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Abstract  Let M(*) H() be the maximal operator and Hilbert transform along the parabola (¢, ut?).
For U C (0, c0) we consider LP estimates for the maximal functions sup,, ¢ | M) f| and SUP, e |H ) g,
when 1 < p < 2. The parabolas can be replaced by more general non-flat homogeneous curves.
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1. Introduction and statement of results

Let b> 1, u >0, and v, : R — R homogeneous of degree b, that is, y;(st) = s7,(t) for
s > 0. Also suppose v,(£1) # 0. For a Schwartz function f on R? we let

MO (@) = sup - / (tum(®)]

R>0

Hf(a) = po. [ flo- <t,u%<t>>)?,

denote the maximal function and Hilbert transform of f along the curve (¢, u7y(t)). For
an arbitrary non-empty U C (0,00) we consider the maximal functions

MY f(x) = sup M f(x), HYf(x) = sup |[H™ f(z)]. (L.1)
uclU ueU

For 2 < p < oo the operators MY are bounded on LP(R?) for all U; this was shown by
Marletta and Ricci [8]. For the operators HY a corresponding satisfactory theorem was
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Mazximal functions associated with families of homogeneous curves 399

proved in a previous paper [6] of the authors. To describe the result let
NU)=1+#{necZ: 27,2 NU # 0}.

Then, for 2 < p < oo, HY is bounded on LP(R?) if and only if 9(U) is finite, and we have
the equivalence

P Ll S R P

"= logmuUi2 = SRR
with non-zero constants c,, C},. Moreover, for all p>1 we have the lower bound
|HY || Lo —1r = \/logN(U). The consideration of such results in Guo et al. [6] and in
this paper has multiple motivations. First, there is an analogy (although not a close
relation) with similar results on maximal operators and Hilbert transforms for families of
straight lines; here we mention the lower bounds by Karagulyan [7], and the currently best
upper bounds for p > 2 by Demeter and Di Plinio [3]. The second motivation comes from
the above-mentioned work by Marletta and Ricci [8] on the maximal function for p > 2,
and the third motivation comes from a curved version of the Stein—Zygmund vector-field
problem concerning the L? boundedness of M () and H®() where 2 — u(zx) is a Lip-
schitz function. In this case the L? boundedness of M (")) for the full range 1 < p < oo
was proved by Guo et al. [5], and the analogous result for H(“()) by Di Plinio et al. [4].
We refer to the bibliography of Guo et al. [6] for a list of related works.

Regarding the operators MY, HY most satisfactory results (except for certain lacu-
nary sequences) have so far been obtained in the range p > 2. In this paper we seek to find
efficient upper bounds for the L? operator norms of MY and HY in the case 1 < p < 2. It
turns out that there is a striking dichotomy between the cases 2 < p < ocoand 1 < p < 2.
In the latter case, the operator norms of MY and HY depend on an additional quantity
that involves the local behaviour of the set U on each dyadic interval. The formulation
of the results, using some variant of Minkowski dimension, is in part motivated by con-
siderations for spherical maximal functions in the work of Seeger et al. [11] (see also
[10,12]).

As pointed out in Guo et al. [6], with reference to Seeger et al. [10], L? boundedness for
p < 2 fails, for both MY and HY, when U = [1, 2]; therefore some additional sparseness
condition needs to be imposed. To formulate such results let, for each r > 0,

U'=r'UN[,2l={pec1,2]:rpec U}

For0 < 6 < 1welet N(U",0) be the -covering number of U", that is, the minimal number
of intervals of length & needed to cover U". It is obvious that sup,-,N(U",8) <671,
Define
K,(U,8) = 6'=Y/Psup N(UT, 5)1/P. (1.2)
r>0
Define

. SuPr>o log N(UT, 5)
Per(U) = 1 + lim sup
ex(U) 5—0+ log(6-1)
Notice that 1 < p,(U) < 2 always. If p.,(U) < p < 2 there exists an ¢ = ¢(p, U) > 0 such
that supg.s5. 0 °/KC,(U,0) < 0o. If 1 < p < per(U) then there is ¢’ =¢'(p,U) > 0 and a
sequence 8, — 0 such that limsup,, 65 K, (U, d,) > 0.

(1.3)
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400 S. Guo et al.
Theorem 1.1. Let 1 <p < 2.
(i) If per(U) < p < 2 then MY is bounded on LP(R?).
(i) If 1 < p < per(U) then MY is not bounded on LP(R?).

(iii) For every € > 0 we have

cpsup K, (U, 8) < [IMY||po—1s < Copsupd K, (U, 9).
6>0 6>0

Here ¢y, C), . are constants only depending on p or p, e, respectively.

Theorem 1.2. Let 1 < p <2 and pe,(U) as in (1.3).
(i) If per(U) < p < 2 then HY is bounded on LP(R?) if and only if M(U) < oo.
(ii) If1 < p < per(U) then HY is not bounded on LP(R?).

(iii) For every € > 0 we have
[HY Lo —1r < Cp/log(N(UV)) + Ce sup ™K, (U, 9)
>

and
ey (VIORED) + 509 K (01.0)) < 17 51
>0

Here c,,C,, C,, . are constants only depending on p or p, e, respectively.

We note that parts (i) and (ii) of each theorem follow immediately from part (iii) of
the same theorem.

We discuss some examples. We have p,(U)=1 for lacunary U and we have
per(U) = 2 if U contains any intervals. There are many interesting intermediate examples
with 1 < per(U) < 2; see Seeger et al. [11]. One may take for U a self-similar Cantor set
Cg of Minkowski dimension 3, contained in [1, 2]; then p;(Cg) = 1 + (. This remains true
if for U we take J;,c;, 2"Cs in Theorem 1.1, or with finite F' C Z, we take U = J, . » 2"Cs
in Theorem 1.2.

Another set of examples comes from considering convex sequences. One may take
Se={1+n"%:n €N}, then p..(S,) = (2+a)/(1+a). Again we may also take suit-
able unions of dilates of S,; that is, for U we can take |, 2%S, in Theorem 1.1, or
U=Uier 2%8, in Theorem 1.2, provided that F C Z is finite.

We shall in fact prove sharper but more technical versions of Theorems 1.1 and 1.2.
The term C.,0 K,(U,d) can be replaced with one with logarithmic dependence,
namely

Cpllog(2/6)] K, (U, 6)

for A > 14/p — 6. More precisely, we have the following theorem.
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Theorem 1.3. Let 1 < p < 2. Then there is C independent of p and U so that

HMU||LP~>LP < Czﬁp,flcp((L?ie)v (14)

>1

where ¥, = (p—1)3717 if (< (p—1)"' and 9,, =("C/P"D if > (p-1)7"
Moreover,

IHY || Lo e < Clp—1)""V1og(N(D)) + Clp— 1) 72> 00K, (U,27°). (1.5)

>1

Structure of the paper. In § 2 we decompose the operators MY, HY in the spirit of Guo
et al. [6] in order to prepare for the proof of Theorem 1.3. The proof of Theorem 1.3 is
then completed in § 3 and § 4. Finally, the lower bounds claimed in Theorems 1.1 and 1.2
are addressed in § 5.

2. Basic reductions

We recall some notation and basic reductions from Guo et al. [6]. By the assumption
of homogeneity and v,(+1) # 0 there are cx # 0 such that 7, (t) = c;t* for ¢ > 0, and
Y (t) = c_(—t)® for t < 0, and finally v,(0) = 0. We note that by scaling we may always
assume that c_ = 1. Let x4 € C2° be supported in (1/2,2) such that

> x4 (27t) =1 fort>0.
JEZ

Let x_(t) = x+(—t) and x = x, + x_. We define measures 19, 0g, o+ by

(10, f /f ()X () dt,

o )= | f(t,%(t))xi(t)%

o =04 +0_.
For j € Z, let the measures 7}, 0% be defined by
(r ) = / (b wn ()20 v (270

/f (t, um(t 2Jt)dt

By homogeneity of v, we have 7/* = 27 () 72(68;+) with 0%z = (tz1,t°22), as well as the
analogous relation between o7 and op. We note that the 7;* are positive measures and
the o7 have cancellation.
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402 S. Guo et al.

For Schwartz functions f the Hilbert transform along I'}' can be written as

HWf =3 ol xf.
JEZ

For the maximal function it is easy to see that there is the pointwise estimate

M(“)f(x)SCsupT;-‘*|f|. (2.1)
JEZ

Following Guo et al. [6, § 2], we further decompose o and 7y. Choose Schwartz function
Mo, supported in {|¢| < 100} and equal with n9(§) =1 for || < 50. Let ¢ € C°(R) be
supported in (b(1/4)"~*,4°~1) and equal to 1 on [b(2/7)"71,b(7/2)"7!]. Let < € C2°(R)
be supported on ( — b4°~1, —b(1/4)*~!) and equal to 1 on [ — b(7/2)"~*, —b(2/7)"~].

One then decomposes

o0 = ¢o + Mo, + + o,
To = %o + po,

where ¢, g are given by

306) = m(©30©) + (1= m(©) (1 -5 (L) Jau (0

c4&o

sa-mi@)(1- ()o@

and

Fo(©) = ml©m(e) + (- mie) (1- < () 7@

c4&o

The measures and 1, , and pg are given via the Fourier transform by

fio,+(§) = (L = n0(&))s- (Cflgz)?ﬂ(f),

fo—(©) = (1= (@) (21 )- (0

and

Ao(€) = (1— no<£>><_( & )%(5» (2.2)

cy&o

As in Lemma 2.1 of Guo et al. [6], the functions ¢g, ¢¢ are Schwartz functions.
In addition, we have ¢¢(0) = 0.
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~

AFor jAe Z, define ¢; Aand ¢; by scaling via @j(f)z(/ﬁo(Z_jfl,Q_jbfg) (&) and
0 (&) = ¢0(277€1,279%,) f(€). Define A% f by

~

AoF(€) = 35(6r, uea) J1€)
and let Mo f(z) = sup, ez sup,er |4} f(7)]. Let

o~

SWFE) = 65(61,u&a) F16).

JEZ
Let M®" f denote the strong maximal function of f. For p € (1,2) we have
[ M || o—pp < C(p—1)72 (2.3)

This follows from the pointwise bound M3 < M@ oM(Q)7 where M%) denotes the
Hardy-Littlewood maximal operator taken in the kth variable. Indeed, M®*) is of weak
type (1,1) so Marcinkiewicz interpolation gives |[M®||p» 1o < C(p—1)"" for some
constant C' > 0 and all p € (1, 2], which implies (2.3).

Lemma 2.1. There exists a constant C' such that, for all p € (1,2),
(i)
IMofll, < Clo = D721 f]lp,
(i)
| sup 1S f[ll, < Clo = 1)~ "V1og RU) | fll-

Proof. Part (i) follows from the estimate
Ao f ()] < CM™ f(x). (2.4)

Part (ii) is more substantial and relies on the Chang—Wilson-Wolff bounds for martingales
[2]. This is the subject of Theorem 2.2 in Guo et al. [6]. The dependence on p was not
specified there, but can be obtained by a literal reading of the proof provided in Guo et al.
[6, § 4]. We remark that the exponent 7 can probably be improved, but it is satisfactory
for our purposes here. [

We also decompose py and fig 1+ further by making an isotropic decomposition for
large frequencies. Let (o € C2°(R?) supported in {¢ : |¢] < 2} and such that (o(¢) = 1 for
|€] < 5/4. For £ =1,2,3,..., let

Ce(€) = Co(27%) — Go(2'79).

Then for £ >0, {; is supported in the annulus {¢: 27! < [¢] < 27!} and we have
L =300 for  in the support of po, fig,+.
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Define operators AY, and T}, | by

‘@(f) = (27761, 277%us) o (279 6r, 27 ) F(€), (2.5)
T F(6) = 27761, 2 o) ig s (27961, 27 uga) F(©). (2.6)

We shall show the following proposition.
Proposition 2.2. There is C > 0 such that for each ¢ > 0, p € (1, 2], we have

I sup sup A3 o] [}, < COpep(U, 27| f I, (2.7)
ueU jEL
where ¥, o = (p — 1)3*10/1’]1%(1)_1)_1 + 67(2/p*1)]lg>(p_1)_1 and

Z oS

We claim that Proposition 2.2 implies Theorem 1.3. Indeed, we have for
non-negative f,

< Clp = 1) 206K (U, 27 flp- (2.8)

sup
uelU

MYF<SMof +> supsup A2, f]

(>0 “EV JEZ

and thus (1.4) follows from part (i) of Lemma 2.1 and (2.7). It remains to show (1.5).
But in view of the decomposition

HOO =803 3 > T,
+ (>0 j€Z

this follows from part (ii) of Lemma 2.1 and (2.8). This finishes the proof of Theorem 1.3.

We conclude this section with some estimates that will be used in the proof of Propo-
sition 2.2. We will harvest the required decay in ¢ from the following simple estimate. For
pe[2,£>0,j€Z,uc (0,00), we have

1A% o fll, < C27 P £ (2.9)

Indeed, the endpoint p = 2 is a consequence of Plancherel’s theorem and van der Cor-
put’s lemma, while p = 1 follows because the convolution kernel of A“ oS 1s L'-normalized.
Another key ingredient will be the following pointwise estimate. From the definition of
A%, in (2.5) we have, for £ >0, j € Z, u € (0,00), that

|Aj o f| < CM (75 x| f]). (2.10)

This follows because we have

A}fef = (f * T;L) * m;{é,

with «%, certain Schwartz functions that can be read off from definitions (2.2) and (2.5)
and satisfy | f * n;ﬂ < CM*®% f with C > 0 not depending on j, £, u.
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We also need to introduce appropriate Littlewood-Paley decompositions. Let x(!) be
an even C'*° function supported on

{&1: |eg 027370 < & | < feq 02501}

and equal to 1 for |c[b273 < |&] < [c1|b2%. Let x® be an even C'*° function supported
on

{62 . 2—2()—1 < |£2| < 22b+1}

and equal to 1 for 2720 < |&| < 22 Define P,gll’)e, P,g)e » by

P =XV a) fo),

—

P2, 1(€) = xP (27 ey fle).

Then for s € [1,2°],

bn bn 2 1 1 2 bn
A?z A2 )n Vi ij(,e) = P]'(,Z)P( )n Vi bA?Z (2~11)
For p € (1,2) we have the Littlewood—Paley inequalities
i 24 1/2
\K > BB ) < Clp=1)72|fl (2.12)
ks eZk €z P
and
) /2
>0 Plgh)é kg,@ pfoka|| < Cp ( > |fk1,k2|2> : (2.13)
P

k1€EZ ko €Z k1E€EZ ko €7

which also hold for Hilbert-space-valued functions. Similarly to (2.3), both of these
inequalities follows from two applications of appropriate one-dimensional Littlewood—

Paley inequalities and the fact that these come with a constant of (p — 1)~! each, owing
to Marcinkiewicz interpolation with the weak (1, 1) endpoint.

3. A positive bilinear operator

In this section we are given for every n € Z an at most countable set

S(n) = {sn(i): i=1,2,...} C [1,2°).
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wy, (1)

Proposition 3.1. There is a constant C, independent of the choice of the sets &(n) =
{sn(i)}, n € N, such that, for 1 < p <2 and { > 0,
I )
j,n€eZ ieN

< Cp—1)* 12 =D 2 sup wy oo | f
ne”Z

p

for all functions f and w,, : N — C. This holds for A [ @ being any one of the following:

2, (i) ot A yobn 27, (i) ot d oing
Aj,[ N 2 ds Aj’e . 5 TJ,Z,:E 5 2 d 4.0, + '
$=5n(1) $=5n(1)
. bn ;
We will only detail the proof in the case A 0 @ = A? ’ »() The other cases follow

mutatis mutandis. To this end note that the correspondlng variants of the main ingredients
(2.9)—(2.11) also hold for each of the other cases, the underlying reasoning being identical
in each case.

In the proof of the proposition we use a bootstrapping argument by Nagel et al. [9] in
a simplified and improved form given in unpublished work by Christ (see Carbery [1] for
an exposition).

We first introduce an auxiliary maximal operator. For R € N, let

bn Sn(2
Me[fwl(@) = sup  suplwa(i)7; "« f(2)].
—R<j,n<R ieN

We let B,(R) be the best constant C' in the inequality

[ R[f; wlllp < Csup [[wnllew [ £l

that is,
BP<R>sup{||mR[f, wllly 1l < 1. sup||wn||fp<1} (3.1)

The positive number B, (R) is finite, as from the uniform LP-boundedness of the operator
[ 7% f we have By(R) < C(2R + 1)2/P. Tt is our objective to show that B,(R) is
independent of R. More precisely, we claim that there is a constant C' independent of the
choice of the sets S(n), such that for 1 < p <2,

By(R) < C(p— 1)1, (3.2)

We begin with an estimate for a vector-valued operator.
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Lemma 3.2. Let 1 < p <2, p<q<oo. Then

207, (i) 1/a
H( Y (i) A2 gj,nQ)

—R<jn<RieN

P

(% |gj,nq)1/q

<C(p-— 1)*2(1*11/LJ)BP(R)lfp/qQJ(l*l/p)pq sup |[wy || ¢r
nez Jnez

(3.3)

Proof. The case ¢ = p of (3.3) follows from (2.9). For ¢ = oo we use (2.10) to estimate

bn :
H sup  sup |wy(4) A?,é S"(l)gj,n\
—R<jn<R ieN

P

bn .
SCH sup Sup|wn(i)|MStr[Tj2 O s 1giml]
—R<j,n<R ieN

p

)

bn .
SCHMS“{ sup sup|wn(i)|7'J2 o () *( sup gj/7n/|>}
P

—R<jn<RieN §' ' €7

where we have used the positivity of the operators f +— 77 * f. By (2.3) we can dominate
the last displayed expression by

, _5 N 2%, (4)
C'(p—1) sup  sup |wy(i)| 7 * | sup [gj
—R<j,n<R ieN R/ »
< (p—1)72By(R) sup [[wnlee|| sup |g;rw
nez 3’ n'eL P
which establishes the case ¢ = co. The case p < g < oo follows by interpolation. (I

Proof of Proposition 3.1. We use the decomposition 7} * f = Sreo Aj,f. By (2.4)
we get

N 42078, (G _
sup sup |w,, (i) A% o O Il S (0 — 1) 72 sup wnl[e | £1-
j,nEZ ieN p nez

For ¢ > 0, we have
s (i) 1/2
< < Z Z lwn () A5, o f2>

‘ —R<jn<RieN

and, by (2.11) and Lemma 3.2 for ¢ = 2, and (2.12),

b (s 1/2
H( Z Z‘wn(l) Aif S"(’)f|2>

—R<jn<RieN

428, (i
sup  sup [w, (i) A2, *" 1 f|
—R<jn<RieN

p p

p

<(p— 1)*2(1712/2)31;(3)1*1)/224(171/1))17/2 S?Z l|wn ||er

) L 1/2
( Z PJ‘()n,e,ij(xf)ﬂQ)

JnEL p
S (p—1pt2 VR (R) P/ sup [wnlen || £11p- (3.4)
ne
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This implies, for 1 < p < 2,

B,(R) < { _|_Z )P d9—L(p—1)/2 (R)l—p/2
£>0

Sp—1)72+ (- 1P By(R) P2
which leads to
By(R) < (p—1)*10/,

If we use this inequality in (3.4) and observe
p—4+(2-10/p)(1 —p/2) =3 -10/p,

then the claimed inequality in Proposition 3.1 follows by the monotone convergence
theorem. (]

4. Proof of Proposition 2.2
For n € Z, let U,, C [1,2°] be defined by

Up = {27 s u € 27,2200 0 U}

and let
Noo(U) = #{k - 27,27 (k + 1)) N U, # 0}.
Then we have

2~ A=Y sup N, o(U) = K, (U,275).
nez

We cover each set U,, with dyadic intervals of the form
Ik:,@ = [k27ea (k + 1)275)3

where k € N. Denote by &,, ¢ the left endpoints of these intervals and note that Nn,g(U )=
#6,, 0. We label the set of points in &,, ¢ by {s, (i )} 5 ‘) and write

sup sup |AY  f ()] = supsup sup |42, f(z)]
JEZ uelU JEZ neZ s€Uy,

S sup sup |AJ:L n, Z(l)f( )|
FELi=1,....Nyp ¢(U)

2—2
+ sup sup /
Jm€Li=1,... . Nn (U)JO

d

(Sn e(i)+a)
- f@)d
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Hence

No,e(U) /2

i H(Z 3 i)
JjmezZ =1 P

2=t (U 1/2
-/ (z Z 2 ) da,

0 J,nEZ =1 p

and by part (ii) of Proposition 3.1 both expressions on the right-hand side can be
estimated by

Clp —1)°10/pp =t 02 SléIZ;Nn,e(U)”pllfllp (4.1)
n

This estimate is efficient for 1 < p < 1+ ¢~1. Note that in this range 2=“¢0=1/P) ~ 1 and
N o(U)VP 2 K, (U,27%). For p = 2 we have the inequality

N e(U) /2
(x & o)

J,n€eZ i=1

o

<27 2 sup N, o (U)2 f |- (4.2)
nez

2

n Z(U)

S>>

J,neZ i=1

da

7

"0 (50 >+a>f‘ )

For p;:=1+4+ /("1 <p <2 we use the Riesz- Thorin interpolation theorem (together
with the fact that (p, — 1)°/* ~¢ 1 and (p, — 1)~ = ¢4). We then obtain, for p, < p < 2,

N e(U) /2
(g gy

J,neZ i=1 p
n Z(U)
LU E )
0 Jm€ez =1 p
< 9—4(1-1/p) SupNM(U)l/pﬁ(?/p—l) I1£1l,- (4.3)
nez

Thus we have established (2.7). The proof of (2.8) is similar but the reduction to a square-
function estimate requires one more use of a Littlewood-Paley estimate. We have, using
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the analogue of (2.11) for Tf, i

ZTJ%,+JC
JEZ

sup sup
nez ueUr‘,[zan(vﬂrl)b]

§H<ZZ ZPM an Jz:s-ﬂ(i)

P

2) 1/2

nez =1 " jEZ p
o @ At )
NS S e e Y
0 n€zZ i=1 JEL p

which by (2.13) is bounded by

n Z(U)

(2% s )f|2>1/2

nezZ =1 jeZ
n Z(U)

l=s sl

neZ i=1 jEZL

] p

2\ 1/2
+/ > da}.
0 P

From here on the estimation is exactly analogous to the previous square function: just
replace A7, with 77", , . The arguments for the corresponding terms with 77!, _ are similar
(or could be reduced to the previous case by a change of variable and curve) This
concludes the proof of Theorem 2.2.

da LL’ +

5. Lower bounds for p < 2

As mentioned before, the lower bound (log M(U))'/? for |HY||rr—1», based on ideas of
Karagulyan [7], was established in Guo et al. [6]. We now show the easier lower bound in
terms of the quantity sups., (U, 6) (where we only have to consider the cases § < 1).
The same calculation gives the same type of lower bound for | MY s 1.

By rescaling in the second variable and reflection we may assume that ¢y = 1. For
ue U and ¢ € (0,1) we define

Vs(u) = {(z1,22) : 1 <@y <2, |y —ua}| < 5/4},
and let fs be the characteristic function of the ball of radius ¢ centred at the origin.

Observe that for 1 <z1,u<2,e<1 and o1 <t <x + &, we have u(t’ — %) < 2b-
3b=1e6. Thus for g, = (8b-3*71)~! we get fs(xy —t, 29 — ut’) = 1 and thus

1 x1+€epd c
HW f5(x) > 3 / fs(zy —t, 20 —ut®) dt > é’a, z € Vs(u).

By rescaling in the second variable we have, for every r > 0, that

MY | o—re > [IHY | oo Lo,
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where U” = r~1U N[1,2]. Let U"(§) be a maximal 2°d-separated subset of U”; then
#U"(6) 2 N(U",4). This implies

HY O fs(2) 26 forzeVig= | Vsu)
weUr(5)

For different uy,us € U(J) the sets Vs(uy) and Vs(uz) are disjoint and therefore we have
meas(V,.5) 2 0#(U,(0)). Hence we get

1RO fs]l > 0™ PH(U(8)) V7.

Since also | f5]|, < 6%/P, we obtain

IHY |Lo—rr = IHY O || pope 2 8 HPHUT(6)P 2 61PN (U™, 6)M7,

which gives the uniform lower bound

1H oo 2 Kp(U,0) (5.1)

for sufficiently small §.
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