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Microlocal Analysis of a Compton Tomography Problem*

James W. Webber' and Eric Todd Quintot

Abstract. Here we present a novel microlocal analysis of a new toric section transform which describes a two-
dimensional image reconstruction problem in Compton scattering tomography and airport baggage
screening. By an analysis of two separate limited data problems for the circle transform and using
microlocal analysis, we show that the canonical relation of the toric section transform is 21. This
implies that there are image artifacts in the filtered backprojection reconstruction. We provide
explicit expressions for the expected artifacts and demonstrate these by simulations. In addition, we
prove injectivity of the forward operator for L°° functions supported inside the open unit ball. We
present reconstructions from simulated data using a discrete approach and several regularizers with
varying levels of added pseudorandom noise.
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1. Introduction. We consider the Compton scattering tomography acquisition geometry
displayed in Figure 1, which illustrates an idealized source-detector geometry in airport bag-
gage screening representing the real time tomography (RTT) geometry [27]. See Appendix A
for more detail on the potential for the application of this work in airport baggage screening.
The inner circle (of smaller radius) represents a ring of fixed energy-sensitive detectors and
the outer circle a ring of fixed, switched X-ray sources, which we will assume for the purposes
of this paper can be simulated to be monochromatic (e.g., by varying the X-ray tube voltage
and taking finite differences in energy or by source filtering [10, 11]). It is noted that the RTT
geometry is three-dimensional [27], but we assume a two-dimensional scattering geometry as
done in [29]. Further, we note that in the desired application in airport baggage screening,
we expect the data to be very noisy. Later in section 4 we simulate the noisy data using an
additive Gaussian model with a significant level (up to 5%) and show that we can combat the
noise effectively using the methods of [5] (specifically the “IRhtv” method).

Compton scattering describes the inelastic scattering process of a photon with charged
particles (usually electrons). The energy loss is given by the equation
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Figure 1. Part of a toric section T = C1UC> with azis of rotation @ = (0,1), tube center offset s = /12 — 4,

and tube radius r. Here cosw = T274. The coordinates c1 and co denote the centers of the circles which the

arcs Cv and Ca2 lie on, respectively. The detector ring (green circle, radius 1, center O) is the scanning region,
where the density f (the red square) is supported. The source ring is the blue circle, which has radius 3 and
center O.

where E’ is the scattered energy, F is the initial energy, w is the scattering angle, and Ej
denotes the electron rest energy. If the source is monochromatic (F is fixed) and we can
measure the scattered energy E’, then the scattering angle w of the interaction is determined
by (1.1). This implies that the locus of Compton scatterers in the plane is a toric section
T = Cy U Cy (the union of two intersecting circular arcs). See Figure 2. Hence, we model
the scattered intensity collected at the detector d with scattering angle w (determined by
the scattering energy E’ in (1.1) and which determines the radius r of the circular arcs in
Figure 1) as integrals of the electron charge density f (represented by a real-valued function)
over toric sections T'. This is the idea behind two-dimensional Compton scattering tomography
[18, 20, 21, 29]. Note that the larger circular arcs of Figure 1 (which make up the majority
of the circle circumference) do not intersect the scanning region, and hence we can consider
integrals over whole toric sections (not just the part of 7' depicted in Figure 2). In three
dimensions, the surface of scatterers is described by the surface of revolution of a toric section
about its central axis, namely, a spindle torus. In [30, 31], the inversion and microlocal
aspects of a spindle torus integral transform are considered. In [24], Rigaud considers a
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Cy

Figure 2. Part of a toric section T'= C1 U Cy with points of self-intersection at source and detector points
s and d, respectively. The incoming photons (illustrated by wavy lines) have initial energy E and scatter at a
fized angle w < /2 along scattering sites x € T.. The resulting (scattered) photon energy is E' as in (1.1). The
electron density f (the red rectangle) is supported within the green circle (the unit ball; see Figure 1).

related Compton model with attenuation, and Rigaud and Hahn develop and analyze a clever
contour reconstruction method for a three-dimensional model [25].

The set of toric sections whose tips (the points of intersection of Cj and C3) lie on two
circles (as in Figure 1) is three-dimensional. Indeed, we can vary a source and detector coordi-
nate on S x S and the radius of the circles r. In this paper we consider the two-dimensional
subset of toric sections whose central axis (the line through the points of intersection of Cy and
C») intersects the origin. This can be parametrized by a rotation about the origin (6 € S!)
and the radius r > 2, as we shall see later in section 3.

In [29], the RTT geometry is considered, the scattered intensity is approximated as a set of
integrals over discs whose boundaries intersect a given source point, and inversion techniques
and stability estimates are derived through an equivalence with the Radon transform. Here
we present a novel toric section transform (which describes the scattered intensity exactly)
and analyze its stability from a microlocal standpoint. So far, the results of Natterer [17]
have been used to derive Sobolev space estimates for the disc transform presented in [29], but
the microlocal aspects of the RTT geometry in Compton tomography are less well-studied.
We aim to address this here. We explain the expected artifacts in a reconstruction from
toric section integral data through an analysis of the canonical relation of a toric section
transform, and injectivity results are provided for L°° functions inside the unit ball. The
expected artifacts are shown by simulations and are as predicted by the theory. We also give
reconstructions of two simulated test phantoms with varying levels of added pseudo-random
noise. In [31] it is suggested to use a total variation (TV) regularization technique to combat
the artifacts in a three-dimensional Compton tomography problem. Here we show that we
can combat the nonlocal artifacts (due to the 2-1 nature of the canonical relation) present in
the reconstruction effectively in two dimensions using a discrete approach and a heuristic TV
regularizer. In section 2 we recall some definitions and results on Fourier integral operators
(FIOs) and microlocal analysis before introducing a new toric section transform in section 3,
which describes the Compton scattered intensity collected by the acquisition geometry in
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Figure 1. Later in section 3.1 we provide a novel microlocal analysis of the toric section
transform when considered as an FIO. Through an analysis of the canonical relations of two
circle transforms separately (whose sum is equivalent to the toric section transform), we show
that the canonical relation of the toric section transform is 2—1 and provide explicit expressions
for the artifacts expected in a reconstruction from toric section integral data.

In section 3.2 we prove the injectivity of the toric section transform on the set of L™
functions in the unit ball. This uses a similar parametrization of circular arcs to Nguyen and
Truong in [18] and proves the injectivity by a decomposition into the Fourier series components
and using the ideas of Cormack [2].

In section 4 we present a practical reconstruction algorithm for the recovery of two-
dimensional densities from toric section integral data and provide simulated reconstructions
of two test phantoms (one simple and one complex) with varying level of added pseudoran-
dom noise. Here we use a discrete approach. That is, we discretize the toric section integral
operator (stored as a sparse matrix) on a pixel grid (assuming a piecewise constant density)
and use an iterative technique (e.g., a conjugate gradient method) to solve the sparse set of
linear equations described by the discretized operator with regularization (e.g., Tikhonov or
total variation). We demonstrate the nonlocal artifacts in the reconstruction by an applica-
tion of the discretized normal operator (AT A, where A is the discrete form of the toric section
transform) to a delta function and show that the artifacts are exactly as predicted by the
theory presented in section 3.1 by a side-by-side comparison. We further show that we can
effectively combat the nonlocal reconstruction artifacts by applying the IRhtv method of [5]
(see also [9]).

2. Microlocal definitions. We now provide some definitions.

Definition 2.1 ([14, Definition 7.1.1]). For a function f in the Schwartz space S(R™) we
define the Fourier transform and its inverse as

F1(©) = [ e s,
Flfa) = nyn [ eveps

n

(2.1)

We use the standard multi-index notation. Let o = (a1, a9,...,0,) € {0,1,2,...}" be a
.. . 0 0 0 n
multi-index and f a function on R"; then 9% f = (5-) (35;)** -+ (55.) " f
We identify cotangent spaces on Euclidean spaces with the underlying Fuclidean spaces,
so if X is an open subset of R” and (z,£) € X x RY, then TC 6 (X x RY) is identified with

R™ x RY. Under this identification, if ¢ = ¢(z,€) for (z,&) € X x RN, then
(00 0 06\ L. (06 06 9
d$¢_ (8(13’178132"“781'”) 3 d§¢_ (861’8527.“78§N> )
and do(z,€) = (dod(,€), ded(,€)) € R* x RN,

Definition 2.2 ([14, Definition 7.8.1]). Let X be an open subset of R™, and let m € R. Then
we define S™(X x RN) to be the set of a € C(X x RN) such that for every compact set
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K C X and all multi-indices o, B, the bound

000 a(w,€)| < Copr 1+ )™, 2 e K, €eRr,

holds for some constant C'ic. The elements of S™ are called symbols of order m.

Note that these symbols are sometimes denoted S77%.

Definition 2.3 ([15, Definition 21.2.15]). A function ¢ = ¢(z,£) € C®(X x RN\0) is a
phase function if ¢(z, A8) = Ap(z,&) VA > 0 and d¢ is nowhere zero. A phase function is
clean if the critical set ¥y = {(z,£) : degp(z,§) = 0} is a smooth manifold with tangent space
defined by d(de¢) = 0.

By the implicit function theorem, the requirement for a phase function to be clean is
satisfied if d(d¢¢) has constant rank.

Definition 2.4 ([15, Definition 21.2.15] and [16, section 25.2]). Let X C R™, Y C R™ be
open sets. Let ¢ € C°(X x Y x (RV\ 0)) be a clean phase function. Then the critical set of
¢ is

Y= {(2,,6) € X xY x RN\ 0:dep = 0}.

The canonical relation parametrized by ¢ is defined as

(2'2) C= {((y,dy¢(x,y,§)), (‘ra _dx¢($7y7§))) : (.%', y?&) € E¢>} )

Definition 2.5. Let X C R™,Y C R™ be open sets. An FIO of order m+N/2—(ny+n,)/4
is an operator A : C§°(X) — D'(Y') with Schwartz kernel given by an oscillatory integral of
the form

(2.3) Ka(e,y) = / OB a (., y, €)de,
RN

where ¢ is a clean phase function and a € S™(X x Y x RN) a symbol. The canonical relation
of A is the canonical relation of ¢ defined in (2.2).

This is a simplified version of the definition of FIO in [4, section 2.4] or [16, section 25.2]
that is suitable for our purposes since our phase functions are global. For general information
about FIOs, see [4, 15, 16].

Definition 2.6. Let C € T*(Y x X) be the canonical relation associated to the FIO A :
E'(X) = D'(Y). Then we denote 7, and wg to be the natural left- and right-projections of C,
7 :C—T*Y\0 and 7 : C — T*X\0.

We have the following result from [16].

Proposition 2.7. Let dim(X) = dim(Y"). Then at any point in C,

(i) if one of m, or g is a local diffeomorphism, then C is a local canonical graph;

(ii) if one of the projections wr or 7y, is singular at a point in C, then so is the other. The
type of the singularity may be different, but both projections drop rank on the same set

(2.4) Y={(y,n;x,§) € C:det(dnr) =0} = {(y,m;x,&) € C : det(dmwr) = 0}.
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If an FIO F satisfies our next definition and F* is its formal adjoint, then F'F (or FL¢.F,
where ¢ € D(Y) if F and F! cannot be composed) is a pseudodifferential operator [7, 22].

Definition 2.8 (semiglobal Bolker assumption). Let F : &'(X) — D'(Y) be an FIO with
canonical relation C. Then F (or C) satisfies the semiglobal Bolker assumption if the natural
projection my : C — T*(Y') is an injective immersion.

3. A toric section transform. In this section we recall some notation and definitions and
introduce a toric section transform which models the intensity of scattered radiation described
by the acquisition geometry in Figure 1. This section contains our main theoretical results.
We describe microlocally the expected artifacts in any backprojection reconstruction from
toric section integral data (Theorem 3.4 and Remarks 3.6 and 3.7). In addition, we prove the
injectivity of the toric section transform using integral equations techniques (Theorem 3.8 and
Remark 3.9).

For r > 0, let B, be the open disk centered at the origin of radius r, and let B = B
denote the open unit disk. For X an open subset of R", let D’'(X) denote the vector space
of distributions on X, and let £(X) denote the vector space of distributions with compact
support contained in X.

Let us parametrize points on the unit circle, § € S as § = 6(a) = (cosa,sina), for
a € [0,27], and let 6, = % be the unit vector 7/2 radians counterclockwise (CCW) from 6.
When the choice of « is understood, we will write 6 for 6(«).

Let (r,a) € Y := (2,00) x [0,27]. To define the toric section, we first define two circular
arcs and their centers. For (r,«) € Y define

s=Vr2—4, c1=ci(r,a)=0(a)+ s0,(a), c3=-ca(r,a)=~0(a)—s0(a),
C1=Ci(r,a) ={x€R?:x-0, <0, [x—ci(r,a)> —r* =0},
Cy=Cy(r,a)={y eR?:y-0,>0, |y —ca(r, )| —r> = 0}.
When the choice of (7, o) is understood, we will refer to the arcs as C; and their centers as c;
for j € {1,2}.

The toric transform integrates functions on B over the toric sections, Cy(r, o) U Ca(r, av):
Let f € C§°(B) represent the charge density in the plane. Then we define the circle transforms

(3.1) ﬂf(r,a):/c fds, Tof(r,a) = : fds

and the toric section transform

(3.2) Tf(ra) = /C s =T (e + () (),

where ds denotes the arc element on a circle.

Remark 3.1. Let j = 1,2. The adjoint, 77 of 7; is defined on distributions by duality.
For g € D(Y) and x € R%\ 0, T?g(x) is a weighted integral of g over all toric sections through
x. Since there are no toric sections intersecting points outside of Bs, we assume x € B;. We
also note that no toric sections go through 0—toric sections close to 0 have values of r ~ oco.
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Furthermore, for fixed x € B3 \ B, the values of o such that x € C;(r,a) (for some r) is
a proper subinterval of [0, 27].

Since the set of toric sections is unbounded, 7* must be defined on distributions of compact
support.

To deal with all of these inconveniences, we define a modified adjoint. Let ¢ : (2,00) = R
be smooth and with compact support in (2,M) for some M > 2. One can also assume
0 < ¢ <1and ¢ =1 onmost of (2, M). We define the cutoff-adjoint T;* : D'(Y') — D'(Bj3).
For g € D'(Y),

(3-3) Trg=Ti(pg), T =T +T5.

Let pmin = M — vV M? —3. Then T*g(x) = 0 for x € B, \ 0. This is true because
Pmin is the closest distance the arcs Ci(r,«) and Cy(r,«) get to the origin for all (r,«) €
(2, M) x [0,27]. Therefore, we define 7*g(0) = 0, and 7 *g is smooth near 0. This also means
for f € &(Bs) that T*T f(x) =0ifx € B

In this section, we will study the microlocal properties of 7*7. In Remark 3.6, we gen-
eralize our results to a more general filtered backprojection. The main results of this section
are as follows. Let f € &'(B) have a singularity (e.g., region boundary) at w € B in direction
€ e R"\ 0, with w-¢& #0, and let ¢ = £/|¢]. Our main theorem (Theorem 3.4) proves the
existence of image artifacts corresponding to (w,&) in a reconstruction from 7 f data at two
points x,y € R2. The expression for y is given explicitly by

Pmin *

9T

_ w43

SwE) and 0 satisfies

where r

(—13 i)@zw—rf’

and where v > 0 is chosen so that y € (. The artifact at y comes about when the singularity
at (w,&) is (co)normal to a C arc and is detected by 71 but backprojected by 7.
The expression for x is given by

1 -7
X = ;[HQ,H] [—305 “ QT] w,

where r = |W|2+,3 and 0 satisfies
2(w-¢’)

<izﬁ9:w—w

and where v > 0 is chosen so that x € (1. The artifact at x comes about when the singularity
at (w,&) is (co)normal to a Cy arc and is detected by 72 but backprojected by T;*.

A visualization of the predicted image artifacts when f is a delta distribution is given in
Figure 3.
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3.1. Microlocal properties of 7; and 7. Since we do not consider the points of inter-
section of the arcs C7 and Cy (since distributions in the domain of 7, £'(B), are supported
away from them), we can consider the microlocal properties of the circle transforms 7; and 7
separately. Let Y = [0,27] x (2,00). When considering functions and distributions on Y, we
use the standard identification of [0,27] with the unit circle S, a + 0(a) = (cos(a),sin(a)).

We first show 77 and 75 are FIO.

Proposition 3.2. 71 and Tz are both FIO of order —1/2. Their canonical relations are

C = { (r,a,—20x (B — 58), —%(x-@a);x, ~90(x — c1(r,a))> :
(rra)eY,0 e R\0,x € Cl(r,a)mB},
o Cy = { <a,r, 20y - (0 + s6), ?(y 00):y, —20(y — es(r, a))) :

(r,a) € Y,o € R\{0},y € Ca(r,a) N B, }

For j =1,2, we let 5] be defined as C; except that x or y is not restricted to be in B, and
we let C = C; UCo.

Proof. We briefly explain why 72 is an FIO, and we calculate its canonical relation. Let
Z ={(r,a,y) €Y x B : |y — ca(r,a)|? — 72 = 0}. From calculations in [7, 22] the Schwartz
kernel of 73 is integration over Z, and so the Schwartz kernel is a Fourier integral distribution
with phase function ¢o(y,r, a, o) = o(|y — ca(r, a)|* — r?). This is true because, for functions
supported in B, T can be viewed as integrating on the full circle defined by |y —ca(r, )|?
0.

Using Definition 2.4 one sees that the canonical relation of 73 is given by the expression
n (3.5). One can easily check that the projections 77, (C2) and mr(C2) do not map to the zero
section, so Tz : &'(B) — D'(Y) [13].

The operator Tz is a Radon transform, and therefore its symbol is of order zero (see, e.g.,
[22]), so one can use the order calculation in Definition 2.5 to show that the order of T3 is
~1/2.

In a similar way, one shows that 7; is an FIO with phase function ¢1(x,7, a,0) = o(|x —
ci(r,a)> —r?). [ ]

2 =

We now prove that each 7; satisfies the Bolker assumption.

Theorem 3.3. For j = 1,2, the left projection my, : (?j — T*(Y) is an injective immersion.
Therefore, my, : C; — T*(Y') is an injective immersion, and so T; satisfies the semiglobal
Bolker assumption (Definition 2.8 ).

The operators T,* and T; can be composed as on FIO, and the compositions all have order
—1.

Proof. We will prove this theorem for 75, and the proof for 77 is completely analogous.
We first show that 77, is an immersion.
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As noted above, if « is known, then we let § = 0(«) and 6, = (—sina,cosa). For
bookkeeping reasons, if 3 € [0,2n], the vector in S! corresponding to 3 will be denoted
1) = (cos B,sin ), and we let ¢3 = (—sin 3, cos ) be the unit vector 7/2 radians CCW from
. This allows us to parametrize points on Cy(r, ) by

(36) yZY(T‘,O[,B):C2+T¢:CQ(T,O[)—{—T‘(COSB,SiDIB)
for B in an open interval containing [0, 27]. Then
(37) (Tv «, B, U) = >‘2 (Ta «, Bv U) = (T7 «, Uda¢2, Gdr¢2; Y(Tv Q, B)a —Udy¢2) S CQ

gives coordinates on the canonical relation C5. Using these coordinates and after simplification,
the map my, is given by

(3.8) L (A(r, o, B,0)) = (7‘, a, =201 - (04 + s6), %(75 + - Ga))
and

1 0 0 0

0 1 0 0
(3.9) Drp, =

as1 a32 —207’1#5 . (9 + 8(9) —2r - (0a + 89)
as1 a4 2” (Y5 - 0a) QT (=2 +40a)
It follows that

(3.10)

det Dy, = — 2 det <¢5 wf +a) % (i"J-Sei))
( S s

(O -+ 50) + (1 - 0) (¥ - O + 5003 0) = (13- 0a) (¥ - O + 500+ ) )
——4w( T (0o 59) + (6 82)(65-0) — (03 0)(0-0))

—4M<T<w 2) + (- 0a) + (- 0>2))
= 4130 (i(w c2) + 1) ;

where to go from step 3 to step 4 above we have used the identities ¥g-0, = -0 and ¥z -0 =
—1) - B4. Let us assume det D7, = 0. Then ¢ -co = —r. But |t - co| < |co| = V12 =3 <r,
and we have a contradiction. Note that this contradiction holds for all y € Cy(r, «), not just
for those in B. Therefore, the map 7z, : C2 — T*(Y) is an immersion.

We next show the injectivity of the left projection 7y through an analysis of the canonical
relations of 7. Let (r,a,n) € w1 (C2) and y; and y2 be two points in Cp and £ and € in
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R2\ 0 such that (r,a,n;y1,€) and (r, a,n;yg,g) are both in C;. We show (y1,§) = (yg,g).
By equating the terms for 7 in the expression for Cq, (3.5), one sees, for some o1 and o9, that

—201y1 . (6?@ -+ 89)> (—202y2 . (Ga + S@))
3.11 = = ,
( ) ! ( 20571T(Y1 ' 904) QUTQT(yQ : ea)

where s = v/r2 — 4. Since y; -0, < 0, the bottom equation in (3.11) shows that v = o1 /02 > 0.
In addition,

201T 2091
(3.12) (1 0a) = = (y2 0a) = (0171~ 02y2) 0o =0
and
(3.13) —201y1 - (Qa + 89) = —209y2 - (Ga + 89) - (alyl - Ung) -0 =0.

Hence, 01y1 — 02y2 = 0 or yo2 = vy, where v = Z—; > 0. Given that any ray through origin
intersects the curve Cy at most once and yi1,y2 € Co, it follows that o1 = 09 and y; = yo.
This finishes the proof for 73. Note that this proof is valid for any y; and y2 in Cs, not just
for those in B. In other words, 7, : Co — T*(Y) is also injective, so 7, : C; — T*(Y) is an
injective immersion.

As already noted, the proof for 77 is similar, and it uses the following coordinate maps:

(3.14) x =x(r,a, ) =c1 + 1Y = ci(r,a) + r(cos B,sin B), S € [0, 2],
(3.15) (r,a, B,0) = Ai(r,a, B,0) :== (r,a, 0dg¢1, 0dr 015, %(1, @, B), —odxp1) € Cy.

However, in this case, ( is in an open interval containing [—m, 7.

Since 7; and its dual are of order —1/2 and have canonical relations that are local canonical
graphs (as they satisfy the Bolker assumption), all compositions 7;*7; are FIO of order —1
[13]. [ |

Let C = C; UCy. Because Cy NCy = () above B, C is an embedded Lagrangian manifold,
and since T = 71 + T2, 7 is an FIO with canonical relation C. We now have our main
theorem, which shows that the canonical relation C is 2—-1 in a specific sense. We give explicit
expressions for the expected artifacts in a reconstruction using 7 *7 that are caused by this
2-1 map.

Theorem 3.4. The projection 7y, : C — T*(Y) is 2-1 in the following sense. Let A =
(r,a,n) € w(C). Then there is at least one point (w,€) € B x (R?\ 0) such that A\ =
(A, (W, €)). Necessarily, w is either in Ci(r,a) or in Ca(r,a). Assume w € Cy. Then there
isay € Cy and £ € R? \ 0 such that A = 7 (A, (y,g’)) The point y is given by (3.18). If
w € Cy, then its corresponding point in Cy is given by (3.19).

Let T* be the modified dual operator in Remark 3.1. The canonical relation of T*T is of
the form AUA1UAs, where A is the diagonal in T*X xT*X and A = C~foC2 and Ay = C~50C1
are associated to reconstruction artifacts.

Let f be a distribution supported in B. If (w,§) € WF(f) and &-w # 0, then two artifacts
can be generated in T*T [ associated with (w,§) (see Remark 3.5). The base point of the one
generated by Ay is given by (3.25), where r is defined by (3.21) and « is solved from (3.24),
and the base point of the artifact caused by Ao is given by (3.23), where r is defined by (3.21)
and « is given by solving (3.22).
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Artifacts occurs naturally in several other types of tomography, such as in limited data X-
ray computed tomography (CT) [1]. The artifacts in this Compton CT problem are similar to
the left-right ambiguity in synthetic aperture radar (SAR) [12, 19, 26] because they both come
from the backprojection. However, the left-right artifacts in SAR (a mirror-image artifact
appearing on the opposite side of the flight path to an object on the ground) is geometrically
easier to characterize than the artifacts caused by the A; given in Theorem 3.4.

In both cases, if one could take only half of the data (e.g., in Compton CT only 77 or
in SAR using side-looking radar), then one would not have artifacts. However, the authors
are not aware of any way to reliably obtain only the data over C; (or only C2) in the desired
application in airport baggage screening (i.e., in the machine geometry of Figure 1).

Remark 3.5. In Theorem 3.4, we note artifacts can occur, and we now discuss this more
carefully. The backprojection reconstruction is made of four terms, 7*T = T;*T1 + 1572 +
T¥T2 + T3 Th, and we first analyze the individual compositions.

If (x,£) is (co)normal to a circle Cj(r, o) with 7 € supp(y), then this singularity is visible
in ¢7; because the cutoff ¢ is nonzero near r and 7; is elliptic. Therefore, the singularity will
appear in the composition 7;*7;, and any artifact caused by 7,*7; when i # j will also appear.

On the other hand, if (x,&) is (co)normal to a circle Cj(r, o) with r ¢ supp(y), then this
singularity is smoothed by ¢7; because the cutoff ¢ is zero near r, the singularity will not
appear in the composition 7;*’7}, and no artifact will be created by 7,*7; when ¢ # j.

However, artifacts and visible singularities can cancel each other because 7*7 is the sum
of four terms of the forms above.

Our next remark describes the strength in Sobolev scale of the artifacts and generalizes
our theorem for filtered backprojection.

Remark 3.6. The artifacts caused by a singularity of f are as strong as the reconstruction
of that singularity.

The visible singularities come from the compositions 7,77 and 7,7z since these are pseu-
dodifferential operators of order —1. The artifacts come from the “cross” compositions 75 71
and T;*7Tz, and they are FIO of order —1. Therefore, since the terms that preserve the real
singularities of f, 7,*7;, ¢ = 1,2, are also of order —1, 7*7 smooths each singularity of f by
one order in Sobolev norm, and the compositions 7,*7; for i # j create artifacts from that
singularity that are also one order smoother than that singularity.

Second, our results are valid not only for the normal operator 7*7 but also for any filtered
backprojection method 7*P7T where P is a pseudodifferential operator. This is true since
pseudodifferential operators have canonical relation A and they do not move singularities,
so our microlocal calculations are the same. If P has order k, then 7*P7T smooths each
singularity of f by order —(k—1) in Sobolev norm and creates an artifact from that singularity
that is also —(k — 1) orders smoother.

Proof. Let (r,a,m) € 7,(C). Then thereis an (w,£) € Bx (R?\0) such that (r,a,n; w,€) €
C. Either w € Ci(r,a) or w € Ca(r, ), and this is determined by (r,«). At the end of this
part of the proof, we will outline what to do if w € Ca(r, a).

We assume w € C4(r,«), and for this part of the proof, in which w € Cq, we let x = w.
Assume there is another point in C that maps to (r,a,n) under m7. That point must be on
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Cs, and it must be unique since 7y, : C~] — T*(Y) is injective for j = 1,2 by Theorem 3.3.
Let (y,&) be chosen so that y € Co(r,«) and (r,«,m;y,&) is the preimage in Co of (r,a,n).
Comparing the 7 term of the expressions (3.5) for C; and Cy, we see there are numbers oy and
o9 such that
—201x - (0o — 59)> <—202y (a0 + 59))

3.16 = = 2 .

(3.16) n ( —20r(x . 6,) 202 (y - f,).

This implies that o1(x - 0) = —02(y - 0o). Since x - 0, and y - 0, have opposite signs, o1 and
o9 have the same sign. Let v = 01/02. Then v > 0, and if we solve (3.16) for y, we see

2
(3.17) y=v <(—X <04)00 + <x Oy —x- 9) 9> for some v > 0.
s
Equivalently, we can write the above as
—oT
(3.18) y = V[0q, 0] [QHT _QQT] x, (C1— Cy).

Given 1, a, and x, this equation describes the point y that is the base point of the preimage
in Cy of (r,a,m).

Equation (3.18) for arbitrary v > 0 describes a ray starting at 0. Because the circle
containing Cy(r, «) encloses 0, this ray intersects the circle at a unique point. Since any point
y’ on this ray satisfies y’- 6, < 0, the unique point on the circle is on Cy(r,a). If w = x € 1,
then this proves that 7y, is 2—-1 as described in the theorem.

To prove the statement about 7, being 2—1, if the point w at the start of the proof is in
Cy(r, «), then one goes through the same proof but solves for x in terms of y and replaces y
by w in (3.16) to get

1 —67
(3.19) X = *[Ga,e] I:—ZHT (i QT] W, (CQ — Cl)

v =0,
Given r, o, and w, this equation describes the point x that is the base point of the preimage
in C; of (r,c,m).

To describe explicitly the artifacts which occur due to an application of the normal operator
T*T, let us consider the canonical relation C* o C. We have the expansion

CtoC = (C~1 UCQ)t o (C~1 UCa)

(3.20) = (CtUC)U(CLUC)U(CtuCy) U Ctuc)
CAUA UAy,

where A1 = C~{ UCy and Ay = C~§ U Cy. Note that C~§ oCj C A for j = 1,2 because 5] satisfies
the Bolker assumption.

Let (w,&) € T*(B) be such that w-& # 0, and let £ = £/[§|. We now calculate the
(r,0), for which the circular arc C intersects w normal to &, explicitly in terms of (w,§). For
w € C] we know that ¢; = w — r¢’. Therefore,

|c1]2 =2 -3= |w — r§’|2 = |w|2 —2rw - & + 12,
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and it follows that

_wP+3
S 2w-¢)
Also, to get (r,0) explicitly in terms of (w,¢’),

(3.21)

(3.22) (1 f)ezw—rg

—S

To check that # is a unit vector, note that

@ ‘f) (x—r¢)

as |w—r&| = |c1| = V1 + s2. Once (r,0) are known, the artifact y induced by Aj is given by
(3.18)

B 1
142

o w—rd V142

1+ s2

10

L

T
(3.23) y = v[b,,0] [2 ;9“ T] w,
<0, — 0

where v > 0 is such that y € (5. This point y is the base point of the artifact corresponding
to (w, &) that is added by A;.

Similarly, we can express the (r, ) for which the circular arc Cy intersects w normal to &,
explicitly in terms of (w, ). When w € Cy, we know that co = w—r¢’. Hence, the calculation
for r is the same as (3.21) and

(3.24) <1lﬂ9=w—w,

S

and hence the artifact x induced by A; is given by (3.19)

1 —oF
(3.25) X= ;[Gm 0] _%95 _eT| W

where v is chosen so x € C}. Then x is the base point of the artifact in A; caused by (w,£). M

Remark 3.7. Theorem 3.4 proves that C is 2-1 everywhere above B, and (3.23) and (3.25)
provide expressions for the pairs x,y whose image under C is the same. Intuitively, we can
think of this as an inherent “confusion” in the data 7 f as to where the “true” singularities
(e.g., object boundaries or contours) in f lie (and in what directions). To give more detail,
let f have a singularity at w in direction £. The singularity at w is detected in the data T f
when the circular arc C; (for some j = 1, 2) intersects w normal to £&. Such a C; always exists
by Theorem 3.4 (see the expressions for (r,#) in terms of (w,¢)), and hence the singularity at
w is resolved. However, due to the 2—-1 nature of C, we only have sufficient information to say
that the true singularity lies at w or some x,y (as in (3.23) and (3.25)). Hence, we see image
artifacts in the reconstruction at x (for (w,§) € N*Cy) and y (for (w,§) € N*C}), and the
artifacts appear as “additional” (unwanted) image singularities on one-dimensional manifolds
(see Figure 3).
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3.2. Injectivity. Here we prove the injectivity of the toric section transform 7 on L°(B),
L functions of compact support in B. We write points in R? in polar coordinates (p, a)
pO(a) = p(cos(a),sin(a)). For an integrable function F(p,a) and | € Z, we define the [th
polar Fourier coefficient of f to be

1 2 )
Rlp) = 5= | Flp.)e ™ da.
a=

Let t = v/r2 — 3, and let a(t) = cos™! % Then we can parametrize the set of points on
the toric section in polar coordinates

p=+t>cos?p+3—tcosp, —alt)<e<alt),t>1,

(3.26)
O=a+at)+¢, or f=a—at)+¢, 0<a<2nm,

and it follows that

ft, ) / 8p a+a(t)+¢)
(3.27) o &p Flp, 7

+ F(p,a —a(t) + ¢)] ’ \/m,mwd%

where F(p,a) = f(pf(c)) is the polar form of f. We now have our second main theorem,
which follows using similar ideas to Cormack’s [2].

Theorem 3.8. The toric section transform T : LX(B) — L*(Y), where Y = (2,00) X
[0, 27], is injective.

Proof. After exploiting the rotational invariance of the transform (3.27), we have

1 at) | 9o\ 2 »
(3.28) (Tf)l (t) = T|l| <t) /—a(t) P+ (82) Fi(p)e e ’p:\/tQ cos2 p+3—tcos de,

where
27

(3.29) (T, (t):% [ Trta)e

and Tj; is Chebyshev polynomial of the first kind of order [I].
The arc length measure on the circle is

tcosp
3.30) p? + = de,
( V \/ t2C052(p+3 dp=r ( t20082g0+3> v

and using the symmetry of (3.28) in ¢ about ¢ = 0, we have
(3.31)

(T, @) 1 a(t) tcos
47. - 1—1‘“ E A 1- \/m E(p) COS(ZSO) |P: /12 cos2 p+3—tcosyp dSD
1 a(t) _
=1y () [ Fittcosi) contipha
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where f is defined as

oy (1 |zl . b &
(3.32) f(x)—(l W)f((\/l - le - )

and F(p,a) = f(pf(c)) is the polar form of f. Note that F is in L¥(B'), where B’ is the
exterior of the closed unit ball.
After making the substitution p = scos, we have

T 1\ [t Fp)Ty (%
T (2) [ P

(3.33)

We claim that the function g; defined by

L E(p)Ty (2)

1 /t2 _ P2

is continuous on [1,00). To show this, one just writes ¢;(t) — ¢;(s) for s < ¢ as an integral on
[s,] plus an integral on [1,s]. Because Fj € L*°([1,00)), the integral on [s,t] clearly goes to
zero as s — t. To show that the integral on [1, s] goes to zero as s — ¢, one makes the change
of variable © = s — p and then uses dominated convergence on the integrand to show that it
converges to zero, too (after assuming s > t/2). In this case, the integrand is bounded near
the endpoint that depends on s. The proof of continuity if ¢ < s uses similar ideas; dominated
convergence works on the integral on [1,¢], and the integral on [t, s] requires the change of
variable.
Now assume that (7 f); = 0. Since g; is continuous, g; = 0 everywhere. So we have

(3.34) alt) = dp

LE(p) Ty (%) dp =
1 /12 — P2

for all ¢ € (1,00). Then (3.34) is a generalized Abel integral equation of the first kind, and
the right-hand side is absolutely continuous. The kernel is

Tiy (£)
VE+p

(3.35) 0

1
VE=7p’

and the term in brackets is nonzero when ¢t = p. Using this information and arguments in
[28, 32] and stated in [23, Theorem B|, one sees that f; = 0, and thus 7 is invertible on domain
L>(B). [ |

Remark 3.9. The integral equation in (3.33) provides a method to reconstruct the polar
Fourier coefficients of f from the data. If one lets

_(TH @)
a(t) = m,
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Figure 3. Predicted and observed artifacts from reconstructing a delta function far from the origin by
backprojection.

then (3.33) becomes (3.34). With a simple change of variables in (3.34), r = 1/p, and letting
p = 1/t, one reduces the integral on the right-hand side of (3.34) essentially to the integral
equation in [2, equation (10)] for the /th polar Fourier coefficient, a function that is the product
of a nonzero function and a composition of f; with a diffeomorphism.

Cormack inverts his expression [2, equation (10)] by another Abel-type equation (see |2,
equations (17) and (18)]), and this would give the related function and hence f. However, this
inversion formula is numerically unstable because it involves Tj(p/z), where p > z and T;(p/z)
blows up like (p/z)!. This is why Cormack developed a different reconstruction method for
X-ray CT using an SVD in [3].

So far we have shown that the problem of reconstructing a density f € L*°(B)) from
T f is uniquely solvable and provided explicit expressions for the expected artifacts in the
reconstruction. We next go on to demonstrate our theory through discrete simulations.

4. Reconstruction algorithm and results. Here we present reconstruction algorithms for
the reconstruction of two-dimensional densities from toric section integral data and demon-
strate the artifacts described by the theory in section 3.1.

We take a discrete (algebraic) approach to reconstruction. That is, we discretize the
operator 7 on a pixel grid (see Figure 4) and find

(4.1) arg min | Av — b[|3 + \’G(v),

where A is the discrete form of 7 (each row of A is the vectorized form of a binary image
as shown in Figure 4) and G(x) is a regularization penalty (e.g., G(v) = ||v|3 (Tikhonov)
or G(v) = > . |vi — vi—1| (TV)), with regularization parameter X\. Here v represents the
vectorized form of the density image (which is to be reconstructed), and b (our data) represents
the Compton scattered intensity.
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Figure 4. Discretized toric section integrals for varying rotation angles o and radii v are presented as
images. The images are binary (the pizel value is 1 if it intersected by a toric section and 0 otherwise).

To simulate noisy data we take a vectorized density image = (such as those presented in
Figure 5) we add a Gaussian random noise
Av
(4.2) b= Av 4 e x 84Vl
vn
where g is a pseudorandom vector of samples drawn from a standard normal distribution and
n is the number of entries in b. Here € denotes the noise level in the sense that

Ib—Av]> _
[Av]2
for n large enough. It is noted that simulating data as in (4.2) can often lead to optimistic

results (due to the inverse crime). In Appendix B we present additional reconstructions of a
“multiple ring” phantom using analytically generated toric integral data to avoid the inverse
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Figure 5. Simple (left) and complex (right) phantoms.

crime. The ring phantom f is such that a closed form for 7 f is possible. For the more general
phantoms considered later in this section, we have not found such a closed form. Hence, in
the main text, we choose to simulate the data as in (4.2). We shall see later (in Figure 6) that
the artifacts predicted by our microlocal theory are present using (4.2) for data simulation,
so such a data generation is sufficient to verify our theoretical results.

Throughout the simulations presented here, we simulate toric section integral data for
rotation angles « € {% :1 < j <360} and for circle radii r € {# 11 <j <199}, where
the pixel grid size is 200-200. So n = 360 x 199 = 71640, and A has 200? columns.

To simulate the artifacts implied by the theory presented in section 3.1, we consider the
reconstruction of a delta function by (unfiltered) backprojection, that is, by an application of
the normal operator 779, where d has its support in the unit ball. To calculate the artifacts
induced by A1 = C1 0Cy and Ay = 62 o Cy (as in Theorem 3.4) when f = § (so here f is
nonzero only at a single point, and its wavefront set lies in all directions), let us consider a
point x = |x|(—1,0) on the x axis. Then (3.25) becomes

2 2, \"
(4.3) y=|1+ —-sinacosa, —sin“«
s s
up to scaling. Similarly, for y = |y|(—1,0), (3.23) becomes
2 2 T
(4.4) X = (1 — Zsinacosa, — = sin? a) ,
s s

again up to scaling. Let us define 1 : [0, 7] — sg(R?) and vy : [—,0] — sg(R?) as

(4.5) P1(a) = {1/ <1 - gsinozcosa,—gsin2 a) ‘v E R} NCiN{x-0, <0}
s s
and

2 2
(4.6) Pa(a) = {1/ <1 + —sinacos ssin2a> RS R} NCaN{x-6, >0}

S
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Figure 6. Reconstructions of a delta function with 5% added noise. Top left: predicted artifacts. Top right:
CGLS and Tikhonov. Bottom left: Landweber. Bottom right: heuristic T'V.

where sg(R?) denotes the set of singleton subsets of R?. Also,

3= %P +2(x-6)

(4.7) o

to get s in terms of x and a rotation cv. Then 91 ([0, 7]) and 9([—, 0]) are the set of artifacts
in the plane associated to A; and As, respectively. Note that we need only consider the
domain [0, 7] for ¢y, as the circle C1 does not intersect x = |x|(—1,0) for any a € (0,7) and
conversely for 1. It is clear that ¢1([0,7]) = Po([—m,0]), where P denotes a reflection in
the line {tx : ¢t € R} (or the = axis in this case). Hence, the artifacts associated to A; are
those associated to Ay but reflected in the line {tx : t € R}, for a given x € R?, when f has
singularities at x in all directions £. We can use (4.6) and (4.5) to draw curves in the plane
where we expect there to be image artifacts. To simulate § discretely, we assign a value of 1
to nine neighboring pixels in the unit cube (discretized as a 200-200 grid) and set all other
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Figure 7. Predicted and observed artifacts from reconstructing a delta function closer to the origin by
backprojection.
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Figure 8. Predicted and observed artifacts from reconstructing a delta function close to the origin by
backprojection.

pixel values to zero. Let our discrete delta function be denoted by vs. Then we approximate
T*T6 ~ AT Avs.  See Figures 3 and 7, where we have shown side-by-side comparisons of
the artifacts predicted by (4.6) and (4.5) and the artifacts observed in a reconstruction by
backprojection. See also Figures 8 and 9 for more simulated artifact curves. Note that the
blue dots in the left-hand figures are the outputs of ¢ for a € {% 11 < j <180} and 1)y
for a € {—% : 1 < j < 180}. The observed artifacts are as predicted by the theory, and
the images in the left- and right-hand sides of each figure superimpose exactly. We notice
a cardioid curve artifact in the reconstruction which becomes a full cardioid when the delta
function lies approximately on the unit circle.

To test our reconstruction techniques, we consider the test phantoms displayed in Figure 5,
one simple and one complex. The simple phantom consists of a disc with value 2 and a square
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Figure 9. Predicted and observed artifacts from reconstructing a delta function on the boundary of the unit
ball by backprojection. The artifacts are described by a cardioid.
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Figure 10. Simple phantom reconstruction using CGLS and Tikhonov as a regularizer, with noise levels of

1% (left) and 5% (right).

with value 1. The complex phantom consists of simulated objects of varying density, shape
and size with overlapping ellipsoids and is commonly used to test reconstruction techniques
in tomography [8]. See Figures 1013 for reconstructions of the two test phantoms using the
Landweber method and a conjugate gradient least squares (CGLS) iterative solver [8] with
Tikhonov regularization (varying the regularization parameter A manually). In the absence of
noise (e = 0) there are significant artifacts in the reconstruction using a Landweber approach.
CGLS performs well, however, on both test phantoms. In the presence of added noise (we
consider noise levels of 1% (e = 0.01) and 5% (e = 0.05)), there are severe artifacts in the
reconstruction using a CGLS with Tikhonov approach (see Figures 10 and 11), particularly
with a higher noise level of 5%.
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Figure 11. Complex phantom reconstruction using CGLS and Tikhonov as a regularizer, with noise levels

of 1% (left) and 5% (right).
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Figure 12. Reconstruction of simple phantom function using Landweber method and CGLS. No noise.
Artifacts are present in Landweber iteration.

To combat the image artifacts, we found that the use of an iterative approach with heuristic
TV regularization (as described in [5]) was effective. Specifically, we apply the “IRhtv” method
of [5] with added nonnegativity constraints to the optimizer (as we know a priori that a density
is nonnegative) and choose the regularization parameter A manually. For more details on the
IRhtv method, see [6]. See Figures 14 and 15. For a noise level of 1% the artifacts are
almost completely removed from the reconstructions (for both the simple and the complex
phantom), and the image quality is high overall. For a higher noise level of 5% we see a
significant reduction in the artifacts, and the reconstruction is satisfactory in both cases with
a low level of distortion in the image (although there is a higher distortion in the complex
phantom reconstruction).
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Figure 13. Reconstruction of complex phantom function using Landweber method and CGLS. No noise.

Artifacts are present in Landweber iteration.
2 20
i
1.8
40
60
E 15
80
100
1
120
140
160 0.5
180
200 0
50 100 150 200

(a) (b)

Figure 14. Simple phantom reconstruction using a heuristic TV regularizer, with noise levels of 1% (left)
and 5% (right).

The predicted artifacts of Figures 3 and 7 are also observed in a discrete reconstruction.
See Figure 6, where we have presented reconstructions of a delta function using the three iter-
ative methods considered in this paper, namely, CGLS with Tikhonov, a Landweber iteration,
and the solvers of [5] with heuristic TV. The artifacts of Figure 3 can be observed faintly in
the reconstruction using CGLS and are most pronounced in the Landweber iteration. The
heuristic TV approach gives the best performance (as before), although the reconstruction
quality is more comparable among the three methods considered for a simple phantom, such
as a delta function.

For the application considered in this paper, namely, threat detection in airport baggage
screening, the removal of image artifacts and an accurate quantitative density estimation
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Figure 15. Complex phantom reconstruction using a heuristic TV regularizer, with noise levels of 1% (left)
and 5% (right).

are crucial to maintain a satisfactory false-positive rate. We will now further compare our
results using CGLS with Tikhonov and the iterative solver of [5] in terms of the false-positive
rate we can expect using both methods. Looking at the reconstructions using both methods
qualitatively, in Figure 11 (using CGLS with Tikhonov), the image artifacts visually mask the
four shapes which make up the original density. This may lead to threat materials or objects
being misidentified (false-negative errors). In addition, the artifacts introduce new “fake”
densities (e.g., streaks in the top left of the image) to the original, which may be wrongly
interpreted as a potential threat by security personnel (a false-positive error). In Figure 15
(using the iterative solver of [5]), with only a mild distortion in the image, we are less prone
to such mistakes.

For a brief quantitative analysis, let the “cross”’-shaped object (with relative density 4)
represent a detonator element, and let the “triangular” density (with relative density 3) rep-
resent a small plastic explosive. Then the presence of artifacts can introduce large errors in
the density estimation. For example, let us consider the left-hand image in Figure 11. If we
take the average pixel value of the reconstructed explosive and detonator, then the relative
errors are

lavgT — 3| lavgC — 4|

(4.8) err'T = 100 x =9.31%, errC =100 x = 43.9%,

where avgT = 2.72 and avgC = 2.25 are the average pixel values for the reconstructed
plastic explosive and detonator element, respectively. Let us say we were using a lookup table
approach to threat detection (which is a common approach). That is, we look for densities
(of a large enough size) in a prespecified set of values and flag these as a potential threat.
In threat detection, we cannot allow any false negatives, so if the above error rates were as
expected, the space of potential threats (the set of suspicious density values) would have to
be increased (to allow for errors up to 44%) in order to compensate and identify the explosive

and thus increase the false-positive rate.
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If we now consider the same error rates for the left-hand image in Figure 15, then

lavgT — 3| lavgC — 4|

(4.9) err'T = 100 x =0.27%, errC =100 x = 2.00%,
where in this case avgT = 2.99 and avgC = 3.92. With such a reduction in the error rate, we
can safely reduce the space of potential threats (now only allowing for errors less than 2%) in

our lookup table and hence reduce the expected false-positive rate.

5. Conclusion. Here we have introduced a new toric section transform 7 which describes a
two-dimensional Compton tomography problem in airport baggage screening. A novel microlo-
cal analysis of 7 was presented whereby the reconstruction artifacts were explained through an
analysis of the canonical relation. This was carried out by an analysis of two circle transforms
71 and T2, whose canonical relations (C; and Cy) were shown to satisfy the Bolker assumption
when considered separately. When we considered their disjoint union (C = C; U C3), which
describes the canonical relation of T, this was shown to be 2-1. We gave explicit expressions
for the image artifacts implied by the 2—-1 nature of C in section 3.1.

The injectivity of 7 was proven on the set of L functions f with compact support in
B. Here we used the parametrization of circular arcs given by Nguyen and Truong in [18] to
decompose T f in terms of orthogonal special functions (exploiting the rotational symmetry
of T f) and then applied similar ideas to those of Cormack [2] to prove injectivity.

In section 4 we presented a practical reconstruction algorithm for the reconstruction of den-
sities from toric section integral data using an algebraic approach. We proposed to discretize
the linear operator 7 on pixel grids (with the discrete form of 7 stored as a sparse matrix) and
to solve the corresponding set of linear equations by minimizing the least squares error with
regularization. To do this, we applied the iterative techniques included in the package [5] and
provided simulated reconstructions of two test phantoms (one simple and one complex) with
varying levels of added pseudorandom noise. Here we demonstrated the artifacts explained by
our microlocal analysis through a discrete application of the normal operator of 7 to a delta
function, and showed (with a side-by-side comparison) that the artifacts in the reconstruction
were exactly as predicted by our theory. We also showed that we could combat the artifacts in
the reconstruction, effectively using an iterative solver with a heuristic TV penalty (using the
code included in [5] for solving large-scale image reconstruction problems) and explained how
the improved artifact reduction implies a reduction in the false positive rate in the proposed
application in airport baggage screening.

For further work, we aim to consider more general acquisition geometries for the recon-
struction of densities from toric section integral data in Compton scattering tomography. Here
we have considered the particular three-dimensional set of toric sections which describe the
loci of scatterers for an idealized geometry for an airport baggage scanner. We wonder if the
2-1 nature of the canonical relation (or reflection artifacts) will be present for other toric
section transforms, and we aim to say something more concrete about this. For example, are
reflection artifacts present, or is the canonical relation 2—1 for any toric section transform?

Appendix A. Potential application in airport baggage screening. Here we explain in
more detail the proposed application in airport baggage screening and how the theory and
reconstruction methods presented in the main text relate to this field. In Figure 16 we have
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Figure 16. A security scanning machine configuration is displayed. The source-detector ring offset is small
and is modeled as zero.

displayed a machine configuration for RTT X-ray scanning in airport security screening (such
a design is in use at airports today). The density f is translated in the x3 direction (out
of the page) on a conveyor belt and illuminated by a ring (the blue circle) of fixed-switched
monochromatic (energy F) fan beam X-ray sources. The scattered intensity is then collected
by a second ring (the green circle) of fixed energy-resolved detectors. The source and detector
rings are colored as in Figures 1 and 2.

As is noted in the introduction (paragraph 3), the data are three-dimensional. That is, we
can vary a source and detector position (s,d) € S x S' and the scattered energy E’ (since the
detectors are energy-resolved). We consider the two-dimensional subset of these data when
s = —d. Varying the source position s (or d) corresponds to varying € as in section 3. The
scattered energy E’ determines cosw by (1.1) and in turn determines the torus radius

2
V1—cosZw’

The machine design of Figure 16 has the ability to measure a combination of transmission
(straight through photons) and scattered data. The photon counts measured when E' =
E (unattenuated photons) correspond to line integrals over the attenuation coefficient ug
(such as in standard transmission X-ray CT). The Compton scattered data (for E' < E)
determines the electron density f = n. (by the theory of section 3.2) and thus provides
additional information regarding the physical properties of the scanned baggage. Hence,

r =
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Figure 17. Ring phantom (left), analytic sinogram (middle) and discrete sinogram (right).

we expect the use of the (extra) Compton data, in conjunction with the transmission data,
to allow for a more accurate materials characterization (when compared to transmission or
Compton tomography separately) and to ultimately lead to a more effective threat detection
algorithm (e.g., reducing false-positive rates in airport screening). Such ideas have already
been put forward in [29], where a combination of ug and n. information is used to determine
the effective atomic number of the material.

Appendix B. Additional reconstructions with analytic data. Here we present additional
reconstructions with analytically generated T f data, using the same reconstruction method
as before, minimizing the functional (4.1). We consider the multiple ring phantom

6 )
. Jjm . T
(B.1) fx) = ;jXBw’w <x — 50 <cos ?,sm 3))

as displayed in Figure 17. Here xg denotes the characteristic function on S, and the re-
construction space is [—~100,100]2. In this case the data are simulated as b = T f(r, ) for
rotation angles a € {1%0 : 1 <5 <360} and for circle radii r € {% 1 <5 <199}
(as in section 4), and a Gaussian noise is added thereafter (as in (4.2)). See Figure 17 for
a comparison of the analytic and discrete sinogram data. The discrete sinograms were gen-
erated as before using b = Av (v is the discrete form of f). The relative sinogram error is
e = ||Tf— Avl|l2/||IT fll2 = 0.11, so in this case there is a significant (systematic) error due
to discretization. See Figure 18 for reconstructions of f using the three methods considered
in the main text, namely, CGLS with Tikhonov, Landweber, and heuristic TV. We present
reconstructions using analytic data with added noise and discrete data with added noise for
comparison. As in section 4 we see the best performance using heuristic TV. However, there
are additional artifacts in the analytic reconstructions due to discretization errors. Based on
these experiments, it would be of benefit to construct the discrete form of T (A) from exact
circle-pixel length intersections (as opposed to A being a binary matrix). However, we leave
this for further work.
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Figure 18. Top row: reconstructions with analytic data plus 5% mnoise. Bottom row: reconstructions with
discrete data plus 5% noise (inverse crime).
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