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ABSTRACT

With the significantly growing investment in quantum communi-

cations, quantum key distribution (QKD), as a key application to

share a security key between two remote parties, has been deployed

in urban areas and even at a continental scale. To meet the design

requirements of QKD on a quantum communication network, today

researchers extensively conduct simulation-based evaluations in ad-

dition to physical experiments for cost efficiency. A practical QKD

system must be implemented on a large scale via a network, not

just between a few pairs of users. Existing discrete-event simulators

offer models for QKD hardware and protocols based on sequential

execution. In this work, we investigate the parallel simulation of

QKD networks for scalability enhancement. Our contributions lay

in the exploration of QKD network characteristics to be leveraged

for parallel simulation. We also develop a parallel simulator for

QKD networks with an optimized scheme for network partition.

Experimental results show that to simulate a 64-node QKD net-

work, our parallel simulator can complete the experiment 9 times

faster than a sequential simulator running on the same machine.

Our linear-regression-based network partition scheme can further

accelerate the simulation experiments up to two times than using a

randomized network partition scheme.

CCS CONCEPTS

• Networks → Network simulations; • Computing method-

ologies → Discrete-event simulation.
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1 INTRODUCTION

The development of quantum physics leads to many emerging

and rapidly growing applications, founded by quantum states, to

transform the way we process information today. Quantum key
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distribution (QKD) is a critical application that offers solutions for

secure key distribution through insecure communication channels.

When an eavesdropper intercepts classical bits shared between Al-

ice and Bob, the interception must disturb the associated quantum

state, and thus be detected by Alice and Bob. The law of quantum

physics helps to defend such attacks against adversaries. The unique

property motivates people to build quantum networks for secure

communication. Several photonic quantum networks have been

established including a 30-mile optical fiber link connecting Ar-

gonne and Fermilab [20], a 2,000-kilometer fiber-optic link between

Beijing and Shanghai [12], and other projects in the Netherlands [9],

the United Kingdom [14], and South Korea [28].

The high cost of physical testbed limits quantum network re-

search, and therefore, for cost efficiency, people develop simulators

of quantum networks including simulating interactions with vari-

ous protocols and tracing the quantum state of qubits. Researchers

built modules on NS-3 to simulate QKD protocols [22], in which

they do not simulate the transformation in the quantum channels,

like transmission and transformation of photons. SQUANCH is an

agent-based simulator for quantum networks. As an agent-based

simulator [4], it can be parallelized by running every agent on its

own process. The speed of the simulator can be largely affected as

workloads are often unevenly distributed among agents. In addition,

SQUANCH does not trace the simulation time. SimulaQron [13]

and qkdSim [10] are two sequential discrete-event simulators for

quantum Internet and QKD systems. However, the sequential simu-

lation approach significantly limits the scale of simulated quantum

networks. For example, using sequential simulation [29, 30] takes

around 120 seconds to simulate 200 ms of a 64-node QKD network

(see Figure 7 in Section 6 for detailed experimental settings).

In this work, we explore the feasibility of using parallel simula-

tion techniques for large-scale QKD network simulation as well as

the means of making the parallel simulation efficient. Based on the

careful analysis of a QKD network including events and channel

properties, we develop a parallel discrete-event simulator for QKD

networks. The simulator has two layers. The upper layer consists

of models of components in the QKD network and represents the

state of a QKD network. The lower layer is a parallel simulation

kernel based on conservative synchronization. To efficiently paral-

lelize a QKD network simulation experiment, we develop a network

partition scheme using a linear regression based prediction model.

As searching for the optimal solution is NP-hard, we use simulated

annealing to find the approximate solution. Finally, we conduct

extensive experiments to evaluate the simulation scalability and

speedup under various QKD network settings and perform an er-

ror analysis of the execution time prediction model. Results show

that to simulate a 64-node QKD network using the same physical

machine, our parallel simulator significantly reduces the execution



time from 122 seconds in the sequential mode to 13 seconds us-

ing 32 threads. Also, the optimized network partition scheme can

further accelerate the simulation time up to 117% more than the

random network partition scheme. The contributions of this work

are listed as follows.

• We study the characteristics of QKD networks and summa-

rize five observations that are useful for designing parallel

simulation of QKD networks.

• We develop a QKD network simulator using conservative

parallel discrete event simulation.

• We develop a network partition scheme to improve the sim-

ulation scalability.

The remainder of the paper is organized as follows, Section 2

introduces the background of QKD protocols and models of optics.

Section 3 explores the characteristics of QKD networks from exist-

ing QKD network simulators and physical QKD networks. Section 4

presents the architecture of our QKD network parallel simulator.

Section 5 describes the network partition scheme. In Section 6, we

evaluate the performance of our simulator in terms of speedup,

scalability, and error analysis. Section 7 concludes the paper with

future work.

2 BACKGROUND

The advancement of quantum technologies re-defines many well-

founded fields with new applications, such as encryption crack

algorithms, modeling complex molecular structures, and realiza-

tion of strong artificial intelligence. New applications in these fields

take quantum states as the foundation. Among quantum states, su-

perposition can be realized in the experiment by encoding different

physical properties of a quantum object. Among many quantum

objects, photon stands out for carrying quantum information. The

photonic state has been proved and used widely including the va-

lidity of quantum mechanics, the superdense encoding of classical

information [1, 2], and security limits of quantum key distribution

(QKD) [2, 18, 21]. QKD, as the best-known application, was used in

creating a secret shared key for secure communication [5].

2.1 QKD Protocols

The key for cryptography algorithms, like Advanced Encryption

Standard (AES), is distributed by QKD protocols, which allows

two parties to detect eavesdroppers during the key distribution.

This property, benefiting from a fundamental aspect of quantum

mechanics, is important and unique. When any third party tries to

eavesdrop on the key, the interception in classical channels do not

expose any information about keys and the interception in quantum

channels unavoidably introduces detectable noise. Therefore, the

laws of quantum mechanics guarantee the security of QKD.

The most well-known QKD technique is BB84 [5] proposed by

Charles H. Bennett and Gilles Brassard in 1984. Figure 1 shows

the hardware using the BB84 protocol, the sender (Alice) and the

receiver (Bob) are connected by a quantum communication chan-

nel and a classical channel. Quantum states are transmitted in a

quantum channel. Classical bits are allowed to be transmitted in

an insecure classical channel. The protocol is secure because it

encodes information in non-orthogonal states or conjugate states.

Any two pairs of conjugate states and two states within a pair that

are orthogonal to each other can be used for the BB84 protocol.

Quantum mechanics ensure that these states cannot, in general, be

measured without disturbing the measurement result on the other

conjugate states.

The BB84 protocol is modeled by performing the following steps:

(1) Alice prepares a stream of random bits; these bits are en-

coded onto the polarization of photons under the conjugate

basis that was randomly selected from two conjugate bases;

the encoded photons are emitted from the light source and

transmitted to Bob in the quantum channel.

(2) Bob randomly chooses a conjugate basis of two for each

received photon by adjusting polarized beam splitter; the

clicked single-photon detector determines the encoded bit

to be 0 or 1.

(3) Bob periodically sends his basis list of measurement to Alice;

(4) Alice determines which basis matches and sends the indices

of bits with matching encoding and measurement basis to

Bob in the insecure classical channel.

(5) Bob receives the list of indices of bits and uses these bits as

the secret key shared with Alice.

QKD protocols also include error correction [8], privacy amplifi-

cation [7], and authentication [15]. These protocols only rely on the

classical channel to achieve their functions, so they are not studied

in this paper.

2.2 Models of Optics

The utilized optics are shown in Figure 1. The light source is used

to generate photons with the desired quantum state. The optical

fiber is used for quantum communication. An detector is capable

of accurately recording photon arrival times. A splitter is used for

separating the photons based on polarization under either conjugate

basis.

Light source, as a pulsed laser, generates attenuated pulses

with frequency f . Photons with the arbitrary quantum state can be

generated in a pulse, and the number of emitted photons in a pulse

follows a Poisson distribution with mean µ.

Quantum channel (QC), as an optical fiber, is used for trans-

mitting quantum information. The propagation time of the photons

is modeled as L
c∗ , where L denotes the length of the fiber and c∗

denotes the speed of light in the fiber. The loss rate of a quantum

channel is 10−
L·αo
10 , where αo is the attenuation measured in dB/km.

Single-PhotonDetector (SPD) is able to detect a single photon

and specify an arrival time. The arrival time is recorded by detectors.

And the list of arrival times is reported to upper-layer protocols

periodically. The index of a photon is calculated from its timestamp.

Polarized Beam splitter (PBS) separates the photons based

on polarization. The PBS can be adjusted to measure the quantum

state of a photon on a different basis. In BB84, if a quantum state

is encoded and measured on the same basis, the measured result

presents the correct information from the encoded photon. Oth-

erwise, the receiver only has a 50% probability to get the correct

information.









Given a partition scheme, the simulation execution time T is

defined as

T =

∑

0<i≤C

(T is +T
i
p ) (1)

where C denotes the number of synchronization, T is denotes the

event-exchange time and T ip denotes the event-processing time in

the ith cycle respectively. The event-processing time Ts and event-

exchange timeTp in the i-th cycle equal to the maximum execution

time among all timelines, which are described as follows.

T is = max1≤j≤ |T L |t
i j
s (2)

T ip = max1≤j≤ |T L |t
i j
p (3)

where the t
i j
s denotes the event-exchange time and t

i j
p denotes the

event-processing time in timeline j in ith cycle respectively. |TL|

denotes the total number of timelines. The objective function is to

minimize the total execution time.

The first task is to precisely estimate t
i j
s and t

i j
p . As described

in Section 3, there are three types of event, Eq , Ec , and Es . Ec and

Es is determined by the QKD network protocol. It is a challenging

job to predict Ec and Es before executing experiments as the QKD

network states dynamically evolve over time. QKD terminals, on

the other hand, have a much simpler state machine than the ones in

protocols. The pattern of Eq events can be analyzed and predicted

by reading the configuration file. Furthermore, Observations 1 and

2 indicate that Eq events occupy the most running time of a simu-

lation experiment. Based on the analysis, we decide to simplify our

optimization model with the focus on Eq as the primary indicator

to estimate t
i j
s and t

i j
p .

Let us define the number of cycles as tsim
δ t

, where tsim denotes

the simulation time of the entire experiment and δt denotes the

lookahead time (i.e., the quantum channel delay by default). Based

on Observation 2 and 3 and the fact that QKD protocols greedily

produce keys to upper applications, we assume that every cycle ex-

ecutes the same amount of Eq events. As a result, every cycle takes

the same time for event-exchange (Ts ) and event-processing (Tw ).

The updated formula of simulation execution time is presented as

follows, which leads us to use a linear regression model to estimate

time as described in Section 5.1.

T = (Ts +Tp ) ∗ (
tsim

δt
) (4)

A QKD network can be modeled as a weighted direct graph

G(V ,A,W ), whereV is the set of QKD terminals, A is a set of quan-

tum channels, andW is the function of workload in a channel. The

network partition scheme aims to partitionV into at most k groups,

where k is the number of timelines, to minimize the simulation

execution time. This problem is NP-hard, and in this work we use

simulated annealing to search for the optimal scheme as described

in Section 5.2.

5.1 Model Construction Using Linear
Regression

Observation 2 implies that the execution time is predictable given

the number of Eq events. The number of Eq events can be predicted

Table 1: Coefficients and p-values of the event-processing

model

a0 a1 a2

coefficient 288700 8977 25190

p-value <0.01 <0.01 <0.01

by the attributes of light sources and channels regardless if the

quantum channel uses time-division multiplexing or wavelength-

division multiplexing. A light source decides the sending rate τs
of a quantum channel. In other words, τs = f ∗ µ, where f is

the frequency of a light source and µ is the mean of a Poisson

distribution. The receiving rate, τr , is expressed as τr = τs (1 − l),

where l is the transmission loss rate.

To compute the number of Eq events in one timeline, we aggre-

gate all Eq events generated by the QKD terminals aligned to the

same timeline. The number of Eq in one cycle is

Ne = δt
∑

v ∈S

∑

a∈A−(v)

τs (a) +
∑

a∈A+(v)

τr (a) (5)

where S denotes the set of QKD terminals in one timeline, A+(v)

and A−(v) denote the incoming and out-going quantum channels

of a QKD terminal v respectively. A linear relation between Ne and

Tp exists under the assumption that every Eq event consumes the

same time. The expected event-processing time is now modeled as

E(Tp ) = a0 + a1 ∗ k + a2 ∗ Ne (6)

where k denotes the number of timelines. The a1 ∗ k models the

behavior that the overhead linearly increases as the number of

thread grows. The evaluation results and further improvement are

discussed in Section 6.

We apply linear regression to determine the coefficients. We

collected 410,940 event processing times from various simulated

QKDnetworks. The number of eventswas in the range of [15, 36375]

and the number of threads was in the range of [2, 32]. 80% of the

data were selected as the training set and the remaining data are

used to evaluate the model. The coefficients and p-value of our

model are presented in Table 1. The small p-values imply that all

the variables are significantly related to the actual execution time.

Further, the R-square of the training set is 0.9262 and the R-square

of predicting set is 0.9205. The high R-square values imply that our

model accurately estimates the simulation execution time.

Within event-exchange period, timelines exchange events and

negotiate next synchronization time. The time complexity of ex-

changing event is O(N log(k)). The time complexity of negotiation

is O(k). Then, the expected event-exchange time is

E(Ts ) = a0 + a1 ∗ Ne + a2 ∗ Ne ∗ loд2k (7)

We did not select k as an independent variable in our model

because the p-value of k shows the weak correlation between k and

E(Ts ). This low correlation is caused by the small number of threads.

The negotiation time is too low to affect the event-exchange time.

Although the total number of events in the queues may not equal

to the total number of Eq events, we take an approximation to use

the number of Eq to estimate the event-exchange time since it is

not feasible to predict the size of a merged event queue because

running the simulation.



Table 2: Coefficients and p-values of the event-exchange

model

a0 a1 a2

coefficient -1472000 -232.4 101.5

p-value <0.01 <0.01 <0.01

We collected 10,179 event exchange times from various simu-

lated QKD networks. The number of events is in the range of [227,

174808] and the number of threads is in the range of [2,32]. We

picked 80% as the training data set and the rest as the testing data

set. The coefficients and p-values are shown in Table 2. The p-values

show the high significance of variables for the model. Furthermore,

the R-square in the training data set is 0.8038 and R-square in the

testing data set is 0.7655. The high values of R-square indicate our

model is still useful, but compared with E(Tw ), this model has worse

performance. The reason is the exact numbers of elements in two

queues significantly affect the time of merging two queues, and

thus, the time of merging two event queues has a higher variance

than the event-processing time.

5.2 Graph Partition Using Simulated
Annealing

Another task of the network partition scheme is to generate a

balanced graph partition. We want to divide a graph G into two

equal-size sets and minimize the number of edges going from one

set to the other, which is an NP-hard problem [25]. The optimal

solution of the graph partition problem is the optimal solution of

the network partition scheme if we preserve the same τs of channels

and the same event-exchange time for different solutions. Since the

graph partition problem is NP-hard, the network partition problem

is also NP-hard. Existing work [27] revealed that the simulated

annealing is more powerful than the Kernighan-Lin approach [17]

to solve the graph partition problem. Therefore, we utilize simulated

annealing to find our network partition scheme.

We use simulated annealing to partition the graph as shown

in Algorithm 1, where E(state) denotes the energy of a particular

state, stateB and energyB denote the optimal state and its energy,

stateN and energyN denote the neighbor state and its energy, and

T denotes the temperature. The INIT-STATE() function randomly

assigns QKD terminals to timelines. The energy of the state is calcu-

lated by Formula 4. The NEIGHBOR() function randomly re-assign

a QKD terminal to a different timeline. The acceptance probability

is described as follows.

P(energy, energyN ,T ) = e(energyN −energy)/T (8)

The output of stateB describes the optimized scheme of the network

partition for efficient parallel simulation.

6 EVALUATION

We evaluate the performance of our parallel simulator of QKD

networks in terms of execution speed and scalability with various

network scenarios. We also compare the performance between our

network partition scheme and a random network partition scheme.

Furthermore, we present the error analysis results of the network

partition scheme.

Algorithm 1 Graph Partition Using Simulated Annealing

1: state← INIT-STATE(), energy← E(state)

2: stateB ← state, energyB ← energy

3: T ← n

4: while T > 0 do

5: stateN ← NEIGHBOR(state), energyN ← E(energyN )

6: if energyN < energyB then

7: stateB ← stateN , energyB ← energyN
8: end if

9: if P(energy, energyN ,T ) > RAND() then

10: state← stateN , energy← energyN
11: end if

12: T ← T − 1

13: end while

14: return stateB

We have implemented the parallel simulator using Golang [16].

To set up the experiments, we generated multiple QKD networks

from 45 random directed graphsG(n,d, seed). Here, n denotes the

number of vertices (i.e., QKD terminals) where n ∈ {48...80} with

an increase of 8, d denotes the expected degree of vertex where

d ∈ {1.5, 2, 2.5}, and seed denotes the random seed where seed ∈

{0, 1, 2}. Each quantum channel was attached to a light source of

one QKD terminal and measurement devices of the other QKD

terminal. The frequency of each light source was randomly selected

from 106 to 108 Hz. The distance of each quantum channel was

randomly selected from 5 km to 15 km. The classical channels

were created between two QKD terminals connected by quantum

channels. The network delay on the classical channels is set to 1

ms. The simulation experiments run for tsim = 20 ms using 2 to

32 threads. The maximum number of effective threads is limited

by the number of CPU cores of the server, i.e., 40 cores of 2.6 GHz

Dual Intel Xeon and 64 GB RAM.

6.1 Simulation Speedup Evaluation with
Different Network Partitions

We repeated each simulation experiment ten times using a random

partition scheme and the optimized partition scheme discussed in

Section 5. The optimized partition was produced by the simulated

annealing method with the temperatureT = 105. For each network

scenario, we recorded the execution time with both random parti-

tion and optimized partition. We then calculated the improvement

of execution time ρ for the optimized partition scheme Topt over

the random partition scheme Trand , in particular, ρ =
Trand−Topt

Trand
.

We plotted the execution time improvement with respect to the

number of threads in Figure 6.

We observe that the optimized partition scheme always outper-

forms the random partition scheme for all network scenarios. Also,

ρ keeps increasing as the size of the network grows. For example,

for the 32-thread simulation experiments, ρ is about 10% larger for

a network with 80 QKD terminals than a network with 48 QKD

terminals. Since we generated QKD networks from 45 random di-

rected graphs and thus the size of the network largely varies. ρ

is computed based on different network scenarios with respect to

the number of threads. Therefore, it is not surprising to see a large
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