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Abstract

We exploit the so called atomic condition, recently defined in [9, Comm. Pure Appl. Math.] and
proved to be necessary and sufficient for the validity of the anisotropic counterpart of the Allard
rectifiability theorem. In particular, we address an open question of this seminal work, showing that
the atomic condition implies the strict Almgren geometric ellipticity condition.

1 Introduction

Since the pioneering works of Almgren [3, 4], a deep effort has been devoted to the understanding of
ellptic integrands in geometric variational problems. In particular, Almgren introduced the class of
elliptic geometric integrands ([4, IV.1(7)] or [3, 1.6(2)]), further denoted AUE, which allowed him to
prove regularity for minimisers in [3].

Very recently, an ongoing interest on the anisotropic Plateau problem has lead to a series of re-
formulations and results in this direction, see [18, 8, 7, 10, 11, 14]. In particular, in [9] (see also
Definition 4.7) a new ellipticity condition, called the atomic condition, further denoted AC, has been in-
troduced and proved to be necessary and sufficient to get an Allard type rectifiability result for varifolds
whose anisotropic first variation is a Radon measure. The authors can prove that, in co-dimension one
and in dimension one, AC is equivalent to the strict convexity of the integrand.

For general co-dimension there is no understanding of AC in the literature and this is stated as an
open problem in [9, Page 2]:

“Since the atomic condition AC is essentially necessary to the validity of the rectifiability
theorem, it is relevant to relate it to the previous known notions of ellipticity (or convexity)
of F with respect to the “plane” variable. This task seems to be quite hard in the general
case.”

The aim of this paper is to address this open question, comparing condition AC with the classical notion
of geometric ellipticity introduced by Almgren.

We present for the moment an informal version of our main result, see 8.8:

Theorem A. If a C 1 integrand satisfies the atomic condition at some point x ∈ Rn, then it also satisfies
the strict Almgren ellipticity condition at x; see 8.8.

In particular, if the co-dimension equals one, then strict convexity of the integrand implies the strict
Almgren ellipticity. Moreover in higher co-dimension, our work paves the way to construct anisotropic
functionals satisfying the Almgren ellipticity condition. Indeed, although the theory of existence and
regularity for minimizers has been actively developed in the literature, there are essentially no examples
(in higeher co-dimension) of Almgren elliptic integrands, beside the perturbations of the area functional.

It is worth to remark that there is no hope of improving Theorem A showing that the atomic condition
implies the uniform Almgren ellipticity condition, see Remark 9.26. Indeed, if this was the case, in
co-dimension one the strict convexity of the integrand (which is equivalent to the atomic condition)
would imply the uniform Almgren ellipticity, which in turn implies the uniform convexity, leading to a
contradiction.
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In order to prove Theorem A, we need to get several auxiliary results of independent interest. In par-
ticular, in Section 4 we introduce another ellipticity condition for integrands, named BC, and in Section 7
we prove that it is equivalent to AC; see Definition 4.8 and Lemma 7.2. BC has the advantage of being
more geometric than the algebraic condition AC, thus providing a useful tool not only for the proof of
Theorem A, but also for future further understanding of the atomic condition. In Section 5 we show
that the original Almgren ellipticity condition [4, IV.1(7)] is the same as the condition used in [14,
3.16] which involves unrectifiable surfaces; see Corollary 5.13. To this end we provide a deformation
theorem 5.8 which preserves unrectifiability of the unrectifiable part of a given set; see Theorem 5.8.
Moreover, in Section 6, Theorem 6.7, we provide an independent proof of the existence of minimisers
of anisotropic energies satisfying AC (or equivalently BC), improving the recent solutions to the set
theoretical approach to the anisotropic Plateau problem [10, 14]. Gathering these results, we provide in
Section 8 the proof of Theorem A, see Theorem 8.8.

The last crucial point is that the proof of Theorem A in Section 8 requires the validity of a seemingly
harmless property: the class of compact sets X used by Almgren to test the strict ellipticity considition
(see [4, IV.1(7)] or [3, 1.6(2)]) is closed under gluing together many rescaled copies of X; see 8.5.
In 9.24 we show indeed that this property is true, but our proof is quite complicated and employs some
sophisticated tools of algebraic topology; see also the introduction to Section 9. Giving it some thought,
Almgren’s condition that X cannot be retracted onto its boundary sphere is topological in nature, so it is
reasonable that topological arguments are indispensable. Moreover, the existence of the Adams’ surface,
which is retractible onto its boundary and is obtained by gluing together two surfaces that cannot be
retracted onto their respective boundaries, supports the claim that the proof of Almgren’s class being
closed under the gluing operation is highly non-trivial; see 8.6. This question is fully addressed in
Section 9.

2 Notation

For the whole article we fix two integers d and n satisfying 2 ≤ d ≤ n.
In principle we shall follow the notation of Federer; see [15, pp. 669–671]. In particular, given two

sets A,B, we denote with A∼B their set-theoretic difference and, for every a ∈ Rn and s ∈ R we define
the functions τ a(x) = a+x and µs(x) = sx; see [15, 2.7.16, 4.2.8]. Concerning varifolds, we shall follow
Allard [1].

Following [3] and [5], if S ∈ G(n, d) is a d dimensional linear subspace of Rn, then S\ ∈ Hom(Rn,Rn)
shall denote the orthogonal projection onto S. In particular, if p ∈ O∗(n, d) is such that im p∗ = S, then
S\ = p∗ ◦ p.

We divert in notation from [15] in the following ways. To denote the image of a set A ⊆ X under
some map f : X → Y (more generally, under a relation f ⊆ X × Y ) we always use square brackets:
f [A]. We employ the symbol idX to denote the identity map X → X and 1A to denote the characteristic
function X → {0, 1} of A ⊆ X. We also use abbreviations for intervals, e.g., (a, b] = {t : a < t ≤ b}.
Moreover, we denote with N the set of non-negative integers, i.e., N = P ∪ {0}. If (X, ρ) is a metric
space, A ⊆ X, and x ∈ X, then we define dist(x,A) = inf ρ[A × {x}]. We sometimes write X ↪→ Y ,
X � Y , or X '−→ Y to emphasis that a map is injective, surjective, or bijective respectively. We denote
with ∂A the topological boundary of a set A. Whenever A, B are subsets of a vector space we write
A + B to denote the algebraic sum of A and B, i.e., A + B = {a + b : a ∈ A , b ∈ B}; in particular,
if ε ∈ (0,∞), then A + B(0, ε) is the ε-thickening of A. If R is a ring and A, B are R-modules, then
A ⊕ B denotes their direct sum; cf. [12, Chap. V, Def. 5.6]. For a, b ∈ P the symbol gcd(a, b) denotes
the greatest common divisor of a and b and amod b means the remainder of the division of a by b.

In Sections 8 and 9 we shall need to use tools of algebraic topology. We shall work in the category
of all pairs of topological spaces a1 as defined in [12, Chap. I, §1, p. 5]. We write Hk(X,A;G) and
Hk(X,A;G) for the kth singular homology and cohomology groups of the pair (X,A) with coefficients
in G; see [12, Chap. VII, Definition 2.9]. If G = Z, then we omit G in the notation. Similarly, if A = ∅,
we omit A. Given two maps f, g : X → Y between topological spaces we write f ≈ g to express that f
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and g are homotopic, i.e., there exists a continuous map h : [0, 1] × X → Y such that h(0, ·) = f and
h(1, ·) = g. If X and Y are topological spaces which are homotopy equivalent we write X ≈ Y and if
they are homeomorphic we write X ' Y .

2.1 Definition (cf. [12, Chap. XI, Def. 4.1]). Let B ⊆ Rn be homeomorphic to the standard k-
dimensional sphere and f : B → B be continuous. Suppose σ is the generator of the kth homology
group Hk(B) of B and f∗ : Hk(B)→ Hk(B) is the map induced by f . The topological degree deg(f) ∈ Z
of f is the unique integer such that f∗(σ) = deg(f) · σ.

3 Basic definitions

3.1 Definition (cf. [3, 1.2]). A function F : Rn ×G(n, d)→ (0,∞) of class C k for some non-negative
integer k is called a C k integrand.

If inf imF/ sup imF ∈ (0,∞), then we say that F is bounded.

3.2 Definition (cf. [3, 3.1]). If ϕ ∈ C 1(Rn,Rn) and F is an integrand, then the pull-back integrand ϕ#F
is given by

ϕ#F (x, T ) =

{
F
(
ϕ(x),Dϕ(x)[T ]

)
‖
∧
dDϕ(x) ◦ T\‖ if dim Dϕ(x)[T ] = d

0 if dim Dϕ(x)[T ] < d .

If ϕ is a diffeomorphism, then the push-forward integrand is given by ϕ#F = (ϕ−1)#F .

3.3 Definition (cf. [3, 1.2]). If F is a C k integrand and x ∈ Rn, then we define the frozen C k integrand
F x by the formula

F x(y, S) = F (x, S) for every y ∈ Rn and S ∈ G(n, d) .

3.4 Remark. Since F : Rn ×G(n, d) → (0,∞) and G(n, d) is compact, it follows that for any x ∈ Rn

the frozen integrand F x is bounded.

3.5 Definition. We say that S ⊆ Rn is a d-set if S is H d measurable and H d(S ∩K) < ∞ for any
compact set K ⊆ Rn.

3.6 Definition. Assume S ⊆ Rn is a d-set. We define

R(S) = {x ∈ S : Θd(H d S, x) = 1} and U(S) = S∼R(S) .

3.7 Remark. Observe that Θd(H d S, ·) is a Borel function, so R(S) is H d measurable. Employing [23]
and [15, 2.9.11], we observe that R(S) is countably (H d, d) rectifiable and U(S) is purely (H d, d) un-
rectifiable.

3.8 Remark. Recall that γn,d denotes the canonical probability measure on G(n, d) invariant under the
action of the orthogonal group O(n), also called Haar measure; see [15, 2.7.16(6)].

3.9 Definition (cf. [1, 3.5]). Assume S ⊆ Rn is a d-set. We define vd(S) ∈ Vd(R
n) by setting for every

α ∈ K (Rn ×G(n, d))

vd(S)(α) =

ˆ
R(S)

α(x,Tand(H d R(S), x)) dH d(x) +

ˆ
U(S)

ˆ
α(x, T ) dγn,d(T ) dH d(x) .

3.10 Definition. If F is a C k integrand, we define the functional ΦF : Vd(R
n)→ [0,∞] by the formula

ΦF (V ) =

ˆ
F (x, S) dV (x, S) .

3.11 Remark. If spt ‖V ‖ is compact we have ΦF (V ) = V (γF ) for any γ ∈ D(Rn,R) satisfying spt ‖V ‖ ⊆
γ−1{1}.
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3.12 Definition. If S ⊆ Rn is a d-set, then we define ΦF (S) = ΦF (vd(S)) and

ΨF (S) = ΦF (S) +

ˆ
U(S)

(
sup imF x −

´
F (x, T ) dγn,d(T )

)
dH d(x) .

For any other subset S of Rn, we define ΨF (S) = ΦF (S) =∞.

3.13 Remark. Assume V ∈ Vd(R
n), ϕ : Rn → Rn is of class C 1, and F is a C 0 integrand. Then

Φϕ#F (V ) = ΦF (ϕ#V ) .

If S ⊆ Rn is a d-set, then
ϕ#vd(S) = vd(ϕ[S])

in the case ϕ is injective and S is countably (H d, d) rectifiable, or in the case ϕ = µr for some r ∈ (0,∞),
or in the case ϕ = τ a for some a ∈ Rn.

3.14 Remark. If S is a d-set, F is a C 0 integrand and x ∈ Rn, then

ΨFx(S) = ΦFx(R(S)) + H d(U(S)) sup imF x .

3.15 Definition. For any set X and an element x ∈ X we denote by Dirac(x) the measure over X with
a single atom at x, i.e.,

Dirac(x)(A) =

{
1 if x ∈ A ,
0 if x /∈ A ,

for A ⊆ X .

The choice of X shall always be clear from the context.

3.16 Definition (cf. [1, 4.9]). Assume U ⊆ Rn is open, V ∈ Vd(U), F is a C 1 integrand. We define
the first variation of V with respect to F to be the linear map δFV : X (U)→ R given by the formula

δFV (g) =
d

dt

∣∣∣∣
t=0

ΦF

(
(ϕt)#V

)
,

where g ∈ X (U) is a smooth compactly supported vectorfield in U and ϕt(x) = x + tg(x) for x ∈ U
and t in some neighbourhood of 0 in R.

3.17 Remark. Note that if T ∈ G(n, d) and

Gn,d =
{
P\ : P ∈ G(n, d)

}
⊆ Hom(Rn,Rn) ,

then
A ∈ Tan(Gn,d, T\) ⇐⇒ A∗ = A , T\ ◦A ◦ T\ = 0 , and T⊥\ ◦A ◦ T⊥\ = 0 .

For x ∈ Rn and T ∈ G(n, d) define

FT : Rn → R and Fx : Gn,d → R by setting FT (x) = F (x, T ) = Fx(T\) .

In [9] the authors computed

δFV (g) =

ˆ 〈
g(x),DFT (x)

〉
+BF (x, T ) •Dg(x) dV (x, T ) ,

where BF (x, T ) ∈ Hom(Rn,Rn) is characterised by

BF (x, T ) • L = F (x, T )T\ • L+
〈
T⊥\ ◦ L ◦ T\ + (T⊥\ ◦ L ◦ T\)∗,DFx(T\)

〉
,

whenever L ∈ Hom(Rn,Rn).
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4 Notions of ellipticity

In this section we recall the notions of ellipticity we will work with.

4.1 Definition. We say that (S,D) is a test pair if there exists T ∈ G(n, d) such that

D = T ∩B(0, 1) , B = T ∩ ∂B(0, 1) , S ⊆ Rn is compact , H d(S) <∞ ,

f [S] 6= B for all f : Rn → Rn satisfying Lip f <∞ and f(x) = x for every x ∈ B .

We say that (S,D) is a rectifiable test pair if, in addition, S is (H d, d) rectifiable.

4.2 Remark. Using a standard extension procedure for Lipschitz functions (e.g. [13, 3.1.1, Theorem 1]),
one sees that the last condition in Definition 4.1 means exactly that B is not a Lipschitz retract of S.

4.3 Example. Let n = 3, d = 2, T = R2×{0}, D = T ∩B(0, 1), and S be a smoothly embedded Möbius
strip with boundary B = T ∩ ∂B(0, 1). Observe, that S itself has the homotopy type of a 1-dimensional
circle because a Möbius strip can easily be retracted onto the “middle circle”. However, the inclusion
j : B ↪→ S has topological degree 2, so given any continuous map f : S → B we have j◦f = f |B : B → B
and we see that deg(f |B) = deg(j) deg(f) is an even integer which means that f |B cannot equal the
identity on B. Therefore, (S,D) is a rectifiable test pair.

4.4 Lemma. Let (S,D) be a pair of compact sets in Rn with H d(S) < ∞ and {(Si, Di) : i ∈ N} be
a sequence of test pairs such that

lim
i→∞

dH (Si, S) = 0 and lim
i→∞

dH (Di, D) = 0 .

Then (S,D) is a test pair.

Proof. For every i ∈ N, let Ti ∈ G(n, d) be such that Di = Ti ∩B(0, 1) and set Bi = Ti ∩ ∂B(0, 1). First
note that since {Di : i ∈ N} is a Cauchy sequence with respect to the Hausdorff metric on compact sets,
we obtain that {Ti : i ∈ N} is a Cauchy sequence in G(n, d) and there exists T ∈ G(n, d) such that
D = T ∩B(0, 1). Set B = T ∩ ∂B(0, 1).

Assume, by contradiction, that there exists f : Rn → Rn such that Lip f < ∞, f(x) = x for every
x ∈ B, and f [S] = B. Set δ = (Lip f)−1 ∈ (0, 1]. Then

f [S + B(0, r)] ⊆ B + B(0, r/δ) for r ∈ (0,∞) .

Choose i ∈ N such that

Si ⊆ S + B(0, 2−5δ2) and B ⊆ Bi + B(0, 2−5δ) .

Then,
f [Si] ⊆ B + B(0, 2−5δ) ⊆ Bi + B(0, 2−4δ) .

Define g : Si → Bi by

g(y) = f(y) for y ∈ Si∼
(
Bi + B(0, 2−4δ)

)
,

g(y) = 24δ−1 dist(y,Bi)(f(y)− y) + y for y ∈ Si ∩
(
Bi + B(0, 2−4δ)

)
.

For any y ∈ Si with dist(y,Bi) ≤ 2−4δ we can find x ∈ Bi and z ∈ B such that |x − y| ≤ 2−4δ and
|x− z| ≤ 2−5δ; hence, |y − z| ≤ 2−3δ and

dist(g(y), Bi) ≤ |g(y)− x| ≤ 24δ−1 dist(y,Bi)|f(y)− y|+ |y − x|
= |f(y)− f(z) + z − y|+ |y − x| ≤ δ−1|y − z|+ |z − y|+ |y − x| ≤ 2−1 .

This shows that g[Si] ⊆ Bi + B(0, 2−1). Composing g with a Lipschitz map retracting Bi + B(0, 2−1)
onto Bi yields a Lipschitz retraction of Si onto Bi and a contradiction.
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4.5 Definition. Let x ∈ Rn and P be a set of pairs of compact d-sets in Rn.

(a) Almgren uniform ellipticity with respect to P: The class AUEx(P) is defined to contain all C 0 in-
tegrands F for which there exists c > 0 such that for all (S,D) ∈ P there holds

ΨFx(S)−ΨFx(D) ≥ c
(
H d(S)−H d(D)

)
.

(b) Almgren strict ellipticity with respect to P: The class AEx(P) is defined to contain all C 0 integrands
F such that for all (S,D) ∈ P satisfying H d(S) > H d(D) there holds

ΨFx(S)−ΨFx(D) > 0 .

4.6 Remark. (a) If all elements of P are pairs of (H d, d) rectifiable sets, then one can replace all
occurrences of ΨFx with ΦFx .

(b) If P = ∅, then AEx(P) = AUEx(P) is the set of all C 0 integrands.

(c) If P is the set of rectifiable test pairs, then F ∈ AUEx(P) if and only if F is elliptic at x in the
sense of [4, IV.1(7)].

(d) If P is the set of all test pairs, then F ∈ AUEx(P) if and only if F is elliptic at x in the sense
of [14, 3.16].

4.7 Definition (cf. [9, Definition 1.1]). Let x ∈ Rn. The class ACx is defined to contain all C 1 integrands
F satisfying the atomic condition at x, i.e., for any Radon probability measure µ over G(n, d), setting

Ax(µ) =

ˆ
BF (x, T ) dµ(T ) ∈ Hom(Rn,Rn),

there holds

(a) dim kerAx(µ) ≤ n− d;

(b) if dim kerAx(µ) = n− d, then µ = Dirac(T0) for some T0 ∈ G(n, d).

We write F ∈ AC if F ∈ ACx for all x ∈ Rn.

To conclude, we introduce the following new notion of ellipticity, named BC. This will turn out to
be equivalent to AC, see Lemma 7.2. Rephrasing AC as BC will be very useful for the proof of Theorem
A and for a further understanding of AC. Indeed, Definition 4.8 is more geometric than the algebraic
Definition 4.7, providing a better tool to relate AC with the other notions of ellipticity.

4.8 Definition. Let x ∈ Rn. We define BCx to be the class of all C 1 integrands F such that for any T ∈
G(n, d) and any Radon probability measure µ over G(n, d), setting W = (H d T )×µ ∈ Vd(R

n), there
holds

δFxW = 0 =⇒ µ = Dirac(T ) .

We write F ∈ BC if F ∈ BCx for all x ∈ Rn.

5 Rectifiability of test pairs

Let x ∈ Rn, P1 be the set of all test pairs, and P2 be the set of rectifiable test pairs. Here we prove (see
Corollary 5.13) that AEx(P1) = AEx(P2) and AUEx(P1) = AUEx(P2), i.e., that the original Almgren’s
definition of ellipticity [4, IV.1(7)] coincides with the definition used in [14, 3.16]. To this end we need
to show an improved version of the deformation theorem, see 5.8. In contrast to similar theorems of
Federer and Fleming [15, 4.2.6-9], David and Semmes [6, Theorem 3.1], or Fang and Kolasiński [14,
7.13], this one has the special feature of preserving the unrectifiability of the purely unrectifiable part of
the deformed set.

First, we introduce some notation (modelled on [2]) needed to deal with cubes and cubical complexes.
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5.1 Definition. Let k ∈ {0, 1, . . . , n} and Q = [0, 1]k ⊆ Rk. We say that R ⊆ Rn is a cube if there
exist p ∈ O∗(n, k), o ∈ Rn and l ∈ (0,∞) such that R = τ o ◦ p∗ ◦ µl[Q]. We call o(R) = o the corner
of R and l(R) = l the side-length of R. We also set

• dim(R) = k – the dimension of R,

• c(R) = o(R) + 1
2 l(R)(1, 1, . . . , 1) – the centre of R,

• ∂cR = τ o(R) ◦ p∗ ◦ µl(R)[∂Q] – the boundary of R,

• Intc(R) = R∼ ∂cR – the interior of R.

5.2 Definition. Let k ∈ {0, 1, . . . , n}, N ∈ Z, Q = [0, 1]k ⊆ Rk, e1, . . . , en be the standard basis of Rn,
and f1, . . . , fk be the standard basis of Rk.

We define Kn
k(N) to be the set of all cubes R ⊆ Rn of the form R = τ v ◦ p∗ ◦ µ2−N [Q], where

v ∈ µ2−N [Zn] and p ∈ O∗(n, k) is such that p∗(fi) ∈ {e1, . . . , en} for i = 1, 2, . . . , k.
We also set

Kn
k =

⋃{
Kn
k(N) : N ∈ Z

}
, Kn = Kn

n , Kn
∗ =

⋃{
Kn
k : k ∈ {0, 1, . . . , n}

}
.

5.3 Definition. Let k ∈ {0, 1, . . . , n}, N ∈ Z, and K ∈ Kn
k(N). We say that L ∈ Kn

∗ is a face of K if
and only if L ⊆ K and L ∈ Kn

j (N) for some j ∈ {0, 1, . . . , k}.

5.4 Definition (cf. [2, 1.5]). A family of top-dimensional cubes F ⊆ Kn is said to be admissible if

(a) K,L ∈ F and K 6= L implies Intc(K) ∩ Intc(L) = ∅,

(b) K,L ∈ F and K ∩ L 6= ∅ implies 1
2 ≤ l(L)/l(K) ≤ 2,

(c) K ∈ F implies ∂cK ⊆
⋃
{L ∈ F : L 6= K}.

5.5 Definition (cf. [2, 1.8]). Let F ⊆ Kn be admissible. We define the cubical complex CX(F) of F
to consist of all those cubes K ∈ Kn

∗ for which

• K is a face of some cube in F ,

• if dim(K) > 0, then l(K) ≤ l(L) whenever L is a face of some cube in F with dim(K) = dim(L)
and Intc(K) ∩ Intc(L) 6= ∅.

5.6 Definition. Let k ∈ N, Q ⊆ Rk be closed convex with non-empty interior, and a ∈ IntQ. We
define the central projection from a onto ∂Q to be the locally Lipschitz map πQ,a : Rk∼{a} → Rk

characterised by

πQ,a(x) ∈ ∂Q and
πQ,a(x)− a
|πQ,a(x)− a|

=
x− a
|x− a|

for x ∈ IntQ∼{a} ,

πQ,a(x) = x for x ∈ Rk∼ IntQ .

The following lemma is a counterpart of [15, 4.2.7].

5.7 Lemma. Assume

k,N ∈ N , d < k ≤ n , Q ⊆ Rn is a cube ,
p ∈ O∗(n, k) , im p∗ = Tan(Q, c(Q)) ,

µ1, . . . , µN are Radon measures over Rn , Σ = Q ∩
⋃N
i=1 sptµi , H d(Σ) <∞ .

There exist Γ = Γ(d, k,N) and a ∈ Q such that

dist(a,Σ) > 0 , dist(a, ∂cQ) > 1
4 l(Q) ,

and
ˆ
Q
‖D(πQ,a ◦ p)‖d dµi ≤ Γµi(Q) ∀i ∈ {1, . . . , N} .

Moreover, if A ⊆ Σ is purely (H d, d) unrectifiable, then p∗ ◦ πQ,a ◦ p[A] is purely (H d, d) unrectifiable.
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Proof. Without loss of generality we shall assume n = k. Recall Definition 3.6 and Remark 3.7 and let
E = U(Σ). Employing [16, Lemma 6] with δ, E, d, k replaced by Q, E, d, k, we see that H k(B) = 0,
where

B =
{
a ∈ Q : πQ,a[E] is not purely (H d, d) unrectifiable

}
.

Set Q0 = {x ∈ Q : dist(x, ∂cQ) > 1
4 l(Q)}. From [14, 6.4] we deduce that there exists Γ0 = Γ0(k) > 1

such that
‖DπQ,a(x)‖ ≤ Γ0|x− a|−1 for all a ∈ Q0 and all x ∈ Rk∼{a} .

Since d < k, there exists ∆ = ∆(d, k) ∈ (0,∞) such that for all a ∈ IntQ there holds
´
Q |x −

a|−d dH k(a) < ∆. Using the Fubini theorem [15, 2.6.2] and arguing as in [14, 7.10] or in [15, 4.2.7], we
find out that there exists Γ1 = Γ1(d, k,N) such that H k(A) > 0, where

A =

{
a ∈ Q0 :

ˆ
Q
|x− a|−d dµi(x) ≤ Γ1µi(Q) for i ∈ {1, 2, . . . , N}

}
.

We have H k(Σ) = 0 so H k(A∼Σ) > 0. Hence, there exists a ∈ A∼(B ∪ Σ) with all the desired
properties.

5.8 Theorem. Assume

F ⊆ Kn is admissible , A ⊆ F is finite , S ⊆ Rn is a d-set ,
I = [0, 1] , J = [0, 2] , G = Int

⋃
A ,

H d(
⋃
A ∩ ClosS) <∞ , R = R(S) , U = U(S) .

There exist Γ = Γ(n, d) ∈ (1,∞), a Lipschitz map f : J ×Rn → Rn, a finite set B ⊆ CX(F)∩Kn
d , and

an open set V ⊆ Rn such that

f(0, x) = x for x ∈ Rn ,

f(t, x) = x for (t, x) ∈
(
J × (Rn∼G) ∪

⋃
B
)
∪
(
I ×

⋃
(CX(F) ∩Kn

d )
)
,

S ⊆ V , f [J ×Q] ⊆ Q for Q ∈ A , f [{1} × V ] ∩G ⊆
⋃(

CX(F) ∩Kn
d

)
,

f [{2} × V ] ∩G =
⋃
B ∩G , f [I × (V ∩G)] ⊆

⋃
A ,

H d(f(1, ·)[R ∩G]) ≤ ΓH d(R ∩G) , H d(f(1, ·)[U ∩G]) ≤ ΓH d(U ∩G) ,

H d(f(1, ·)[U ] ∩G) = 0 , f(1, ·)[U ] is purely (H d, d) unrectifiable ,
f(2, ·)[f [J × V ]] = f [{2} × V ] ,

f [{2} × V ] is a strong deformation retract of f [J × V ] .

Proof. For each Q ∈ CX(F) we find pQ ∈ O∗(n, dimQ) such that Q ⊆ c(Q) + im p∗Q. For k ∈
{0, 1, 2, . . . , n} set

Ak =
{
Q ∈ CX(F) ∩Kn

k : Q ∩G 6= ∅
}
.

We shall perform a central projection inside the cubes of Ak for k = n, n − 1, . . . , d + 1. Note that
∂G ∩

⋃
Ak 6= ∂G for k < n. In fact, all the projections shall equal identity on ∂G.

Let us set

µ1,n = H d (R ∩G) , µ2,n = H d (U ∩G) , µ3,n = H d (S ∩G) ,

ϕn(x) = ψn(t, x) = x for (t, x) ∈ I ×Rn , δn+1 = 1 ,

E = Rn∼G , Zn+1 = Rn .
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For k ∈ {n − 1, n − 2, . . . , d} and i ∈ {1, 2, 3} we shall define Lipschitz maps ψk : I ×Rn → Rn and
ϕk : Rn → Rn, Radon measures µi,k over Rn, sets Zk+1 ⊆

⋃
Ak+1 ∪ E, and numbers δk+1 ∈ (0, 1)

satisfying

(1)


sptµi,k = ϕk[sptµi,k+1] ⊆ E ∪

⋃
Ak , ψk[I × Zk+1] = Zk+1 ,(

sptµi,k+1 + U(0, δk+1)
)
∩
⋃
Ak+1 ⊆ Zk+1 , ϕk = ψk(1, ·) ◦ ϕk+1 ,

ψk(t, x) = x for (t, x) ∈ I × (E ∪
⋃
Ak) , ψk[{1} × Zk+1] ⊆ E ∪

⋃
Ak .

We proceed inductively. Assume that for some l ∈ {n − 1, . . . , d + 1} we have defined ψk, ϕk, δk+1,
Zk+1 and µi,k for k ∈ {n, n− 1, . . . , l + 1} and i ∈ {1, 2, 3}. For each Q ∈ Al+1 we apply Lemma 5.7 to
find aQ ∈ Q satisfying

dist(aQ, sptµ3,l+1) > 0 , dist(aQ, ∂cQ) > 1
4 l(Q) ,(2) ˆ

Q
‖D(πQ,aQ ◦ pQ)‖d dµi,l+1 ≤ Γ5.7µi,l+1(Q) for i ∈ {1, 2, 3} ,

and such that if A ⊆ sptµ3,l+1 is purely (H d, d) unrectifiable, then p∗Q ◦ πQ,aQ ◦ pQ[A] is also purely
(H d, d) unrectifiable.

Let δl+1 ∈ (0, 1) be such that

(3) dist(aQ, sptµ3,l+1) > 2δl+1

and dist(aQ, ∂cQ) > 2δl+1 for all Q ∈ Al+1 .

Set

Zl+1 = E ∪
(⋃
Al+1∼

⋃{
B(aQ, δl+1) : Q ∈ Al+1

})
.

Define ψ̃l : I × Zl+1 → Zl+1 by setting for (t, x) ∈ I × Zl+1

ψ̃l(t, x) =

{
(1− t)x+ tp∗Q ◦ πQ,aQ ◦ pQ(x) if x ∈ Intc(Q) for some Q ∈ Al+1 ,

ψ̃l(t, x) = x if x ∈ E ∪
⋃
Al .

Since for Q ∈ Al+1 the map p∗Q ◦ πQ,aQ ◦ pQ equals the identity on ∂cQ, is Lipschitz continuous
on Rn∼U(aQ, δl), and Q is convex, we see that ψ̃l is well defined and Lipschitz continuous. Extend ψ̃l
to a Lipschitz map ψl : I ×Rn → Rn using [15, 2.10.43]. Next, for i ∈ {1, 2, 3} set

ϕl = ψl(1, ·) ◦ ϕl+1 and µi,l = (ϕl)#(‖Dϕl‖dµi,n) .

Note that ‖Dϕl‖d is bounded and ϕl is proper, so µi,l is a Radon measure. Also, because we assumed
sptµ3,l+1 ⊆ E ∪

⋃
Al+1, we readily verify that

sptµ3,l ⊆ ϕl[ClosS] ⊆ E ∪
⋃
Al .

Hence, ψl, ϕl, µi,l for i ∈ {1, 2, 3}, δl+1, and Zl+1 verify (1). This concludes the inductive construction.
Define

B =
{
Q ∈ Ad : Q ⊆ ϕd[S]

}
.

For Q ∈ Ad∼B we choose aQ ∈ Intc(Q) so that (2) holds and we define δd ∈ (0, 1) so that (3) is satisfied
with l + 1 = d. Set

Zd = E ∪
(⋃
Ad∼

⋃{
B(aQ, δd) : Q ∈ B

})
, ψ̃d−1 : Zd → Zd ,

ψ̃d−1(t, x) = ψ̃l(t, x) = x if x ∈ E ∪
⋃
B ∪

⋃
Ad−1 ,

ψ̃d−1(t, x) = (1− t)x+ tp∗Q ◦ πQ,aQ ◦ pQ(x)

if x ∈ Intc(Q) for some Q ∈ Ad∼B .
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Extend ψ̃d−1 to a Lipschitz map ψd−1 : I ×Rn → Rn. Set ϕd−1 = ψd−1(1, ·) ◦ ϕd,

Vd−1 = E ∪
(⋃
B + U(0, δd)

)
∩ Zd ,

and Vl = ψ̃l−1(1, ·)−1[Vl−1] ⊆ Zl ∀l ∈ {d, d+ 1, . . . , n} .

Note that Vl is relatively open in Zl for l ∈ {n, n− 1, . . . , d}; in particular, Vn is open in Rn and, setting
V = Vn, we get

S ⊆ V , ϕd−1[V ] ∩G =
⋃
B ∩G .

We set for l ∈ {1, 2, . . . , n− d} and (t, x) ∈ I ×Rn satisfying l − 1 ≤ (n− d)t < l

f(t, x) = ψn−l
(
(n− d)t− (l − 1), ϕn−l+1(x)

)
and for (t, x) ∈ [1, 2]×Rn

f(t, x) = ψd−1

(
t− 1, ϕd(x)

)
.

This defines a Lipschitz map f : J × Rn → Rn. From the construction it follows that f [{1} × U ] is
purely (H d, d) unrectifiable and f(1, ·)[U ] ∩G ⊆

⋃
(CX(F) ∩Kn

d ), so

H d(f(1, ·)[U ] ∩G) = 0 .

Now, we need to verify the required estimates. For brevity of the notation let us set

g = f(1, ·) and ηk = ψk(1, ·) for k ∈ {d, d+ 1 . . . , n} .

Observe that if Q ∈ F , then H 0({R ∈ F : R∩Q 6= ∅}) ≤ 4n. Note also that for k ∈ {d, d+1, . . . , n−1}
and i ∈ {1, 2, 3} we have

(ϕk+1)#

(
‖Dϕk+1‖dµi,n ϕ−1

k [
⋃
Ak]
)

= (ϕk+1)#

(
‖Dϕk+1‖dµi,n

)
ϕk+1[ϕ−1

k [
⋃
Ak]]

= µi,k+1 η−1
k [
⋃
Ak] ≤ µi,k+1

⋃
Ak+1 ,

so we obtain

(4) µi,k(
⋃
Ak) =

ˆ
ϕ−1
k

[⋃
Ak

] ‖Dϕk‖d dµi,n

≤
ˆ
ϕ−1
k

[⋃
Ak

] ‖Dηk ◦ ϕk+1‖d‖Dϕk+1‖d dµi,n =

ˆ
η−1
k

[⋃
Ak

] ‖Dηk‖d dµi,k+1

≤
ˆ⋃
Ak+1

‖Dηk‖d dµi,k+1 ≤
∑

Q∈Ak+1

ˆ
Q
‖Dηk‖d dµi,k+1

=
∑

Q∈Ak+1

ˆ
Q
‖D(πQ,aQ ◦ pQ)‖d dµi,k+1

≤ Γ5.7

∑
Q∈Ak+1

µi,k+1(Q) ≤ 4nΓ5.7µi,k+1(
⋃
Ak+1) .

In particular, setting Σ1 = R ∩G, Σ2 = U ∩G and employing [14, 7.12] we obtain for i ∈ {1, 2}

H d(g[Σi] ∩
⋃
Ad) = H d(ϕd[Σi] ∩

⋃
Ad)

≤
ˆ
ϕ−1
d

[⋃
Ad

] ‖Dϕd‖d dµi,n = µi,d(
⋃
Ad)

≤
(
4nΓ5.7

)n−d
µi,n(

⋃
An) =

(
4nΓ5.7

)n−d
H d(Σi) .
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Estimating as in (4), we also get

H d(g[Σi]∼
⋃
Ad) = H d(ϕd[Σi]∼

⋃
Ad) ≤

ˆ
G∩ϕ−1

d [∂G]
‖Dϕd‖d dµi,n

≤
ˆ
ϕd+1[G]∩η−1

d [∂G]
‖Dηd‖d dµi,d+1 ≤

ˆ⋃
Ad+1

‖Dηd‖d dµi,d+1

≤ 4nΓ5.7µi,d+1(
⋃
Ad+1) ≤ (4nΓ5.7)n−dH d(Σi) .

This gives the desired estimates.

5.9 Remark. Observe that

f(1, ·)[S] ∩G ⊆
⋃(

CX(F) ∩Kn
d

)
but f(1, ·)[S ∩G] ⊆

⋃(
CX(F) ∩Kn

d

)
∪ ∂G .

5.10 Remark. Define

Q̃ =
⋃
{R ∈ F : R ∩Q 6= ∅} ∀Q ∈ F ,

H =
⋃
{Q ∈ A : Q̃ ⊆

⋃
A} , and W = V ∩G .

Assume that S is separated from E = Rn∼G in the sense that S ⊆ H. ThenW is an open neighborhood
of S in Rn with

f [J × S] ⊆ f [J ×W ] ⊆W

and f(2, ·)[W ] =
⋃
B is a strong deformation retract of S.

In the next lemma given a test pair (S,D) we construct a Lipschitz deformation f : Rn → Rn which
modifies the rectifiable part R of S only on a set of small measure and transforms the unrectifiable
part I into a nullset. The construction works as follows. The set R can be represented, up to a set
of arbitrarily small measure, as a finite disjointed collection {F1, . . . , FN}, where each Fi is a compact
subsets of the graph of a C 1 map ψi : Ti → T⊥i for some Ti ∈ G(n, d). Since the pieces Fi are compact
and pairwise disjoint, there is a positive distance 70δ between them. To deal with the part of I which
lies at least 4δ away from F =

⋃N
i=1 Fi we employ the deformation theorem 5.8 and obtain the map

g : Rn → Rn which does not move points of F , converts the pary of I away from F into a nullset,
and preserves unrectifiability of the part of I close to F . After this step the unrectifiable part of g[S]
lies entirely in 4δ-neighbourhood of F . Next, for each i we employ the Besicovitch-Federer projection
theorem to find Pi ∈ G(n, d) such that the associated orthogonal projection Pi\ kills the measure of the
unrectifiable part of g[S]. We replace ψi with ϕi : Pi → P⊥i so that the graphs of ψi and ϕi coincide
and we define a projection πi = Pi\ + ϕi ◦ Pi\ onto the graph of ψi. The map πi does not move points
of Fi and carries the unrectifiable part of g[S] into a nullset. The final step is to combine all the maps πi
into a single map h using simple interpolation, which is possible since Fi is at least 70δ away from Fj if
i 6= j. The final deformation is f = h ◦ g. There is still a small problem with f : we do not know how f
acts on the boundary B of D and we want (f [S], D) to be a test pair. To deal with that we artificially
introduce the set F0 = T ∩ (B + B(0, δ)) and the map ψ0 : T → T⊥, where T ∈ G(n, d) is such that
D ⊆ T . After that, the whole construction yields a correct map.

5.11 Lemma. Assume

(S,D) is a test pair , T = Tan(D, 0) , B = T ∩ ∂B(0, 1) ,

R = R(S) , I = U(S) .

For each ε ∈ (0, 1) there exists a Lipschitz map f : Rn → Rn such that

f(x) = x for x ∈ B , H d(f [I]) = 0 , H d
(
(R∼ f [R]) ∪ (f [R]∼R)

)
≤ ε .

In particular, f [S] is (H d, d) rectifiable and (f [S], D) is a rectifiable test pair.
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Proof. We define

(5) ι =
(
2 + 45Γ5.8 + 45

)−1
ε .

Since H d(B) = 0 we can find δ0 ∈ (0, 1
4) such that

H d
(
(B + B(0, δ0)) ∩ S

)
< ι .

Employing [15, 3.2.29, 3.1.19(5), 2.8.18, 2.2.5] we find Z ⊆ Rn and for each i ∈ N a vectorspace
Ti ∈ G(n, d), a compact set Ki ⊆ Ti, and a C 1 map ψi : Ti → T⊥i such that, denoting F̄i = {x+ ψi(x) :
x ∈ Ki}, it holds

(6) F̄i ∩ F̄j = ∅ ∀i 6= j , R = Z ∪
⋃∞
i=1 F̄i , H d(Z) = 0 , Lipψi ≤ 1 .

Since H d(R) <∞ we can find N ∈ N such that

H d(R∼
⋃N
i=1 F̄i) < ι .

Set

δ = 80−1 min
{
δ0, inf

{
|x− y| : x ∈ F̄i, y ∈ F̄j , i, j ∈ {1, . . . , N} , i 6= j

}}
< 80−1 .

Note that δ > 0 because the sets F̄i are mutually disjoint and compact. Define

F0 = T ∩ (B + B(0, δ)) , T0 = T , and ψ0 : T → T⊥ by ψ0(x) = 0 for x ∈ T .

For i ∈ {1, . . . , N} set
Fi = F̄i∼(F0 + U(0, 70δ)) and F =

⋃N
i=0 Fi .

Clearly we have

B ⊆ F , H d(R∼F ) ≤H d(R∼
⋃N
i=1 F̄i) + H d

(
(B + B(0, δ0)) ∩ S

)
< 2ι(7)

and |x− y| ≥ 70δ whenever x ∈ Fi, y ∈ Fj , i, j ∈ {0, 1, . . . , N}, i 6= j .(8)

Let L ∈ N be such that 2−L < δn−1/2 ≤ 2−L+1 so that diamQ < δ whenever Q ∈ Kn
n(L). We define

F = Kn
n(L) , Q̃ =

⋃
{Q′ ∈ F : Q′ ∩Q 6= ∅} for every Q ∈ F ,

A =
{
Q ∈ F : Q̃ ∩ I 6= ∅, Q ∩ (F + B(0, 2δ)) = ∅

}
, G = Int

⋃
A .

Observe that

(9)
{
x ∈ I : dist(x, F ) ≥ 4δ

}
⊆
⋃{

Q ∈ A : Q̃ ⊆ G
}
⊆ G .

We apply Theorem 5.8 to obtain a Lipschitz continuous map g : Rn → Rn such that

g(x) = x for x ∈ Rn∼G , g[I] is purely (H d, d) unrectifiable ,

H d(g[R ∩G]) ≤ Γ5.8H
d(R ∩G) ≤ Γ5.8H

d(R∼F ) ≤ ι · Γ5.8 ,(10)

H d(g[I] ∩G) = 0 , H d(g[I ∩G]) ≤ Γ5.8H
d(I ∩G) <∞ .(11)

In particular, from (11), (9), and the fact that g[Q] ⊆ Q for all Q ∈ F we deduce

(12) H d
(
g
[{
x ∈ I : dist(x, F ) ≥ 4δ

}])
= 0 .

For each i ∈ {0, 1, . . . , N}, we employ the Besicovitch-Federer projection theorem [15, 3.3.15] to choose
Pi ∈ G(n, d) such that

(13) ‖Pi\ − Ti\‖ < 1/100 and H d(Pi\ ◦ g[I]) = 0 .
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Thanks to (6) and (13), we can apply [21, Lemma 3.2] to conclude that for every i ∈ {0, 1, . . . , N} there
exists a C 1 function ϕi : Pi → P⊥i such that {x+ψi(x) : x ∈ Ti} = {x+ϕi(x) : x ∈ Pi} and Lipϕi ≤ 2.
Next, for every i ∈ {0, 1, . . . , N} we define the projection onto the graph of ϕi by the formula

πi : Rn → Rn , πi(x) = Pi\x+ ϕi(Pi\x) for x ∈ Rn .

Note that Lipπi ≤ 1 + Lipϕi ≤ 3. We choose a smooth map γ : R→ R such that

γ(t) = 0 for t > 10δ , γ(t) = 1 for t < 5δ , −1

δ
≤ γ′(t) ≤ 0

and we define C∞ maps f, h, λ0, λ1, . . . , λN : Rn → Rn by

λi(x) = γ(dist(x, Fi))πi(x) + (1− γ(dist(x, Fi)))x for i ∈ {0, 1, 2, . . . , N} ,
h = λ0 ◦ λ1 ◦ · · · ◦ λN , f = h ◦ g .

We remark that for every x ∈ Rn, if there exists i ∈ {0, 1, . . . , N} and y ∈ Fi satisfying |x − y| =
dist(x, Fi) ≤ 10δ, then πi(y) = y and

(14) |x− πi(x)| ≤ |x− y|+ |πi(y)− πi(x)|+ |y − πi(y)| ≤ 10δ + 3 · 10δ ≤ 40δ .

In particular, (14) implies that

dist(λi(x), Fi) ≤ dist(λi(x), x) + dist(x, Fi) ≤ dist(πi(x), x) + 10δ ≤ 50δ ,

which in turn, combined with (8), implies that h(x) = λi(x) and that the index i is unique for x.
Moreover, since the map dist(·, Fi) is 1-Lipschitz, we get

‖Dh(x)‖ = ‖Dλi(x)‖ ≤ δ−1|πi(x)− x|+ ‖D(πi − idRn)(x)‖+ 1 ≤ 45 .

On the other hand, if x ∈ Rn is such that dist(x, Fi) > 10δ for every i ∈ {1, . . . , N}, then h(x) = x.
Hence, we get

Liph ≤ 45 .

Since, by (12), the unrectifiable part of g[S] lies in 4δ-neighbourhood of F and for each i ∈ {0, 1, . . . , N}
the maps h, λi, and πi are all equal in 5δ-neighbourhood of Fi we see that

H d(f [I]) = 0 .

Moreover, since f(x) = x for x ∈ F we have

R∼ f [R] ⊆ R∼ f [R ∩ F ] = R∼(R ∩ F ) = R∼F ,
f [R]∼R ⊆ f [R]∼(R ∩ F ) = f [R]∼ f [R ∩ F ] ⊆ f [R∼(R ∩ F )] = f [R∼F ] ;

hence, recalling (7), (10), and (5), we get

H d
(
(R∼ f [R]) ∪ (f [R]∼R)

)
≤H d(R∼F ) + H d(f [R∼F ])

≤ 2ι+ Liph ·H d(g[R∼F ]) ≤ 2ι+ 45H d(g[R ∩G]) + 45H d(R∼(G ∪ F ))

≤ 2ι+ 45Γ5.8ι+ 45ι ≤ ι(2 + 45Γ5.8 + 45) ≤ ε .

5.12 Remark. The difficulty in proving Lemma 5.11 stems from the situation when H d(R∩Clos I) > 0;
cf. [15, 4.2.25]. In this case one cannot argue that

limr↓0 H d((I + U(0, r)) ∩R) = 0

so it is not possible to separate the unrectifiable part of S from the rectifiable part. However, since
R has a nice (rectifiable) structure and I can be easily squashed to a set of H d measure zero by means
of Besicovitch-Federer projection theorem [15, 3.3.15], we can find nice Lipschitz deformations which
produce “holes” in I and do not move most of R.
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5.13 Corollary. Let x ∈ Rn, P1 be the set of all test pairs, and P2 be the set of rectifiable test pairs.
Then

AEx(P1) = AEx(P2) and AUEx(P1) = AUEx(P2) .

Proof. Since P2 ⊆ P1 we clearly have AEx(P1) ⊆ AEx(P2) and AUEx(P1) ⊆ AUEx(P2). Hence, it
suffices to prove the reverse inclusions. Take any test pair (S,D) ∈ P1 and set

T = Tan(D, 0) , B = T ∩B(0, 1) , R = R(S) , and I = U(S) .

For each k ∈ N apply Lemma 5.11 with ε = 1/k to obtain a map fk : Rn → Rn satisfying

Lip fk <∞ , fk(x) = x for x ∈ B ,
H d(f [I]) = 0 , H d

(
(R∼ fk[R]) ∪ (fk[R]∼R)

)
≤ 1

k .

Then (Sk, D) = (fk[S], D) is a rectifiable test pair for each k ∈ N, hence for any integrand F we have

ΨFx(Sk)−ΨFx(D) = ΦFx(Sk)− ΦFx(D) .

Observe that ∣∣ lim
k→∞

H d(Sk)−H d(R)
∣∣ = 0 ; hence, also

∣∣ lim
k→∞

Φd
Fx(Sk)− Φd

Fx(R)
∣∣ = 0 .

Thus, if F ∈ AUEx(P2), then

ΨFx(S)−ΨFx(D) = ΨFx(I) + lim
k→∞

ΦFx(Sk)− ΦFx(D)

≥ ΨFx(I) + c
(
H d(R)−H d(D)

)
≥ inf

(
{c} ∪ imF x

)(
H d(S)−H d(D)

)
.

Similarly, if F ∈ AEx(P2), then

ΨFx(S)−ΨFx(D) = ΨFx(I) + lim
k→∞

ΦFx(Sk)− ΦFx(D) > ΨFx(I) ≥ 0 .

5.14 Remark. Recalling Remark 4.6, from Corollary 5.13 we deduce that definitions [4, IV.1(7)] and [14,
3.16] are equivalent.

6 Existence of a minimiser for an integrand in wBC

In this section we provide a solution to the set theoretical formulation of the anisotropic Plateau problem
under the assumption F ∈ wBC. Since wBC will be proven to be equivalent to AC, see Lemma 7.2, this
section reproves [10, Theorem 1.8] without referring to the results of [9].

6.1 Definition. Let U ⊆ Rn be open. We say that f : Rn → Rn is a basic deformation in U if f is of
class C 1 and there exists a bounded convex open set V ⊆ U such that

f(x) = x for every x ∈ Rn∼V and f [V ] ⊆ V .

If f ∈ C 1(Rn,Rn) is a composition of a finite number of basic deformations, then we say that f is
an admissible deformation in U . The set of all such deformations shall be denoted D(U).

6.2 Definition (cf. [15, 2.10.21]). Whenever K ⊆ Rn is compact and A,B ⊆ Rn, we define dH ,K(A,B)
by

dH ,K(A,B) = sup
{
|dist(x,A)− dist(x,B)| : x ∈ K

}
= max

{
sup{dist(x,A) : x ∈ K ∩B} , sup{dist(x,B) : x ∈ K ∩A}

}
.
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6.3 Definition. Let U ⊆ Rn be an open set. We say that C is a good class in U if

(a) C 6= ∅;

(b) each S ∈ C is a closed subset of Rn;

(c) if S ∈ C and f ∈ D(U), then f [S] ∈ C;

6.4 Remark. Definition 6.3 differs from [14, 3.4] by not assuming that the class is closed under Hausdorff
convergence.

Combining [14, 11.2, 11.3, 11.7, 11.8(a)] we obtain the following.

6.5 Theorem. Let U ⊂ Rn be an open set, C be a good class in U , and F be a bounded C 0 integrand.
Set µ = inf

{
ΦF (T ∩ U) : T ∈ C

}
.

If µ ∈ (0,∞), then there exist V ∈ Vd(U), S ⊆ Rn closed, and {Si ∈ C : i ∈ N} such that

(a) S ∩ U is (H d, d) rectifiable. In particular H d(S ∩ U) <∞.

(b) limi→∞ vd(Si ∩ U) = V in Vm(U).

(c) limi→∞ΦF (Si ∩ U) = ΦF (V ) = µ.

(d) spt ‖V ‖ ⊆ S ∩ U and H d(S ∩ U ∼ spt ‖V ‖) = 0.

(e) The measures ‖V ‖ and H d S are mutually absolutely continuous.

(f) limi→∞ dH ,K(Si ∩ U, S ∩ U) = 0 for any compact set K ⊆ U .

(g) For any compact set K ⊆ U we have

lim
i→∞

sup
{
r ∈ R : H m({x ∈ Si ∩K : dist(x, spt ‖V ‖ ∪Rn∼U) ≥ r}) > 0

}
= 0 .

(h) If S̄i = U(Si ∩ U), then

lim
r↓0

lim
i→∞

r−dH d(S̄i ∩B(x, r)) = 0 for ‖V ‖-a.e. x and lim
i→∞

H d(S̄i) = 0 .

(i) Θd(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x.

(j) For H d almost all x ∈ spt ‖V ‖ we have

Tand(‖V ‖, x) = Tan(spt ‖V ‖, x) ∈ G(n, d) .

(k) If Rn∼U is compact and there exists a ΦF -minimising sequence in C consisting only of compact
sets (but not necessarily uniformly bounded), then

diam(spt ‖V ‖) <∞ and sup
{

diam(Si ∩ U) : i ∈ N
}
<∞ .

6.6 Lemma. Assume U ⊆ Rn is open, V ∈ Vd(U), C is a good class, F is a bounded C 0 integrand,
µ = inf{ΦF (P ) : P ∈ C}, ΦF (V ) = µ, and either V = vd(S ∩U) for some (H d, d) rectifiable set S ∈ C,
or there exists a sequence {Si ∈ C : i ∈ N} such that

lim
i→∞

vd(Si ∩ U) = V and lim
j→∞

H d(U(Sj ∩ U)) = 0 .

Then δFV = 0 .
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Proof. The proof can be found, with a slightly different notation, in [11, Section 5.1]. For the sake of
the exposition we report it below.

Assume there exists g ∈ X (U) such that δFV (g) 6= 0. Since spt g is compact, using a partition of
unity [15, 3.1.13] one can decompose g into a finite sum g =

∑N
i=1 gi, where gi ∈ X (U) is supported

in some ball contained in U for each i ∈ {1, 2, . . . , N}. Recalling that δFV is linear we see that there
exists an i ∈ {1, 2, . . . , N} such that δFV (gi) 6= 0. Set h = gi and ϕt(x) = x+ th(x) for x ∈ U and t in
some neighbourhood of 0 in R. Clearly ϕt ∈ D(U) is an injective admissible map whenever |t| is small
enough. Replacing possibly h with −h we shall assume that δFV (h) < 0. Then there exists t0 > 0 such
that ΦF ((ϕt)#V ) < ΦF (V ) = µ for t ∈ (0, t0]. Set ψ = ϕt0 .

In case V = vd(S) for some (H d, d) rectifiable set S ∈ C, we have

µ = ΦF (V ) > ΦF (ψ#V ) = ΦF (ψ[S]),

which contradicts the definition of µ.
In the other case, since ψ# : Vd(U)→ Vd(U) is continuous and V equals the limit limj→∞ vd(Sj∩U),

we have also ψ#V = limj→∞ ψ#vd(Sj ∩ U). For j ∈ N we set S̄j = U(Sj ∩ U) and Ŝj = R(Sj ∩ U) to
obtain

µ > lim
j→∞

ΦF (ψ#vd(Sj ∩ U)) ≥ lim
j→∞

ΦF (ψ#vd(Ŝj)) = lim
j→∞

ΦF (vd(ψ[Ŝj ]))

= lim
j→∞

ΦF (ψ[Sj ∩ U ])− ΦF (ψ[S̄j ]) .

Since limj→∞H d(S̄j) = 0, we see that µ > limj→∞ΦF (ψ[Sj ∩ U ]) which contradicts the definition
of µ.

6.7 Theorem. Assume U , C, F , µ, V , S, and {Si : i ∈ N} are as in Theorem 6.5 and that F ∈ wBC.
Then

(a) T = Tand(‖V ‖, x) for V almost all (x, T ).

(b) Θd(‖V ‖, x) = 1 for ‖V ‖ almost all x.

In particular, V = vd(S).

Proof. Proof of (a). Employing Lemma 6.6 together with [9, 2.3, 2.4] and Theorem 6.5(a)(b)(c)(e)(h)
we see that for ‖V ‖ almost all x and all W ∈ VarTan(V, x) there exists a Radon probability measure σ
over G(n, d) such that

Tand(‖V ‖, x) = T ∈ G(n, d) , Θd(‖V ‖, x) = ϑ ∈ [1,∞) ,(15)

W = ϑ(H d T )× σ , and δFxW = 0 .(16)

Since F ∈ wBC it follows that VarTan(V, x) = {Θd(‖V ‖, x)vd(Tand(‖V ‖, x))} for ‖V ‖ almost all x
which proves (a).

Proof of (b). Let T ∈ G(n, d) and ϑ ∈ [1,∞) satisfy (15)(16), and x ∈ U be such that Theo-
rem 6.5(h)(j) hold. Without loss of generality we shall assume x = 0. Assume, by contradiction, that
ϑ > 1. Define

δr = sup

{
dist(x, T )

|x|
: x ∈ spt ‖V ‖ ∩U(x, 2r)∼{0}

}
for r ∈ (0,∞) .

From Theorem 6.5(j), we see that δr ↓ 0 as r ↓ 0. Set εr = 12δ
1/2
r . For r ∈ (0, 1) let fr, hr ∈ C∞(R, [0, 1])

be such that

fr(t) = 1 ∀t ≤ 1− εr , fr(t) = 0 ∀t ≥ 1− 1
2εr , |f ′r(t)| ≤ 4/εr ∀t ∈ R ,

hr(t) = 1 ∀t ≤ 2δr , hr(t) = 0 ∀t ≥ 3δr , |h′r(t)| ≤ 2/δr ∀t ∈ R .
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For r ∈ (0, 1) we define pr ∈ C∞(Rn,Rn) by the formula

pr(x) = T\(x) +
(
1− fr(|T\(x)|)hr(|T⊥\ (x)|)

)
T⊥\ (x) for x ∈ Rn .

Clearly pr ∈ D(U) for r ∈ (0, 1) small enough. Note also that

pr(x) = x for x ∈ Rd∼((T ∩B(0, 1− εr/2)) + B(0, 3δr)) ⊆ Rd∼U(0, 1) ,

pr(x) = T\x for x ∈ (T ∩B(0, 1− εr)) + B(0, 2δr) ,

Lip pr ≤ 8 + 12
δr
εr
≤ 8 + δ1/2

r ≤ 9 for r ∈ (0, 1) .(17)

Set Ar = B(0, 1)∼U(0, 1 − εr) and p̃r = µr ◦ pr ◦ µ1/r. Let C ∈ VarTan(V, 0). By [1, 3.4(2)] and (a)
we get

(18) C = lim
r↓0

(µ1/r)#V = lim
r↓0

lim
i→∞

vd(µ1/r[Si]) = ϑvd(T ) ;

Hence, we have ‖C‖(∂B(0, 1)) = 0, which implies that

lim
r↓0

lim
i→∞

r−dH d(µr[Ar] ∩ Si) = 0 .

In particular, employing (17),

(19) lim
r↓0

lim
i→∞

r−dΦF (µr[Ar] ∩ Si) = 0 and lim
r↓0

lim
i→∞

r−dΦF (p̃r[µr[Ar] ∩ Si]) = 0 .

For r ∈ (0, 1) and i ∈ N we have

(20) ΦF (p̃r[Si ∩ U ]) = ΦF (Si ∩ U)− ΦF (Si ∩B(0, (1− εr)r))
+ ΦF (p̃r[Si ∩B(0, (1− εr)r)])− ΦF (Si ∩ µr[Ar]) + ΦF (p̃r[Si ∩ µr[Ar]]) .

Since limi→∞ΦF (Si ∩U) = µ, taking into account (19), to reach a contradiction it suffices to show that

(21) lim
r↓0

lim
i→∞

r−dΦF (p̃r[Si ∩B(0, (1− εr)r)])− r−dΦF (Si ∩B(0, (1− εr)r)) < 0 .

For i ∈ N and r ∈ (0, 1) we define

Sr,i = µ1/r[Si] ∩B(0, 1) , Fr = µ#
r F , and Ŝr,i = R(Sr,i) .

Observe that, using (19) and Theorem 6.5(h), claim (21) will follow from

(22) lim
r↓0

lim
i→∞

ΦFr(T\[Ŝr,i])− ΦFr(Ŝr,i) < 0 .

In order to prove (22), we observe that (18) implies

lim
r↓0

lim
i→∞

ˆ
B(0,1)

‖P\ − T\‖dvd(Ŝr,i)(x, P ) = 0 .

Since F is continuous, we obtain also

(23) lim
r↓0

lim
i→∞

ˆ
B(0,1)

|F (z, P )− F (z, T )|dvd(Ŝr,i)(x, P ) = 0 for any z ∈ Rn .
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We then estimate

ΦFr(T\[Ŝr,i])− ΦFr(Ŝr,i) =

ˆ
T\[Ŝr,i]

Fr(y, T ) dH d(y)−
ˆ
Fr(x, P ) dvd(Ŝr,i)(x, P )

≤
ˆ
T\[Ŝr,i]

Fr(0, T ) dH d(y)−
ˆ
Fr(0, T ) dvd(Ŝr,i)

+

ˆ
T\[Ŝr,i]

|Fr(y, T )− Fr(0, T )| dH d(y)

+

ˆ
|Fr(0, T )− Fr(0, P )|+ |Fr(0, P )− Fr(x, P )| dvd(Ŝr,i)(x, P ) .

Using continuity of F and (23), we see that the last two terms converge to zero when we first take the
limit with i→∞ and then with r ↓ 0. Therefore,

lim
r↓0

lim
i→∞

ΦFr(T\[Ŝr,i])− ΦFr(Ŝr,i)

= lim
r↓0

lim
i→∞

ˆ
T\[Ŝr,i]

Fr(0, T ) dH d(y)−
ˆ
Fr(0, T ) dvd(Ŝr,i)(x, P )

= lim
r↓0

lim
i→∞

Fr(0, T )
(
H d(T\[Ŝr,i])−H d(Sr,i)

)
≤ α(d)Fr(0, T )(1− ϑ) = −κ < 0 .

Thus, we have proved (22), which in turn implies (21). Hence, recalling (20), we can choose r ∈ (0, 1)
so that for all big enough i ∈ N

ΦF (p̃r[Si ∩ U ])− ΦF (Si ∩ U) < −1
2κr

d .

Up to choosing a bigger i ∈ N, we get ΦF (p̃r[Si ∩ U ]) < µ, which contradicts the definition of µ.

7 Equivalence of BC and AC

In this section we prove that the new condition BC can be used in place of AC. First we prove a small
lemma.

7.1 Lemma. Let F be an integrand of class C 1, x ∈ Rn, F ∈ BCx, µ be a probability measure over
G(n, d), k ∈ N, T ∈ G(n, k), W = (H k T )× µ. Then

δFxW = 0 =⇒ k ≥ d .

Proof. If d = n, then G(n, d) contains only one element so there is only one probability measure over
G(n, d) and the conclusion readily follows.

Assume 1 ≤ d < n and k < d. Choose R ∈ G(n, d − k) such that R ⊥ T and set V = (H d (T +
R))× µ. We get

δFxV (g) =

ˆ
R

ˆ
T

ˆ
G(n,d)

BF (u+ v, S) •Dg(x) dµ(S) dH k(u) dH d−k(v)

=

ˆ
R
δFxW (g(v + ·)) dH d−k(v) = 0 for g ∈X (Rn) .

Thus, δFxV = 0 and, since F ∈ BCx, we obtain µ = Dirac(T + R). Since R was chosen arbitrarily
from G(n, d) ∩ {R : R ⊥ T} ' G(n − k, d − k) which contains more than one element, we reach
a contradiction.

7.2 Lemma. Let x ∈ Rn. We have ACx = BCx .
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Proof. Step 1 We first prove that ACx ⊆ BCx. Let F ∈ ACx, µ be a Radon probability measure
over G(n, d), and T ∈ G(n, d). We define the varifold

W = (H d T )× µ ∈ Vd(R
n) .

Assume that δFxW = 0. We will show that µ = Dirac(T ), i.e., that F ∈ BCx. By the very definition of
anisotropic first variation, we deduce that for every test vector field g ∈X (Rn)

(24) 0 = δFxW (g) =

ˆ
BF (x, S) •Dg(y) dW (y, S)

=

ˆ ˆ
BF (x, S) •Dg(y) d(H d T )(y) dµ(S) =

ˆ
Ax(µ) •Dg(y) d(H d T )(y) .

Let e1, . . . , en−d be an orthonormal basis of T⊥. For any ϕ ∈ D(T,R), i, j ∈ {1, 2, . . . , n − d}, we can
find g ∈X (Rn) such that

g(y) = ϕ(T\y)(y • ei)ej whenever y ∈ (T + B(0, 1)) ;

hence, equation (24) yields
ˆ
ϕ(y)Ax(µ)ei • ej d(H d T )(y) = 0 for all ϕ ∈ D(T,R) and i, j ∈ {1, 2, . . . , n− d} ,

which shows that T⊥ ⊆ kerAx(µ). Since dimT⊥ = n− d, we get dim kerAx(µ) ≥ n− d. By Definition
4.7(a) we obtain n− d ≤ dim kerAx(µ) ≤ n− d, so it follows from Definition 4.7(b) that µ = Dirac(S)
for some S ∈ G(n, d). Then

Ax(µ) = BF (x, S) .

Directly from the definition of BF (x, S) it follows that S⊥ ⊆ kerBF (x, S). Therefore, since dim
kerBF (x, S) = n − d and T⊥ ⊆ kerBF (x, S) = kerAx(µ), we see that S = T , which shows that
F ∈ BCx.

Step 2 We prove now that BCx ⊆ ACx. Assume F ∈ BCx. Given a Radon probability measure µ
over G(n, d), we define

T = im(Ax(µ)∗) , k = dimT , V = (H k T )× µ ∈ Vd(R
n) .

Note that T⊥ = [im(Ax(µ)∗)]⊥ = kerAx(µ). Thus, similarly as in (24), we get that for every g ∈X (Rn)

δFxV (g) = Ax(µ) •
ˆ

D(g ◦ T\)(y) d(H k T )(y) +

ˆ
Ax(µ) •

(
Dg(y) ◦ T⊥\

)
d(H k T )(y) = 0 .

By Lemma 7.1, we obtain dimT = k ≥ d and conclude that

dim kerAx(µ) = n− dimT ≤ n− d ,

which is Definition 4.7(a). Moreover, if dim kerAx(µ) = n − d, then dimT = d and we can apply
Definition 4.8 to the varifold V and deduce that µ = Dirac(T ), which is precisely Definition 4.7(b).

8 The inclusion wBC ⊆ AE(P)
In this section we work with cubical test pairs (S,Q), where Q is now a d-dimensional cube; see Defini-
tion 8.1. Cubical test pairs give rise to the same classes of Almgren elliptic integrands as the test pairs
defined in Definition 4.1; see Remark 8.2.

The main result is Theorem 8.8, which shows that wBCx ⊆ AEx(P) given P is closed under Lipschitz
deformations leaving the boundary fixed and under gluing together several rescaled copies of an element
of P; see Definition 8.5.
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The second closedness property for P is needed to be able to perform a “homogenization” (one could
also call it a “blow-down”) argument. More precisely, given a minimiser P of ΦFx in {R : (R,Q) ∈ P}
we construct the varifold W , occurring in Definition 4.8, so that W Q×G(n, d) is a limit of a sequence
of varifolds W̃N = vd(PN ), where PN is constructed, for N ∈ N, by gluing together 2Nd rescaled copies
of P . A crucial observation is that PN has the same ΦFx energy as P which, in turn, is a minimiser
of ΦFx in P. This allows us to deduce that δFxWN = 0 using Lemma 6.6, provided PN is a competitor
(or a limit of competitors), i.e., if (PN , Q) ∈ P for an appropriate choice of the cube Q.

It is not at all obvious that Theorem 8.8 is valid with P being the set of all cubical test pairs; see
Remark 8.6. The proof that such family P has the necessary closedness property requires some subtle
topological arguments and is postponed to Section 9; see 9.24.

8.1 Definition. Let Q0 = [−1, 1]d ⊆ Rd. We say that (S,Q) is a cubical test pair if there exists
p ∈ O∗(n, d) such that

Q = p∗[Q0] , B = p∗[∂Q0] , S ⊆ Rn is compact and (H d, d) rectifiable ,
f [S] 6= B for all f : Rn → Rn satisfying Lip f <∞ and f(x) = x for x ∈ B .

8.2 Remark. In the rest of the paper we will work for simplicity on cubical test pairs, but it’s worth to
remark that the two notions are perfectly equivalent for our purposes. Indeed, if we denote with P1 the
set of rectifiable test pairs and with P2 the set of cubical test pairs, then we easily verify that for every
F being a C 0 integrand and x ∈ Rn, it holds AEx(P1) = AEx(P2) and AUEx(P1) = AUEx(P2). To
show this, we denote ρ =

√
d and Q0 = [−1, 1]d.

Given (S,Q) ∈ P2, we find p ∈ O∗(n, d) such that Q = p∗[Q0] and construct (R,D) ∈ P1 by setting

T = im p∗ , D = T ∩B(0, 1) , D̄ = µρ[D] , R̄ = S ∪ (D̄∼Q) , R = µ1/ρ[R̄] .

Then
ρd
(
ΦFx(R)− ΦFx(D)

)
= ΦFx(R̄)− ΦFx(D̄) = ΦFx(S)− ΦFx(Q) .

Given (R,D) ∈ P1 we choose p ∈ O∗(n, d) such that D ⊆ im p∗ and construct (S,Q) ∈ P2 by setting

Q = p∗[Q0] , Q̄ = µρ[Q̄] , S̄ = R ∪ (Q̄∼D) , S = µ1/ρ[S̄] .

Then
ρd
(
ΦFx(S)− ΦFx(Q)

)
= ΦFx(S̄)− ΦFx(Q̄) = ΦFx(R)− ΦFx(D) .

Therefore, AEx(P1) = AEx(P2) and AUEx(P1) = AUEx(P2).

8.3 Definition. Let Q be a d-dimensional cube in Rn (see Definition 5.1), and X ⊆ Rn. We say
that (Y,Q) is a multiplication of (X,Q) if there exist k ∈ P and a finite set A of d-dimensional cubes
in Rn of side-length l(Q)/k such that

Q =
⋃
A , Intc(K) ∩ Intc(L) = ∅ ∀K 6= L ∈ A ,

Y =
⋃{

τ c(K) ◦ µ1/k ◦ τ−c(Q)[X] : K ∈ A
}
.

8.4 Remark. Observe that a multiplication (Y,Q) of (X,Q) is uniquely determined by the parameter k
occurring in Definition 8.3. Thus, we may define the k-multiplication of (X,Q) to be exactly (Y,Q).

8.5 Definition. We say that a set Q of pairs of subsets of Rn is a good family if

(a) all elements of Q are cubical test pairs;

(b) if (X,Q) ∈ Q, N ∈ N, and (Y,Q) is the 2N -multiplication of (X,Q), then (Y,Q) ∈ Q;

(c) if (X,Q) ∈ Q, f : Rn → Rn is Lipschitz, and f(x) = x for x ∈ ∂cQ, then (f [X], Q) ∈ Q.
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8.6 Remark. It is plausible that the set of all cubical test pairs is a good family and, indeed, in Section 9
we prove it is. However, this is not at all obvious.

Consider the Adams’ surface; see [24, Example 8 on p. 81]. The Möbius strip M and the triple
Möbius strip T are both homotopy equivalent to the 1-dimensional sphere and both can be continuously
embedded in some Rn so that (M,Q) and (T,Q) become cubical test pairs, where Q = [0, 1]2×{0}n−2.
However, if one puts M and T side by side touching only along one 1-dimensional face of Q, then one
obtains the Adams’ surface A, which retracts onto its boundary. This, as explained in [24, Example 8
on p. 81], is a consequence of the fact that the inclusion of the boundary of M into M has degree 2,
the inclusion of the boundary of T into T has degree 3, these numbers are relatively prime, and A is
homotopy equivalent to the wedge sum (a.k.a. “bouquet”; see 9.7) of two circles so, defining f : A→ S1

to be of degree −1 on M and of degree 1 on T , we get a map such that f ◦ j is of degree one, where
j : S1 → A is a parameterization of the boundary of A. One can then construct a Lipschitz retraction of
A onto its boundary; see 9.6. Luckily for us, the situation is different if one puts together many copies
of the same set X. We prove in 9.17 that if (X,Q) is a cubical test pair, then one cannot have two maps
f, g : X → ∂cQ such that deg(f |∂cQ) and deg(g|∂cQ) are relatively prime.

Before stating and proving the main theorem of this section, we need the following lemma, which,
roughly speaking, will be used as an almost uniqueness result for minimizers of the area functional in
the class of cubical test pairs:

8.7 Lemma. Given a cubical test pair (R,Q) as in Definition 8.1 and x ∈ Rn. If

(25) ΦFx(R) < ΦFx(Q) ,

then

(26) H d(R) > H d(Q) .

Proof. Assume by contradiction that (26) does not hold. Thus in particular

(27) H d(R ∩ (Q×Rn−d)) ≤H d(R) ≤H d(Q) .

Denoting with T the d-plane containing Q, we observe that

(28) H d(R ∩ (Q×Rn−d)) ≥H d(T\(R ∩ (Q×Rn−d))) ≥H d(Q) ,

otherwise there would exist a d-dimensional open ball B ⊂ Q such that

(29) (B ×Rn−d) ∩R = ∅ .

Since R is compact, then (29) would imply the existence of f : Rn → Rn satisfying Lip f < ∞ and
f(x) = x for x ∈ ∂cQ, such that f [R] = ∂cQ, which would contradict the property of (R,Q) being a
cubical test pair. By (28) and the area formula (a.f.) [15, 3.2.20], we compute

(30) H d(Q)
(28)
≤ H d(T\(R ∩ (Q×Rn−d))) ≤

ˆ
Q

H 0(T−1
\ (y) ∩R) dH d(y)

(a.f.)
=

ˆ
R∩(Q×Rn−d)

ap JdT\(y) dH d(y) ≤H d(R ∩ (Q×Rn−d))
(27)
≤ H d(Q) .

Then the inequalities in (30) are all equality, which implies that ap JdT\(y) = 1 for H d-a.e. y ∈
R ∩ (Q×Rn−d). Hence,

(31) Tand(H d R, y) = T, for H d-a.e. y ∈ R ∩ (Q×Rn−d) .

We can then compute the following chain of inequalities, which provides a contradiction

ΦFx(Q) =

ˆ
Q
F x(T ) dH d(y)

(28)
≤
ˆ
R∩(Q×Rn−d)

F x(T ) dH d(y)

(31)
≤ ΦFx(R ∩ (Q×Rn−d)) ≤ ΦFx(R)

(25)
< ΦFx(Q) .
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We can finally prove the following:

8.8 Theorem. Assume x ∈ Rn and P is a good family (cf. Definition 8.5). Then wBCx ⊆ AEx(P).

Proof. We proceed by contradiction. Assume F ∈ wBCx∼AEx(P). Then there exists (S,Q) ∈ P such
that

H d(S) > H d(Q) and ΦFx(S) ≤ ΦFx(Q) .

Define
B = ∂cQ and C =

{
S : (S,Q) ∈ P

}
.

Note that C is a good class in Rn∼B in the sense of Definition 6.3.
Next, we employ Theorem 6.7 with F x in place of F together with Theorem 6.5(c)(a)(k) to find

a compact (H d, d) rectifiable set R ⊆ Rn such that

ΦFx(R) = inf
{

ΦFx(P ) : P ∈ C
}
≤ ΦFx(S) ≤ ΦFx(Q) .

Proceeding as in Lemma 4.4 we see that (R,Q) is a cubical test pair (may be not in P). In case
ΦFx(R) < ΦFx(Q), by Lemma 8.7 we get H d(R) > H d(Q), and we set P = R. Otherwise, we have
ΦFx(R) = ΦFx(Q) = ΦFx(S) and we set P = S. In any case, setting V = vd(P ) ∈ Vd(R

n) and using
Lemma 6.6, we obtain

∞ > H d(P ) > H d(Q) and δFxV (g) = 0 for g ∈X (Rn∼B) .

Let p ∈ O∗(n, d) and T ∈ G(n, d) be such that p∗[Q0] = Q ⊆ T , where Q0 = [−1, 1]d. For each N ∈ N
we define PN and AN so that (PN , Q) is the 2N -multiplication of (P,Q) and AN is the corresponding
set of d-dimensional cubes covering Q as in Definition 8.3. We also set

WN =
∑
v∈Zd

vd(τ p∗(2v)[PN ]) ∈ Vd(R
n)

and RK = τ c(K) ◦ µ2−N+1 [P ] for K ∈ AN .

Observe that for N ∈ N and ρ ∈ (0,∞) there are at most α(d)
(
ρ+ diamP

)d translated copies of PN in
spt ‖WN‖ ∩B(0, ρ); therefore,

‖WN‖B(0, ρ) ≤ α(d)
(
ρ+ diamP

)d
H d(PN ) = α(d)

(
ρ+ diamP

)d
H d(P ) for ρ ∈ (0,∞) .

So WN is a Radon measure and there exists a subsequence {WNi : i ∈ N} which converges to some
varifold W in Vd(R

n). Moreover, we have

RK ⊆ T + B(0, 2−N diamP ) for K ∈ AN so spt ‖W‖ ⊆ T .

Directly from the construction and by density of base 2 rational numbers in R, it follows also that W is
translation invariant in T , i.e., (τ v)#W = W for all v ∈ T . Hence, there exists ϑ ∈ (0,∞) and a Radon
probability measure µ over G(n, d) such that

W = ϑ(H d T )× µ and ϑ =
H d(P )

H d(Q)
> 1 .

We define

W̃N = vd(PN ) ∈ Vd(R
n) for N ∈ N and W̃ = lim

i→∞
W̃Ni = ϑ(H d Q)× µ .

We also record that

H d(PN ) = H d(P ) and ΦFx(PN ) = ΦFx(P ) for N ∈ N ,
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and since the supports of ‖W̃N‖ for N ∈ N all lie in a fixed compact set (cf. Remark 3.11) we also have

(32) ΦFx(W̃ ) = lim
i→∞

ΦFx(W̃Ni) = lim
i→∞

ΦFx(PNi) = ΦFx(P ) .

We claim that

(33) δFxW = 0.

First we observe that this would immediately give a contradiction and conclude the proof. Indeed,
since F ∈ wBCx, we deduce from (33) and Definition 4.8 that µ = Dirac(T ). This, in turn, yields the
following contradiction

ΦFx(Q) < ϑΦFx(Q) = ΦFx(W̃ )
(32)
= ΦFx(P ) ≤ ΦFx(Q) .

We are just left to prove the claim (33). To this end, since W is invariant under translations in T ,
it suffices to show that

δFxW̃N (g) = 0 for N ∈ N and g ∈X (Rn∼B) .

If P = S ∈ C, since C is a good family, then PN ∈ C and W̃N = vd(PN ) and

‖W̃N‖(Rn) = H d(P ) = inf{ΦFx(K) : K ∈ C} for N ∈ N ;

hence, applying Lemma 6.6, we see that δFxW̃N (g) = 0 for g ∈X (Rn∼B) and N ∈ N.
In case P = R, we use Theorem 6.5 to find a minimising sequence {Si ∈ C : i ∈ N} such that

vd(P ) = V = limi→∞ vd(Si ∩ Rn∼B). Defining Si,N ∈ C so that (Si,N , Q) is the 2N -multiplication
of (Si, Q) we get W̃N = limi→∞ vd(Si,N ). Recalling Theorem 6.5(b)(c)(h) we may once again apply
Lemma 6.6 to see that also in this case δFxW̃N (g) = 0 for g ∈ X (Rn∼B) and N ∈ N so the proof is
done.

9 Cubical test pairs form a good family

Here we prove that the family of all cubical test pairs is good in the sense of 8.5. To our surprise the
proof had to employ a few sophisticated (yet classical) tools of algebraic topology. Given a cubical test
pair (X,Q) and its 2N -multiplication (Y,Q) we need to show that S = ∂cQ is not a Lipschitz retract
of Y , which is the same as showing that there is no continuous map f : Y → S with deg(f |S) = 1;
cf. 9.6. This becomes a topological problem of independent interest. We first sketch the idea of the
proof, highlighting the main points of the argument.

Let (X,Q) be a cubical test pair. To be able to use tools of algebraic topology we need to pass from an
arbitrary compact setX satisfying 0 < H d(X) <∞ to an open set U containingX and having homotopy
type of a d-dimensional CW-complex. We achieve this by applying the deformation theorem 5.8 to X,
obtaining an open set U ⊆ Rn with X ⊆ U and a d-dimensional cubical complex E ⊆ U such that
∂cQ ⊆ E ⊆ U and E is a strong deformation retract of U ; see 9.19. Moreover, we get that (U,E) is
a Borsuk pair, i.e., has the homotopy extension property HEP; see 9.2 and 9.3, which will be a useful
tool to get suitable homotopy equivalences.

The topological part of the argument works as follows. Consider a 2-multiplication (Ỹ , Q) of (U,Q)
and assume there exists a retraction r̃ : Ỹ → ∂cQ. Note that ∂cQ is a topological (d − 1)-dimensional
sphere and set S = ∂cQ. Different copies of µ1/2[U ∼S] may, in general, intersect inside Ỹ . Thus, we
define the lifted 2-multiplication (Y,Q) of (U,Q) in order to prevent this intersection and we observe that
r̃ gives rise to a retraction r : Y → S; cf. 9.21. Next, we consider the pairwise orthogonal affine (d− 1)-
planes, lying in the affine d-plane spanned by Q, parallel to the sides of Q, and passing through the
center of Q. We denote with R the union of these planes intersected with Q. Since R is contractible, by
the aforementioned HEP, we deduce that Y is homotopy equivalent to Y/R which, in turn, is homotopy
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equivalent to the wedge sum Z of 2d copies of U ; see 9.7. Let Σ be the wedge sum of 2d copies of S,
πi : Σ→ S be projections onto particular components of Σ, τi : S ↪→ Σ be inclusions of components, and
j : Σ ↪→ Z be the inclusion map; cf. 9.8. The inclusion S ↪→ Y composed with the homotopy equivalences
yields a map α : S → Σ ⊂ Z such that deg(πi ◦ α) = 1 for all i ∈ {1, 2, . . . , 2d}. In particular, since
Hd−1(Σ) '

⊕2d

i=1 Hd−1(S) = Z2d by [19, Corollary 2.25], we get

(34) α∗ =
∑2d

i=1 τi∗ : Hd−1(S)→ Hd−1(Σ) .

If ρ : Z → S is obtained by composing the retraction r with the homotopy equivalences, then deg(ρ ◦
j ◦ α) = 1. The following homotopy commutative diagram presents the situation.

S
τi // Σ =

∨2d

i=1 S

j
��

πi // S

S //

α

44

Y
,,

≈

r

33Y/R
..

kk ≈ Z =
∨2d

i=1 U
ρ //ll S

Recalling (34) we see that 1 = deg(ρ ◦ j ◦ α) =
∑2d

i=1mi, where mi = deg(ρ ◦ j ◦ τi). Since Z is a
wedge sum of copies of the same space U , we get 2d maps fi : U → S such that deg(fi|S) = mi and∑2d

i=1mi = 1. The question now is whether there exists g : U → S which induces the map

2d∑
i=1

fi∗ : Hd−1(U)→ Hd−1(S) = Z .

If so, then deg(g|S) = 1 and g yields a retraction U → S by 9.6.
This is the point where we need to employ algebra and algebraic topology. We prove in 9.14 that if E

is a d-dimensional CW-complex, then any homomorphism ζ : Hd−1(E) → Z is induced by some map
g : E → S. The cellular homology of E (which coincides with the singular homology) is computed from
the chain complex (Ck, δk)

d
k=0, where the group of k-dimensional chains Ck is the free abelian group

generated by the k-dimensional cells (or cubes) of E. Observe that if G is a torsion group (i.e. every
element has finite order), then there exists only one homomorphism G→ Z, namely, the one sending all
elements of G to zero. Therefore, we do not lose any information by composing the homomorphism ζ
with the projection p : ker δd−1 � ker δd−1/ im δd = Hd−1(E), which yields a homomorphism ξ = ζ ◦ p
defined on cycles. Since Cd−1 and Cd−2 are free groups (in particular, projective Z-modules), the group
Cd−1 splits into a direct sum Cd−1 = ker(δd−1) ⊕ H and we can extend ξ to all chains by setting
ξ|H = 0; cf. 9.13. Hence we can define g on any (d− 1)-dimensional cell σ of E as g|σ = hσ ◦ π, where
π : σ � σ/∂cσ ' S and hσ : S → S is a map of degree ξ(σ). The next step is to extend g to all the
d-dimensional cells of E. To this end we employ the obstruction theory, which is a sophisticated version
of the Brouwer fixed-point theorem and its consequence: the fact that a map S → S extends to a map
Q→ S if and only if its topological degree is zero. Given a d-dimensional cell ω of E, we need to ensure
that g|∂cω has topological degree zero. Recalling that ξ(δdω) = ζ ◦ p(δdω) = 0 whenever ω ∈ Cd, the
required condition on g follows.

To conclude the argument, we observe that the 2N -multiplication of (X,Q) is the same as the 2-
multiplication of (W,Q), where W is the 2N−1-multiplication of (X,Q); thus, we get the result by
induction.

9.1 Definition. For k ∈ N we set Sk = Rk+1 ∩ ∂B(0, 1).

9.2 Definition (cf. [19, Chap. 0, p. 14]). Let X be a topological space and A ⊆ X be a subspace. Set
I = [0, 1] ⊆ R. We say that the pair (X,A) has the homotopy extension property HEP if for every
topological space Y every continuous function h : (X × {0}) ∪ (A × I) → Y extends to a continuous
homotopy H : X × I → Y .
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9.3 Remark (cf. [19, Chap. 0, Example 0.15, p. 15]). If k ∈P, A ⊆ X ⊆ Rn, A is compact of dimension k,
and there exists an open set U ⊆ Rn such that A ⊆ U ⊆ X and U is homeomorphic to A×Rn−k (i.e.
U is a trivial vector bundle over A with fiber Rn−k), then (X,A) has the HEP. In particular, if A is
a sum of a finite set of k-dimensional cubes and A ⊆ IntX, then (X,A) has the HEP.

9.4 Remark (cf. [19, Chap. 0, Prop. 0.17, p. 15]). If (X,A) has the HEP and A is contractible, then X
and X/A are homotopy equivalent.

9.5 Remark. We shall also use the following simple facts:

• if X,Y ⊆ Rn, A = X ∩ Y , and both (X,A) and (Y,A) have the HEP, than (X ∪ Y,A) has the
HEP;

• if (X,A) has the HEP and X ⊆ Y , then (Y,A) has the HEP.

9.6 Lemma. Assume S,X ⊆ Rn are compact, S ⊆ X, ε ∈ (0, 1), (Y, S) has the HEP for any Y ⊆ Rn

with S ⊆ IntY , and there exists a Lipschitz retraction π : S + B(0, ε) → S. Let j : S → Rn be the
inclusion map.

The following properties are equivalent:

(a) S is a Lipschitz retract of X;

(b) S is a retract of X;

(c) there exists δ ∈ (0, ε) such that S is a retract of X + B(0, δ);

(d) there exist a continuous map f : X → S such that deg(f ◦ j) = 1.

Proof. Clearly the implications (a)⇒ (b), (c)⇒ (b), (b)⇒ (d) hold.
Proof of (b) ⇒ (a): Assume r : X → S is a retraction. Using the Tietze extension theorem (see

e.g. [20, Chap. 7, Problem O, p. 242]), we extend r to a continuous function R̃ : Rn → Rn. We mollify R̃
to obtain a smooth function R : Rn → Rn such that |R(x) − r(x)| ≤ 2−12ε for x ∈ X; in particular,
dist(R(x), S) ≤ 2−12ε for x ∈ X so π ◦ R : X → S is well defined. Since r(x) = π(x) for x ∈ S, there
exists δ ∈ (0, ε) such that |R(x) − π(x)| ≤ 2−8ε for x ∈ S + B(0, δ). Finally, we define a Lipschitz
retraction f : X → S by

f(x) =


π(x) if dist(x, S) ≤ 2−8δ ,

π(R(x)) if dist(x, S) ≥ 2−7δ ,

π
(
(1− t)π(x) + tπ(R(x))

)
if t = 28 dist(x, S)/δ − 1 ∈ (0, 1) .

Proof of (b) ⇒ (c): Assume r : X → S is a retraction. Once again we extend r to a continuous
function R : Rn → Rn. Note that R is uniformly continuous on every compact subset of Rn; hence,
there exists δ ∈ (0, 1) such that R[X + B(0, δ)] ⊆ S + B(0, ε). We get that π ◦R|X+B(0,δ) is the desired
retraction.

Proof of (d) ⇒ (b): Let f : X → S be continuous and such that deg(f ◦ j) = 1. Then there exists
a continuous homotopy h : S × I → S such that h(x, 0) = f(x) and h(x, 1) = x for x ∈ S. We extend f
to a continuous function F : Rn → Rn using the Tietze extension theorem and we find δ ∈ (0, 1) such
that F [X + B(0, δ)] ⊆ S + B(0, ε). Set Y = X + B(0, δ). Observe that π ◦ F |Y : Y → S is well
defined. Recall that (Y, S) has the HEP so we may extend h to a homotopy H : Y × I → S such that
H(x, 0) = π(F (x)) for every x ∈ Y . The desired retraction r : X → S is then given by r(x) = H(x, 1)
for x ∈ X.

9.7 Definition. Assume J is an index set and for each α ∈ J we are given a pointed topological space
(Xα, xα). We define the wedge sum to be the pointed topological space∨

α∈J(Xα, xα) =
(⋃{

Xα × {α} : α ∈ J
})
/
{

(xα, α) : α ∈ J
}
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endowed with the quotient topology.
If J = {1, 2, . . . N} for some N ∈P, then we use the notation∨

α∈J(Xα, xα) =
∨N
i=1(Xi, xi) = (X1, x1) ∨ (X2, x2) ∨ · · · ∨ (XN , xN ) .

9.8 Remark. (a) Let Z =
∨
α∈J(Xα, xα) and α ∈ J . There exist continuous maps τα : Xα ↪→ Z and

πα : Z � Xα. The first one is simply the inclusion and the second comes from the projection
Z � Z/

∨
β∈J ∼{α}(Xβ, xβ).

(b) For each α ∈ J assume (Xα, xα) and (Yα, yα) are pointed topological spaces and there exist maps
fα : (Xα, xα)→ (Yα, yα) and gα : (Yα, yα)→ (Xα, xα) such that fα ◦gα ≈ idYα and gα ◦fα ≈ idXα .
Then

∨
α∈J(Xα, xα) and

∨
α∈J(Yα, yα) are homotopy equivalent.

9.9 Definition (cf. [17, §3]). A CW-complex is a topological space X such that for l ∈ N there exist:
an index set Jl, a family of l-dimensional balls {σli : i ∈ Jl}, and for each i ∈ Jl there is a continuous
characteristic map ϕli : σli → X such that

(a) setting X−1 = ∅ and Xk =
⋃k
l=0

⋃
i∈Jl imϕli for k ∈ N, we have X =

⋃∞
k=0X

k;

(b) ϕli restricted to Intσli is a homeomorphic embedding;

(c) the image of ∂σli under ϕ
l
i is contained in X l−1;

(d) the image of ϕli intersects only finitely many images of other characteristic maps;

(e) a set F ⊆ X is closed in X if and only if (ϕli)
−1[F ] is closed in σli for all l ∈ N and i ∈ Jl.

The image of any ϕli shall be called an l-dimensional cell of X and the set X l the l-skeleton of X.
If X = Xk for some k ∈ N, then we say that X is k-dimensional and if, in addition, all the sets Jl for
l ∈ {0, 1, . . . , k} are finite, then we say that X is a finite CW-complex.

9.10 Remark. A CW-complex X can also be seen as constructed inductively by attaching cells σli to
X l−1 via maps ϕli|∂σli ; cf. [19, Chap. 0, p. 5].

9.11 Remark. If A ⊆ Kn
∗ , then X =

⋃
A is a CW-complex with Xk =

⋃
{Q ∈ Kn

k : Q ⊆ X} for
k ∈ {0, 1, . . . , n}. If A is finite, then X is a finite CW-complex.

9.12 Remark. Assume X is a CW-complex. We shall use cellular homology of X; see [17, §12] or [19,
§2.2, p. 137]. Recall that for l ∈ N the chain group

Cl(X) = Hl(X
l, X l−1)

is the free abelian group with basis {σli : i ∈ Jl}. Next, define the differentials

d0 : C0 → {0} and dl : Cl(X)→ Cl−1(X)

by dl(σ
l
i) =

∑
j∈Jl−1

deg(ψli,j)σ
l−1
j for l ∈P ,(35)

where ψli,j is defined as the composition

∂σli

ϕli|∂σl
i−−−−→ X l � X l/(X l∼σl−1

j )
'−→ Sl−1 .

Clearly, by 9.9(d), the sum in (35) is finite. Moreover, (Cl(X), dl)
∞
l=0 defines a chain-complex whose

homology groups coincide with singular homology groups of X; see [19, Theorem 2.35] or [17, §12,
p. 94].

9.13 Remark. Let F be a free abelian group. The following observations shall become particularly useful:
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(a) If G is a subgroup of F , then G is itself a free abelian group; cf. [22, I,§7,Theorem 7.3].

(b) If G is another free abelian group and d : F → G, then F splits into a direct sum F = ker d⊕H
for some subgroup H of F .

To prove the above claim (b), let A = im d ⊆ G. Then A is a subgroup of G; hence, A is a free
abelian group. Let {ai : i ∈ J} be a basis of A. In order to prove the existence of a splitting, it
suffices to define a homomorphism f : A → F such that d ◦ f = idA. For each i ∈ J we choose
arbitrarily bi ∈ F such that d(bi) = ai and set f(ai) = bi. Then f extends to a homomorphism
A→ F simply because A is free.

Next, we prove that if X is a (k + 1)-dimensional CW-complex, then any homomorphism from the
kth homology group Hk(X) to the group of integers Z is induced by some map X → Sk.

9.14 Lemma. Assume k ∈ N, X is a (k+ 1)-dimensional CW-complex, and there is given a homomor-
phism ζ : Hk(X)→ Z. Then there exists f : X → Sk such that f∗ = ζ.

Proof. For l ∈ {0, 1, 2, . . . , k + 1} let Jl be the set indexing l-dimensional cells of X and for i ∈ Jl let
{σli : i ∈ Jl}, ϕli : σli → X, dl, Cl(X), X l be defined as in 9.9 and 9.12.

By definition Ck(X) are free abelian groups. Set K = ker dk ⊆ Ck(X) and employ 9.13(b) to find
another subgroup L ⊆ Ck(X) such that Ck(X) = K ⊕ L. Let p : K � Hk(X) and q : K ⊕ L � K be
canonical projections. Define ξ : Ck(X)→ Z as the composition

Ck(X)
q−−→ K

p−−→ Hk(X)
ζ−−→ Z .

We record now some trivial observations

(36) ζ(x) = 0 whenever x ∈ Hk(X) has finite order , ζ ◦ p = ξ|K , ξ ◦ dk+1 = 0 .

We shall first construct γ : Xk → Sk such that γ∗ : Hk(X
k) → Z equals ζ ◦ p and then extend γ

to f : Xk+1 → Sk using a bit of obstruction theory.
For each i ∈ Jk the space σki /∂σ

k
i is homeomorphic to Sk and we define

γi : σki /∂σ
k
i → Sk so that deg(γi) = ξ(σki ) .

Note that the space Xk/Xk−1 is homeomorphic to the wedge sum
∨
i∈Jk(σki /∂σ

k
i , [∂σ

k
i ]) of topological

spheres. We construct the map

γ̃ : Xk/Xk−1 → Sk so that γ̃|σki /∂σki = γi for i ∈ Jk .

Let π : Xk � Xk/Xk−1 be the projection. Finally, set

γ = γ̃ ◦ π .

Note that Hk(X
k) = K. One readily verifies that γ∗ = ξ|K = ζ ◦ p.

Now we need to extend γ to the (k+1)-dimensional cells in X. Employing the obstruction theory [17,
§17] this is possible if for each j ∈ Jk+1 the composition

∂σk+1
j

ϕk+1
j |

∂σk+1
j−−−−−−−→ Xk γ−−→ Sk

has topological degree zero. However, this degree equals exactly ξ(dk+1(σk+1
j )) which is zero by (36).

Therefore, there exists f : X → Sk such that f |Xk = γ; in particular, f∗ : Hk(X)→ Z equals ζ.
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9.15 Remark. Employing some more sophisticated tools of algebraic topology, a shorter proof of Lemma
9.14 can be given as follows. The universal coefficient theorem [19, Theorem 3.2] provides an epimorphism

h : Hk(X; Z) � Hom(Hk(X),Z) .

On the other hand, there exists an isomorphism (see [19, Theorem 4.57])

T :
[
X,K(Z, k)

]
htp

'−−→ Hk(X; Z) ,

where [X,K(Z, k)]htp denotes the set of homotopy classes of maps X → K(Z, k) and K(Z, k) is the
Eilenberg-MacLane space; cf. [19, §4.2, p. 365]. Therefore, any homomorphism Hk(X) → Z is induced
by some map X → K(Z, k). Observing, that K(Z, k) is a CW-complex obtained from the sphere Sk
by gluing in cells of dimension at least k + 2, we see, since X is (k + 1)-dimensional and the homotopy
groups πl(Sk+2) = 0 for l ∈ {1, 2, . . . , k + 1}, that any map X → K(Z, k) is homotopic to a map whose
image lies in Sk.
9.16 Remark. The bound on the dimension of X plays a crucial role in 9.14. Indeed, if the dimension
of X is bigger than k + 1, then an element of Hom(Hk(X),Z) might not be induced by a map X → Sk
as the following example shows. Let k = 2 and X be the complex projective space of real dimension 4
(often denoted CP2). Then X is a CW-complex constructed by attaching a 4-dimensional cell to S2 via
the Hopf fibration S3 → S2. We have

H2(X) = H2(X) = H4(X) = Z .

Recall that H∗(X) is the graded ring Z[σ]/σ3, where σ is the generator of H2(X); cf. [19, Theorem 3.12].
Finally, since all the homology and cohomology groups of X are free, the universal coefficient theorem
provides a natural isomorphism

j : H2(X)
'−→ Hom(H2(X),Z) .

Assume there exists a map f : X → S2 such that f∗ : H2(X) → H2(S2) is an isomorphism.
In consequence, f∗ : H2(S2)→ H2(X) is also an isomorphism. However, the map f∗ is a homomorphism
of graded rings and this gives a contradiction because the square of the generator of H2(S2) is zero while
the square of the generator of H2(X) is the generator of H4(X).

9.17 Corollary. Let k ∈ N, X be a (k + 1)-dimensional CW-complex, and j : Sk → X be continuous.
Define

D =
{
|deg(f ◦ j)| : f : X → Sk continuous

}
∼{0} .

If D 6= ∅ and A = minD, then
D = {mA : m ∈P} .

Proof. If D = ∅ there is nothing to prove, so we assume D 6= ∅. Let f1, f2 : X → Sk be two
continuous maps such that di = |deg(fi ◦ j)| ∈ P for i ∈ {1, 2}. Set d = gcd(d1, d2) ∈ P. By the
Euclidean algorithm, there exist integers c1, c2 such that d = c1d1 + c2d2. We employ 9.14 to find a map
f : X → Sk such that f∗ = c1f1∗ + c2f2∗. Then |deg(f ◦ j)| = d ∈ D.

We have shown that whenever d1, d2 ∈ D ⊆ P, then gcd(d1, d2) ∈ D. Moreover, if f : X → Sk,
| deg(f ◦ j)| = A ∈ D, and m ∈P, then mA ∈ D because one can post-compose f with a map Sk → Sk
of degree m.

9.18 Corollary. Let k,N ∈ N, X be (k + 1)-dimensional CW-complex, x0 ∈ X, Z =
∨N
i=1(X,x0) and

j : Sk → Z be continuous. For l ∈ {1, 2, . . . , N} define πl : Z → X as in 9.8. Assume there exists
ϕ : Sk → X such that for l ∈ {1, 2, . . . , N} the map πl ◦ j : Sk → X is homotopic either to ϕ or to the
constant map and π1 ◦ j ≈ ϕ. Set

D =
{
|deg(f ◦ j)| : f : Z → Sk continuous

}
,

E =
{
|deg(g ◦ ϕ)| : g : X → Sk continuous

}
.

Then D = E.
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Proof. For l ∈ {1, 2, . . . , N} let τl : X → Z be the injection as in 9.8. If g : X → Sk is continuous, then
f = g ◦ π1 : Z → Sk is homotopic to g ◦ ϕ so deg(g ◦ ϕ) = deg(f ◦ j) and we get E ⊆ D. On the other
hand if f : Z → Sk, then we consider the maps fl = f ◦ τl : X → Sk for l ∈ {1, 2, . . . , N} to see that

D 3 |deg(f ◦ j)| =
∣∣∑N

l=1 deg(fl ◦ πl ◦ j)
∣∣ ∈ E by 9.17 ;

thus, D ⊆ E.

9.19 Lemma. Let J = [0, 2], ε ∈ (0,∞) and assume

Q ∈ Kn
d , S = ∂cQ , X ⊆ Rn is compact , S ⊆ X , H d(X) <∞ .

Then there exist: a Lipschitz map f : I ×Rn → Rn, a compact set E ⊆ Rn, an open set U ⊆ Rn, and
a finite set B ⊆ Kn

d such that

S ⊆ E =
⋃
B = f [{2} × U ] , X ⊆ U ⊆ X + B(0, ε) , f [J × U ] ⊆ V ,

f(t, x) = x for (t, x) ∈ I × E , E is a strong deformation retract of U .

Proof. For R ∈ Kn denote by R̃ the n-dimensional cube with the same center as R and side-length three
times bigger than R. Let N ∈P be such that 2−N+4√n < min{ε, l(Q)} and define

A =
{
R ∈ Kn

n(N) : R̃ ∩X 6= ∅
}
.

Apply 5.8 with Kn
n, A, X in place of F , A, S to obtain a Lipschitz map f : J ×Rn → Rn, an open

set V ⊆ Rn, and a finite set B ⊆ Kn
d (N). Set E =

⋃
B and U = V ∩ Int

⋃
A and recall 5.10. Since

S ⊆
⋃

Kn
d−1(N) we get S ⊆ E.

For convenience and brevity of the notation we introduce the following definition.

9.20 Definition. We define R∞ to be the direct sum of countably many copies of R and for i ∈P we
let ei ∈ R∞ be the standard basis vector of the ith copy of R. Thus, R∞ is the set of all finite linear
combinations of the vectors {ei : i ∈P}.

We want to compare, up to homotopy, a multiplication (Y,Q) of some cubical test pair (X,Q) with
the wedge sum of certain number of copies of X. However, it might happen that two copies of X placed
side by side intersect outside ∂cQ. To prevent this, we define a lifted multiplication so that different
copies of X intersect only along ∂cQ.

9.21 Definition. Let X, Q, k, A = {K1, . . . ,Kkd} be as in 8.3. Let ei for i ∈P be as in 9.20. Define
j : Rn → Rn ×R∞, p : Rn ×R∞ → Rn, and ηi : Rn → Rn ×R∞ for i ∈ {1, 2, . . . , kd} by

j(x) = (x, 0) , p(x, y) = x , ηi(x) = j ◦ τ c(Ki) ◦ µ1/k ◦ τ−c(Q)(x) + dist(x, ∂cQ)ei .

We say that (Y, j[Q]) is the lifted k-multiplication of (X,Q) if

Y =
⋃{

ηi[X] : i ∈ {1, 2, . . . , kd}
}
⊆ Rn ×R∞ .

9.22 Lemma. Assume

U ⊆ Rn is open , Q = [0, 1]d × {0}n−d ∈ Kn
d (0) , S = ∂cQ , N ∈P ,

B ⊆ Kn
d is finite , S ⊆ E =

⋃
B ⊆ U , E is a strong deformation retract of U ,

j and p are as in 9.21 , (Y, j[Q]) is the lifted 2N -multiplication of (U,Q) ,

(Z, j[Q]) is the lifted 2N−1-multiplication of (U,Q) .

If j[S] is a Lipschitz retract of Y , then j[S] is a Lipschitz retract of Z.
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Proof. Suppose there exists a Lipschitz retraction r : Y → j[S]. Due to 9.6 it suffices to show that there
exists a continuous map h : Z → S such that deg(h ◦ j|S) = 1. Set J = {1, 2, . . . , 2d}. Let (X, j[Q]) be
the lifted 2N−1-multiplication of (E,Q) and (F, j[Q]) be the lifted 2N -multiplication of (E,Q). Observe
that Y contains 2d copies of µ1/2[Z]; let us denote these copies Z1, Z2, . . . , Z2d and the corresponding
cubes Q1, Q2, . . . , Q2d so that

Y =
⋃
{Zi : i ∈ J} and j[Q] =

⋃
{Qi : i ∈ J} .

We also define
Si = ∂cQi and Xi = F ∩ Zi for i ∈ J .

Let T = Rd × {0}n−d ∈ G(n, d). Then Q ⊆ o(Q) + T . Let (v1, v2, . . . , vn) be the standard basis of Rn

and define

Ti = span{vi}⊥ ∩ T ∈ G(n, d− 1) for i ∈ {1, 2, . . . , d} ,
R = j

[⋃{
(c(Q) + Ti) ∩Q : i ∈ {1, 2, . . . , d}

}]
⊆ Y .

Note that R and R∩Zi for i ∈ J are contractible. Since U is open, we have S ⊆ IntU so the pairs (Y,R)
and (Zi, R ∩ Zi) for i ∈ {1, 2, . . . , d} all have the HEP by 9.3. Therefore, R and Y/R are homotopy
equivalent by 9.4. Similarly, Zi and Zi/(R∩Zi) are homotopy equivalent for i ∈ J . Let q0 = j(c(Q)). We
shall write [q0] for the equivalence class of q0 in a given quotient space. Denoting homotopy equivalence
by “≈” and homeomorphism by “'” we obtain

Y ≈ Y/R '
∨2d

i=1(Zi/(Zi ∩R), [q0]) ≈
∨2d

i=1(Zi, q0) .

Set
W =

∨2d

i=1(Zi, q0) , M =
∨2d

i=1(Xi, q0) , Σ =
∨2d

i=1(Si, q0) ,

and note that Σ ⊆M ⊆W . Let ϕ : Y →W and ψ : W → Y be such that ϕ ◦ψ ≈ idW and ψ ◦ϕ ≈ idY .
For i ∈ J let πi : Σ→ Si be the projection defined in 9.8. Observe that

ϕ ◦ j[S] = Σ and deg(πi ◦ ϕ ◦ j|S) = 1 for i ∈ J .

Recall that E is a strong deformation retract of U ; hence, if ξ : M ↪→W is the inclusion map, there exists
a continuous maps ζ : W →M such that ξ ◦ ζ ≈ idW and ζ ◦ ξ ≈ idM . Moreover, ξ|Σ = ζ|Σ = idΣ. Since
E =

⋃
B we see that E and M are d-dimensional CW-complexes by 9.11. Hence, we may apply 9.18 to

deduce that{
|deg(f ◦ ζ ◦ ϕ ◦ j|S)| : f : M → S continuous

}
=
{
|deg(g|S)| : g : X → S continuous

}
.

However, if we take f = p ◦ r ◦ ψ ◦ ξ : M → S, then

f ◦ ζ ◦ ϕ ◦ j|S = p ◦ r ◦ ψ ◦ ξ ◦ ζ ◦ ϕ ◦ j|S ≈ p ◦ r ◦ j|S = idS .

Therefore, there exists g : X → S such that deg(g ◦ j|S) = 1. Let α : X1 → X and β : Z → Z1 be
homeomorphisms composed of homotheties and translations. Then, recalling ζ|Σ = idΣ, the composition

S
j|S−−−→ Z

β−−→ Z1

ζ|Z1−−−−→ X1
α−−→ X

g−−→ S

equals g ◦ j|S and has degree one. Employing 9.6 we obtain a Lipschitz retraction Z → S.

9.23 Corollary. If S and U are as in 9.22, then S is a Lipschitz retract of U .

Proof. We assume j[S] is a Lipschitz retract of Y , where Y is the lifted 2N -multiplication of (U,Q). We
proceed by induction with respect to N ∈ N. If N = 0, we have j[U ] = Y so S is a Lipschitz retract
of U by assumption. The inductive step is now a direct application of 9.22.
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9.24 Theorem. Assume N ∈ P, (X,Q) is a cubical test pair, and (Y,Q) is the 2N -multiplication of
(X,Q). Then (Y,Q) is a cubical test pair.

Proof. Using homotheties and rotations we may and shall assume that Q = [0, 1]d × {0}n−d ∈ Kn
d (0).

We only need to show that S = ∂cQ is not a Lipschitz retract of Y . Let p and j be as in 9.21. Assume,
by contradiction, that there is a Lipschitz retraction of Y onto S. Employing 9.6 we find δ ∈ (0, 1) such
that S is a retract of Y + B(0, 2−Nδ). Apply 9.19 with X, Q, δ in place of X, Q, ε to obtain a finite
set B ⊆ Kn

d and an open set U ⊆ X + B(0, δ) such that E =
⋃
B is a strong deformation retract of U

and X ⊆ U . Let (Z, j[Q]) be the lifted 2N -multiplication of (U,Q). Clearly p[Z] = Y and p ◦ j|S = idS ,
so j[S] is a Lipschitz retract of Z. Applying 9.22 to U , Q, N , B and then 9.23, we conclude that S is
a Lipschitz retract of U which contains X, so S is also a Lipschitz retract of X and this contradicts the
assumption that (X,Q) is a cubical test pair.

9.25 Remark. To conclude we gather all our results in one place. Let x ∈ Rn, C be the set of all cubical
test pairs, P be the set of all test pairs, R be the set of all rectifiable test pairs. Then

(a) if U ⊆ Rn is open, F ∈ wBCx for all x ∈ U , F is bounded, and G is a good class in the sense
of [14, 3.4], then there exists S ∈ G such that ΦF (S) = inf{ΦF (R) : R ∈ G};

(b) AEx(P) = AEx(C) = AEx(R) and AUEx(P) = AUEx(C) = AUEx(R);

(c) ACx = wBCx ⊆ AEx(C).

Moreover, if n = d+ 1, then by [9, Theorem 1.3] we know that F ∈ ACx if and only if the function

(37) G(x, ν) = |ν|F (x, span{ν}⊥) for every x, ν ∈ Rn

is strictly convex in all but the radial directions, namely

G(x, ν) > 〈DνG(x, ν̄), ν〉 for every x ∈ Rn, ν̄, ν ∈ Sn−1 and ν 6= ±ν̄ .

Hence, given n = d+ 1,

(d) if F is a C 1 integrand such that the corresponding function G, as in (37), is strictly convex, then
F ∈ AEx(P).

9.26 Remark. In [4, IV.1(7), p. 88] Almgren observes that uniformly convex functions give rise to
anisotropic lagrangians satisfying AUEx(P) in co-dimension 1 and vice-versa, where P is the class of test
pairs. Our result shows that functions that are just strictly convex give rise to anisotropic lagrangians
satisfying AEx(P) in co-dimension 1, for every good family P. In particular we deduce that there is
no hope of improving Theorem 8.8 showing that wBCx ⊆ AUEx(P). Indeed, if this was the case, in
co-dimension one the strict convexity of the integrand would give rise to an anisotropic lagrangian sat-
isfying BCx and consequently also AUEx(P), which in turn would imply the uniform convexity of the
integrand.
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