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Water impacts nutrient dose responses
genome-wide to affect crop production
Joseph Swift1, Mark Adame1, Daniel Tranchina1,2, Amelia Henry 3 & Gloria M. Coruzzi 1

Changes in nutrient dose have dramatic effects on gene expression and development. One

outstanding question is whether organisms respond to changes in absolute nutrient amount

(moles) vs. its concentration in water (molarity). This question is particularly relevant to

plants, as soil drying can alter nutrient concentration, without changing its absolute amount.

To compare the effects of amount vs. concentration, we expose rice to a factorial matrix

varying the dose of nitrogen (N) and water (W) over a range of combinations, and quantify

transcriptome and phenotype responses. Using linear models, we identify distinct dose

responses to either N-moles, W-volume, N-molarity (N/W), or their synergistic interaction

(N×W). Importantly, genes whose expression patterns are best explained by N-dose and W

interactions (N/W or N×W) in seedlings are associated with crop outcomes in replicated field

trials. Such N-by-W responsive genes may assist future efforts to develop crops resilient to

increasingly arid, low nutrient soils.
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field experiment the following year (Supplementary Fig. 7), and
sequenced the transcriptomes of two genotypes that varied in
their yield outcomes. Through repeating our eigengene analysis
on this independent field data test set, we validated that genes
whose expression patterns is best explained by changes in N and
W combinations—N/W or N×W—were significantly associated
with grain yield (Fig. 4d, e, Supplementary Fig. 8).

Discussion
Our linear modeling of genome-wide expression patterns provide
insight into how W impacts nutrient dose responses in a biolo-
gical system. Typically, nutrient response studies vary nutrient

dose within a fixed volume of W. However, this design changes
both nutrient amount and concentration, making it impossible to
determine whether nutrient responses are governed by the
absolute nutrient amount, or its concentration in W. By sys-
tematically varying both N- and W-dose, we were able to dis-
criminate between plant responses to N amount (moles) and N-
concentration (molarity). Furthermore, we found that genes that
respond nonlinearly to N- and W-dose combinations have rele-
vance to crop production.

The design of our factorial N-by-W matrix enabled us to dis-
tinguish, measure, and model plant responses to changes in N-
dose as a function of W (Fig. 1a). Our linear models of tran-
scriptome and phenotype data could explain plant responses to
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Fig. 4 Genes responding nonlinearly to combinations of N-fertilizer andW treatment are associated with agricultural outcomes. a Nineteen rice cultivars were

grown in the field under a 2-by-2 matrix varying N-fertilizer and W treatment; each cell indicates the average biomass of each of the 19 cultivars. The

synergistic interaction N×W could best explain differences in shoot biomass (three-way analysis of variance interaction term, p= 1.1 × 10−6, F= 24.6, df= 1).

b The genes responding to combinations of N- and/or W-dose in rice seedlings found under laboratory conditions overlap significantly with reciprocal classes

found in field-grown plants (*Monte Carlo, p < 0.05). Normalized expression patterns of lab field-validated genes are displayed in heatmap. c Eigengenes

derived from each gene set were correlated with crop traits. Significant Pearson R values are shown in red (permutation test, p < 0.05). d Example from

c. Changes in N/W eigengene expression across 228 field samples is associated with grain yield (gray: −N, −W, green: +N, −W, blue: −N, +W, black: +N,

+W conditions). e N/W eigengene expression is predictive within an independent field test set. Source data for b–e are provided in Source Data file
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