Parallel Simulation of Quantum Key Distribution Networks

Xiaoliang Wu Bo Zhang Dong Jin
Illinois Institute of Technology Illinois Institute of Technology Illinois Institute of Technology
Chicago, United States Chicago, United States Chicago, United States
xwu64@hawk.iit.edu bzhang43@hawk.iit.edu dong.jin@iit.edu
ABSTRACT distribution (QKD) is a critical application that offers solutions for

With the significantly growing investment in quantum communi-
cations, quantum key distribution (QKD), as a key application to
share a security key between two remote parties, has been deployed
in urban areas and even at a continental scale. To meet the design
requirements of QKD on a quantum communication network, today
researchers extensively conduct simulation-based evaluations in ad-
dition to physical experiments for cost efficiency. A practical QKD
system must be implemented on a large scale via a network, not
just between a few pairs of users. Existing discrete-event simulators
offer models for QKD hardware and protocols based on sequential
execution. In this work, we investigate the parallel simulation of
QKD networks for scalability enhancement. Our contributions lay
in the exploration of QKD network characteristics to be leveraged
for parallel simulation. We also develop a parallel simulator for
QKD networks with an optimized scheme for network partition.
Experimental results show that to simulate a 64-node QKD net-
work, our parallel simulator can complete the experiment 9 times
faster than a sequential simulator running on the same machine.
Our linear-regression-based network partition scheme can further
accelerate the simulation experiments up to two times than using a
randomized network partition scheme.

CCS CONCEPTS

+ Networks — Network simulations; « Computing method-
ologies — Discrete-event simulation.

KEYWORDS
parallel discrete-event simulation, quantum key distribution, BB84

ACM Reference Format:

Xiaoliang Wu, Bo Zhang, and Dong Jin. 2020. Parallel Simulation of Quan-
tum Key Distribution Networks. In 2020 SIGSIM Principles of Advanced Dis-
crete Simulation (SIGSIM-PADS 20), June 15-17, 2020, Miami, FL, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3384441.3395988

1 INTRODUCTION

The development of quantum physics leads to many emerging
and rapidly growing applications, founded by quantum states, to
transform the way we process information today. Quantum key

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSIM-PADS °20, June 15-17, 2020, Miami, FL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7592-4/20/06....$15.00
https://doi.org/10.1145/3384441.3395988

secure key distribution through insecure communication channels.
When an eavesdropper intercepts classical bits shared between Al-
ice and Bob, the interception must disturb the associated quantum
state, and thus be detected by Alice and Bob. The law of quantum
physics helps to defend such attacks against adversaries. The unique
property motivates people to build quantum networks for secure
communication. Several photonic quantum networks have been
established including a 30-mile optical fiber link connecting Ar-
gonne and Fermilab [20], a 2,000-kilometer fiber-optic link between
Beijing and Shanghai [12], and other projects in the Netherlands [9],
the United Kingdom [14], and South Korea [28].

The high cost of physical testbed limits quantum network re-
search, and therefore, for cost efficiency, people develop simulators
of quantum networks including simulating interactions with vari-
ous protocols and tracing the quantum state of qubits. Researchers
built modules on NS-3 to simulate QKD protocols [22], in which
they do not simulate the transformation in the quantum channels,
like transmission and transformation of photons. SQUANCH is an
agent-based simulator for quantum networks. As an agent-based
simulator [4], it can be parallelized by running every agent on its
own process. The speed of the simulator can be largely affected as
workloads are often unevenly distributed among agents. In addition,
SQUANCH does not trace the simulation time. SimulaQron [13]
and gkdSim [10] are two sequential discrete-event simulators for
quantum Internet and QKD systems. However, the sequential simu-
lation approach significantly limits the scale of simulated quantum
networks. For example, using sequential simulation [29, 30] takes
around 120 seconds to simulate 200 ms of a 64-node QKD network
(see Figure 7 in Section 6 for detailed experimental settings).

In this work, we explore the feasibility of using parallel simula-
tion techniques for large-scale QKD network simulation as well as
the means of making the parallel simulation efficient. Based on the
careful analysis of a QKD network including events and channel
properties, we develop a parallel discrete-event simulator for QKD
networks. The simulator has two layers. The upper layer consists
of models of components in the QKD network and represents the
state of a QKD network. The lower layer is a parallel simulation
kernel based on conservative synchronization. To efficiently paral-
lelize a QKD network simulation experiment, we develop a network
partition scheme using a linear regression based prediction model.
As searching for the optimal solution is NP-hard, we use simulated
annealing to find the approximate solution. Finally, we conduct
extensive experiments to evaluate the simulation scalability and
speedup under various QKD network settings and perform an er-
ror analysis of the execution time prediction model. Results show
that to simulate a 64-node QKD network using the same physical
machine, our parallel simulator significantly reduces the execution

time from 122 seconds in the sequential mode to 13 seconds us-
ing 32 threads. Also, the optimized network partition scheme can
further accelerate the simulation time up to 117% more than the
random network partition scheme. The contributions of this work
are listed as follows.

o We study the characteristics of QKD networks and summa-
rize five observations that are useful for designing parallel
simulation of QKD networks.

o We develop a QKD network simulator using conservative
parallel discrete event simulation.

e We develop a network partition scheme to improve the sim-
ulation scalability.

The remainder of the paper is organized as follows, Section 2
introduces the background of QKD protocols and models of optics.
Section 3 explores the characteristics of QKD networks from exist-
ing QKD network simulators and physical QKD networks. Section 4
presents the architecture of our QKD network parallel simulator.
Section 5 describes the network partition scheme. In Section 6, we
evaluate the performance of our simulator in terms of speedup,
scalability, and error analysis. Section 7 concludes the paper with
future work.

2 BACKGROUND

The advancement of quantum technologies re-defines many well-
founded fields with new applications, such as encryption crack
algorithms, modeling complex molecular structures, and realiza-
tion of strong artificial intelligence. New applications in these fields
take quantum states as the foundation. Among quantum states, su-
perposition can be realized in the experiment by encoding different
physical properties of a quantum object. Among many quantum
objects, photon stands out for carrying quantum information. The
photonic state has been proved and used widely including the va-
lidity of quantum mechanics, the superdense encoding of classical
information [1, 2], and security limits of quantum key distribution
(QKD) [2, 18, 21]. QKD, as the best-known application, was used in
creating a secret shared key for secure communication [5].

2.1 QKD Protocols

The key for cryptography algorithms, like Advanced Encryption
Standard (AES), is distributed by QKD protocols, which allows
two parties to detect eavesdroppers during the key distribution.
This property, benefiting from a fundamental aspect of quantum
mechanics, is important and unique. When any third party tries to
eavesdrop on the key, the interception in classical channels do not
expose any information about keys and the interception in quantum
channels unavoidably introduces detectable noise. Therefore, the
laws of quantum mechanics guarantee the security of QKD.

The most well-known QKD technique is BB84 [5] proposed by
Charles H. Bennett and Gilles Brassard in 1984. Figure 1 shows
the hardware using the BB84 protocol, the sender (Alice) and the
receiver (Bob) are connected by a quantum communication chan-
nel and a classical channel. Quantum states are transmitted in a
quantum channel. Classical bits are allowed to be transmitted in
an insecure classical channel. The protocol is secure because it
encodes information in non-orthogonal states or conjugate states.
Any two pairs of conjugate states and two states within a pair that

are orthogonal to each other can be used for the BB84 protocol.
Quantum mechanics ensure that these states cannot, in general, be
measured without disturbing the measurement result on the other
conjugate states.

The BB84 protocol is modeled by performing the following steps:

(1) Alice prepares a stream of random bits; these bits are en-
coded onto the polarization of photons under the conjugate
basis that was randomly selected from two conjugate bases;
the encoded photons are emitted from the light source and
transmitted to Bob in the quantum channel.

(2) Bob randomly chooses a conjugate basis of two for each
received photon by adjusting polarized beam splitter; the
clicked single-photon detector determines the encoded bit
to be 0 or 1.

(3) Bob periodically sends his basis list of measurement to Alice;

(4) Alice determines which basis matches and sends the indices
of bits with matching encoding and measurement basis to
Bob in the insecure classical channel.

(5) Bob receives the list of indices of bits and uses these bits as
the secret key shared with Alice.

QKD protocols also include error correction [8], privacy amplifi-
cation [7], and authentication [15]. These protocols only rely on the
classical channel to achieve their functions, so they are not studied
in this paper.

2.2 Models of Optics

The utilized optics are shown in Figure 1. The light source is used
to generate photons with the desired quantum state. The optical
fiber is used for quantum communication. An detector is capable
of accurately recording photon arrival times. A splitter is used for
separating the photons based on polarization under either conjugate
basis.

Light source, as a pulsed laser, generates attenuated pulses
with frequency f. Photons with the arbitrary quantum state can be
generated in a pulse, and the number of emitted photons in a pulse
follows a Poisson distribution with mean p.

Quantum channel (QC), as an optical fiber, is used for trans-
mitting quantum information. The propagation time of the photons
is modeled as CL where L denotes the length of the fiber and c¢*

denotes the speed of light in the fiber. The loss rate of a quantum
L-aop
channel is 10 710 , where «, is the attenuation measured in dB/km.

Single-Photon Detector (SPD) is able to detect a single photon
and specify an arrival time. The arrival time is recorded by detectors.
And the list of arrival times is reported to upper-layer protocols
periodically. The index of a photon is calculated from its timestamp.

Polarized Beam splitter (PBS) separates the photons based
on polarization. The PBS can be adjusted to measure the quantum
state of a photon on a different basis. In BB84, if a quantum state
is encoded and measured on the same basis, the measured result
presents the correct information from the encoded photon. Oth-
erwise, the receiver only has a 50% probability to get the correct
information.

3 ANALYSIS OF QKD NETWORKS FOR
PARALLEL SIMULATION

This work aims to study efficient methods to parallelize QKD net-
work simulation to support large-scale QKD network research and
development. The objective is to understand how a QKD network
works and what features may bring opportunities and challenges for
parallel simulation of a QKD network. We first conduct experiments
using a sequential simulator to understand the characteristics of
QKD networks in Section 3.1. We then analyze QKD networks from
simulation models as well as existing QKD networks in Section 3.2.
Five observations that one can leverage for designing parallel sim-
ulation of QKD networks are presented as follows.

3.1 Analysis of Sequential Simulation of QKD
Networks

We empirically study the behaviors of a sequential QKD simula-
tor using our prior work [29, 30] including the type of simulation
events, the execution speed of different event types, and the dis-
tribution of events during the simulation experiments. We present
the key observations that are useful for parallel simulation of QKD
networks and also discuss the challenges.

We set up a QKD network consisting of two QKD terminals,
Alice and Bob, as shown in Figure 1. Both terminals run the BB84
(i-e., the first QKD protocol) [5] and have access to a classical com-
munication channel and a quantum communication channel. The
hardware controlled by Alice consists of an 80 MHz light source
producing a single photon with a specific quantum state. The pho-
tons are transmitted through the 10 km quantum channel to Bob.
The hardware of Bob consists of a polarized beam splitter (PBS)
and two single-photon detectors (SPD). These devices measure the
quantum state of received photons. The measurements are used to
generate a 512-bit symmetric key shared between Alice and Bob.

Alice Bob
Classical Channel

QKD protocols < » QKD protocols
Hardware Hardware
PBS
Light Quantum Channel
source
SPD

Figure 1: Simulation of a Two-Terminal QKD Network

Simulation events in the QKD network are executed either within
one terminal or across two terminals. The cross-terminal events
are generated and executed at different terminals, and both clas-
sical and quantum channels may process such events. Therefore,
we categorize all simulation events into three types: (i) events on
a quantum channel (Eg), e.g., sending and receiving photons; (ii)
events on a classical channel (E.), e.g., sending and receiving classi-
cal messages; and (iii) events inside one terminal (E;), e.g., detectors
report click time to protocols periodically.

- - 99.4%
Ec-0.4%
- E-02%

. £, - 63.6%
Ec-6.5%
- E-29.9%

(a) Number of events (b) Execution time

Figure 2: Comparison of three simulation event types, Eq -
events on a quantum channel, E, - events on a classical chan-
nel, and E; - events inside one QKD terminal

It took 10.3 seconds to simulate 100 ms of the QKD network on
a server with a 2.6 GHz Dual Intel Xeon CPU and 64 GB memory.
The network successfully distributed 455 keys between Alice and
Bob. Totally 1,259,964 events were scheduled and 1,259,681 events
were executed. Note that 283 events were scheduled beyond the
simulation end time, and thus, were not executed. Below we present
three observations from the simulation results that are critical for
designing the parallel version of QKD network simulation.

Observation 1. Quantum channel based events, E4, are the dom-
inant simulation events in a QKD network in terms of amount and
execution time. We collected the number of events and their exe-
cution time for all three types of events (i.e., Eq, E¢, and E) and
plotted the results in Figure 2. As shown in Figure 2a, 99.4% events
are E4. This is because the successful transmission of quantum in-
formation is highly dependent on the high transmission frequency
to compensate for the low transmission success rate. Figure 2b
shows that E takes 63.6% of the total execution time and Ejs takes
29.9%. Eq again consumes most of the execution time in total, and
E; is the heaviest event type. By analyzing individual events in
E, we find that the heavy Es events are generated from the QKD
protocol for periodically calculating the index of photons by their
arrival time. A linear relation exists between such events and the
number of photons. The execution time of Es is actually highly de-
pendent on Eg4. Therefore, the number of E4 events in a simulated
QKD network is a dominant factor contributing to the simulation
workload. We take advantage of this observation to design the
network partition algorithm in Section 5 to efficiently balance the
simulation workload.

Observation 2. The execution time of Eq events has little vari-
ance. The same type of events may have very different execution
time in classic networks because of the dynamic network state. To
understand the behavior in quantum networks, we measure the
execution time of every individual event, and plot the distribution
of event execution time for all three types in Figure 3. The average
execution time of E4 (4.78 pisec) is around 30 times smaller than the
one of E. (140 psec) and around 6 times smaller than the one of Eg
(947 psec). Eq has the lowest variance among all three types, i.e.,
the standard deviation of E is more than 26 times of Eq. 95% of
Eg4 events are executed within 9.6 usec. Therefore, it is reasonably
accurate to estimate the execution time of Eq events by counting
the number of such event. We take advantage of this observation
to precisely predict the execution time and design our network
partition algorithm in Section 5.1 based on the prediction.

N

SV

Execution time (ms)
= N
|
|

o
|
|
|
[

Eq E, E.

Figure 3: Distribution of individual simulation event execu-
tion time, E; - events on a quantum channel, E; - events on
a classical channel, and E; - events inside one QKD terminal

Observation 3. E4 events between two QKD terminals are evenly
distributed over time. The sending rate of quantum information
depends on the attributes of a light source. Although photons con-
taining quantum information are not always generated by the light
source, the light source emits photons with a specific frequency.
Given a fixed light source frequency, the sending events are evenly
distributed over time. A sending event may trigger a receiving event
on the PBS. Although attributes like temperature may affect the
delay between the QKD terminals, the variance of delay is very
little because a fluctuating delay can destroy the time-based iden-
tification of a photon. Therefore, the receiving events on the PBS
are also evenly distributed over time. We take advantage of this
observation to further enhance the prediction of the execution time
based on the amount of E4 events to enable an efficient network
partition algorithm in Section 5.1.

3.2 Analysis of Existing QKD Networks

Existing QKD networks, like DARPA [15] and SECOQC [24], uti-
lize optical fiber or free-space as quantum channels. Photons, a
good medium to carry quantum information, are used to transmit
quantum states. Despite the long transmission distance of a free-
space-based QKD network, the high cost of satellite limits the scale
of free-space QKD networks. Meanwhile, QKD over optical fibers
could use dark fibers from existing infrastructures, which makes
the optical fiber an economic solution. Therefore, this work only
analyzes the optical-fiber-based QKD networks.

Observation 4. The delay of a quantum channel is dominated by
the propagation delay and is significantly lower than the delay of a
classical channel of the same distance. Unlike information carried
over classical channels, quantum information cannot be cloned and
extracted. Although such a feature enables perfect security [5], it
significantly restricts the transmission distance. The loss rate in the
optical fiber increases exponentially with the length of fiber due
to the attenuation. One can use amplifiers to prevent the loss of

classical information from the attenuation. However, such ampli-
fiers are useless for quantum channels because the amplification
process may alter the carried quantum information. To reduce the
loss, the length of fiber is often restricted. For example, the loss
rate of one hundred kilometers fiber can be as large as around 99%.
Furthermore, QKD network does not route or process quantum
information unlike what happens in a classical network. A quantum
channel is composed of directly connected optical fibers. Once a
photon arrives at the quantum terminal, it passes a series of optics
and is measured by detectors. The time to pass the local optics can
be as low as one picosecond, which is much lower than the packet
processing time in a classical channel. Therefore, we only consider
propagation delay in a quantum channel. We will utilize the easy-to-
obtained channel delay as the minimum lookahead value to design
our conservative synchronization based parallel simulation for QKD
networks. On one hand, the large amount of E4 events occurred
within a channel delay makes the approach promising; On the other
hand, further performance improvement requires us to exact better
lookahead values from other QKD network characteristics.

Observation 5. Different QKD sessions have low interdependency.
The DARPA QKD network consists of ten QKD terminals [15]. The
protocols assume that every terminal is a trusted terminal, and a
trusted relay is used to establish a secure channel between terminals.
The co-operation among terminals on the path relies on the infor-
mation transmitted over the classical channels. This design allows
every QKD session to distribute key independently. The low inter-
dependency among different QKD sessions is a promising character
for parallel simulation, and motivates us to investigate efficient
network partition algorithms to balance simulation workload with
low synchronization overhead.

An alternative solution is called quantum teleportation [6] that
uses a pair of entangled qubits to teleport quantum state. Because
the target quantum state is not transmitted through the optical
fiber, the attenuation of fiber does not cause the loss of target
quantum state. However, how to efficiently distribute the entangled
pairs between two terminals is a big challenge. Most entanglement
distribution schemes still rely on photons and optical fibers to
establish entanglement [3, 26, 32]. As a result, Observation 5 is still
valid in the case of quantum teleportation. In this work, we focus
on the BB84 protocol [5]. The discussion of quantum teleportation
and entanglement is shown in the section 7 as future works.

4 SIMULATOR ARCHITECTURE

The sequential simulation in Section 3.1 took around 10.3 seconds
to simulate 100 ms of a QKD network. We investigate parallel sim-
ulation with an objective to improve execution speed and preserve
the accuracy of simulation experiments. An appropriate synchro-
nization method for QKD network scenarios is the key to efficient
parallel simulation. The propagation delay described by Observa-
tion 4 provides a reasonable minimum lookahead for conservative
parallel simulation [23]. In this work, we take the barrier-based
synchronization approach to develop a parallel simulator for QKD
networks [19].

Figure 4 depicts the two-layer simulator architecture. The upper
layer consists of models of hardware and protocols of QKD net-
works described in Section 2, including BB84 protocol, light source,

- oueort. __ .

@& QKD Terminal
Quantum Channel
= = = Classical Channel
— Schedule Event

QKD Network
[

: Parallel éimulation Kernel

1 Sync

' Point : Timeline 1
| 1
; ! .. Timeline 2
| T
1 1 :
D D | D . Timeline k
e >

Simulation Time

Figure 4: Architecture of Simulator

single-photon detector, polarized beam splitter, quantum channel,
and classical channel. The lower layer is the kernel supporting
parallel discrete event simulation.

The simulation enables interactions among a number of QKD
objects, such as QKD terminals. Each object is attached to a time-
line, which hosts an event queue and is in charge of advancing
all objects attached to it. Interactions between objectives within
one timeline do not need synchronization other than executing
the event queue. The event queue is implemented as a min-heap
sorted by event timestamp. Each timeline keeps executing the top
event in the heap and advances its simulation time to the timestamp
of the event. Multiple timelines may run concurrently to exploit
parallelism, but they have to be carefully synchronized to ensure
global causality. The synchronization method explicitly expresses
quantum channel delays across QKD terminals residing on different
timelines. The synchronization algorithm creates synchronization
windows that are guarded by two barriers. In one synchronization
window, all timelines are safe to advance without being affected by
other timelines.

New events targeting the same timeline are pushed into the event
queue of this timeline. Cross-timeline events are stored in a tempo-
ral buffer of the timeline generated by the event. As shown in Figure
5, the barrier synchronization approach consists of two barriers. Bar-
rier 1 ensures that no cross-timeline event exchange occurs before
the end of the current synchronization window. Timelines finished
executing early wait at the barrier for other timelines. Barrier 2
sets another synchronization point for exchanging cross-timeline

Barrier 1 Barrier 2 Barrier 1
Event Event
Exchange Processing
Timeline 1
Timeline 2
Timeline 3
- - - >i—_—
--->Pending
T ~~~7|—>Running
1

Wall clock time

Figure 5: Barrier synchronization. "Pending" means that a
timeline is blocked by a barrier and waiting for other time-
lines. "Running" means that a timeline advances its simula-
tion time by executing events in its own queue.

events in the temporal buffers and setting the next synchronization
window for event parallel processing. Note that the simulation time
does not advance between the two barriers. The procedure keeps
repeating until every event queue is empty or the simulation end
condition is met.

To reduce system overhead from the frequent mutex opera-
tions, we design the following merge event mechanism. The cross-
timeline events are not immediately pushed into the event queue
of the target timeline, instead, these events are temporarily stored
into a set of event queues. During the event exchange period (i.e.,
between barrier 1 and barrier 2), every timeline retrieves events
from the temporary event queues of other timelines. Each timeline
then merges the retrieved event queues into their main event queue.
Since the event queue is implemented as a min-heap, the runtime
complexity of merging two min-heap is O(N), where N is the total
size of events in the two min-heaps. To merge M min-heaps with to-
tal N elements, every two min-heaps are merged and thus, produce
the new set of min-heaps with the size of M/2. The time complexity
of this step is O(N). This step repeats [logz(M)] times before we get
a min-heap that includes all N elements with a runtime complexity
O(N log(M)).

5 NETWORK PARTITION

As shown in Figure 5, a simulation experiment is divided into mul-
tiple simulation cycles, and each cycle contains two stages, i.e., the
event exchange and event processing, bounded by the two barriers.
The performance of parallel simulation is highly dependent on (1) a
balanced workload for each timeline in the event processing stage,
(2) the number of events to exchange (i.e, merging to the target
timelines) in the event exchange stage, and (3) the frequency of
synchronization. Therefore, we need to investigate how to partition
a QKD network to meet those requirements. An optimized network
partition scheme groups objects (e.g., QKD terminals) and assigns
them to timelines with the objective of balanced workload, small
cross-timeline events, and low synchronization frequency, and thus
achieve good scalability of parallel simulation.

Given a partition scheme, the simulation execution time T is

defined as
T = > (Ti+T) (1)
0<i<C
where C denotes the number of synchronization, T} denotes the
event-exchange time and T[’, denotes the event-processing time in

the i*" cycle respectively. The event-processing time T and event-
exchange time Tj, in the i-th cycle equal to the maximum execution
time among all timelines, which are described as follows.

. N

Ty = maxigj<rrts o)
) ¥

T, = max;j< \TL|tp] (3

where the t./ denotes the event-exchange time and tll,j denotes the
event-processing time in timeline j in i‘" cycle respectively. |TL|
denotes the total number of timelines. The objective function is to
minimize the total execution time. » B

The first task is to precisely estimate . and t;,j . As described
in Section 3, there are three types of event, Eq, Ee, and E;. E; and
Es is determined by the QKD network protocol. It is a challenging
job to predict E. and Eg before executing experiments as the QKD
network states dynamically evolve over time. QKD terminals, on
the other hand, have a much simpler state machine than the ones in
protocols. The pattern of Eq events can be analyzed and predicted
by reading the configuration file. Furthermore, Observations 1 and
2 indicate that E4 events occupy the most running time of a simu-
lation experiment. Based on the analysis, we decide to simplify our
optimization model with the focus on E4 as the primary indicator

to estimate £ and t;,j .

Let us define the number of cycles as tis‘;" , where ts;m; denotes
the simulation time of the entire experiment and Jt denotes the
lookahead time (i.e., the quantum channel delay by default). Based
on Observation 2 and 3 and the fact that QKD protocols greedily
produce keys to upper applications, we assume that every cycle ex-
ecutes the same amount of E4 events. As a result, every cycle takes
the same time for event-exchange (Ts) and event-processing (T,,).
The updated formula of simulation execution time is presented as
follows, which leads us to use a linear regression model to estimate
time as described in Section 5.1.

T=(Ts+Tp)*(

tsim
i) @
A QKD network can be modeled as a weighted direct graph
G(V,A, W), where V is the set of QKD terminals, A is a set of quan-
tum channels, and W is the function of workload in a channel. The
network partition scheme aims to partition V into at most k groups,
where k is the number of timelines, to minimize the simulation
execution time. This problem is NP-hard, and in this work we use
simulated annealing to search for the optimal scheme as described
in Section 5.2.

5.1 Model Construction Using Linear
Regression

Observation 2 implies that the execution time is predictable given
the number of Eq events. The number of E4 events can be predicted

Table 1: Coeflicients and p-values of the event-processing
model

a0 al a2
coefficient | 288700 | 8977 | 25190
p-value <0.01 <0.01 | <0.01

by the attributes of light sources and channels regardless if the
quantum channel uses time-division multiplexing or wavelength-
division multiplexing. A light source decides the sending rate z
of a quantum channel. In other words, 7s = f * y, where f is
the frequency of a light source and y is the mean of a Poisson
distribution. The receiving rate, z,, is expressed as 7, = 75(1 —),
where [is the transmission loss rate.

To compute the number of E4 events in one timeline, we aggre-
gate all E4 events generated by the QKD terminals aligned to the
same timeline. The number of E4 in one cycle is

Ne:(StZ Z 75(a) + Z 7,(a) (5)

vES acA~(v) acA*(v)

where S denotes the set of QKD terminals in one timeline, A*(v)
and A~ (v) denote the incoming and out-going quantum channels
of a QKD terminal v respectively. A linear relation between N, and
T, exists under the assumption that every E4 event consumes the
same time. The expected event-processing time is now modeled as

E(Tp) = a0 + al xk + a2 = N, (6)

where k denotes the number of timelines. The a1l * k models the

behavior that the overhead linearly increases as the number of
thread grows. The evaluation results and further improvement are
discussed in Section 6.

We apply linear regression to determine the coefficients. We
collected 410,940 event processing times from various simulated
QKD networks. The number of events was in the range of [15, 36375]
and the number of threads was in the range of [2, 32]. 80% of the
data were selected as the training set and the remaining data are
used to evaluate the model. The coefficients and p-value of our
model are presented in Table 1. The small p-values imply that all
the variables are significantly related to the actual execution time.
Further, the R-square of the training set is 0.9262 and the R-square
of predicting set is 0.9205. The high R-square values imply that our
model accurately estimates the simulation execution time.

Within event-exchange period, timelines exchange events and
negotiate next synchronization time. The time complexity of ex-
changing event is O(N log(k)). The time complexity of negotiation
is O(k). Then, the expected event-exchange time is

E(Ts) = a0 + al * N + a2 * N, * logak (7)

We did not select k as an independent variable in our model
because the p-value of k shows the weak correlation between k and
E(T). This low correlation is caused by the small number of threads.
The negotiation time is too low to affect the event-exchange time.
Although the total number of events in the queues may not equal
to the total number of E4 events, we take an approximation to use
the number of Eg to estimate the event-exchange time since it is
not feasible to predict the size of a merged event queue because
running the simulation.

Table 2: Coefficients and p-values of the event-exchange
model

a0 al a2
coefficient | -1472000 | -232.4 | 101.5
p-value <0.01 <0.01 | <0.01

We collected 10,179 event exchange times from various simu-
lated QKD networks. The number of events is in the range of [227,
174808] and the number of threads is in the range of [2,32]. We
picked 80% as the training data set and the rest as the testing data
set. The coefficients and p-values are shown in Table 2. The p-values
show the high significance of variables for the model. Furthermore,
the R-square in the training data set is 0.8038 and R-square in the
testing data set is 0.7655. The high values of R-square indicate our
model is still useful, but compared with E(T,,), this model has worse
performance. The reason is the exact numbers of elements in two
queues significantly affect the time of merging two queues, and
thus, the time of merging two event queues has a higher variance
than the event-processing time.

5.2 Graph Partition Using Simulated
Annealing

Another task of the network partition scheme is to generate a
balanced graph partition. We want to divide a graph G into two
equal-size sets and minimize the number of edges going from one
set to the other, which is an NP-hard problem [25]. The optimal
solution of the graph partition problem is the optimal solution of
the network partition scheme if we preserve the same 7, of channels
and the same event-exchange time for different solutions. Since the
graph partition problem is NP-hard, the network partition problem
is also NP-hard. Existing work [27] revealed that the simulated
annealing is more powerful than the Kernighan-Lin approach [17]
to solve the graph partition problem. Therefore, we utilize simulated
annealing to find our network partition scheme.

We use simulated annealing to partition the graph as shown
in Algorithm 1, where E(state) denotes the energy of a particular
state, stateg and energyp denote the optimal state and its energy,
statey and energy 5y denote the neighbor state and its energy, and
T denotes the temperature. The INIT-STATE() function randomly
assigns QKD terminals to timelines. The energy of the state is calcu-
lated by Formula 4. The NEIGHBOR() function randomly re-assign
a QKD terminal to a different timeline. The acceptance probability
is described as follows.

P(energy, energyp, T) = elenergy y —energy)/T ®)

The output of statep describes the optimized scheme of the network
partition for efficient parallel simulation.

6 EVALUATION

We evaluate the performance of our parallel simulator of QKD
networks in terms of execution speed and scalability with various
network scenarios. We also compare the performance between our
network partition scheme and a random network partition scheme.
Furthermore, we present the error analysis results of the network
partition scheme.

Algorithm 1 Graph Partition Using Simulated Annealing

1: state «— INIT-STATE(), energy «— E(state)

2: statep <« state, energyp < energy

3: Ten

4: while T > 0 do

5 statey «— NEIGHBOR(state), energy,; < E(energy ;)

6: if energy,; < energyp then

7: statep «— staten, energyp < energy,;
8: end if

9: if P(energy, energyp, T) > RAND() then
10: state < staten, energy «— energy s

11: end if

12: T—T-1
13: end while
14: return statepg

We have implemented the parallel simulator using Golang [16].
To set up the experiments, we generated multiple QKD networks
from 45 random directed graphs G(n, d, seed). Here, n denotes the
number of vertices (i.e., QKD terminals) where n € {48...80} with
an increase of 8, d denotes the expected degree of vertex where
d € {1.5,2,2.5}, and seed denotes the random seed where seed €
{0,1, 2}. Each quantum channel was attached to a light source of
one QKD terminal and measurement devices of the other QKD
terminal. The frequency of each light source was randomly selected
from 10° to 108 Hz. The distance of each quantum channel was
randomly selected from 5 km to 15 km. The classical channels
were created between two QKD terminals connected by quantum
channels. The network delay on the classical channels is set to 1
ms. The simulation experiments run for ts;; = 20 ms using 2 to
32 threads. The maximum number of effective threads is limited
by the number of CPU cores of the server, i.e., 40 cores of 2.6 GHz
Dual Intel Xeon and 64 GB RAM.

6.1 Simulation Speedup Evaluation with
Different Network Partitions

We repeated each simulation experiment ten times using a random
partition scheme and the optimized partition scheme discussed in
Section 5. The optimized partition was produced by the simulated
annealing method with the temperature T = 10°. For each network
scenario, we recorded the execution time with both random parti-
tion and optimized partition. We then calculated the improvement
of execution time p for the optimized partition scheme Typ; over

iy . . T, -T,
the random partition scheme T} 4,4, in particular, p = %do‘"
ran

We plotted the execution time improvement with respect to the
number of threads in Figure 6.

We observe that the optimized partition scheme always outper-
forms the random partition scheme for all network scenarios. Also,
p keeps increasing as the size of the network grows. For example,
for the 32-thread simulation experiments, p is about 10% larger for
a network with 80 QKD terminals than a network with 48 QKD
terminals. Since we generated QKD networks from 45 random di-
rected graphs and thus the size of the network largely varies. p
is computed based on different network scenarios with respect to
the number of threads. Therefore, it is not surprising to see a large

standard deviation of p. Furthermore, the performance of our net-
work partition scheme increases as the number of threads grows.
The average of p is increased from 0.08 to 0.56 when the number of
threads is increased from 2 to 16. We notice that the 32-thread exper-
iments have less improvement than the 16-thread experiments due
to synchronization overhead, i.e., 32-thread experiments generate
more cross-timeline events than 16-thread experiments.

We now fix the network scenario to G(64, 2, 2) as an example
and demonstrate the performance gain with our optimized network
partition scheme. For both randomized partition and optimized
partition schemes, we plot the mean and standard deviation of the
execution time in Figure 7. First, the execution time is improved
from 122 seconds (sequential simulation with one thread) to 13
seconds (optimized network partition with 32 threads), in other
words, 9.38 times faster. Second, the optimized partition scheme
always outperforms the randomized partition. Third, the parallel
simulation performance increases as the number of threads grows
and the results match well with the ones in Figure 6. However, with
ten repeated runs, the standard deviation of the execution time is
as little as up to 0.25 seconds.

6.2 Scalability Evaluation with Different
Network Partitions

To evaluate the scalability of our simulator, we fixed the network
scenario as G(64, 2, 2), repeated the experiments only by increasing
the number of thread, and then measured the experiment execu-
tion time with and without the optimized network partition. We
also ran the phold experiments, a well-known parallel simulation
benchmark, for comparison. In the phold experiment, we initialized
107 jobs that are evenly distributed over the threads (i.e., perfect
simulation workload balance) and the experiments all finished af-
ter the 30! event-exchange period. We normalized the execution
time based on the execution time using two threads, and plotted
the execution time for phold, randomized partition, and optimal
partition in Figure 8.

We observe that as the number of thread grows over two, the
optimized partition scheme always scales better than the random
partition scheme. The normalized execution time of the optimized
partition is very close to the performance of phold, and the max-
imum difference is just around 0.04. The result implies that our
network partition model manages to generate balanced workloads
(close to the optimal solution) to enhance the scalability of our
parallel QKD simulator.

6.3 Error Analysis of Execution Time
Estimation

We perform an error analysis of the execution time predicted by the
linear regression model. We first collected the energy of random
partition and optimized partition schemes using simulated anneal-
ing. These estimated execution times are then compared with the
real execution time. The mean absolute errors (MAE) of the model
are plotted in Figure 9.

The MAE of our model is lower than 2.5 seconds except for the
2-thread case. The results indicate that it is reliable to use outputs
of our objective function to assess and compare the relative quality
between different solutions. The large MAE of the 2-thread case is

0.41

0.3

0.2

0.1

0.0+

2 4 8 16 32
Number of thread

Figure 6: Improvement of execution time p for the opti-

mized network partition scheme T,,; over the randomized
e Tran *To

network partition scheme T, ,, 4, and p = #

Table 3: Runtime overhead of garbage collection in Golang

of threads | 2 4 8 16 32
overhead 691% | 8.21% | 10.34% | 11.73% | 12.34%

caused by its long execution time. In fact, the MAE of the 2-thread
case is around five times more than the 4-thread case, the mean
absolute percentage error (MAPE) of the 2-thread case (15%) is only
three times more than the 4-thread case (5%).

The prediction error is caused by two reasons: (1) overheads of
multi-thread programming, and (2) limitations of the linear regres-
sion model. We first collect CPU profiles of the running program
with pprof, as part of Golang’s measurement toolkit. The runtime
overheads are shown in Table 3. The overhead, mainly resulting
from the garbage collection mechanism of Golang, increases as
the number of threads grows, and thus affects the prediction accu-
racy. Second, although the evaluation results show that our linear
regression model works effectively for predicting QKD network
simulation workload based on Observation 1, 2 and 3, the linear
regression model has limitations. The main limitation is the assump-
tion of linearity, in this case, the mean of the response variable is a
linear combination of the parameters (regression coefficients) and
the predictor variables. In a real-world computer system, data is
rarely linearly separable (e.g., considering E. and Es events in a
QKD network) and thus reducing the prediction accuracy due to the
model deficiency. Besides the computational time, the data move-
ment in the memory hierarchy also contributes a non-negligible
part of the overall time [11]. We plan to investigate learning-based
models to further improve accuracy as future works.

7 CONCLUSIONS AND FUTURE WORK

The increasing size of QKD networks calls for scalable simulation
tools. In this paper, we study the feasibility of parallel simulation of
QKD networks based on the analysis of QKD network properties in
terms of event types, quantity, workload, and interaction. We then
develop a QKD network parallel simulator using conservative syn-
chronization. A key component is an optimized network partition

g BE¥ random
360 U\ optimized
£
= 40
C
o
-
320
(O]
x
L
0

2 4 8 16 32
Number of thread

Figure 7: Simulation execution time for G(64, 2, 2), (1) ran-
dom network partition and (2) optimized network partition

+o N —=— random
'c_qé 0.8 Y --e-- optimized
Ne », — phold
© 9
g = 0.6
S 3
Zx04

0.2

2 4 8 16 32

Number of thread

Figure 8: Normalized execution time with (1) random net-
work partition, (2) optimized network partition, and (3)
phold (benchmark)

=

MAE (sec)
~ [e)] o o

N

2 4 8 16 32
Number of thread

Figure 9: Mean absolute error (MAE) of execution time esti-
mation

scheme based on a linear regression model and simulated anneal-
ing for achieving a well-balanced simulation workload for parallel
simulation. We also conducted extensive evaluation experiments
on simulation scalability, speedup, and predication error analysis.

In the future, we plan to apply other methods to explore solutions
for the network partition problem, such as replacing the linear re-
gression model with learning-based models and replacing simulated
annealing with tabu search. We also plan to investigate quantum
entanglement and develop the corresponding scalable simulation
tools. Lastly, we will study hardware-in-the-loop simulation [31]
to further improve the simulation testbed accuracy.

ACKNOWLEDGMENTS

This work is partly sponsored by the Air Force Office of Scientific
Research (AFOSR) under Grant YIP FA9550-17-1-0240 and the Na-
tional Science Foundation (NSF) under Grant CNS-1730488 and
DMR-1747426. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of AFOSR and NSF.

REFERENCES

[1] Julio T Barreiro, Nathan K Langford, Nicholas A Peters, and Paul G Kwiat. 2005.
Generation of hyperentangled photon pairs. Physical Review Letters 95, 26 (2005),
260501.

[2] Julio T Barreiro, Tzu-Chieh Wei, and Paul G Kwiat. 2008. Beating the channel
capacity limit for linear photonic superdense coding. Nature Physics 4, 4 (2008),
282.

[3] Sean D Barrett and Pieter Kok. 2005. Efficient high-fidelity quantum computation
using matter qubits and linear optics. Physical Review A 71, 6 (2005), 060310.

[4] Ben Bartlett. 2018. A distributed simulation framework for quantum networks
and channels. arXiv preprint arXiv:1808.07047 (2018).

[5] Charles H Bennett and Gilles Brassard. 2014. Quantum cryptography: Public key
distribution and coin tossing. Theor. Comput. Sci. 560, 12 (2014), 7-11.

[6] Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres,
and William K Wootters. 1993. Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels. Physical Review Letters 70, 13
(1993), 1895.

[7] Charles H Bennett, Gilles Brassard, Claude Crépeau, and Ueli M Maurer. 1995.
Generalized privacy amplification. IEEE Transactions on Information Theory 41, 6
(1995), 1915-1923.

[8] Gilles Brassard and Louis Salvail. 1993. Secret-key reconciliation by public
discussion. In Workshop on the Theory and Application of Cryptographic Techniques.
Springer, 410-423.

[9] D. Castelvecchi. 2018. The quantum internet has arrived (and it hasn’t). Nature
554 (Feb. 2018), 289-292. https://doi.org/10.1038/d41586-018-01835-3

[10] Rishab Chatterjee, Kaushik Joarder, Sourav Chatterjee, Barry C Sanders, and
Urbasi Sinha. 2019. gkdSim: An experimenter’s simulation toolkit for QKD with
imperfections, and its performance analysis with a demonstration of the B92
protocol using heralded photon. arXiv preprint arXiv:1912.10061 (2019).
Gopinath Chennupati, Nandakishore Santhi, and Stephan Eidenbenz. 2019. Scal-
able performance prediction of codes with memory hierarchy and pipelines. In
Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation. 13-24.

Rachel Courtland. 2016. China’s 2,000-km quantum link is almost complete
[News]. , 11-12 pages.

Axel Dahlberg and Stephanie Wehner. 2018. SimulaQron—a simulator for devel-
oping quantum internet software. Quantum Science and Technology 4, 1 (2018),
015001.

JF Dynes, Adrian Wonfor, WW-S Tam, AW Sharpe, R Takahashi, M Lucamarini,
A Plews, ZL Yuan, AR Dixon,] Cho, et al. 2019. Cambridge quantum network.

npj Quantum Information 5, 1 (2019), 1-8.

Chip Elliott, Alexander Colvin, David Pearson, Oleksiy Pikalo, John Schlafer, and
Henry Yeh. 2005. Current status of the DARPA quantum network. In Quantum
Information and computation III, Vol. 5815. International Society for Optics and
Photonics, 138-149.

Google. 2020. The Go programming language. https://golang.org/

Brian W Kernighan and Shen Lin. 1970. An efficient heuristic procedure for
partitioning graphs. The Bell system technical journal 49, 2 (1970), 291-307.
Taehyun Kim, Ingo Stork genannt Wersborg, Franco NC Wong, and Jeffrey H
Shapiro. 2007. Complete physical simulation of the entangling-probe attack on

(11

[12

(13

(14

[15

[16
[17

(18

[19]

[20

[21

[22]

[23

[24]

[25

[26]

the Bennett-Brassard 1984 protocol. Physical Review A 75, 4 (2007), 042327.
Ulana Legedza and William E Weihl. 1996. Reducing synchronization overhead in
parallel simulation. In Proceedings of the tenth workshop on Parallel and distributed
simulation. 86-95.

Louise Lerner. 2018. Quantum network to test unhackable communi-
cations. https://www.anl.gov/article/quantum-network-to-test-unhackable-
communications.

Ivan Marcikic, Hugues De Riedmatten, Wolfgang Tittel, Hugo Zbinden, Matthieu
Legré, and Nicolas Gisin. 2004. Distribution of time-bin entangled qubits over 50
km of optical fiber. Physical Review Letters 93, 18 (2004), 180502.

Miralem Mehic, Oliver Maurhart, Stefan Rass, and Miroslav Voznak. 2017. Im-
plementation of quantum key distribution network simulation module in the
network simulator NS-3. Quantum Information Processing 16, 10 (2017), 253.
David M Nicol. 1996. Principles of conservative parallel simulation. In Proceedings
of the 28th conference on Winter simulation. 128-135.

Momtchil Peev, Christoph Pacher, Romain Alléaume, Claudio Barreiro, Jan Bouda,
W Boxleitner, Thierry Debuisschert, Eleni Diamanti, M Dianati, JF Dynes, et al.
2009. The SECOQC quantum key distribution network in Vienna. New Journal
of Physics 11, 7 (2009), 075001.

Theresa Rose. 2018. Heuristic research. In What is Psychotherapeutic Research?
Routledge, 133-143.

Nicolas Sangouard, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin.
2011. Quantum repeaters based on atomic ensembles and linear optics. Reviews

[27

[28

[29

(31

[32

]

of Modern Physics 83, 1 (2011), 33.

L Tao, YC Zhao, Krishnaiyan Thulasiraman, and MNS Swamy. 1992. Simulated
annealing and tabu search algorithms for multiway graph partition. Journal of
Circuits, Systems, and Computers 2, 02 (1992), 159-185.

Nino Walenta and Lee Oesterling. 2019. Quantum Networks: Photons Hold
Key to Data Security. Photonics Media, https://www.photonics.com/Articles/
Quantum_Networks_Photons_Hold_Key_to_Data/a60541.

Xiaoliang Wu, Joaquin Chung, Alexander Kolar, Eugene Wang, Tian Zhong,
Rajkumar Kettimuthu, and Martin Suchara. [n.d.]. Photon-Level Simulation of
Quantum Key Distribution with Picosecond Accuracy. ([n.d.]).

Xiaoliang Wu, Joaquin Chung, Alexander Kolar, Eugene Wang, Tian Zhong, Ra-
jkumar Kettimuthu, and Martin Suchara. 2019. Simulations of Photonic Quantum
Networks for Performance Analysis and Experiment Design. In 2019 IEEE/ACM
Workshop on Photonics-Optics Technology Oriented Networking, Information and
Computing Systems (PHOTONICS). IEEE, 28-35.

Xiaoliang Wu, Qi Yang, Xin Liu, Dong Jin, and Cheol Won Lee. 2017. A hardware-
in-the-loop emulation testbed for high fidelity and reproducible network experi-
ments. In 2017 Winter Simulation Conference (WSC). IEEE, 408-418.

Yong Yu, Fei Ma, Xi-Yu Luo, Bo Jing, Peng-Fei Sun, Ren-Zhou Fang, Chao-Wei
Yang, Hui Liu, Ming-Yang Zheng, Xiu-Ping Xie, et al. 2020. Entanglement of two
quantum memories via fibres over dozens of kilometres. Nature 578, 7794 (2020),
240-245.

	Abstract
	1 introduction
	2 background
	2.1 QKD Protocols
	2.2 Models of Optics

	3 Analysis of QKD Networks for Parallel Simulation
	3.1 Analysis of Sequential Simulation of QKD Networks
	3.2 Analysis of Existing QKD Networks

	4 Simulator Architecture
	5 Network Partition
	5.1 Model Construction Using Linear Regression
	5.2 Graph Partition Using Simulated Annealing

	6 Evaluation
	6.1 Simulation Speedup Evaluation with Different Network Partitions
	6.2 Scalability Evaluation with Different Network Partitions
	6.3 Error Analysis of Execution Time Estimation

	7 Conclusions and Future Work
	Acknowledgments
	References

