
A Distributed Virtual Time System on Embedded Linux
for Evaluating Cyber-Physical Systems

Christopher Hannon, Jiaqi Yan, Yuan-An Liu
Illinois Institute of Technology

Chicago, Illinois

{channon,jyan31,yliu301}@hawk.iit.edu

Dong Jin
Illinois Institute of Technology

Chicago, Illinois

dong.jin@iit.edu

ABSTRACT

Cyber-physical systems have a cyber presence, collecting and trans-

mitting data, while also collecting information and modifying the

physical surrounding world. In order to evaluate the cyber-security

of cyber-physical systems, simulation and modeling is a tool often

used. In this work, we develop a distributed virtual time system

that enables the synchronization of virtual clocks between physical

machines enabling a high fidelity simulation based testing platform.

The platform combines physical computing and networking hard-

ware for the cyber presence, while allowing for offline simulation

and computation of the physical world. By incorporating virtual

clocks into distributed embedded Linux devices, the testbed creates

the opportunity to interrupt real and emulated cyber-physical ap-

plications to inject offline simulated data values. The ability to run

real applications and being able to inject simulated data temporally

transparent to the running process allows for high fidelity exper-

imentation. Distributed virtual time enables processes and their

clocks to be paused, resumed, and dilated across embedded Linux

devices through the use of hardware interrupts and a common

kernel module. By interconnecting the embedded devices’ general

purpose IO pins, they can coordinate and synchronize through a

distributed virtual time kernel module with low overhead, under

50 microseconds for 8 processes across 4 embedded Linux devices.

We demonstrate the usability of our testbed in a power grid control

application.

KEYWORDS

Embedded Linux, Synchronization, Cyber-Physical Systems

ACM Reference Format:

Christopher Hannon, Jiaqi Yan, Yuan-An Liu and Dong Jin. 2019. A Dis-

tributed Virtual Time System on Embedded Linux for Evaluating Cyber-

Physical Systems. In SIGSIM Principles of Advanced Discrete Simulation

(SIGSIM-PADS ’19), June 3–5, 2019, Chicago, IL, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3316480.3322895

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00
https://doi.org/10.1145/3316480.3322895

1 INTRODUCTION

Embedded computers today are transformed from self-contained

systems to various cyber-physical systems (CPS) by sensing, moni-

toring, controlling our physical world. A sound evaluation of those

systems as well as the applications running on top of them is essen-

tial but highly challenging. As embedded computers monitor and

control mission critical physical processes in real-time (e.g., an elec-

trical power system), performing an evaluation on the actual system

is often disabled to avoid interference with normal system opera-

tions. Virtual testbeds are tools designed to address this challenge.

A capable testbed combines both physical and virtual components,

including but not limited to real embedded devices, virtual ma-

chines, emulated communication networks, simulation models of

physical processes, analytical models of background traffic, etc.

A key challenge in simulating CPS is to seamlessly combine the

physical and virtual worlds to conduct high-fidelity experiments, as

real components execute applications with the real world wall clock

and virtual components advance model states with a virtual clock.

One solution is to provide a notion of virtual time to the physical

processes so that their executions can be explicitly scheduled with

simulation models and advance together in virtual time. Virtual

time is a concept that was designed to enable multiple virtual ma-

chines to be multiplexed on a single physical hardware. We can

use virtual time to schedule sequentially executed processes so that

from their perspective they are being run in parallel. In simula-

tion and modeling, virtual time is a technique used to synchronize

emulated processes to make them execute in a reproducible way

and behave more like traditional simulation models [16ś18], which

also enables simulation models to be integrated with emulation.

Furthermore, virtual time can also be used to slow down a running

process and thus increase the perception of resources [29, 30]. As a

result, emulated processes can be executed on hardware that has

fewer resources than required by the processes. For example, in

communication network emulation, bandwidth on a virtual link

can exceed the physical bandwidth of the hardware by slowing

down the processes’ perception of time by some time dilation factor

(TDF) [9].

A number of virtual time systems have been developed for differ-

ent types of virtual machines running on a single physical machine

(e.g., Xen [9], Linux container [18], and OpenVZ [13]). Taking a

set of processes and programs and using virtual time to schedule

their execution, one can enable fine-grained control over the ex-

ecution and interaction of processes. These sets of processes can

be merged with traditional simulation systems (e.g., communica-

tion networks [19, 30] and power grids [10]) using virtual time to

integrate high fidelity executing processes with simulation models.

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

37

ALGORITHM 1: Pause/Resume Processes in Virtual Time.

Data: Key variables maintained by virtual time LKM:

procList , list of processes controlled by virtual time LKM.

tdf , time dilation factor.

f r zNow , the moment of pausing all processes in wall clock time.

1 Function pause()

2 for i ← 0 to length(procList) by 1 do

3 send SIGSTOP signal to procList [i] // Pause processes.

4 end

5 f r zNow ← __getnstimeofday() // Record wall clock time.

6 return

7 Function resume()

/* Calculate virtual time. */

8 duration ← (__getnstimeofday() − f r zNow)/tdf

9 for i ← 0 to length(procList) by 1 do

10 increase procList [i].f r eeze_past_nsec by duration

11 end

12 for i ← 0 to length(procList) by 1 do

13 send SIGCONT signal to procList [idx] // Resume processes.

14 end

15 return

The system sends SIGSTOP signals to all virtual-time-enabled pro-

cesses before querying the current wall clock time. In the case of

the resuming operation (shown in blue), the differences are 1) the

source is a falling voltage detected on Pin 3, and 2) the destina-

tion is another pre-registered software interrupt handler resume(),

listed in Algorithm 1, for a separate software interrupt number

irq′ , irq. Software interrupt handler resume() first calculates the

duration since the pause moment in virtual time and then updates

the variable f reeze_past_nsec for each process. This way, all pro-

cesses running on a single host are conceptually paused for the

same duration of virtual time. Then the SIGCONT signal commands

the kernel to wake up all processes registered in virtual clock. Even

if the moments to wake up are different for processes in procList ,

the perceived pause duration is identical among the processes. Our

signal-bus-based hardware design also simplifies Algorithm 1 as it

is not necessary for the software module to cope with the tangled

synchronization requests from multiple devices.

Our implementation works for various embedded Linux devices

including the Banana Pi M1s, the Banana Pi R1 Routers, and the

Raspberry Pi devices. Additionally, our solution is designed to be

compatible with any hardware that runs Linux and has the GPIO

programmability.

Barebone devices, such as 8- and 32-bit microcontrollers, are

also compatible but some system-specific modification is required

due to the lack of an operating system. Microcontrollers can enable

emulation of full sensor and actuator components of cyber-physical

systems. We leave this for future work.

3.3 Virtual Time Retrieval

In addition to the coordination of the virtual time LKM described

in Section 3.2, to correctly retrieve virtual time we also modify the

system calls that return time to a process. When a process requests

time through the gettimeofday() system call, the kernel returns

a virtual time if the requesting process is a virtual-time-enabled

process. We port the virtual time kernel in [29] to the ARM Linux

kernel 3.14. Our implementation behaves the same as the original

kernel with necessary modifications regarding the ARM instruction

set. The new virtual time kernel adds the file system entries to

the /proc/$PID directory to contain the virtual time metadata.

When a process calls gettimeofday(), the function checks the

virtual time metadata and returns the virtual time to a process. A

major advantage of this approach is that the virtual time retrieval

procedure is transparent to applications. The only requirement is

that the time source must use the monotonic clock representation.

The detailed kernel implementation is described in [29].

4 EVALUATION

In order to show the practicality of distributed virtual time, the

overhead needs to be taken into account. Additionally, one needs

to verify the correctness of the virtual time. The testbed used to

evaluate the virtual time kernel module is made from 8 Banana PI

devices. 4 devices are M1 single board computers and 4 devices

are R1 embedded routers. Banana PI devices have the A20 ARM

Cortex-A7 Dual-Core CPU with 1GB DDR3 Memory and a 1Gb

Ethernet controller.

4.1 Virtual time overhead

The overhead can be divided into two components: the overhead

added to the gettimeofday() system call and the overhead in

pausing and resuming processes. To measure the overhead of the

gettimeofday() system call, we employ the following two meth-

ods.

4.1.1 System Call gettimeofday(). The first way to measure over-

head is the function tracer ftrace, which enables fine-grained

measurements of kernel function latencies. ftrace, specifically the

function graph tracer, works by probing a function on both its entry

and exit using a dynamically allocated stack of return addresses,

which it overwrites to calculate latencies [24]. We compile the ker-

nel with the ftrace option to measure the overhead of virtual time

related system calls. Table 1 illustrates the system call progression

in and out of virtual time for the gettimeofday() system call. This

is the overhead a process experiences when querying the clock.

Virtual time clocks are transparent to the processes. A virtual time

is returned in place of a real time. Virtual-time-based timekeeping

in the gettimeofday() system call increases the kernel space over-

head from an average of 8.625 microseconds to 13.333 microseconds.

Seemingly virtual time adds substantial overhead in calculating the

offset from the real clock.

The function tracer ftrace only monitors the kernel function

sys_gettimeofday(). In order to measure the total time from the

user space call, another method is employed. We create a C pro-

gram that calls gettimeofday() 1,000,000 times and calculates the

average duration of the call for a process registered to virtual time

and a non-registered process. When not in virtual time, the average

overhead of a regular process calling gettimeofday() is 11.833

microseconds per call, while in virtual time is 17.387 microseconds.

For comparison, ext4_mark_inode_dirty() requires 58 microsec-

onds, unlock_new_inode() 36 microseconds, and writing 2.7 MB

to a file takes 975 microseconds with sys_write().

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

42

