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ABSTRACT

In the era of data-intensive computing, large-scale applications, in

both scienti�c and the BigData communities, demonstrate unique

I/O requirements leading to a proliferation of di�erent storage

devices and so�ware stacks, many of which have con�icting re-

quirements. In this paper, we investigate how to support a wide

variety of con�icting I/O workloads under a single storage system.

We introduce the idea of a Label, a new data representation, and,

we present LABIOS: a new, distributed, Label- based I/O system.

LABIOS boosts I/O performance by up to 17x via asynchronous I/O,

supports heterogeneous storage resources, o�ers storage elastic-

ity, and promotes in-situ analytics via data provisioning. LABIOS

demonstrates the e�ectiveness of storage bridging to support the

convergence of HPC and BigData workloads on a single platform.
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1 INTRODUCTION
Large-scale applications, in both scienti�c and the BigData com-

munities, demonstrate unique I/O requirements that none of the

existing storage solutions can unequivocally address them. �is

has caused a proliferation of di�erent storage devices, device place-

ments, and so�ware stacks, many of which have con�icting require-

ments. Each new architecture has been accompanied by new so�-

ware for extracting performance on the target hardware. Further,

to reduce the I/O performance gap, hardware composition of mod-

ern storage systems is going through extensive changes by adding

new storage devices. �is leads to heterogeneous storage resources
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where data movement is complex, expensive, and dominating the

performance of most applications [36]. For instance, machines with

a large amount of RAM allow new computation frameworks, such

as Apache Spark [72], to thrive. Supercomputers equipped with

node-local fast storage, such as NVMe drives, take scienti�c simu-

lation to new performance standards [6]. To achieve computational

e�ciency modern parallel and distributed storage systems must

e�ciently support a diverse and con�icting set of features.

Data-intensive applications grow more complex as the volume

of data increases, creating diverse I/O workloads. �us, the features

a distributed storage system is required to support also increases

dramatically in number and are o�en con�icting. For instance,

scienti�c applications demonstrate a periodic behavior where com-

putations are followed by intense I/O phases. Highly-concurrent

write-intensive workloads (e.g., �nal results, checkpoints), shared

�le parallel access, frequent in-place data mutations, and complex

data structures and formats are the norm inmost High-Performance

Computing (HPC) workloads [35]. On the other hand, iterative

write-once, read-many data access, created by the popular MapRe-

duce paradigm, are the defacto pa�erns in most BigData applica-

tions [50]. Another example is the ability of an I/O subsystem to

handle data mutations. In HPC, the ability to frequently update data

forces storage systems to obey certain standards, such as POSIX,

and increase the cost of metadata operations which is projected

to limit the scalability of these systems [57]. In contrast, most

cloud storage solutions prefer an immutable representation of data,

such as RDDs [71] or key-value pairs. Finally, each application

manipulates data in a di�erent data representation (i.e., format)

spanning from �les, objects, buckets, key-value pairs, etc., which

increases the complexity of the data organization inside a storage

system. To navigate this vast and diverse set of contradictory I/O

requirements, the so�ware landscape is �lled with custom, highly

specialized storage solutions varying from high-level I/O libraries

to custom data formats, interfaces, and, ultimately, storage systems.

�e ability to seamlessly execute di�erent con�icting workloads

is a highly desirable feature. However, the tools and cultures of

HPC and BigData have diverged, to the detriment of both [56], and

uni�cation is essential to address a spectrum of major research

domains. �is divergence has led organizations to employ sepa-

rate computing and data analysis clusters. For example, NASA’s

Goddard Space Flight Center uses one cluster to conduct climate

simulation, and another one for the data analysis of the observation

data [76]. Due to the data copying between the two clusters, the data

analysis is currently conducted o�-line, not at runtime. �e data

transfer between storage systems along with any necessary data

transformations are a serious performance bo�leneck and cripples

the productivity of those systems [37]. Additionally, it increases the

wastage of energy and the complexity of the work�ow. Integrating

analytics into a large scale simulation code has been proven to

signi�cantly boost performance and can lead to more accurate and
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faster solutions. Current storage systems address interoperability

(i.e., cross-storage system data access) by adding various connec-

tors, such as IBM’s Spectrum Scale HDFS Transparency [30] and

Intel’s Hadoop Adapter [31], and/or middleware libraries, such as

IRIS [37] and Alluxio [40]. Nevertheless, be�er system support is

needed for in-transit, in-situ analysis, with scheduling being a big

challenge and node sharing impossible in existing solutions [51].

On the other hand, High-Performance Data Analytics (HPDA) [32],

the new generation of Big Data applications, involve su�cient data

volumes and algorithmic complexity to require HPC resources. For

example, Paypal, an online �nancial transaction platform, and the

US Postal Service are using HPC resources to perform fraud detec-

tion in real time on billions of transactions and mail scans. Gaining

insights from massive datasets while data is being produced by

large-scale simulations can enhance the scalability and �exibility

of exascale systems [74].

To address this divergence in storage architectures and work-

load requirements, we have developed LABIOS, a new, distributed,

scalable, and adaptive I/O System. LABIOS, a new class of a storage

system, is the �rst (data) LAbel-Based I/O System, is fully decoupled,

and is intended to grow in the intersection of HPC and BigData.

LABIOS demonstrates the following contributions:
(1) the e�ectiveness of storagemalleability, where resources

can automatically grow/shrink based on the workload.

(2) how to e�ectively support synchronous and asynchro-

nous I/O with con�gurable heterogeneous storage.

(3) how to leverage resource heterogeneity under a single

platform to achieve application and system-admin goals.

(4) the e�ectiveness of data provisioning, enabling in-situ

data analytics and process-to-process data sharing.

(5) how to support a diverse set of con�icting I/O workloads,

fromHPC to BigData analytics, on a single platform, through

managed storage bridging.

LABIOS achieves these contributions by transforming all I/O

requests each into a con�gurable unit called a Label, which is a

tuple of an operation and a pointer to data. Labels are pushed from

the application to a distributed queue served by a label dispatcher.

LABIOS workers (i.e., storage servers) execute labels independently.

LABIOS architecture is fully decoupled and distributed. Using labels,

LABIOS can o�er so�ware-de�ned storage services and QoS guar-

antees for a variety of workloads on di�erent storage architectures.

2 BACKGROUND AND MOTIVATION
2.1 Parallel and Distributed File Systems
Parallel �le systems (PFS) are the dominant storage solution in most

large-scale machines such as supercomputers and HPC clusters

and are therefore well understood in the storage community. PFS

obey the POSIX standard to o�er portable guarantees and strong

data consistency. PFS manipulate data in a certain sequence of

operations, a paradigm known as streamlined I/O (i.e., Unix Standard

I/O Streams). Parallel access is achieved by shared �le handlers

and a complex system of locking mechanisms. �rough the years,

PFS have been optimized to �t the needs of typical HPC workloads.

Application development and storage system design have grown

in harmony with one driving the other since the HPC ecosystem

is relatively closed to external in�uence. However, PFS face many

limitations [29]. Some relevant to this study include:

a) Storage malleability. Existing high-performance storage solutions

are not elastic but static and cannot support power-capped I/O and

tunable concurrency control (i.e., QoS guarantees based on job size,

priority, input, output, etc.). Sudden workload variations (i.e., I/O

demand �uctuations) in distributed systems can be addressed by

resource malleability. By dynamically increasing or decreasing the

amount of storage resources allocated to an application, the system

can reduce its idle resources and therefore achieve lower energy

consumption and costs for the end user.

b) Resource utilization. Storage resources are provisioned for the

worst-case scenario where multiple jobs happen to enter their I/O-

dominant phases simultaneously leading to over/under-provisioning.

�is issue is worsened by the growing need to support storage re-

sources sharing across multiple clusters via global mounts. Further-

more, allocation exclusivity and over-provisioning due to ignorance

or malicious intent also contribute to erroneous resource utilization.

c) Hardware heterogeneity. New storage devices (e.g., SSD, NVMe,

etc.,) are being incorporated into system designs resulting in a

diverse heterogeneous storage environment. Existing solutions

cannot handle this heterogeneity since they assume homogeneous

servers. Currently, the responsibility for orchestrating data move-

ment, placement, as well as layout within and across nodes falls on

both system administrators and users [47].

d) Flexible interface. Currently, storage is tightly-coupled to cer-

tain vendor-speci�c APIs and interfaces. Even though this ensures

consistency and reliability of the storage system, it can also lead

to reduced productivity; developers either need to learn new APIs,

which limits �exibility, or, adopt new storage systems which leads

to environment isolation. Many PFS have introduced various con-

nectors to increase interoperability, but at the cost of performance.

Moreover, existing storage systems provide limited facilities for

developers to express intent in the form of I/O requirements, se-

mantics, and performance guarantees. Consequently, to achieve

good I/O performance, the level of abstraction has been raised. I/O

libraries, such as HDF5 [21] and PnetCDF [42] help alleviate this is-

sue but they also add overheads and increase the complexity of use.

In cloud environments the storage scene is di�erent. Innova-

tion is driven by the wide popularity of computing frameworks.

As a result, the cloud community has developed a wide variety of

storage solutions tailored to serve speci�c purposes. �e most pop-

ular storage solution in deployment is the Hadoop Distributed File

System (HDFS), which also follows the streamlined I/O paradigm.

�e architecture and data distribution are somewhat similar to PFS.

In HDFS, there are metadata nodes (i.e., namenodes), that are re-

sponsible to maintain the namespace, and data nodes that hold

the �les. However, it has relaxed the POSIX standard to achieve

scalability. As the Hadoop ecosystem grows, so are the storage so-

lutions around it: Hive [63] puts a partial SQL interface on front of

Hadoop, Pig [52] enables a scripting language in top of MapReduce,

HBase [12] applies a partial columnar scheme on top of Hadoop,

and HCatalog [23] introduces a metadata layer to simplify access

to data stored in Hadoop. �is diversity can o�er advantages but

also undoubtedly increases the complexity of storage. Some of the

above solutions su�er from similar limitations as PFS [68], some

others are missing critical features [39], and in general most of

them perform well for the purpose they were designed for.
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2.2 Applications’ I/O requirements
Every computing framework expects speci�c I/O requirements and

features from the underlying storage system. Scienti�c computing

for instance, relies mostly on MPI for its computations - commu-

nications and domain scientists expect POSIX, MPI-IO, and other

high-level I/O libraries to cover their I/O needs. �e existing collec-

tion of storage interfaces, tools, middleware libraries, data formats,

and APIs is deeply instilled in the community and has created a

certain mindset of what to expect from the storage stack. Table 1

shows some I/O requirements and how each storage camp, HPC

and Cloud, handles them. It also presents proposed optimizations in

the literature. Due to those di�erent I/O requirements, there is no

”one storage system for all” approach. �is is more evident in large

scale computing sites, where distributed storage solutions support

multiple concurrent applications with con�icting requirements. We

believe that future storage systems need a major re-design to e�-

ciently support the diversity of workloads and the explosion of scale.

Feature I/O requirement HPC Cloud Optimizations

Data

consistency

Data passed to the

I/O system must

be consistent

between operations.

Strong,

POSIX

Eventual,

Immutable

Tunable

consistency [65]

File

access

Multiple processes

must be able to

operate on the

same �le

concurrently

Shared

Concurrent

Multiple

replicas

Collective I/O [62],

Concurrent

�le handlers [22],

Complex locks

[17, 70, 73]

Global

namespace

Data identi�ers

must be resolved

and recognizable in

a global namespace

that can be accessed

from anywhere

Hierarchical

Directory,

Nesting

Flat

Namespace

partitioning [69],

Client-side

caching [18],

Decouple

data-metadata [57, 75],

File connectors [4, 5, 60]

Fault

tolerance

Data must be

protected against

faults and errors

Specialized

hardware,

Check-

pointing

Data

replication,

Data

partitioning

Erasure

coding [67]

Scale

Support for

extreme scales and

multi-tenancy

Few large

jobs,

Batch

processing

Many small

jobs,

Iterative

Job

scheduling,

I/O bu�ering,

Scale-out

Locality
Jobs are spawned

where data is

Remote

storage

Node

local

Data

aggregations

Ease of

use

Interface,

user-friendliness

and ease of

deployment

High-level

I/O libraries

Simple

data formats

Amazon S3,

Openstack

Swi�

Table 1: Application I/O Requirements

We provide some examples of workloads that demonstrate the

growing need of a storage system that supports diverse workloads

on the same single platform.

MOTIVATING EXAMPLES OF I/O WORKLOADS:

a) CM1 (�nal output, write-intensive): CM1 is a multi-dimensional,

non-linear, numerical model designed for idealized studies of at-

mospheric phenomena [9]. CM1’s I/O workload demonstrates a

sequential write pa�ern. �e simulation periodically writes col-

lectively its results (e.g., atmospheric points with a set of features)

using MPI-IO. Data are wri�en in a binary GrADS format with

a shared �le access pa�ern. �is workload requires persistence,

fault-tolerance, and highly concurrent �le access.

b) HACC (check-pointing, update-intensive): HACC stands for Hard-

ware Accelerated Cosmology Code and is a cosmological simulation

that studies the formation of structure in collision-less �uids under

the in�uence of gravity in an expanding universe. Each process in

HACC periodically saves the state of the simulation along with the

dataset using POSIX and a �le-per-process pa�ern. Since HACC

runs in time steps, only the last step checkpoint data is needed.

�us, the I/O workload demonstrates an update-heavy pa�ern. A

major performance improvement in HACC work�ow is the addi-

tion of burst bu�ers that absorb the checkpointing data faster and

perform the last �ush of data to the remote PFS.

c) Montage (data sharing, mixed read/write): Montage is a collection

of programs comprising an astronomical imagemosaic engine. Each

phase of building the mosaic takes an input from the previous phase

and outputs intermediate data to the next one. It is an MPI-based

engine and therefore Montage’s work�ow is highly dependent

on the data migration between processes. �e exchange of data

between executables is performed by sharing temporary �les in

the Flexible Image Transport System (FITS) format via the storage

system. At the end a �nal result is persisted as the �nal jpeg image.

�e I/O workload consists of both read and write operations using

either POSIX or MPI independent I/O.

d) K-means clustering (node-local, read-intensive): �is application

is a typical and widely used BigData kernel that iteratively groups

datapoints into disjoint sets. �e input datapoints can be numeri-

cal, nodes in a graph, or set of objects (e.g., images, tweets, etc.,).

Implementations using the MapReduce framework [15] remain the

most popular clustering algorithm because of the simplicity and

performance. �e algorithm reads the input dataset in phases and

each node computes a set of means, broadcasts them to all machines

in the cluster and repeats until convergence. �e I/O workload is

read-intensive and is performed on data residing on the node locally.

K-means clustering is typically I/O bound [53].

3 LABIOS
In this section we present the design, architecture, and implemen-

tation of LABIOS, a new class of a storage system that uses data-

labeling to address the issues discussed in Section 2. LABIOS is

a distributed, fully decoupled, and adaptive I/O platform that is

intended to grow in the intersection of HPC and BigData.

3.1 Design Requirements
As any distributed storage system, LABIOS is designed to be respon-

sible for the organization, storage, retrieval, sharing, and protection

of data. LABIOS also contains a representation of the data itself and

methods for accessing it (e.g., read/write). LABIOS’ main objective

is to support a wide variety of con�icting I/O workloads under a single

platform. LABIOS is designed with the following principles in mind:

- Storage Malleability. Applications’ I/O behavior consists of a

collection of I/O bursts. Not all I/O bursts are the same in terms of

volume, intensity, and velocity. �e storage system should be able

to tune the I/O performance by dynamically allocating/deallocating

storage resources across and within applications, a feature called

data access concurrency control. Storage elasticity enables power-

capped I/O, where storage resources can be suspended or shutdown

to save energy. Much like modern operating systems shut down

the hard drive when not in use, distributed storage solutions should

suspend servers when there is no I/O activity.

- I/O Asynchronicity. A fully decoupled architecture can o�er the

desired agility and move I/O operations from the existing stream-

lined paradigm to a data-labeling one. In data-intensive computing

where I/O operations are expected to take a large amount of time,
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adopts the semantics of the underlying distributed hashmap with

high-availability and concurrent access ensuring the correctness

and high throughput of catalog operations. LABIOS also o�ers the

�exibility to place the inventory in memory for high performance,

protected by triple replication for fault tolerance. However, this

increases the memory footprint of LABIOS and it depends on the

availability of resources. �e organization of inventory entries

depends on the data model (�les, objects, etc.) and/or high-level

I/O libraries and middleware. For instance, for POSIX �les the in-

ventory entries may include: �lename to �le stat, �le handler to

�lename, �le handler to �le position in o�set, �lename to a col-

lection of labels, and others. An HDF5 or a JSON �le will have

di�erent inventory entries. LABIOS-speci�c catalog information

include: label status (e.g., in-transit, scheduled, pending), label dis-

tribution (e.g., label to workerID), label a�ributes (e.g., ownership,

�ags), and location mappings between user’s data and LABIOS

internal data structures (e.g., a user’s POSIX �le might be stored

internally as a collection of objects residing in several workers).

Lastly, when LABIOS is connected to external storage resources, it

relies on their metadata service. LABIOS becomes a client to the

external storage resources and ”pings” their metadata service to

acquire needed information. LABIOS does not keep a copy of their

respective metadata internally to avoid possible inconsistent states.

However, further investigation is needed to optimize this process

by avoiding added network latencies from external sources.

2. LABIOS Core, sub�gure 2(b): �is component is responsible to

manage the instruction, data, and metadata �ow separately.

Administrator: maintains the system’s state by keeping track

of all running applications in a global registry, se�ing up the envi-

ronment per application (e.g., boot up exclusive workers if needed,

pre-load data from external sources, etc.), and performing security

control via user authentication and access permission checks.

Label �eue: LABIOS distributed queuing system has the fol-

lowing requirements: high message throughput, always on and

available, at-most-once delivery guarantees, highly concurrent, and

fault tolerant. �ese features ensure data consistency since the

label dispatcher will consume labels once and in order. �e queue

concurrency ensures that multiple dispatchers can service the same

queue or one dispatcher multiple queues. �e number of queues is

con�gurable based on the load (e.g., one queue per application, or

one queue per 128 processes, or one queue per node).

Label Dispatcher: subscribes to one or more distributed label

queues and dispatches labels to workers using several scheduling

policies. �e label dispatcher is multi-threaded and can run on

one or more nodes depending on the size of the cluster. LABIOS

dispatches labels based on either a time window or the number of

labels in the queue; both of those parameters are con�gurable. For

example, the dispatcher can be con�gured to distribute labels one

by one or in batches (e.g., every 1000 labels). To avoid stagnation,

a timer is also used; if the timer expires, LABIOS will dispatch all

available labels in the queue. Furthermore, the number of label

dispatchers is dynamic and depends on the number of deployed

queues. �ere is a �ne balance between the volume and velocity

of label production stemming from the applications and the rate

at which the dispatcher handles them. �e relationship between

the dispatcher and queuing system increases the �exibility and

scalability of the platform and provides an infrastructure to match

the rate of incoming I/O. �e dispatcher consists of two phases:

a) Label Shu�ing: takes a vector of labels as an input and shu�es

them based on type and �ags. Two operations are performed by

the shu�er. Data aggregation: labels that re�ect user’s requests in

consecutive o�sets can be combined to one larger label to maintain

locality (this feature can be turned on or o�). Label dependencies:

data consistency must be preserved for dependent labels. For in-

stance, a read a�er write pa�ern; LABIOS will not schedule a read

label before the dependent write label completes. To resolve such

dependencies, the shu�er will create a special label, called super-

task, which embodies a collection of labels that need to be executed

in strictly increasing order. A�er sorting the labels and resolving

dependencies, the shu�er sends labels either to the solver to get

a scheduling scheme, or directly to the assigner depending on the

type (e.g., a read label is preferably assigned to the worker that

holds the data to minimize worker-to-worker communication).

b) Label Scheduling: takes a vector of labels as an input and pro-

duces a dispatching plan. For a given set of labels and workers,

the scheduler answers three main questions: how many workers

are needed, which speci�c workers, and which labels are assigned

to which workers. LABIOS is equipped with several scheduling

policies (in detail in Section 3.3). A map of {workerID, vector of
labels} is passed to the worker manager to complete the assignment

by publishing the labels to each individual worker queue. Labels

are published in parallel using a thread pool. �e number of threads

in the pool depends on the machine the label dispatcher is running

on as well as the total number of available workers.

3. LABIOS Server, sub�gure 2(c): �is component is responsible

for managing the storage servers and has two main entities:

Worker: is essentially the storage server in LABIOS. It is fully

decoupled from the applications, is multithreaded, and runs inde-

pendently. Its main responsibilities are: a) service its own queue, b)

execute labels, c) calculate its own worker score and communicate

it to the worker manager, d) auto-suspend itself if there are no

labels in its queue for a given time threshold, and e) connect to

external storage sources. �e worker score is a new metric, critical

to LABIOS operations, that encapsulates several characteristics of

the worker into one value which can then be used by the label

dispatcher to assign any label to any appropriate worker. A higher

scored worker is expected to complete the label faster and more

e�ciently. �e score is calculated by every worker independently

at an interval or if substantial change of status occurs, and it in-

cludes: i) availability: 0 not-available (i.e., suspended or busy), 1

available (i.e., active and ready to accept labels). ii) capacity: (dou-

ble) [0,1] based on the ratio between remaining and total capacity.

iii) load: (double) [0,1] based on the ratio between worker’s current

queue size and max queue size (the max value is con�gurable). iv)

speed: (integer) [1,5] based on maximum bandwidth of worker’s

storage medium and grouped based on ranges (e.g., 1: ≤200MB/s,

2: 200-550MB/s, ... 5: ≥3500MB/s). v) energy: (integer) [1,5] based

on worker’s power wa�age on full load (e.g., an ARM-based server

with �ash storage consumes less energy than a Xeon-based server

with a spinning HDD). �e �rst three are dynamically changing

based on the state of the systemwhereas speed and energy variables

are set during initialization and remain static. Lastly, each variable

is multiplied by a weight. LABIOS’ weighting system is set in place
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(a) I/O asynchronicity - CM1 performance.
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(b) Resource heterogeneity - HACC performance.
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(c) Data provisioning - Montage performance.
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Figure 7: LABIOS performance evaluation.

a small percentage of active workers, the elastic strategy can boost

performance signi�cantly even though we pay the latency penalty

to activate more workers. However, when we have a su�cient

number of active workers (e.g., 75% or 24 out of 32 total workers),

waking up more workers hurts the performance due to the latency

penalty. �is is further apparent when we see the energy e�ciency

of the system, expressed in wa�s per hour (Whr). In our testbed,

active workers consume 165 wa�s, whereas suspended workers

only 16 wa�s. LABIOS elastic worker allocation makes sense until

the 75% case where the static allocation is more energy e�cient.

- I/O asynchronicity: LABIOS supports both synchronous and

asynchronous operations. �e potential of a label-based I/O system

is more evident by the asynchronous mode where LABIOS can

overlap the execution of labels behind other computations. In this

test, LABIOS is con�gured with the round robin scheduling policy,

label granularity of 1MB, and the label dispatcher uses all 48 cores

of the node. We scaled the clients from 384 to 3072 processes (or

MPI ranks in this case) to see how LABIOS scales. We run CM1

in 16 iterations (i.e., time steps) with each step �rst performing

computing and then I/O. Each process is performing 32MB of I/O

with the total dataset size reaching 100GB per step for the largest

scale of 3072. As it can be seen in Figure 7(a), LABIOS scales well

with the synchronous mode, o�ering competitive performance

when compared with our baseline, an OrangeFS deployment using

the same number of storage servers (i.e., 32 servers). When LABIOS

is con�gured in the async mode, each I/O phase can be executed

overlapped with the computation of the next step. �is results in a

signi�cant 16x I/O performance boost, and a 40% execution time

reduction since the I/O is hidden behind computation. Note that

no user code change is required. LABIOS intercepts the I/O calls

and builds labels that get executed in a non-blocking fashion.

- Resource heterogeneity: in this test, we run HACC also in 16

time steps. At each step, HACC saves its state on the burst bu�ers

and only at the last step persists the checkpoint data to the remote

storage, an OrangeFS deployment. �is workload is update-heavy.

LABIOS is con�gured similarly as before but with support of hetero-

geneous workers, 8 SSD burst bu�ers and 32 HDD storage servers.

LABIOS transparently manages the burst bu�ers and the servers,

and o�ers 6x I/O performance gains, shown in Figure 7(b). More-

over, worker to worker �ushing is performed in the background.

- Data provisioning: in this test, we run Montage, an application

that consists of multiple executables that share data between them

(i.e., output of one is input to another). LABIOS is con�gured

similarly to the previous set of tests. �e baseline uses an OrangeFS

deployment of 32 servers. In this test, the simulation produces 50GB

of intermediate data that are wri�en to the PFS and then passed,

using temporary �les, to the analysis kernel which produces the

�nal output. As it can be seen in Figure 7(c), our baseline PFS spends

signi�cant time in I/O for this data sharing via the remote storage.

�is work�ow can be signi�cantly boosted by making the data

sharing more e�cient. LABIOS, instead of sharing intermediate

data via the remote storage, passes the labels from the simulation to

the analysis via the distributed warehouse. Each intermediate data

�le creates labels where the destination is not LABIOS workers but

the analysis compute nodes. �is accelerates the performance in

two ways: a) no temporary �les are created in the remote storage

servers, and b) simulation and analysis can now be pipelined (i.e.,

analysis can start once the �rst labels are available). As a result,

LABIOS o�ers 65% shorter execution time, boosts I/O performance

by 17x, and scales linearly as the number of clients grow.

- Storage Bridging: Figure 7(d) demonstrates the results of run-

ning K-means clustering. Our baseline is a 64-node HDFS cluster.

LABIOS is con�gured in two modes: node-local I/O, similar to the

High Performance Distributed Systems (Best Paper Nominees) HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

22



HDFS cluster, and remote external storage, similar to an HPC clus-

ter (Section 3.2.4 (a) & (d)). In the �rst mode, LABIOS workers

run on each of the 64 nodes in the cluster whereas in the second

mode, data resides on an external storage running on 32 separate

nodes. �is application has three distinct phases: a)Map, each map-

per reads 32MB from storage, performs computations, and then

writes back to the disk 32MB of key-value pairs. b) Reduce, each

reducer reads 32MB of key-value pairs wri�en from the mappers

and performs further computations, c) Shu�e, all values across all

reducers in the cluster are exchanged via the network (i.e., 32MB

network I/O). Finally, it writes the new �nal centroids back to the

disk. An optimized version of this algorithm (i.e., Apache Mahout)

avoids writing the key-value pairs back to HDFS during map phase,

but instead it emits those values to the reducers avoiding exces-

sive disk I/O (i.e., Hadoop-Memory in �gure 7(d)). LABIOS supports

this workload by having each worker on every node reading the

initial dataset in an optimized way by performing aggregations,

much like MPI collective-I/O where one process reads from storage

and distributes the data to all other processes. Further, LABIOS

decoupled architecture allows the system to read data from external

resources (i.e., LABIOS-Disk-Remote in �gure 7(d)). As it can be

seen in the results, reading from external sources is slower than the

native node-local I/O mode but it is still a feasible con�guration

under LABIOS, one that leads to the avoidance of any expensive

data movements or data-ingestion approach.

5 RELATEDWORK
Innovation and new features in modern storage: �xed reservation

with performance guarantees in Ceph [69], in-memory ephemeral

storage instances in BeeGFS [28], decoupling of data and metadata

path in latest versions of OrangeFS [59], and client-to-client coor-

dination with low server-side coupling in Sirocco [16]. Our work

is partially inspired by the above developments. LABIOS is able to

o�er these features due to its innovative design and architecture.

Active storage: Comet [24] an extensible, distributed key-value store

that seeks application-speci�c customization by introducing active

storage objects. Comet’s design allows storage operations as a

result of executing application speci�c handlers. ActiveFlash [64]

an in-situ scienti�c data analysis approach, wherein data analysis is

conducted on where the data already resides. LABIOS workers can

independently execute data-intensive operations in a non-blocking

fashion since they are fully decoupled from the clients.

Work�ow Interoperability: Running data analysis along with com-

putationally challenging simulations has been explored by [7].

Dataspaces [20] o�ers a semantically specialized virtual shared

space abstraction to support multiple interacting processes and

data-intensive application work�ows. DAOS [8] integrates a high-

performance object store into the HPC storage stack and supports a

�exible interface for diverse workloads. However, dedicated analy-

sis resources or expensive datamovement between di�erent clusters

is still required. LABIOS’ label describes the destination of a certain

data operation and can be a memory bu�er or a �le on another

compute node making data sharing easy and e�cient.

Task-based Computation Frameworks: Machine independent parallel

task-based computing paradigms with new runtime systems such as

Charm++ [34] and Legion [1] have been long advocating for splic-

ing computation to smaller, independent pieces that can be be�er

managed [41], scheduled [43, 45], and executed [48] on heteroge-

neous environments. LABIOS, in a sense, realizes the same vision

of work decomposition but for I/O jobs and not computations.

Storage Malleability: elasticity is a well explored feature in Cloud

storage. Dynamic commission of servers in HDFS [13], transac-

tional database properties with elastic data storage such as Elas-

TraS [19], and several works exploring energy e�ciency in storage

systems [2, 44]. LABIOS inherits this feature by its decoupled archi-

tecture and the worker pool design and brings storage malleability

to HPC as well as BigData.

6 CONCLUSIONS AND FUTURE WORK
Modern large-scale storage systems are required to support a wide

range of work�ows with di�erent, o�en con�icting, I/O require-

ments. Current storage solutions cannot de�nitively address issues

stemming from the scale explosion. In this paper, we present the

design principles and the architecture of a new, distributed, scalable,

elastic, energy-e�cient, and fully decoupled label-based I/O sys-

tem, called LABIOS. We introduce the idea of a label, a fundamental

piece of LABIOS’ architecture, that allows the I/O system to provide

storage �exibility, versatility, agility, and malleability. Performance

evaluation has shown the potential of LABIOS’ architecture by

successfully executing multiple con�icting workloads on a single

platform. LABIOS can boost I/O performance on certain workloads

by up to 17x and reduce overall execution time by 40-60%. Finally,

LABIOS provides a platform where users can express intent with

so�ware-de�ned storage abilities and a policy-based execution. As

future work, we plan to further develop our system, test it with

larger scales, deploy it on more platforms, and extend its functional-

ity with higher fault tolerance semantics, label dependency graphs,

and e�cient communication protocols.
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