization strategies,
however, are typically designed for implementation over a
relatively small domain of chemical space. For example, they
are often limited to a specific class of catalyst structures and
rarely include reaction conditions. A greater challenge, and an
arguably more significant advance, would be the ability to use
statistical methods for comparison of vastly different catalyst
structures. Engineering descriptors to capture the differences
between such disparate structures would be a monumental
task. The alternative approach of implementing modern deep
learning methods may be a more a promising direction for the
solution to this problem. However, the amount of data
necessary to train the machine learning networks to optimize
new systems could be prohibitive, particularly given the
absence of low and moderately selective reactions from the
literature. It is possible that using machine learning with high
throughput screening methods could alleviate deficiencies in
available data. Although challenging, solving such a problem
now seems within the grasp of the community and would
represent a leap forward for this field. It also follows then that
the ability to propose new in silico structures on the basis of
ideal chemical descriptors would be the pinnacle achievement
in this endeavor. Such technology already finds precedent,”**
and adapting similar technology toward this goal has exciting
implications for enantioselective catalysis.

The realm of garnering new mechanistic insights using
statistical methods has already been established as a “launching
pad” for generating new mechanistic hypotheses. As chemo-
informatics tools become increasingly accessible, it is likely that
such methods will find their way into the routine toolkit of
synthetic chemists. However, as accessibility increases so must
the necessity to scrutinize mechanistic claims made on the
basis of these methods. Constructing a model with good
predictive power in a particular domain does not guarantee
that the model is interpretable. For example, confounding
variables can conspire to confound the interpretation of
models. Further, descriptor selection methods are not
infallible; many types of descriptor selection methods exist
many of which have not been widely implemented. For
example, embedded methods (e.g, LASSO) have some
precedent in catalysis but have not been widely adapted.'*>***
Random forest models have also been used recently to identify
important features'*”*****” as have neural networks.'*
Genetic algorithms are able to reduce the number of
descriptors necessary to produce good models.'*” It is possible
that using a collection of methods and comparing which
descriptors are selected with each method could provide more
trustworthy results. Unfortunately, the methods cited above are
data intensive. In any case, mechanistic conclusions should not
be made using only this information. Rather, such methods
serve as a powerful construct to formulate mechanistic insights,
which are then corroborated with complementary investiga-
tions.

The interpretability of a model is also dependent on the
descriptors used to construct it. Subunit-derived, local
descriptors are particularly appealing given the feasibility of
direct interpretation. In contrast, global descriptors like CCM,
chirality codes, and GRIND have more convoluted inter-
pretations. Alignment-dependent grid descriptors have the
benefit of a potentially straightforward interpretation, but the
number of descriptors present impacts which modeling
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methods can be used and can consequently necessitate more
data. However, subunit-derived descriptors are also theoret-
ically more susceptible to the omitted variable bias™****’
because it is unlikely that every molecular property that
contributes to enantioinduction is adequately described.
Whole-molecule global representations are less likely to be
missing information and therefore less likely to erroneously
assign the significance to another descriptor. However, this
situation is only true if the global representation adequately
represents the important structural features of interest. For
example, CCM is a whole-molecule representation but also a
single number—it is unlikely that this single number represents
every feature responsible for enantioinduction and in some
cases is indeed inferior to subunit derived descriptors.'*” It is
possible that some methods such as alignment-dependent grid
methods might give a more accurate representation of a
molecule, but the high dimensionality of the molecular
representations necessitate some method of dimensionality
reduction, which thus omits information from the raw
descriptors. The number of descriptors can also necessitate
larger data sets (this problem can potentially be circumvented
by preprocessing descriptors, but that discussion is outside the
scope of this review).

Comparing the accuracy of models derived from different
molecular parametrizations may suggest which descriptors are
superior. However, a representation, just because it leads to
more accurate models in a given situation, is not necessarily
superior in terms of the interpretability of the model. The best
representation, at least with current methods, is likely to be
case dependent. Further, it is possible that the model could be
“right for the wrong reasons”, that is, the model could make
accurate predictions within its domain but not actually be
generally interpretable. Realizing domain adaptation could also
be another way to assess if a model is founded in the
underlying chemistry of a transformation which could give
more credence to formulating mechanistic hypotheses. From
the perspective of a chemist, the best approach is to validate
the hypotheses with other methods. A related concept is that
most of the aforementioned methods do not explicitly deal
with the absolute configuration of the catalyst. Thus, the model
is limited to predict values for only one enantiomer of the
catalyst. This issue is not necessarily a problem, but it does
pose a limitation of the method. Alternatively, some
approaches that could explicitly treat the absolute config-
uration of the catalyst might not do so in practice. In these
cases, models with an intercept in predicted versus observed
plots will fail to give an equal but opposite magnitude of
selectivity for enantiomeric catalyst pairs. Again, this problem
is easily solved by considering only one enantiomer of the
catalyst, but the model is then limited to making predictions
only for that enantiomer. An alternative to engineering
descriptors such as those mentioned above could be to use
more advanced machine learning algorithms. It is possible that
such advanced methods could achieve improved performance
with simpler representations. However, as discussed above, this
would likely also be much more data intensive.

The use of chemoinformatics to optimize and understand
new enantioselective reactions has advanced from its infancy to
adolescence in the past 20 years. This field holds tremendous
promise for formalizing and extending the chemists’ intuition
to allow predictions of new, unknown catalyst structures. With
increasing interest in the field, more advanced computational
models, and more accessible protocols combined with high-
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throughout data generation, we can confidently anticipate the
transformation of this emergent field into standard operating
procedures used by the practicing chemist in the not-too-
distant future.
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