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Abstract

We exploit the so called atomic condition, recently defined in [9, Comm. Pure Appl. Math.] and
proved to be necessary and sufficient for the validity of the anisotropic counterpart of the Allard
rectifiability theorem. In particular, we address an open question of this seminal work, showing that
the atomic condition implies the strict Almgren geometric ellipticity condition.

1 Introduction

Since the pioneering works of Almgren [3, 4|, a deep effort has been devoted to the understanding of
ellptic integrands in geometric variational problems. In particular, Almgren introduced the class of
elliptic geometric integrands ([4, IV.1(7)] or [3, 1.6(2)]), further denoted AUE, which allowed him to
prove regularity for minimisers in [3].

Very recently, an ongoing interest on the anisotropic Plateau problem has lead to a series of re-
formulations and results in this direction, see [18, 8, 7, 10, 11, 14]. In particular, in [9] (see also
Definition 4.7) a new ellipticity condition, called the atomic condition, further denoted AC, has been in-
troduced and proved to be necessary and sufficient to get an Allard type rectifiability result for varifolds
whose anisotropic first variation is a Radon measure. The authors can prove that, in co-dimension one
and in dimension one, AC is equivalent to the strict convexity of the integrand.

For general co-dimension there is no understanding of AC in the literature and this is stated as an
open problem in [9, Page 2|:

“Since the atomic condition AC is essentially necessary to the validity of the rectifiability
theorem, it is relevant to relate it to the previous known notions of ellipticity (or convezity)
of F' with respect to the “plane” variable. This task seems to be quite hard in the general
case.”

The aim of this paper is to address this open question, comparing condition AC with the classical notion
of geometric ellipticity introduced by Almgren.
We present for the moment an informal version of our main result, see 8.8:

Theorem A. If a €' integrand satisfies the atomic condition at some point x € R™, then it also satisfies
the strict Almgren ellipticity condition at x; see 8.8.

In particular, if the co-dimension equals one, then strict convexity of the integrand implies the strict
Almgren ellipticity. Moreover in higher co-dimension, our work paves the way to construct anisotropic
functionals satisfying the Almgren ellipticity condition. Indeed, although the theory of existence and
regularity for minimizers has been actively developed in the literature, there are essentially no examples
(in higeher co-dimension) of Almgren elliptic integrands, beside the perturbations of the area functional.

It is worth to remark that there is no hope of improving Theorem A showing that the atomic condition
implies the uniform Almgren ellipticity condition, see Remark 9.26. Indeed, if this was the case, in
co-dimension one the strict convexity of the integrand (which is equivalent to the atomic condition)
would imply the uniform Almgren ellipticity, which in turn implies the uniform convexity, leading to a
contradiction.



In order to prove Theorem A, we need to get several auxiliary results of independent interest. In par-
ticular, in Section 4 we introduce another ellipticity condition for integrands, named BC, and in Section 7
we prove that it is equivalent to AC; see Definition 4.8 and Lemma 7.2. BC has the advantage of being
more geometric than the algebraic condition AC, thus providing a useful tool not only for the proof of
Theorem A, but also for future further understanding of the atomic condition. In Section 5 we show
that the original Almgren ellipticity condition [4, IV.1(7)] is the same as the condition used in [14,
3.16] which involves unrectifiable surfaces; see Corollary 5.13. To this end we provide a deformation
theorem 5.8 which preserves unrectifiability of the unrectifiable part of a given set; see Theorem 5.8.
Moreover, in Section 6, Theorem 6.7, we provide an independent proof of the existence of minimisers
of anisotropic energies satisfying AC (or equivalently BC), improving the recent solutions to the set
theoretical approach to the anisotropic Plateau problem [10, 14]. Gathering these results, we provide in
Section 8 the proof of Theorem A, see Theorem 8.8.

The last crucial point is that the proof of Theorem A in Section 8 requires the validity of a seemingly
harmless property: the class of compact sets X used by Almgren to test the strict ellipticity considition
(see [4, IV.1(7)] or [3, 1.6(2)]) is closed under gluing together many rescaled copies of X; see 8.5.
In 9.24 we show indeed that this property is true, but our proof is quite complicated and employs some
sophisticated tools of algebraic topology; see also the introduction to Section 9. Giving it some thought,
Almgren’s condition that X cannot be retracted onto its boundary sphere is topological in nature, so it is
reasonable that topological arguments are indispensable. Moreover, the existence of the Adams’ surface,
which is retractible onto its boundary and is obtained by gluing together two surfaces that cannot be
retracted onto their respective boundaries, supports the claim that the proof of Almgren’s class being
closed under the gluing operation is highly non-trivial; see 8.6. This question is fully addressed in
Section 9.

2 Notation

For the whole article we fix two integers d and n satisfying 2 < d < n.

In principle we shall follow the notation of Federer; see [15, pp. 669-671]. In particular, given two
sets A, B, we denote with A ~ B their set-theoretic difference and, for every a € R™ and s € R we define
the functions 7,(x) = a+x and p,(x) = sx; see [15, 2.7.16, 4.2.8]. Concerning varifolds, we shall follow
Allard [1].

Following [3| and [5], if S € G(n, d) is a d dimensional linear subspace of R", then S; € Hom(R",R")
shall denote the orthogonal projection onto S. In particular, if p € O*(n, d) is such that imp* = S, then
Sy, =p*op.

We divert in notation from [15] in the following ways. To denote the image of a set A C X under
some map f : X — Y (more generally, under a relation f C X x Y) we always use square brackets:
f[A]. We employ the symbol idx to denote the identity map X — X and 14 to denote the characteristic
Junction X — {0,1} of A C X. We also use abbreviations for intervals, e.g., (a,b] = {t : a <t < b}.
Moreover, we denote with N the set of non-negative integers, i.e., N = 22 U {0}. If (X, p) is a metric
space, A C X, and = € X, then we define dist(x, A) = inf p[A x {z}]. We sometimes write X — Y,
X - Y, or X =Y to emphasis that a map is injective, surjective, or bijective respectively. We denote
with A the topological boundary of a set A. Whenever A, B are subsets of a vector space we write
A + B to denote the algebraic sum of A and B, ie., A+ B={a+b:a € A, b€ B}; in particular,
if £ € (0,00), then A + B(0,¢) is the e-thickening of A. If R is a ring and A, B are R-modules, then
A @ B denotes their direct sum; cf. [12, Chap. V, Def. 5.6]. For a,b € & the symbol ged(a, b) denotes
the greatest common divisor of a and b and a mod b means the remainder of the division of a by b.

In Sections 8 and 9 we shall need to use tools of algebraic topology. We shall work in the category
of all pairs of topological spaces d; as defined in [12, Chap. I, §1, p. 5]. We write Hx(X, A; G) and
H(X, A; G) for the k™ singular homology and cohomology groups of the pair (X, A) with coefficients
in G; see [12, Chap. VII, Definition 2.9|. If G = Z, then we omit G in the notation. Similarly, if A = &,
we omit A. Given two maps f,g: X — Y between topological spaces we write f ~ g to express that f



and g are homotopic, i.e., there exists a continuous map h : [0,1] x X — Y such that h(0,-) = f and
h(1,-) = g. If X and Y are topological spaces which are homotopy equivalent we write X ~ Y and if
they are homeomorphic we write X ~ Y.

2.1 Definition (cf. [12, Chap. XI, Def. 4.1]). Let B C R"™ be homeomorphic to the standard k-
dimensional sphere and f : B — B be continuous. Suppose ¢ is the generator of the k™ homology
group H(B) of B and f, : Hi(B) — Hy(B) is the map induced by f. The topological degree deg(f) € Z
of f is the unique integer such that f.(c) = deg(f) - o

3 Basic definitions

3.1 Definition (cf. [3, 1.2]). A function F : R" x G(n,d) — (0,00) of class €* for some non-negative
integer k is called a € integrand.
If infim F'/ supim F € (0, 00), then we say that F' is bounded.

3.2 Definition (cf. [3, 3.1]). If o € €' (R™, R") and F is an integrand, then the pull-back integrand o F'
is given by

F(p(2), Do (@)[T]) | AD(x) o Ty|| it dim Dip(a)[T] = d

PP T) = {0 if dim Dep(2)[T] < d.

If ¢ is a diffeomorphism, then the push-forward integrand is given by g4 F = (0" H#F.

3.3 Definition (cf. [3, 1.2]). If I is a ¥ integrand and x € R", then we define the frozen €* integrand
F? by the formula
F*(y,S) = F(x,S) forevery y e R" and S € G(n,d).

3.4 Remark. Since F : R" x G(n,d) — (0,00) and G(n,d) is compact, it follows that for any z € R"”
the frozen integrand F'* is bounded.

3.5 Definition. We say that S C R" is a d-set if S is ¢ measurable and /#%(S N K) < oo for any
compact set K C R™.

3.6 Definition. Assume S C R" is a d-set. We define
R(S)={zxeS:04wILS z)=1} and U(S)=S~R(S).

3.7 Remark. Observe that @4 (#?L S, ) is a Borel function, so R(S) is 7% measurable. Employing [23]
and [15, 2.9.11], we observe that R(S) is countably (%, d) rectifiable and U(S) is purely (¢, d) un-
rectifiable.

3.8 Remark. Recall that ,, ; denotes the canonical probability measure on G(n,d) invariant under the
action of the orthogonal group O(n), also called Haar measure; see |15, 2.7.16(6)].

3.9 Definition (cf. [1, 3.5]). Assume S C R" is a d-set. We define v4(5) € V4(R") by setting for every
ae X (R" x G(n,d))

vi(S)(a) = / oz, Tand(A#ILR(S), z)) % (x / / z,T) dvy, q( (T)d# ().
R(S)
3.10 Definition. If F is a €* integrand, we define the functional ® : V4(R™) — [0, 00] by the formula

Bp(V) = /F(x, S)dV(z, S).

3.11 Remark. If spt ||V|| is compact we have ®p (V) = V(v F) for any v € 2(R"™, R) satisfying spt ||V|| C
-1
AL



3.12 Definition. If S C R" is a d-set, then we define ®r(S) = ®p(vy(5)) and
Up(S)=dp(9) +/ (supim F* — [F(x,T)d~, 4(T)) d%(x).
Uu(s)
For any other subset S of R", we define ¥ (S) = ®p(S5) = co.

3.18 Remark. Assume V € V4(R"™), ¢ : R® — R" is of class ¢!, and F is a ¢ integrand. Then
Prp(V) = Pr(pxV).

If S C R™ is a d-set, then
euva(S) = va(elS])
in the case ¢ is injective and S is countably (s£%, d) rectifiable, or in the case ¢ = p,. for some r € (0, 00),

or in the case ¢ = 7, for some a € R"™.

3.14 Remark. If S is a d-set, F is a €° integrand and = € R™, then
Ups(S) = Bpe(R(S)) + #4U(S)) supim F* .

3.15 Definition. For any set X and an element x € X we denote by Dirac(x) the measure over X with
a single atom at x, i.e.,
1 ifxeAd,

Dirac(z)(A) = {O oA for AC X.

The choice of X shall always be clear from the context.

3.16 Definition (cf. [1, 4.9]). Assume U C R" is open, V € V4(U), F is a " integrand. We define
the first variation of V' with respect to F' to be the linear map 0pV : Z°(U) — R given by the formula

d

drV(g) = p

- Pr((pr)gV),

where g € 2°(U) is a smooth compactly supported vectorfield in U and ¢(z) = = + tg(x) for z € U
and t in some neighbourhood of 0 in R.

3.17 Remark. Note that if T' € G(n,d) and
Gna={P: P €G(n,d)} C Hom(R",R"),

then
A€ Tan(Gna,T;) <<= A*=A, T,0AoT,=0, and T, 0AoT; =0.

For x € R" and T' € G(n,d) define
Fr:R"— R and F,:G,q— R bysetting Fr(z)=F(z,T) = F,(T}).
In [9] the authors computed
5eV(g) = [ (9(a).DFr(a)) + Bl ) # Dy(a) AV, T),
where Bp(z,T) € Hom(R",R") is characterised by
Bp(x,T)e L =F(z,T)Ty e L+ (T;- o Lo T, + (T;" o Lo T,)*, DF,(T})) ,

whenever L € Hom(R",R").



4 Notions of ellipticity

In this section we recall the notions of ellipticity we will work with.
4.1 Definition. We say that (S, D) is a test pair if there exists T' € G(n,d) such that

D=TnB(0,1), B=TnNdB(0,1), SCR"iscompact, #S) < oo,
f[S] # B for all f:R" — R" satisfying Lip f < co and f(x) = x for every z € B.
We say that (S, D) is a rectifiable test pair if, in addition, S is (79, d) rectifiable.
4.2 Remark. Using a standard extension procedure for Lipschitz functions (e.g. [13, 3.1.1, Theorem 1]),

one sees that the last condition in Definition 4.1 means exactly that B is not a Lipschitz retract of S.

4.8 Ezample. Let n =3,d =2, T = R?>x {0}, D =TNB(0,1), and S be a smoothly embedded Mdbius
strip with boundary B = T'N9B(0, 1). Observe, that S itself has the homotopy type of a 1-dimensional
circle because a Mobius strip can easily be retracted onto the “middle circle”. However, the inclusion
j : B < S has topological degree 2, so given any continuous map f : S — B we have jof = f|[p: B— B
and we see that deg(f|p) = deg(j)deg(f) is an even integer which means that f|p cannot equal the
identity on B. Therefore, (S, D) is a rectifiable test pair.

4.4 Lemma. Let (S, D) be a pair of compact sets in R™ with #%(S) < oo and {(S;, D;) : i € N} be
a sequence of test pairs such that

lim dx(S;,S) =0 and lim du(D;,D)=0.

1—00 1—00
Then (S, D) is a test pair.

Proof. For every i € N, let T; € G(n,d) be such that D; = T; N B(0,1) and set B; = T;N9B(0, 1). First
note that since {D; : i € N} is a Cauchy sequence with respect to the Hausdorff metric on compact sets,
we obtain that {7; : i« € N} is a Cauchy sequence in G(n,d) and there exists T € G(n,d) such that
D =TnB(0,1). Set B =Tn0dB(0,1).

Assume, by contradiction, that there exists f : R™ — R"™ such that Lip f < oo, f(z) = x for every
r € B, and f[S] = B. Set § = (Lip f)~! € (0,1]. Then

f[S+B(0,r)] € B+B(0,7/§) forr e (0,00).
Choose i € N such that
S; C S+ B(0,27°6%) and BC B; +B(0,27%).

Then,
f[S:] € B+ B(0,27°5) C B; + B(0,27%).

Define g : S; — B; by

9(y) = f(y) foryesS; N(BZ- + B(0, 2_45)) ,

g9(y) = 2451 dist(y, B;)(f(y) —y) +y fory e S;n (Bi + B(0, 2*46)) .
For any y € S; with dist(y, B;) < 274§ we can find € B; and z € B such that |z — y| < 274§ and
|z — 2| <27%5; hence, |y — 2| < 2736 and
dist(g(y), Bi) < lg(y) — x| < 2'6 " dist(y, Bi)|f(y) — y[ + |y — =]
=lfW)—f@) +z—yl+ly—a[ <5y —zl+ |z —yl+ly—al <27

This shows that g[S;] € B; + B(0,27!). Composing g with a Lipschitz map retracting B; + B(0,271)
onto B; yields a Lipschitz retraction of S; onto B; and a contradiction. O



4.5 Definition. Let z € R™ and P be a set of pairs of compact d-sets in R"™.

(a) Almgren uniform ellipticity with respect to P: The class AUE,(P) is defined to contain all € in-
tegrands F' for which there exists ¢ > 0 such that for all (S, D) € P there holds

Upe(S) = Wpe (D) > e(ANS) — AD)) .

(b) Almgren strict ellipticity with respect to P: The class AE,(P) is defined to contain all € integrands
F such that for all (S, D) € P satisfying s#%(S) > #¢(D) there holds

\I/FI<S) — \IJFI(D) >0.

4.6 Remark. (a) If all elements of P are pairs of (J#%,d) rectifiable sets, then one can replace all
occurrences of Wpz with ®px.

(b) If P = @, then AE,(P) = AUE,(P) is the set of all € integrands.

(c) If P is the set of rectifiable test pairs, then F' € AUE,(P) if and only if F' is elliptic at  in the
sense of [4, IV.1(7)].

(d) If P is the set of all test pairs, then F' € AUE.(P) if and only if F' is elliptic at = in the sense
of [14, 3.16].

4.7 Definition (cf. [9, Definition 1.1]). Let z € R™. The class AC,, is defined to contain all ¢! integrands
F satisfying the atomic condition at x, i.e., for any Radon probability measure p over G(n,d), setting

Ax(p) = /BF(m,T) du(T) € Hom(R"™, R"),

there holds

(a) dimker A;(p) <n—d;

(b) if dimker A, (u) = n — d, then p = Dirac(Tp) for some T € G(n,d).
We write F' € AC if ' € AC,, for all z € R™.

To conclude, we introduce the following new notion of ellipticity, named BC. This will turn out to
be equivalent to AC, see Lemma 7.2. Rephrasing AC as BC will be very useful for the proof of Theorem
A and for a further understanding of AC. Indeed, Definition 4.8 is more geometric than the algebraic
Definition 4.7, providing a better tool to relate AC with the other notions of ellipticity.

4.8 Definition. Let 2 € R". We define BC;, to be the class of all ! integrands F such that for any T' €
G(n,d) and any Radon probability measure p over G(n, d), setting W = (A?LT) x u € V4(R™), there
holds

dpzW =0 = u = Dirac(T).

We write F' € BC if ' € BC,, for all x € R™.

5 Rectifiability of test pairs

Let x € R™, P; be the set of all test pairs, and Pa be the set of rectifiable test pairs. Here we prove (see
Corollary 5.13) that AE,(P1) = AE,(P2) and AUE,(P;) = AUE,(Ps), i.e., that the original Almgren’s
definition of ellipticity [4, IV.1(7)| coincides with the definition used in [14, 3.16]. To this end we need
to show an improved version of the deformation theorem, see 5.8. In contrast to similar theorems of
Federer and Fleming [15, 4.2.6-9], David and Semmes [6, Theorem 3.1], or Fang and Kolasiriski [14,
7.13], this one has the special feature of preserving the unrectifiability of the purely unrectifiable part of
the deformed set.

First, we introduce some notation (modelled on [2]) needed to deal with cubes and cubical complexes.



5.1 Definition. Let k € {0,1,...,n} and Q = [0,1]* C R¥. We say that R C R" is a cube if there
exist p € O*(n,k), o € R" and | € (0,00) such that R = 7, 0 p* o p;[Q]. We call o(R) = o the corner
of R and I(R) = the side-length of R. We also set

e dim(R) = k — the dimension of R,
e ¢(R) =0o(R) + 31(R)(1,1,...,1) - the centre of R,
® O.R = Tq) 0P o uyp[0Q] - the boundary of R,
e Int.(R) = R~ 0.R — the interior of R.
5.2 Definition. Let k € {0,1,...,n}, N € Z, Q =[0,1]* C RF, e1, ..., e, be the standard basis of R",
and fi, ..., fx be the standard basis of RF.
We define Ki!(N) to be the set of all cubes R C R™ of the form R = 7, o p* o py-n[Q], where
v € y-~[Z"] and p € O*(n, k) is such that p*(f;) € {e1,...,en} fori=1,2,... k.
We also set
r=U{Ki(N):NezZ}, K'=K), K!=U{K}:ke€{0,1,...,n}}.
5.3 Definition. Let k € {0,1,...,n}, N € Z, and K € K}(N). We say that L € K7 is a face of K if
and only if L C K and L € K}(N) for some j € {0, 1,...,k}.
5.4 Definition (cf. [2, 1.5]). A family of top-dimensional cubes F C K" is said to be admissible if
(a) K,L € F and K # L implies Int.(K) NInt.(L) = @,
(b) K,L € F and K N L # @ implies 3 <1(L)/I(K) < 2,
(¢c) K € F implies 0. K C|J{L e F: L # K}.

5.5 Definition (cf. [2, 1.8]). Let F C K" be admissible. We define the cubical complex CX(F) of F
to consist of all those cubes K € K} for which

e K is a face of some cube in F,

o if dim(K) > 0, then 1(K) < 1(L) whenever L is a face of some cube in F with dim(K) = dim(L)
and Int.(K) NInte(L) # @.

5.6 Definition. Let £ € N, Q C R* be closed convex with non-empty interior, and a € IntQ. We
define the central projection from a onto 0Q to be the locally Lipschitz map mg, : R* ~{a} — RF
characterised by

TQ.a(x) —a T
mQa(®) —al |z —ad

Q.a(x) € 0Q and for v € Int Q ~{a},

Tga(z) =2 forz e RF ~IntQ.
The following lemma is a counterpart of [15, 4.2.7].
5.7 Lemma. Assume
EENeN, d<k<n, QCR"isa cube,
p € O*(n,k), imp*=Tan(Q,c(Q)),
U1, .., N are Radon measures over R", Y =QnN Ufil spt u; %d(Z) < 00.

There exist T' =T'(d, k,N) and a € Q such that

dist(a, ) >0, dist(a, 8.Q) > 11(Q),

and /Q ID(rg o)A dus < Tyu(@) Vi€ {L,....N}.

Moreover, if A C Y. is purely (5%, d) unrectifiable, then p* o g4 o p[A] is purely (%, d) unrectifiable.



Proof. Without loss of generality we shall assume n = k. Recall Definition 3.6 and Remark 3.7 and let
E = U(Y). Employing [16, Lemma 6] with &, E, d, k replaced by Q, E, d, k, we see that s#*(B) = 0,
where

B ={a € Q:mg,[E] is not purely (%, d) unrectifiable} .

Set Qo = {z € Q : dist(z,0.Q) > $1(Q)}. From [14, 6.4] we deduce that there exists Ty = (k) > 1
such that

|ID7g.a(x)|| < Tolz —a|™ forall a € Qp and all 2 € R* ~{a}.

Since d < k, there exists A = A(d,k) € (0,00) such that for all a € Int@ there holds fQ |l —
a|~?ds#*(a) < A. Using the Fubini theorem [15, 2.6.2] and arguing as in [14, 7.10] or in [15, 4.2.7], we
find out that there exists 'y = I'1(d, k, N) such that J#*(A) > 0, where

A:{aEQO:/Q\:L‘—a_ddui(x)SFlui(Q) fori€{1,2,...,N}}.

We have J#%(X) = 0 so #*(A~X) > 0. Hence, there exists a € A~(B U X) with all the desired
properties. O

5.8 Theorem. Assume

F C K" is admissible, A C F is finite, S CR" is a d-set,
=001, J=1[02, G=IntJA,
AU JANClosS) < oo, R=TR(S), U=U(S).

There exist I' =T'(n,d) € (1,00), a Lipschitz map f: J x R" = R", a finite set B C CX(F)NKJ}, and
an open set V. C R" such that

f(0,x) =2 forxzeR"™,
flt,x)y=a for (t,x) € (J x (R"~G)UUB) U (I x U(CX(F)NK})),
SCV, flIxQlcQ forQeA, [f{1}xV]NGCU(CX(F)NKy),
fH2} xVInG=UBNG, flIx(VNG)]CUA,
AUF(1,)RNG) <TH#YRNG), 4f(1,)UNG]) <THYUNG),
AU, HUING) =0, fQ,)[U] is purely (A2, d) unrectifiable,
FAT < VI = fI{2} x V],
f{2} x V] is a strong deformation retract of f[J x V].

Proof. For each @ € CX(F) we find pg € O*(n,dim@) such that @ C c(Q) + impg,. For k €
{0,1,2,...,n} set

A, ={Q e CX(F)NK}.: QNG +# 2} .
We shall perform a central projection inside the cubes of Aj for K = n,n — 1,...,d + 1. Note that

OGN JAg # 0G for k < n. In fact, all the projections shall equal identity on 9G.
Let us set

pin = AURNG), pon=HLUNG), pgn=H'L(SNG),
(Pn(x) = ¢n(t,$) =z for (t,ZC) €I xR", 6pp1=1,
E:RnNG, Zn+1:Rn.



For k € {n —1,n—2,...,d} and i € {1,2,3} we shall define Lipschitz maps 95 : I x R" — R" and
¢, : R” — R", Radon measures p; over R"”, sets Zp1 C (JAg41 U E, and numbers 041 € (0,1)
satisfying
spt ik = @rspt igt1) C EUUAR, Yl X Zi1] = Zyyr
(1) (spt i1 + U0, 0541)) NUAks1 C Ziy1,  or = Ui(1,+) 0 it
Yp(t,x) =a for (t,x) e I x (EUUJAR), Upl{l} x Zp1] CEUYAL.

We proceed inductively. Assume that for some [ € {n — 1,...,d + 1} we have defined ¥y, ¢k, Ogi1,
Zi+1 and pip for k€ {n,n—1,...,1+1} and ¢ € {1,2,3}. For each Q € A;y; we apply Lemma 5.7 to
find ag € @ satistying

(2) dist(ag,spt ugi41) > 0, dist(ag, 0.Q) > $1(Q),
/QHD(?TQ,aQ o po)l|* dpigsr < Tszpigs1(Q) for i € {1,2,3},
and such that if A C spt g ;41 is purely (4, d) unrectifiable, then PG © TQ,aq © PQ [A] is also purely

(4, d) unrectifiable.
Let 6,41 € (0,1) be such that

(3)  dist(aq,spt usi+1) > 26141
and dist(ag,0.Q) > 2641 for all Q € Ay .

Set

Zis1=FEU (U A NU{B(GQ,(51+1) N ONS Al+1}) .

Define )y : I X Zj41 — Zi1 by setting for (t,2) € I X Zj4q

dut.) (1 =t)x +tpg 0 TQaq 0 PQ(z) if € Intc(Q) for some Q € A1,
,T) =< -~
l Pi(t,x) = ifee FUUA.

Since for @ € A;jyq1 the map ng © TQaq © PQ equals the identity on 0.Q), is Lipschitz continuous
on R"~Uf(ag, ), and @ is convex, we see that 1[); is well defined and Lipschitz continuous. Extend 77211

to a Lipschitz map v : I x R™ — R"™ using [15, 2.10.43|. Next, for i € {1,2,3} set
o1 =1(1,) o1 and iy = (1) (D@ pin) -

Note that [|Dey||? is bounded and ¢; is proper, so y;; is a Radon measure. Also, because we assumed
spt pgi+1 € E U Aj41, we readily verify that

spt s C ¢[Clos S| C EUJ A .

Hence, ¢y, ¢, pig for i € {1,2,3}, 841, and Zj4 verify (1). This concludes the inductive construction.
Define

B={QecAs:Q C palS]}.
For Q € Ag~ B we choose ag € Int.(Q) so that (2) holds and we define §4 € (0, 1) so that (3) is satisfied
with 1 +1 =d. Set
Zy=FEU (UAa~U{B(ag,da) : Q € B}), a-1:Zs— Za,
Vg1t z) =dh(t,x) =2z ifre EUUBUU A4,
Baa(t,2) = (1= )2 + tply 0 MQuag © PQ(3)
if € Int.(Q) for some Q € Ay~B.



Extend 1/)d 1 to a Lipschitz map ¥g—1 : I x R™ — R"™. Set 41 = ¥4-1(1,-) o ¢q,
Vi1 =EU(UB+U(0,64)) N Za,
and Vi=ti1(1,) ' [Vial €2 Vie{dd+1,...,n}.

Note that V] is relatively open in Z; for I € {n,n—1,...,d}; in particular, V,, is open in R" and, setting
V =V,, we get
SCV, paalVING=UBNG.

We set for I € {1,2,...,n—d} and (t,z) € I x R" satisfying | —1 < (n —d)t <
ft, ) = Pn((n = d)t — (1 = 1), pp_141(2))

and for (t,z) € [1,2] x R"
[t z) =va_1(t —1,04(2)) .

This defines a Lipschitz map f : J x R" — R”. From the construction it follows that f[{1} x U] is
purely (4, d) unrectifiable and f(1,-)[U] NG C |J(CX(F) N K2), so

A(f(1,)UING) =
Now, we need to verify the required estimates. For brevity of the notation let us set
g=f(1,-) and mnp=1x(1,:) forke{d,d+1...,n}.

Observe that if Q € F, then ##°({R € F : RNQ # @}) < 4™. Note also that for k € {d,d+1,...,n—1}
and 7 € {1,2,3} we have

(1) 5 (IDrs1 1 10 Loy U Aw])
= (or+1) % (IDk41 11" in) Lo g U Akl
= i1 L0y U AR < g1 LU A

so we obtain

) pn(U A / ||Dsok||ddm,n
k k
s/’l D0 gl D | i = [ Dl g
et U A M [UAk]
S/ IDnell? dpigpr <D /HDTIkH dgti 41
UAca Q€A1
- / ID(7g g © @) 1¥ djti ki1
QEA @

<Tsr Y pikr1(Q) < 4" Ts s (U Arsa) -
QEAL11

In particular, setting ¥; = RN G, ¥y = U NG and employing [14, 7.12] we obtain for i € {1,2}
A9 N U Ag) = 2 (palSi] N U Ag)
<[ Dl i = iaU A
it [UAd

< (4"T57)" pin(U An) = (4"T57)" " 4(5s) .
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Estimating as in (4), we also get

AN g[8 ~ U Ag) = A (palSi] ~ U Ag) < / ) IDeal|* dpti
Gne; ' [0G]
<[ Iml den < [ Dl das
wa+1[GlNm, ~[0G] Adgi1

< AT 75 a01(U Agy1) < (@ "Ts57)" " 02YS,) .
This gives the desired estimates. O
5.9 Remark. Observe that
f)[SING CU(CX(F)NKj)  but  f(1,)[SNG] CU(CX(F)NK}) UIG.
5.10 Remark. Define

Q=\{ReF:RNQ+#w} VQeF,
H=U{QeA:QCUA}, and W=VnNG.

Assume that S is separated from F = R™ ~ G in the sense that S C H. Then W is an open neighborhood
of §'in R" with
flIxS|C flIxW]CW

and f(2,-)[W] = J B is a strong deformation retract of S.

In the next lemma given a test pair (.S, D) we construct a Lipschitz deformation f : R™ — R"™ which
modifies the rectifiable part R of S only on a set of small measure and transforms the unrectifiable
part I into a nullset. The construction works as follows. The set R can be represented, up to a set
of arbitrarily small measure, as a finite disjointed collection {F7, ..., Fx}, where each F; is a compact
subsets of the graph of a €' map ; : T; — TZ»L for some T; € G(n,d). Since the pieces F; are compact
and pairwise disjoint, there is a positive distance 70d between them. To deal with the part of I which
lies at least 40 away from F = Uf\i 1 F; we employ the deformation theorem 5.8 and obtain the map
g : R — R™ which does not move points of F', converts the pary of I away from F into a nullset,
and preserves unrectifiability of the part of I close to F. After this step the unrectifiable part of g[S]
lies entirely in 4d-neighbourhood of F'. Next, for each ¢ we employ the Besicovitch-Federer projection
theorem to find P; € G(n,d) such that the associated orthogonal projection P;; kills the measure of the
unrectifiable part of g[S]. We replace ¢; with ¢; : P, — Pf so that the graphs of v¢; and ¢; coincide
and we define a projection m; = Pj; + ¢; o Py onto the graph of ¢;. The map m; does not move points
of F; and carries the unrectifiable part of g[S] into a nullset. The final step is to combine all the maps ;
into a single map h using simple interpolation, which is possible since F; is at least 706 away from F} if
i # j. The final deformation is f = h o g. There is still a small problem with f: we do not know how f
acts on the boundary B of D and we want (f[S], D) to be a test pair. To deal with that we artificially
introduce the set Iy = TN (B + B(0,6)) and the map vg : T — T+, where T' € G(n,d) is such that
D C T. After that, the whole construction yields a correct map.

5.11 Lemma. Assume

(S,D) is a test pair, T =Tan(D,0), B=TnNoB(0,1),
R=7R(S), I=U(S).

For each € € (0,1) there exists a Lipschitz map f : R™ — R™ such that
f@y==z forxeB, AU f)=0, H((R~[IR)U(f[RI~R))<e.

In particular, f[S] is (A%, d) rectifiable and (f[S], D) is a rectifiable test pair.
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Proof. We define

(5) L= (244555 +45) e

Since ##4(B) = 0 we can find &y € (0, 1) such that
A((B+B(0,60))NS) <.

Employing [15, 3.2.29, 3.1.19(5), 2.8.18, 2.2.5| we find Z C R™ and for each i € N a vectorspace
T; € G(n,d), a compact set K; C T}, and a € map 1, : T; — T;- such that, denoting F; = {x + ;(x) :
x € K;}, it holds

(6) FNFj=o Yi#j, R=ZUUZ,F, #%Z)=0, Lipy;<1.
Since J#%(R) < oo we can find N € N such that
AU R~UN | F) <.
Set
6 =80 'min{dp,inf{|z —y|:x € F,ye Fj,i,je{l,...,N},i£j}} <8 '
Note that § > 0 because the sets F; are mutually disjoint and compact. Define
Fo=TN(B+B(0,0)), To=T, and g:T — T+ by (z)=0forzeT.

Forie{l,...,N} set

F, = F,~(Fy +U(0,708)) and F=UY,F.
Clearly we have
(7) BCF, H#YR~F)<HYR~UL, F)+2#(B+B(0,5))NS) <2
(8) and |z —y| > 706 whenever x € F;,y e Fj,i,j€{0,1,...,N}, i #j.

Let L € N be such that 271 < ¢n~1/2 < 27141 50 that diam Q < § whenever Q € K?(L). We define

F=K'L), Q=U{Q €F:Q'nQ+#wo} forevery Qe F,
A={QeF:QNI#2,QN(F+B(0,20)) =2}, G=Int{JA.

Observe that
(9) {xeI:dist(z,F) >4} CU{Qe A:QC G} Ca.
We apply Theorem 5.8 to obtain a Lipschitz continuous map g : R” — R" such that

glx)=xz forz € R"~G, g[I]is purely (7%, d) unrectifiable,
(10) AU g[RNG]) < T5#Y(RNG) < D58 (R~F) <1 -Tsg,
(11) AU gIING) =0, AU GING]) <Ts5:24UING) < 0.

In particular, from (11), (9), and the fact that g[Q] C @ for all Q € F we deduce
(12) A (g[{x € I: dist(z, F) > 46}]) = 0.

For each i € {0,1,..., N}, we employ the Besicovitch-Federer projection theorem [15, 3.3.15] to choose
P; € G(n,d) such that

(13) [Py — Tyl < 1/100 and %Py 0 g[I]) = 0.

12



Thanks to (6) and (13), we can apply [21, Lemma 3.2] to conclude that for every ¢ € {0,1,..., N} there
exists a €' function ¢; : P; — Pf‘ such that {x +;(x) 1z € T;} = {x + ¢i(x) : x € P;} and Lip ¢; < 2.
Next, for every i € {0,1,..., N} we define the projection onto the graph of ¢; by the formula

mi: R" = R", m(x) = Pyz + pi(Pyz) forxzcR".
Note that Lip7; <1+ Lipy; < 3. We choose a smooth map v : R — R such that
y(t)=0 fort>105, ~(t)=1 fort<5d, —% <~(t) <0
and we define €*° maps f, h, Ao, A1,..., Ay : R” — R” by

i(z) = v(dist(z, F;))mi(z) + (1 — y(dist(z, F;)))z  for i € {0,1,2,..., N},
h=MXoAo---0ody, f=hog.

We remark that for every z € R", if there exists ¢ € {0,1,...,N} and y € F; satisfying |z — y| =
dist(x, F;) < 106, then m;(y) = y and

(14) [z —mi(2)] < |z —yl+ |mi(y) — mi()| + [y — mi(y)| <106 + 3106 < 400 .

In particular, (14) implies that

dist(Ai(x), F;) < dist(\;(z), z) + dist(x, F;) < dist(m;(x), z) + 105 < 500,

which in turn, combined with (8), implies that h(x) = X\;(z) and that the index 4 is unique for z.
Moreover, since the map dist(-, F;) is 1-Lipschitz, we get

IDA()|l = [DXi(2)l| < 67 |mi(2) — @] + [D(mi — idre) ()] + 1 < 45.
On the other hand, if x € R" is such that dist(x, F;) > 106 for every i € {1,...,N}, then h(z) = =.
Hence, we get
Liph < 45.

Since, by (12), the unrectifiable part of ¢[S] lies in 46-neighbourhood of F' and for each ¢ € {0,1,..., N}
the maps h, \;, and 7; are all equal in 59-neighbourhood of F; we see that

AT = 0.
Moreover, since f(x) =z for z € F' we have
R~f[RJCR~f[RNF]=R~(RNF)=R~F,

fIR~RC fIR]~(RNF) = f[R]~ f[RNF] C f[R~(RNF)] = f[R~F];

hence, recalling (7), (10), and (5), we get
H (R~ fIR]) U (f[R]~R)) < AR~ F) + A (f[R~F])
< 24 Liph - #g[R~ F]) < 20+ 45¢%(g[RN G]) + 454 (R~(G U F))
< 204450580+ 450 < (2 4+ 4558 +45) <e. O

5.12 Remark. The difficulty in proving Lemma 5.11 stems from the situation when #¢(RNClos ) > 0;
cf. [15, 4.2.25|. In this case one cannot argue that

lim, o #4((I +U(0,7)) NR) =0

so it is not possible to separate the unrectifiable part of S from the rectifiable part. However, since
R has a nice (rectifiable) structure and I can be easily squashed to a set of .#¢ measure zero by means
of Besicovitch-Federer projection theorem [15, 3.3.15], we can find nice Lipschitz deformations which
produce “holes” in I and do not move most of R.
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5.13 Corollary. Let x € R", P; be the set of all test pairs, and Po be the set of rectifiable test pairs.
Then
AE,(P1) = AE,(P2) and AUE,(P1) = AUE,(P2).

Proof. Since Py C P; we clearly have AE,(P;) C AE,(P2) and AUE,(P;) C AUE,(P2). Hence, it

suffices to prove the reverse inclusions. Take any test pair (S, D) € P; and set
T =Tan(D,0), B=TnNB(0,1), R=R(S), and I=U(S).
For each k € N apply Lemma 5.11 with € = 1/k to obtain a map fj : R” — R" satisfying

Lip fr < o0, fr(x)=2z forxze B,
AU fI) =0, H((R~f[R)U(filR]~R)) < 1.

Then (Sg, D) = (fx[S], D) is a rectifiable test pair for each k € N, hence for any integrand F' we have
Ve (Sk) — Vpa (D) = ®pa(Sk) — Pp= (D) .
Observe that
’kli)ngo HYSy) — %ﬂd(R)‘ =0; hence, also |k:15£>lo %, (Sy) — @dI(R)’ =0.
Thus, if FF € AUE,(P2), then
Upe(S) = Upe(D) = Upe(I) + lim @pa(Sy) — @pe(D)
> Upe(I) + c(H#YR) — #%(D))

> inf({c} Uim F*) (s£%(S) — #%(D)) .

Similarly, if F' € AE,(P2), then
Upa(S) = Wpe(D) = ¥pe(I) + kllngo Ppe(Sp) — Ppe(D) > Upa(1) > 0. O

5.14 Remark. Recalling Remark 4.6, from Corollary 5.13 we deduce that definitions [4, IV.1(7)| and |14,
3.16] are equivalent.

6 Existence of a minimiser for an integrand in wBC

In this section we provide a solution to the set theoretical formulation of the anisotropic Plateau problem
under the assumption F' € wBC. Since wBC will be proven to be equivalent to AC, see Lemma 7.2, this
section reproves [10, Theorem 1.8] without referring to the results of [9].

6.1 Definition. Let U C R" be open. We say that f: R® — R" is a basic deformation in U if f is of
class €' and there exists a bounded convex open set V C U such that

f(z) =2 foreveryze R"~V and f[V]CV.

If f € €' (R"R") is a composition of a finite number of basic deformations, then we say that f is
an admissible deformation in U. The set of all such deformations shall be denoted @ (U).

6.2 Definition (cf. [15, 2.10.21]). Whenever K C R" is compact and A, B C R", we define d » i (A, B)
by

dw Kk (A, B) = sup{|dist(z, A) — dist(z, B)| : v € K}
= max{sup{dist(z, A) : « € K N B}, sup{dist(z, B) : v € K N A}}.
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6.3 Definition. Let U C R” be an open set. We say that C is a good class in U if
(a) C# 2;
(b) each S € C is a closed subset of R";
(c) if SeC and f € D(U), then f[S] € C;

6.4 Remark. Definition 6.3 differs from [14, 3.4] by not assuming that the class is closed under Hausdorff
convergence.

Combining [14, 11.2, 11.3, 11.7, 11.8(a)| we obtain the following.

6.5 Theorem. Let U C R™ be an open set, C be a good class in U, and F be a bounded €° integrand.
Set p=inf{®p(T'NU):T € C}.
If u e (0,00), then there exist V€ V4(U), S CR"™ closed, and {S; € C : i € N} such that

(a) SNU is (A d) rectifiable. In particular (S NU) < occ.

(b) lim;_oo vg(S; NU) =V in V, (U).

(c) lim;_yoo Pr(S;NU) = Pp(V) = p.

(d) spt|V] € SNU and #4(SNU ~spt|V]) =0.

(e) The measures ||V|| and LS are mutually absolutely continuous.
(f) limi oo dyr k (SiNU,SNU) =0 for any compact set K C U.

(9) For any compact set K C U we have

lim sup{r € R: #"™"({z € S; N K : dist(z,spt | V|| UR"~U) > r}) > 0} =0.
1— 00

(h) If S; =U(S; NU), then

lim lim 424 S; N B(z,r)) =0 for |[V|-a.e. z and lim 2#%S;)=0.

rl0 t—o00 i—00

(i) @ ||V ||,z) > 1 for |V| almost all x.

(j) For % almost all x € spt||V|| we have

Tan’(||V||, ) = Tan(spt V]| ) € G(n,d).

(k) If R" ~ U is compact and there exists a ® p-minimising sequence in C consisting only of compact
sets (but not necessarily uniformly bounded), then

diam(spt [|[V]|) < co and sup{diam(S;NU):i € N} < co.

6.6 Lemma. Assume U C R"™ is open, V € V4(U), C is a good class, F is a bounded €° integrand,
p=inf{®p(P): P €C}, ®p(V) = u, and either V = v4(SNU) for some (%, d) rectifiable set S € C,
or there exists a sequence {S; € C : i € N} such that

lim vg(S;NU) =V and lim #%US;NU))=0.

1—00 j—00

Then 6V = 0.
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Proof. The proof can be found, with a slightly different notation, in [11, Section 5.1]. For the sake of
the exposition we report it below.

Assume there exists g € 27 (U) such that 7V (g) # 0. Since spt g is compact, using a partition of
unity [15, 3.1.13] one can decompose g into a finite sum g = Zfil gi, where g; € 2°(U) is supported
in some ball contained in U for each ¢ € {1,2,..., N}. Recalling that §pV is linear we see that there
exists an i € {1,2,..., N} such that gV (g;) # 0. Set h = ¢; and p;(x) = x + th(x) for z € U and ¢ in
some neighbourhood of 0 in R. Clearly ¢; € ©(U) is an injective admissible map whenever |¢| is small
enough. Replacing possibly h with —h we shall assume that §pV (h) < 0. Then there exists ¢ty > 0 such
that ®p((pr)4V) < Pp(V) = pfor t € (0,t0]. Set ¥ = @y,.

In case V = v4(S) for some (%, d) rectifiable set S € C, we have

W= @F(V) > q)F(l/J#V) = q’F(%/)[S]),

which contradicts the definition of u.

In the other case, since 4 : V4(U) — V4(U) is continuous and V' equals the limit lim;_, v4(S;NU),
we have also 14V = lim;_,oo 94 va(S; NU). For j € N we set S; = U(S; NU) and S; = R(S; NU) to
obtain

> jlggo Pp(yva(S;NU)) > jlirgo D (1hpva(S;)) = jlir{:o D p(va(1[S;]))

= lim ®p([S; NU]) — @p(p[S;]).

J]—00

Since lim;j_,o0 #°4(S;) = 0, we see that g > limj_c ®r(10[S; N U]) which contradicts the definition
of u. .

6.7 Theorem. Assume U, C, F, u, V, S, and {S; : i € N} are as in Theorem 6.5 and that F € wBC.
Then

(a) T = Tan’(|V||,z) for V almost all (z,T).
(b) ®U||V|[,z) =1 for |V|| almost all x.
In particular, V = v4(95).

Proof. Proof of (a). Employing Lemma 6.6 together with [9, 2.3, 2.4] and Theorem 6.5(a)(b)(c)(e)(h)
we see that for ||V almost all x and all W € VarTan(V, x) there exists a Radon probability measure o
over G(n,d) such that

(15) Tan’(|V|,2) =T € G(n,d), ©(|V|[,x) =¥ € [1,00),
(16) W=9(#"T)xo, and 6pW =0.

Since F € wBC it follows that VarTan(V,z) = {@%(||V||,z)va(Tan(|V||,z))} for ||V almost all z
which proves (a).
Proof of (b). Let T € G(n,d) and ¥ € [1,00) satisfy (15)(16), and z € U be such that Theo-

rem 6.5(h)(j) hold. Without loss of generality we shall assume x = 0. Assume, by contradiction, that
¥ > 1. Define

i T
5, = sup {dlSt(x’ ) cx espt||V]NU(x,2r) N{O}} for r € (0,00).

||

From Theorem 6.5(j), we see that d, | 0 asr | 0. Set &, = 1252, Forr € (0,1) let fr, hy € €(R,][0,1])
be such that

fr)=1 Vt<l-—g,, f(t)=0 Vt>1-1e  |fl(t)<4/s, VtER,

t)
he(t) =1 VYt <25, h(t)=0 VYt>35,, |h.(t)<2/6, VtER.
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For r € (0,1) we define p, € €°(R",R") by the formula
pr(z) =Ty(z) + (1 — fr(|Tu(m)\)hr(]ThJ‘(a;)|))ThJ‘(a;) forx €e R".
Clearly p, € ©(U) for r € (0, 1) small enough. Note also that

pr(x)=x  forz e RI~(TNB(0,1—¢,./2)) +B(0,34,)) C R~ U(0,1),
pr(x) =Thx for x € (T'NB(0,1—¢,)) +B(0,20,),

5,
(17) Lipp, <8+12—L <8+46/2<9 forre(0,1).

Er

Set A, = B(0,1) ~U(0,1 — &;) and pr = p, 0 pr o /. Let C € VarTan(V,0). By [1, 3.4(2)] and (a)
we get

(18) C= 1}&}(#1/0#‘/ = lim lim vy(py/,[Si]) = 9va(T);

rl0 t—o00
Hence, we have ||C||(0B(0,1)) = 0, which implies that

lim lim r~9#%(u,[A,] N S;) = 0.

rl0 i—o0
In particular, employing (17),
(19) lrlﬁ)l Zlgcr)lo r 4P p(p,[A]NS;) =0 and 17}151111}120 40 g ([, [A] N Si]) = 0.

For r € (0,1) and 7 € N we have
(20) @F(ﬁT[S, N U]) = (I)F(SZ N U) — (I)F(Sz N B(O, (1 — ST)T))

+ @p(pr[9i NB(O0, (1 —&r)r)]) — @r(Si N, [Ar]) + @p(pr[Si N p,[A]])
Since lim;_,oo Pr(S; NU) = u, taking into account (19), to reach a contradiction it suffices to show that

(21) lim lim 7~ ¢® ¢ (,[S; N B(0, (1 — &,)7)]) — r 2@ p(S; N B(0, (1 — &,)r)) < 0.

rl0 t—00

For i € N and r € (0,1) we define

Sr,i = l’/l/r[SZ‘] N B(O, 1) , F.= u,#F, and S’rﬂ' = R(ST’Z) .
Observe that, using (19) and Theorem 6.5(h), claim (21) will follow from

(22) lim lim ®p, (T4[S,]) — @£, (Sri) < 0.

rl0 i—o0

In order to prove (22), we observe that (18) implies

lim lim |P, — Ty|| dva(S,.;)(z, P) = 0.
7\],0 1—00 B(O,l)

Since F' is continuous, we obtain also

(23) lim lim |F(2,P) — F(2,T)|dvaq(S,;)(z, P) =0 for any z € R".
T\LO 1—00 B(O,l)
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We then estimate

Ao,y _ _—
< /Th[:;m F.(0,T)ds%(y) /FT(O,T)d d(Sr,i)
+ / R T) — E0,7)dA ()
Ty [Sr,4]
" / F(0,T) — Fx(0, P)| + |Fo(0. P) — Fy(, P)| dva(Sr:)(x, P).

Using continuity of F' and (23), we see that the last two terms converge to zero when we first take the
limit with ¢ — oo and then with r | 0. Therefore,

lim lim @, (T} [Sm]) - q)Fr(gr,i)

r}0 i—o00

= lim lim F.(0,T)d#%(y) — / F.(0,T) dvg(S.:)(x, P)
rl0 i—o0 Th[ém'}

= lim lim F.(0,7)(#4(Ty[S,;]) — #(S,;)) < a(d)F(0,T)(1 —0) = —k < 0.

rl0 i—o00

Thus, we have proved (22), which in turn implies (21). Hence, recalling (20), we can choose r € (0,1)
so that for all big enough i € N

CQp(p[SiNU]) —Pp(S;NU) < —%m”d.

Up to choosing a bigger i € N, we get @ (p,[S; N U]) < p, which contradicts the definition of pu. O

7 Equivalence of BC and AC

In this section we prove that the new condition BC can be used in place of AC. First we prove a small
lemma.

7.1 Lemma. Let F be an integrand of class €', v € R", F € BCy, i be a probability measure over
G(n,d), k€N, T € G(n, k), W = (*LT) x u. Then

SpaW =0 = k>d.

Proof. If d = n, then G(n,d) contains only one element so there is only one probability measure over
G(n,d) and the conclusion readily follows.

Assume 1 < d < n and k < d. Choose R € G(n,d — k) such that R | T and set V = (J£9L(T +
R)) x . We get

= u+v ° T k U d—k v
5peV(g) = /R /T /G .y B 0.5) ¢ Do) 4p(5) 1t () a4
:/5FIW(g(v+-))d%”dk(v):O for g € 2 (R").
R

Thus, dp=V = 0 and, since F' € BC,, we obtain y = Dirac(T + R). Since R was chosen arbitrarily
from G(n,d) N {R : R L T} ~ G(n — k,d — k) which contains more than one element, we reach
a contradiction. O

7.2 Lemma. Let x € R". We have AC, = BC,, .
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Proof. Step 1 We first prove that AC, C BC,. Let FF € AC,, u be a Radon probability measure
over G(n,d), and T € G(n,d). We define the varifold

W = (AT x pe Vy(R").
Assume that 0p=W = 0. We will show that p = Dirac(T), i.e., that F' € BC,. By the very definition of

anisotropic first variation, we deduce that for every test vector field g € 2 (R")

(20) 0=b0:W(g) = [ Bo(z.S) e Dyly) W (y.5)
— [ [ Bee.5) ¢ Do) AL T)w) () = [ Acli) # Dg(w) AL T)w).

Let eq,...,e,_q be an orthonormal basis of T+. For any ¢ € Z(T,R), i,j € {1,2,...,n — d}, we can
find g € 2 (R™) such that

9(y) = o(Thy)(y ® e;)e; whenever y € (T'+ B(0,1));

hence, equation (24) yields
/So(y)Az(u)ei ec;d(AT)(y)=0 forall p € Z(T,R) and 4,j € {1,2,...,n —d},

which shows that T C ker A, (u). Since dim T+ = n — d, we get dimker A, () > n — d. By Definition
4.7(a) we obtain n —d < dimker A, (u) < n — d, so it follows from Definition 4.7(b) that p = Dirac(.S)
for some S € G(n,d). Then

Ag(p) = Br(,5).

Directly from the definition of Bp(z,S) it follows that St C ker Bp(wx,S). Therefore, since dim
ker Bp(z,S) = n —d and T+ C ker Bp(x,S) = ker A, (1), we see that S = T, which shows that
F ¢ BC,.

Step 2 We prove now that BC, C AC,. Assume F € BC,. Given a Radon probability measure p
over G(n,d), we define

T =im(A.(0)*), k=dimT, V= (#"LT)x pue VyaR").

Note that T¢ = [im(A,(u)*)]* = ker A, (p). Thus, similarly as in (24), we get that for every g € 2°(R")

eV (g) = Ae(i) o [ Digo T A LTI + [ Aul) o (Dg(y) o TH) AL T) ) = 0.
By Lemma 7.1, we obtain dim7 = k£ > d and conclude that
dimker A, (p) =n—dimT <n-—d,
which is Definition 4.7(a). Moreover, if dimker A,(u) = n — d, then dim7T = d and we can apply

Definition 4.8 to the varifold V' and deduce that p = Dirac(T"), which is precisely Definition 4.7(b). O

8 The inclusion wBC C AE(P)

In this section we work with cubical test pairs (S, @), where @ is now a d-dimensional cube; see Defini-
tion 8.1. Cubical test pairs give rise to the same classes of Almgren elliptic integrands as the test pairs
defined in Definition 4.1; see Remark 8.2.

The main result is Theorem 8.8, which shows that wBC, C AE,(P) given P is closed under Lipschitz
deformations leaving the boundary fixed and under gluing together several rescaled copies of an element
of P; see Definition 8.5.
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The second closedness property for P is needed to be able to perform a “homogenization” (one could
also call it a “blow-down”) argument. More precisely, given a minimiser P of ®p= in {R : (R,Q) € P}
we construct the varifold W, occurring in Definition 4.8, so that WL Q x G(n,d) is a limit of a sequence
of varifolds Wy = v4(Py), where Py is constructed, for N € N, by gluing together 2V? rescaled copies
of P. A crucial observation is that Py has the same ®p= energy as P which, in turn, is a minimiser
of ®p= in P. This allows us to deduce that dp= Wy = 0 using Lemma 6.6, provided Py is a competitor
(or a limit of competitors), i.e., if (Py, Q) € P for an appropriate choice of the cube Q.

It is not at all obvious that Theorem 8.8 is valid with P being the set of all cubical test pairs; see
Remark 8.6. The proof that such family P has the necessary closedness property requires some subtle
topological arguments and is postponed to Section 9; see 9.24.

8.1 Definition. Let Qo = [~1,1]¢ € R%. We say that (S,Q) is a cubical test pair if there exists
p € O*(n,d) such that

Q=7"[Qo], B=p[0Q], S CR"iscompact and (7%, d) rectifiable,

f[S] # B for all f:R" — R" satisfying Lip f < oo and f(z) =z for x € B.
8.2 Remark. In the rest of the paper we will work for simplicity on cubical test pairs, but it’s worth to
remark that the two notions are perfectly equivalent for our purposes. Indeed, if we denote with P; the
set, of rectifiable test pairs and with P the set of cubical test pairs, then we easily verify that for every
F being a ° integrand and z € R™, it holds AE,(P;) = AE,(P;) and AUE,(P;) = AUE,(P;). To

show this, we denote p = v/d and Qo = [1,1]%.
Given (5, Q) € P2, we find p € O*(n,d) such that Q = p*[Qo] and construct (R, D) € P; by setting

T=imp*, D=TnNB(0,1), D=p,[D], R=SU(D~Q), R=p,lR].

Then
pH(@p=(R) = Dpe(D)) = Opa(R) — B (D) = Dpea () — @ (Q) -

Given (R, D) € Py we choose p € O*(n,d) such that D C im p* and construct (S, Q) € P by setting

Then
pH(@pe(S) — Ppe(Q)) = Ppe(S) — Ppe(Q) = P (R) — D= (D).
Therefore, AE,(P1) = AE,(P2) and AUE,(P;) = AUE,(P2).

8.3 Definition. Let @ be a d-dimensional cube in R™ (see Definition 5.1), and X C R". We say
that (Y, Q) is a multiplication of (X, Q) if there exist k € &2 and a finite set A of d-dimensional cubes
in R" of side-length 1(Q)/k such that

Q=UA, Inte(K)NInte(L) =0 VK #Lec A,
Y = U{Tc(K) Oﬂ1/kOch(Q)[X] K e A}.

8.4 Remark. Observe that a multiplication (Y, Q) of (X, Q) is uniquely determined by the parameter k
occurring in Definition 8.3. Thus, we may define the k-multiplication of (X, Q) to be exactly (Y, Q).

8.5 Definition. We say that a set Q of pairs of subsets of R" is a good family if
(a) all elements of Q are cubical test pairs;
(b) if (X,Q) € Q, N €N, and (Y, Q) is the 2V-multiplication of (X, Q), then (Y, Q) € Q;

(c) if (X,Q) € Q, f:R™ — R is Lipschitz, and f(z) = x for x € 0.Q, then (f[X],Q) € Q.
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8.6 Remark. It is plausible that the set of all cubical test pairs is a good family and, indeed, in Section 9
we prove it is. However, this is not at all obvious.

Consider the Adams’ surface; see |24, Example 8 on p. 81]. The Mobius strip M and the triple
Moébius strip T" are both homotopy equivalent to the 1-dimensional sphere and both can be continuously
embedded in some R" so that (M, Q) and (T, Q) become cubical test pairs, where Q = [0, 1]? x {0}"~2.
However, if one puts M and T side by side touching only along one 1-dimensional face of (), then one
obtains the Adams’ surface A, which retracts onto its boundary. This, as explained in [24, Example 8
on p. 81|, is a consequence of the fact that the inclusion of the boundary of M into M has degree 2,
the inclusion of the boundary of T into T has degree 3, these numbers are relatively prime, and A is
homotopy equivalent to the wedge sum (a.k.a. “bouquet”; see 9.7) of two circles so, defining f : A — S*
to be of degree —1 on M and of degree 1 on T, we get a map such that f o j is of degree one, where
j:S' — A is a parameterization of the boundary of A. One can then construct a Lipschitz retraction of
A onto its boundary; see 9.6. Luckily for us, the situation is different if one puts together many copies
of the same set X. We prove in 9.17 that if (X, Q) is a cubical test pair, then one cannot have two maps
f,9: X — 0.Q such that deg(f|s.q) and deg(g|s.q) are relatively prime.

Before stating and proving the main theorem of this section, we need the following lemma, which,
roughly speaking, will be used as an almost uniqueness result for minimizers of the area functional in
the class of cubical test pairs:

8.7 Lemma. Given a cubical test pair (R, Q) as in Definition 8.1 and x € R". If

(25) Pp=(R) < Q= (Q),
then
(26) HYR) > #UQ).

Proof. Assume by contradiction that (26) does not hold. Thus in particular

(27) HURN(Q x R ) < #UR) < #UQ).
Denoting with T" the d-plane containing (), we observe that

(28) AURN(QxR"™) > #T(RN(Q xR™™1)) =2 Q)
otherwise there would exist a d-dimensional open ball B C () such that

(29) (BXxR"H)NR=40.

Since R is compact, then (29) would imply the existence of f : R" — R" satisfying Lip f < oo and
f(x) = z for x € 0.Q, such that f[R] = 0.Q, which would contradict the property of (R, Q) being a
cubical test pair. By (28) and the area formula (a.f.) [15, 3.2.20], we compute

(30) #UQ) S AYT(RA(Q x R < [ o myari)

(a. (

™

2 Q).

) n—
/ ap JiTy(y) A (y) < (RO (Q x R™™)
RA(QxRn—4)
Then the inequalities in (30) are all equality, which implies that ap J;T}(y) = 1 for S dae 1y €
RN (Q x R"%). Hence,
(31) Tan®(AL R, y) =T, for #%-ae. ye€ RN(Q x R"™9).
We can then compute the following chain of inequalities, which provides a contradiction

e (Q) = / F*(T)d#(y) (2§8) / F¥(T) do(y)
Q RN(QxRn—4)

(31) (25)
< (RN (Q xRV Y) < ®pe(R) < ®p=(Q). O
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We can finally prove the following:
8.8 Theorem. Assume x € R™ and P is a good family (cf. Definition 8.5). Then wBC, C AE,(P).

Proof. We proceed by contradiction. Assume F' € wBC, ~ AE;(P). Then there exists (S5, Q) € P such
that
AHYS) > AN Q) and Pp:(S) < Pp:(Q).
Define
B =0.Q and C:{S:(S,Q)GP}.

Note that C is a good class in R™ ~ B in the sense of Definition 6.3.
Next, we employ Theorem 6.7 with F** in place of F' together with Theorem 6.5(c)(a)(k) to find
a compact (¢, d) rectifiable set R C R™ such that

Ppe(R) =inf{®@pe(P): P €C} < Ppe(S) < Ppe(Q).

Proceeding as in Lemma 4.4 we see that (R,()) is a cubical test pair (may be not in P). In case
Ppe(R) < ®pe(Q), by Lemma 8.7 we get 4 R) > #%(Q), and we set P = R. Otherwise, we have
Ppa(R) = Ppa(Q) = Pp=(S) and we set P = S. In any case, setting V = v4(P) € V4(R"™) and using
Lemma 6.6, we obtain

0o > HUP) > #YQ) and dpV(g) =0 forge Z(R"~B).

Let p € O*(n,d) and T € G(n,d) be such that p*[Qo] = Q C T, where Qo = [~1,1]¢. For each N € N
we define Py and Ay so that (Py, Q) is the 2¥-multiplication of (P, Q) and Ay is the corresponding
set of d-dimensional cubes covering () as in Definition 8.3. We also set

Wy = Z vd(Tp*(Qv) [PN]) € Vd(Rn)
veZd
and Ry = T¢(k) © Mo-v+1[P] for K € Ay .

Observe that for N € N and p € (0,00) there are at most a(d)(p + diam P)d translated copies of Py in
spt [|[Wa|| N B(0, p); therefore,

IWn || B(0, p) < a(d) (p + diam P)d,%”d(PN) = a(d) (,o + diamP)d%d(P) for p € (0,00).

So Wy is a Radon measure and there exists a subsequence {Wpy;, : i € N} which converges to some
varifold W in V4(R™). Moreover, we have

Rix CT+B(0,2 Vdiam P) for K € Ay sospt|W| CT.

Directly from the construction and by density of base 2 rational numbers in R, it follows also that W is
translation invariant in 7', i.e., (7,)4W = W for all v € T. Hence, there exists ¥ € (0,00) and a Radon
probability measure p over G(n,d) such that

A(P)

;%aﬂ?§j >1.

W=9(#"T)xp and 0=

We define
Wy =vq(Py) € Vg(R") for Ne N and W = lim Wy, = 9(LQ) x p.
1—00

We also record that

HYPy) = #YP) and ®pe(Py) = ®pe(P) for N €N,
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and since the supports of ||Wy|| for N € N all lie in a fixed compact set (cf. Remark 3.11) we also have

(32) Dpa (W) = lim ®pe(Wy,) = lim ®pe(Py;) = Ope(P).
1— 00

1—>00
We claim that
(33) Op=W = 0.

First we observe that this would immediately give a contradiction and conclude the proof. Indeed,
since F' € wBC,, we deduce from (33) and Definition 4.8 that p = Dirac(7"). This, in turn, yields the
following contradiction

7\ (32)

pe (Q) < 902 (Q) = e (W) 2 B (P) < B (Q).

We are just left to prove the claim (33). To this end, since W is invariant under translations in 7',
it suffices to show that

SpaWi(g) =0 for NeNandge 2 (R"~B).
If P=S e, since C is a good family, then Py € C and Wy = v4(Py) and
W |(R?) = s#4P) = inf{®p(K): K €C} for N € N;

hence, applying Lemma 6.6, we see that dp« Wy (g) = 0 for g € 2 (R"~ B) and N € N.

In case P = R, we use Theorem 6.5 to find a minimising sequence {S; € C : ¢ € N} such that
va(P) = V = lim; 00 va(S; N R™~ B). Defining S; y € C so that (S; n,Q) is the 2V-multiplication
of (S;,Q) we get Wy = lim; oo v4(Sin). Recalling Theorem 6.5(b)(c)(h) we may once again apply
Lemma 6.6 to see that also in this case dp« Wy (g) = 0 for g € 2 (R"~ B) and N € N so the proof is
done. O

9 Cubical test pairs form a good family

Here we prove that the family of all cubical test pairs is good in the sense of 8.5. To our surprise the
proof had to employ a few sophisticated (yet classical) tools of algebraic topology. Given a cubical test
pair (X, Q) and its 2"¥-multiplication (Y, Q) we need to show that S = 9.Q is not a Lipschitz retract
of Y, which is the same as showing that there is no continuous map f : Y — S with deg(f|s) = 1;
cf. 9.6. This becomes a topological problem of independent interest. We first sketch the idea of the
proof, highlighting the main points of the argument.

Let (X, @) be a cubical test pair. To be able to use tools of algebraic topology we need to pass from an
arbitrary compact set X satisfying 0 < ##%(X) < oo to an open set U containing X and having homotopy
type of a d-dimensional CW-complex. We achieve this by applying the deformation theorem 5.8 to X,
obtaining an open set U C R"™ with X C U and a d-dimensional cubical complex F C U such that
0.Q C E C U and F is a strong deformation retract of U; see 9.19. Moreover, we get that (U, F) is
a Borsuk pair, i.e., has the homotopy extension property HEP; see 9.2 and 9.3, which will be a useful
tool to get suitable homotopy equivalences.

The topological part of the argument works as follows. Consider a 2-multiplication (Y, Q) of (U, Q)
and assume there exists a retraction 7 : ¥ — 9.Q. Note that 9.Q is a topological (d — 1)-dimensional
sphere and set S = 0.Q. Different copies of p, /Q[UNS] may, in general, intersect inside Y. Thus, we
define the lifted 2-multiplication (Y, Q) of (U, Q) in order to prevent this intersection and we observe that
7 gives rise to a retraction 7 : Y — S; cf. 9.21. Next, we consider the pairwise orthogonal affine (d — 1)-
planes, lying in the affine d-plane spanned by @), parallel to the sides of ), and passing through the
center of Q. We denote with R the union of these planes intersected with ). Since R is contractible, by
the aforementioned HEP, we deduce that Y is homotopy equivalent to Y/R which, in turn, is homotopy
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equivalent to the wedge sum Z of 2% copies of U; see 9.7. Let ¥ be the wedge sum of 2¢ copies of S,
m; : X — S be projections onto particular components of ¥, 7; : S < ¥ be inclusions of components, and
j 1 ¥ <= Z be the inclusion map; cf. 9.8. The inclusion S < Y composed with the homotopy equivalences
yields a map o : S — ¥ C Z such that deg(m; o) = 1 for all i € {1,2,...,2%}. In particular, since
Hy (X)) ~ @?il Hy 1(S) = 22 by [19, Corollary 2.25], we get

d

(34) =32 T Hg 1(S) - Hy 1 (D).

If p: Z — S is obtained by composing the retraction r with the homotopy equivalences, then deg(p o
joa)=1. The following homotopy commutative diagram presents the situation.

S "B =Vi, 55

. |

S—>Y<_ ~ “Y/R—_ =~ _z=\V2,U-"~3

r

Recalling (34) we see that 1 = deg(pojoa) = Z?il m;, where m; = deg(pojo). Since Z is a
wedge sum of copies of the same space U, we get 2¢ maps f; : U — S such that deg(f;|s) = m; and
Z?il m; = 1. The question now is whether there exists g : U — S which induces the map

2d
N fi t Haa(U) = Hai(S) = Z.
=1

If so, then deg(g|s) = 1 and g yields a retraction U — S by 9.6.

This is the point where we need to employ algebra and algebraic topology. We prove in 9.14 that if £
is a d-dimensional CW-complex, then any homomorphism ¢ : Hy_1(F) — Z is induced by some map
g : E — S. The cellular homology of E (which coincides with the singular homology) is computed from
the chain complex (Ck,5k)g:0, where the group of k-dimensional chains Cj is the free abelian group
generated by the k-dimensional cells (or cubes) of E. Observe that if G is a torsion group (i.e. every
element has finite order), then there exists only one homomorphism G — Z, namely, the one sending all
elements of G to zero. Therefore, we do not lose any information by composing the homomorphism ¢
with the projection p : ker §4_1 — kerdg—1/imdy = Hy—1(E), which yields a homomorphism £ = o p
defined on cycles. Since Cy_q1 and Cy_o are free groups (in particular, projective Z-modules), the group
Cy—1 splits into a direct sum Cy_1 = ker(d;_1) @ H and we can extend £ to all chains by setting
&g = 0; cf. 9.13. Hence we can define g on any (d — 1)-dimensional cell ¢ of E as g|, = h, o m, where
m:0 —» /0o~ S and hy : S — S is a map of degree (o). The next step is to extend g to all the
d-dimensional cells of E. To this end we employ the obstruction theory, which is a sophisticated version
of the Brouwer fixed-point theorem and its consequence: the fact that a map S — S extends to a map
@ — S if and only if its topological degree is zero. Given a d-dimensional cell w of E, we need to ensure
that gl has topological degree zero. Recalling that £(dqw) = ¢ o p(dqw) = 0 whenever w € Cy, the
required condition on g follows.

To conclude the argument, we observe that the 2V-multiplication of (X, Q) is the same as the 2-
multiplication of (W, Q), where W is the 2V ~l-multiplication of (X, Q); thus, we get the result by
induction.

9.1 Definition. For k € N we set S¥ = RFF1 0 9B(0, 1).

9.2 Definition (cf. [19, Chap. 0, p. 14]). Let X be a topological space and A C X be a subspace. Set
I =]0,1] € R. We say that the pair (X, A) has the homotopy extension property HEP if for every
topological space Y every continuous function h : (X x {0}) U (A x I) — Y extends to a continuous
homotopy H : X x I =Y.

24



9.3 Remark (cf. [19, Chap. 0, Example 0.15, p. 15]). If k € &, A C X C R", A is compact of dimension k,
and there exists an open set U C R"™ such that A C U C X and U is homeomorphic to A X Rk (i.e.
U is a trivial vector bundle over A with fiber R"¥), then (X, A) has the HEP. In particular, if A is
a sum of a finite set of k-dimensional cubes and A C Int X, then (X, A) has the HEP.

9.4 Remark (cf. [19, Chap. 0, Prop. 0.17, p. 15]). If (X, A) has the HEP and A is contractible, then X
and X/A are homotopy equivalent.

9.5 Remark. We shall also use the following simple facts:

e if XY CR" A= XnNY, and both (X, A) and (Y, A) have the HEP, than (X UY, A) has the
HEP;

)

e if (X, A) has the HEP and X C Y, then (Y, A) has the HEP.

9.6 Lemma. Assume S, X C R™ are compact, S C X, ¢ € (0,1), (Y,S) has the HEP for any Y C R"
with S C IntY, and there exists a Lipschitz retraction m : S + B(0,e) — S. Let j : S — R"™ be the
inclusion map.

The following properties are equivalent:

(a) S is a Lipschitz retract of X;

(b) S is a retract of X;

(c) there exists 0 € (0,¢) such that S is a retract of X + B(0,0);

(d) there exist a continuous map f: X — S such that deg(foj)=1.

Proof. Clearly the implications (a) = (b), (¢) = (b), (b) = (d) hold.

Proof of (b) = (a): Assume r : X — S is a retraction. Using the Tietze extension theorem (see
e.g. [20, Chap. 7, Problem O, p. 242]), we extend r to a continuous function R : R” — R". We mollify R
to obtain a smooth function R : R®™ — R" such that |R(z) — r(z)| < 27'2¢ for # € X; in particular,
dist(R(z),S) < 2 2c forx € X so mo R: X — S is well defined. Since r(z) = m(z) for z € S, there
exists 0 € (0,¢) such that |R(z) — w(x)] < 278 for x € S + B(0,9). Finally, we define a Lipschitz
retraction f : X — S by

m(x) if dist(z, ) < 2784,
f(z) =< m(R(z)) if dist(x,S) > 2779,
(1 —t)m(z) + tn(R(z))) if t = 2% dist(z,S)/6 — 1 € (0,1).

Proof of (b) = (c¢): Assume r : X — S is a retraction. Once again we extend r to a continuous
function R : R™ — R". Note that R is uniformly continuous on every compact subset of R"; hence,
there exists § € (0, 1) such that R[X +B(0,0)] € S+ B(0,¢). We get that mo R|x g0, is the desired
retraction.

Proof of (d) = (b): Let f: X — S be continuous and such that deg(f o j) = 1. Then there exists
a continuous homotopy h : S x I — S such that h(z,0) = f(x) and h(x,1) = x for x € S. We extend f
to a continuous function F': R™ — R" using the Tietze extension theorem and we find § € (0, 1) such
that F[X + B(0,0)] € S+ B(0,¢). Set Y = X + B(0,9). Observe that mo Fly : Y — S is well
defined. Recall that (Y, S) has the HEP so we may extend h to a homotopy H : Y x I — S such that
H(z,0) = w(F(x)) for every x € Y. The desired retraction r : X — S is then given by r(z) = H(z,1)
for x € X. O

9.7 Definition. Assume J is an index set and for each o € J we are given a pointed topological space
(Xa, o). We define the wedge sum to be the pointed topological space

Vaes(Xaza) = (U{Xa x {a} :a € J}) [{(z0,0) s a € T}
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endowed with the quotient topology.
If J={1,2,...N} for some N € &, then we use the notation

Vacs(Xa 7o) = Ve, (Xi, @) = (X1,21) V (X2, 22) V- - V (X, 2n) -

9.8 Remark. (a) Let Z = \/,c;(Xa, o) and a € J. There exist continuous maps 7, : Xo < Z and
o« : 4 — X,. The first one is simply the inclusion and the second comes from the projection

Z = 2V pej iy (X 25)-

(b) For each o € J assume (X,, o) and (Ya,yq) are pointed topological spaces and there exist maps

fa: (Xayza) = (Ya,va) and go : (Ya, Ya) — (Xa, o) such that f, 09, =~ idy, and gy o fo =~ idx, .
Then V¢ ;(Xa, za) and \/ c;(Ya, Ya) are homotopy equivalent.

9.9 Definition (cf. [17, §3]). A CW-complex is a topological space X such that for [ € N there exist:
an index set .J;, a family of /-dimensional balls {Uﬁ 21 € Ji}, and for each i € J; there is a continuous
characteristic map gpé : Ué — X such that

(a) setting X! = @ and X* = Uf:o Uiey, im ¢! for k € N, we have X = J;2, X*;
(b goZ restricted to Int 0 is a homeomorphic embedding;

)
(c) the image of do! under ¢! is contained in X'~1;

(d) the image of go intersects only finitely many images of other characteristic maps;

(e) aset F C X is closed in X if and only if (})*[F] is closed in ¢! for all I € N and i € J;.

The image of any goé shall be called an I-dimensional cell of X and the set X' the [-skeleton of X.
If X = X* for some k € N, then we say that X is k-dimensional and if, in addition, all the sets J; for
1 €{0,1,...,k} are finite, then we say that X is a finite CW-complex.

9.10 Remark. A CW-complex X can also be seen as constructed inductively by attaching cells aﬁ to
X7 via maps ¢t cf. [19, Chap. 0, p. 5].

9.11 Remark. If A C K7, then X = [JA is a CW-complex with X* = J{Q € K} : Q C X} for
ke {0,1,...,n}. If Ais finite, then X is a finite CW-complex.

9.12 Remark. Assume X is a CW-complex. We shall use cellular homology of X; see [17, §12] or [19,
§2.2, p. 137]. Recall that for I € N the chain group

C(X) =H,(X', X'
is the free abelian group with basis {0} : i € J;}. Next, define the differentials

dO:C'O—>{O} and d;: C)(X) — Cj—1(X)

(35) by di(ol) = Y deg(¥};)ol ! forle 2,
jedi—1

where wf’ ;1s defined as the composition

‘pz‘ag

dol —>Xl—»X/( NU;_I)iSl_l.

Clearly, by 9.9(d), the sum in (35) is finite. Moreover, (Cj(X),d;);°, defines a chain-complex whose
homology groups coincide with singular homology groups of X; see [19, Theorem 2.35| or [17, §12,
p. 94].

9.18 Remark. Let F be a free abelian group. The following observations shall become particularly useful:
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(a) If G is a subgroup of F', then G is itself a free abelian group; cf. [22, 1,§7,Theorem 7.3].

(b) If G is another free abelian group and d : F' — G, then F splits into a direct sum F' = kerd & H
for some subgroup H of F.

To prove the above claim (b), let A =imd C G. Then A is a subgroup of G; hence, A is a free
abelian group. Let {a; : i € J} be a basis of A. In order to prove the existence of a splitting, it
suffices to define a homomorphism f : A — F such that do f = id4. For each i € J we choose
arbitrarily b; € F such that d(b;) = a; and set f(a;) = b;. Then f extends to a homomorphism
A — F simply because A is free.

Next, we prove that if X is a (k + 1)-dimensional CW-complex, then any homomorphism from the
k™™ homology group Hy(X) to the group of integers Z is induced by some map X — SF.

9.14 Lemma. Assume k € N, X is a (k+ 1)-dimensional CW-complez, and there is given a homomor-
phism ¢ : Hy(X) — Z. Then there exists f : X — S¥ such that f. = (.

Proof. For | € {0,1,2,...,k + 1} let J; be the set indexing [-dimensional cells of X and for i € J; let
{otrie g}, ot = X, d), C(X), X! be defined as in 9.9 and 9.12.

By definition Cy(X) are free abelian groups. Set K = kerdy C C(X) and employ 9.13(b) to find
another subgroup L C Cj(X) such that Cy(X) = K® L. Let p: K - Hi(X) and ¢ : K & L — K be
canonical projections. Define £ : Cy(X) — Z as the composition

Cu(X) -5 K 25 Hy(X) - Z.

We record now some trivial observations
(36) ((z) =0 whenever x € Hy(X) has finite order, (op=¢|x, Eodri1 =0.

We shall first construct v : X* — SF such that v, : Hi(X*) — Z equals ¢ o p and then extend ~y
to f: X*t1 — SF using a bit of obstruction theory.
For each ¢ € J;, the space af / 801’? is homeomorphic to S¥ and we define

vi s oFj0oF — S* so that  deg(y) = £(aF).

)

Note that the space X*/X*~! is homeomorphic to the wedge sum \/; I (ck/oak, [00k]) of topological
spheres. We construct the map

7 X’“/Xk_1 — SF so that ;ﬂo_{c/aak =-; forie Jg.
Let m: X* — X*/X*1 be the projection. Finally, set
y=7Jorm.

Note that Hy(X*) = K. One readily verifies that 7, = &|x = o p.
Now we need to extend =y to the (k-+1)-dimensional cells in X. Employing the obstruction theory [17,
§17| this is possible if for each j € Ji41 the composition

has topological degree zero. However, this degree equals exactly & (dk+1(0—§:+1)) which is zero by (36).

Therefore, there exists f : X — S¥ such that f|yx = 7; in particular, f, : Hy(X) — Z equals C. O
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9.15 Remark. Employing some more sophisticated tools of algebraic topology, a shorter proof of Lemma
9.14 can be given as follows. The universal coefficient theorem [19, Theorem 3.2] provides an epimorphism

h:HY(X;Z) - Hom(Hy(X),Z).
On the other hand, there exists an isomorphism (see [19, Theorem 4.57|)

T:[X,K(Z,k),, — HX;Z),

where [X, K(Z,k)|np denotes the set of homotopy classes of maps X — K(Z,k) and K(Z,k) is the
Eilenberg-MacLane space; cf. [19, §4.2, p. 365]. Therefore, any homomorphism Hy(X) — Z is induced
by some map X — K(Z,k). Observing, that K(Z,k) is a CW-complex obtained from the sphere S*
by gluing in cells of dimension at least k + 2, we see, since X is (k + 1)-dimensional and the homotopy
groups m(S¥*2) =0 for [ € {1,2,...,k + 1}, that any map X — K(Z, k) is homotopic to a map whose
image lies in S¥.

9.16 Remark. The bound on the dimension of X plays a crucial role in 9.14. Indeed, if the dimension
of X is bigger than k + 1, then an element of Hom(Hj,(X), Z) might not be induced by a map X — S*
as the following example shows. Let k = 2 and X be the complex projective space of real dimension 4
(often denoted CP?). Then X is a CW-complex constructed by attaching a 4-dimensional cell to S? via
the Hopf fibration S3 — S%. We have

Hy(X)=H*(X)=HX)=2.

Recall that H*(X) is the graded ring Z[o]/o?, where o is the generator of H?(X); cf. [19, Theorem 3.12].
Finally, since all the homology and cohomology groups of X are free, the universal coefficient theorem
provides a natural isomorphism

j:H*(X) = Hom(Hy(X),Z).

Assume there exists a map f : X — S? such that f. : Ha(X) — Hy(S?) is an isomorphism.
In consequence, f* : H2(S?) — H?(X) is also an isomorphism. However, the map f* is a homomorphism
of graded rings and this gives a contradiction because the square of the generator of H(S?) is zero while
the square of the generator of H?(X) is the generator of H*(X).

9.17 Corollary. Let k € N, X be a (k + 1)-dimensional CW-complex, and j : S¥ — X be continuous.
Define
D ={|deg(foj)|:f: X — s* continuous} ~{0} .
If D # @ and A = min D, then
D={mA:me 2}.

Proof. If D = @ there is nothing to prove, so we assume D # @&. Let fi,fo : X — SF be two
continuous maps such that d; = |deg(fi o j)| € & for i € {1,2}. Set d = ged(dy,d2) € &. By the
Euclidean algorithm, there exist integers c1, ¢ such that d = c1dy 4 cods. We employ 9.14 to find a map
f: X — SF such that f. = c1fis + cafos. Then |deg(foj)|=de€ D.

We have shown that whenever dy,ds € D C &2, then ged(dy,ds) € D. Moreover, if f: X — Sk,
|deg(foj)|=Ac D,and m € &, then mA € D because one can post-compose f with a map S*¥ — Sk
of degree m. O

9.18 Corollary. Let k,N € N, X be (k + 1)-dimensional CW-complez, xo € X, Z = Vi]il(X, xo) and
j : SF — Z be continuous. Forl € {1,2,...,N} define m : Z — X as in 9.8. Assume there exists
¢ :S¥ — X such that for | € {1,2,...,N} the map m o j : S¥ — X is homotopic either to @ or to the
constant map and w0 j = . Set

D = {|deg(foj)|: f: Z — sk continuous} ,
E ={|deg(gop):9: X — Sk continuous} .
Then D = E.
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Proof. For 1 € {1,2,...,N} let 7, : X — Z be the injection as in 9.8. If g : X — SF is continuous, then
f=gom : Z— SFis homotopic to g o ¢ so deg(go ) = deg(f o j) and we get E C D. On the other
hand if f : Z — S¥, then we consider the maps f; = for : X — SFfor 1l € {1,2,..., N} to see that

D 3 |deg(foj)|=|2 deg(fiomoj)| € E by9.17;
thus, D C E. O

9.19 Lemma. Let J =[0,2], € € (0,00) and assume
QeK! S=0.Q, X CR"iscompact, SCX, #X)<oo.

Then there exist: a Lipschitz map f : 1 x R™ — R", a compact set E C R™, an open set U C R"™, and
a finite set B C K[} such that

SCE=UB=f[{2} xU], XCUCX+B(0,¢e), flJxUCV,
flt,x)=a for(t,x) e I x E, FE is a strong deformation retract of U .

Proof. For R € K™ denote by R the n-dimensional cube with the same center as R and side-length three
times bigger than R. Let N € & be such that 2=V*+4,/n < min{e,1(Q)} and define

A={ReK!N):RNX #0o}.

Apply 5.8 with K7', A, X in place of F, A, S to obtain a Lipschitz map f : J x R” — R", an open
set V. C R", and a finite set B C K[j(N). Set £ = JB and U = V N Int(J.A and recall 5.10. Since
SCUK] ((N) weget SCE. O

For convenience and brevity of the notation we introduce the following definition.

9.20 Definition. We define R*° to be the direct sum of countably many copies of R and for i € & we
let e; € R® be the standard basis vector of the i*® copy of R. Thus, R® is the set of all finite linear
combinations of the vectors {e; : i € Z}.

We want to compare, up to homotopy, a multiplication (Y, Q) of some cubical test pair (X, Q) with
the wedge sum of certain number of copies of X. However, it might happen that two copies of X placed
side by side intersect outside 0.(). To prevent this, we define a lifted multiplication so that different
copies of X intersect only along 0.Q.

9.21 Definition. Let X, @, k, A= {K1,...,Ka} be as in 8.3. Let ¢; for i € & be as in 9.20. Define
j:R" 5 R"xR™®, p:R*x R® — R”, and ; : R — R" x R® for i € {1,2,...,k%} by

j(@) = (2,0), px,y) =z, ni(z) =70 Ter,) © M1k O T-c(q)(x) + dist(z,0:.Q)e; .
We say that (Y, j[Q)]) is the lifted k-multiplication of (X, Q) if
V=U{n[X]:ie{l,2,....k%}} CR" x R™®.
9.22 Lemma. Assume

UCR" is open, @Q=]0, l]d x {0} e K%0), S=0.Q, Nec2,
B C K is finite, SCE=BCU, FE isa strong deformation retract of U ,
j and p are as in 9.21, (Y, j[Q)) is the lifted 2~ -multiplication of (U, Q),
(Z,7(Q)) is the lifted 2N~ -multiplication of (U, Q).

If j[S] is a Lipschitz retract of Y, then j[S] is a Lipschitz retract of Z.
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Proof. Suppose there exists a Lipschitz retraction r : Y — j[S]. Due to 9.6 it suffices to show that there
exists a continuous map h : Z — S such that deg(h o j|s) = 1. Set J = {1,2,...,2%}. Let (X, [Q]) be
the lifted 2V~ L-multiplication of (E, Q) and (F, j[Q]) be the lifted 2" -multiplication of (F, Q). Observe
that Y contains 2¢ copies of H1/2[Z]§ let us denote these copies Z1, Za, ..., Zya and the corresponding
cubes Q1, Q2, ..., Q9 so that

Y=U{%Z:i€eJ} and j[Q]=U{Qi:ie J}.
We also define
S; =0.Q; and X, =FNZ; forielJ.
Let T = R x {0}"~? € G(n,d). Then Q C o(Q) +T. Let (vi,v,...,v,) be the standard basis of R”
and define
T; =span{v;}* NT € G(n,d — 1) foriec {1,2,...,d},
R=jU{(c(@+T)nQ:ie{1,2,...,d}}]CY.

Note that R and RN Z; for i € J are contractible. Since U is open, we have S C Int U so the pairs (Y, R)
and (Z;, RN Z;) for i € {1,2,...,d} all have the HEP by 9.3. Therefore, R and Y/R are homotopy
equivalent by 9.4. Similarly, Z; and Z; /(RN Z;) are homotopy equivalent for i € J. Let g = j(c(Q)). We
shall write [qo] for the equivalence class of gy in a given quotient space. Denoting homotopy equivalence
by “~” and homeomorphism by “~" we obtain

Y ~Y/R~ V% (Z/(Z: 0 R), [a0]) = V2, (Zi, q0) -

Set
d d d
W =VL (Ziyw), M=V (Xiq), %=Vi,(S,aw),
and note that X C M CW. Let ¢ : Y — W and ¢ : W — Y be such that ¢ ot ~ idy and ¢ oy ~ idy.
For i € J let m; : ¥ — S; be the projection defined in 9.8. Observe that

poj[S]=%X and deg(mopojlg)=1 forieJ.

Recall that F is a strong deformation retract of U; hence, if € : M — W is the inclusion map, there exists
a continuous maps ¢ : W — M such that {o( ~ idy and (o ~ idys. Moreover, {|y, = (|x = idy. Since
E =|JB we see that E and M are d-dimensional CW-complexes by 9.11. Hence, we may apply 9.18 to
deduce that

{|deg(foCopojl|s)|:f: M — S continuous}
= {|deg(gls)| : g : X — S continuous} .
However, if we take f =porot¢of: M — S, then
foCopojls=poropogolopajlsaporojls=ids.

Therefore, there exists g : X — S such that deg(gojls) = 1. Let « : X1 — X and f: Z — Z; be
homeomorphisms composed of homotheties and translations. Then, recalling |y, = idy, the composition

s s,z Bg 0, x o x 95

equals g o j|s and has degree one. Employing 9.6 we obtain a Lipschitz retraction Z — S. O

9.23 Corollary. If S and U are as in 9.22, then S is a Lipschitz retract of U.

Proof. We assume j[S] is a Lipschitz retract of Y, where Y is the lifted 2/¥-multiplication of (U, Q). We
proceed by induction with respect to N € N. If N = 0, we have j[U] =Y so S is a Lipschitz retract
of U by assumption. The inductive step is now a direct application of 9.22. O
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9.24 Theorem. Assume N € 2, (X,Q) is a cubical test pair, and (Y,Q) is the 2N -multiplication of
(X,Q). Then (Y,Q) is a cubical test pair.

Proof. Using homotheties and rotations we may and shall assume that @ = [0,1]¢ x {0}"~¢ € K"(0).
We only need to show that S = 0.Q) is not a Lipschitz retract of Y. Let p and j be as in 9.21. Assume,
by contradiction, that there is a Lipschitz retraction of Y onto S. Employing 9.6 we find § € (0,1) such
that S is a retract of Y + B(0,27V6). Apply 9.19 with X, @, § in place of X, Q, ¢ to obtain a finite
set B C K/ and an open set U C X + B(0,4) such that F = [JB is a strong deformation retract of U
and X C U. Let (Z, §[Q]) be the lifted 2¥-multiplication of (U, Q). Clearly p[Z] =Y and po j|s = idg,
so j[S] is a Lipschitz retract of Z. Applying 9.22 to U, @, N, B and then 9.23, we conclude that S is
a Lipschitz retract of U which contains X, so S is also a Lipschitz retract of X and this contradicts the
assumption that (X, @) is a cubical test pair. O

9.25 Remark. To conclude we gather all our results in one place. Let x € R", C be the set of all cubical
test pairs, P be the set of all test pairs, R be the set of all rectifiable test pairs. Then

(a) if U C R™ is open, F € wBC,, for all x € U, F is bounded, and G is a good class in the sense
of [14, 3.4], then there exists S € G such that ®r(S) = inf{®Pr(R) : R € G},

(b) AE,(P) = AE,(C) = AE,(R) and AUE,(P) = AUE,(C) = AUE,(R):
(¢) AC, = wBC, C AE,(C).
Moreover, if n = d + 1, then by |9, Theorem 1.3] we know that F' € AC,, if and only if the function
(37) G(z,v) = |v|F(x,span{v}*) for every z,v € R"
is strictly convex in all but the radial directions, namely
G(z,v) > (D,G(x,D),v) for every z € R™, 7,v € S" ! and v # 7.
Hence, given n = d + 1,

(d) if F is a ¢! integrand such that the corresponding function G, as in (37), is strictly convex, then
F € AE,(P).

9.26 Remark. In [4, IV.1(7), p. 88] Almgren observes that uniformly convex functions give rise to
anisotropic lagrangians satisfying AUE, (P) in co-dimension 1 and vice-versa, where P is the class of test
pairs. Our result shows that functions that are just strictly convex give rise to anisotropic lagrangians
satisfying AE;(P) in co-dimension 1, for every good family P. In particular we deduce that there is
no hope of improving Theorem 8.8 showing that wBC, C AUE,(P). Indeed, if this was the case, in
co-dimension one the strict convexity of the integrand would give rise to an anisotropic lagrangian sat-
isfying BC, and consequently also AUE,(P), which in turn would imply the uniform convexity of the
integrand.
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