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Abstract Let M(u), H(u) be the maximal operator and Hilbert transform along the parabola (t, ut2).
For U ⊂ (0,∞) we consider Lp estimates for the maximal functions supu∈U |M(u)f | and supu∈U |H(u)f |,
when 1 < p ≤ 2. The parabolas can be replaced by more general non-flat homogeneous curves.
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1. Introduction and statement of results

Let b > 1, u > 0, and γb : R → R homogeneous of degree b, that is, γb(st) = sbγb(t) for
s > 0. Also suppose γb(±1) �= 0. For a Schwartz function f on R2 we let

M (u)f(x) = sup
R>0

1
R

∫ R

0

|f(x − (t, uγb(t)))|dt,

H(u)f(x) = p.v.

∫
R

f(x − (t, uγb(t)))
dt

t
,

denote the maximal function and Hilbert transform of f along the curve (t, uγb(t)). For
an arbitrary non-empty U ⊂ (0,∞) we consider the maximal functions

MUf(x) = sup
u∈U

M (u)f(x), HUf(x) = sup
u∈U

|H(u)f(x)|. (1.1)

For 2 < p < ∞ the operators MU are bounded on Lp(R2) for all U ; this was shown by
Marletta and Ricci [8]. For the operators HU a corresponding satisfactory theorem was
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Maximal functions associated with families of homogeneous curves 399

proved in a previous paper [6] of the authors. To describe the result let

N(U) = 1 + #{n ∈ Z : [2n, 2n+1] ∩ U �= ∅}.
Then, for 2 < p < ∞, HU is bounded on Lp(R2) if and only if N(U) is finite, and we have
the equivalence

cp ≤ ‖HU‖Lp→Lp

(log N(U))1/2
≤ Cp, 2 < p < ∞,

with non-zero constants cp, Cp. Moreover, for all p > 1 we have the lower bound
‖HU‖Lp→Lp �

√
log N(U). The consideration of such results in Guo et al. [6] and in

this paper has multiple motivations. First, there is an analogy (although not a close
relation) with similar results on maximal operators and Hilbert transforms for families of
straight lines; here we mention the lower bounds by Karagulyan [7], and the currently best
upper bounds for p > 2 by Demeter and Di Plinio [3]. The second motivation comes from
the above-mentioned work by Marletta and Ricci [8] on the maximal function for p > 2,
and the third motivation comes from a curved version of the Stein–Zygmund vector-field
problem concerning the Lp boundedness of M (u(·)) and H(u(·)) where x �→ u(x) is a Lip-
schitz function. In this case the Lp boundedness of M (u(·)) for the full range 1 < p < ∞
was proved by Guo et al. [5], and the analogous result for H(u(·)) by Di Plinio et al. [4].
We refer to the bibliography of Guo et al. [6] for a list of related works.

Regarding the operators MU , HU , most satisfactory results (except for certain lacu-
nary sequences) have so far been obtained in the range p > 2. In this paper we seek to find
efficient upper bounds for the Lp operator norms of MU and HU in the case 1 < p ≤ 2. It
turns out that there is a striking dichotomy between the cases 2 < p < ∞ and 1 < p ≤ 2.
In the latter case, the operator norms of MU and HU depend on an additional quantity
that involves the local behaviour of the set U on each dyadic interval. The formulation
of the results, using some variant of Minkowski dimension, is in part motivated by con-
siderations for spherical maximal functions in the work of Seeger et al. [11] (see also
[10,12]).

As pointed out in Guo et al. [6], with reference to Seeger et al. [10], Lp boundedness for
p ≤ 2 fails, for both MU and HU , when U = [1, 2]; therefore some additional sparseness
condition needs to be imposed. To formulate such results let, for each r > 0,

Ur = r−1U ∩ [1, 2] = {ρ ∈ [1, 2] : rρ ∈ U}.
For 0 < δ < 1 we let N(Ur, δ) be the δ-covering number of Ur, that is, the minimal number
of intervals of length δ needed to cover Ur. It is obvious that supr>0 N(Ur, δ) � δ−1.
Define

Kp(U, δ) = δ1−1/p sup
r>0

N(Ur, δ)1/p. (1.2)

Define

pcr(U) = 1 + lim sup
δ→0+

supr>0 log N(Ur, δ)
log(δ−1)

. (1.3)

Notice that 1 ≤ pcr(U) ≤ 2 always. If pcr(U) < p < 2 there exists an ε = ε(p, U) > 0 such
that sup0<δ<1 δ−εKp(U, δ) < ∞. If 1 < p < pcr(U) then there is ε′ = ε′(p, U) > 0 and a
sequence δn → 0 such that lim supn δε′

n Kp(U, δn) > 0.
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400 S. Guo et al.

Theorem 1.1. Let 1 < p ≤ 2.

(i) If pcr(U) < p ≤ 2 then MU is bounded on Lp(R2).

(ii) If 1 < p < pcr(U) then MU is not bounded on Lp(R2).

(iii) For every ε > 0 we have

cp sup
δ>0

Kp(U, δ) ≤ ‖MU‖Lp→Lp ≤ Cε,p sup
δ>0

δ−εKp(U, δ).

Here cp, Cp,ε are constants only depending on p or p, ε, respectively.

Theorem 1.2. Let 1 < p ≤ 2 and pcr(U) as in (1.3).

(i) If pcr(U) < p ≤ 2 then HU is bounded on Lp(R2) if and only if N(U) < ∞.

(ii) If 1 < p < pcr(U) then HU is not bounded on Lp(R2).

(iii) For every ε > 0 we have

‖HU‖Lp→Lp ≤ Cp

√
log(N(U)) + Cε,p sup

δ>0
δ−εKp(U, δ)

and

cp

(√
log(N(U)) + sup

δ>0
Kp(U, δ)

)
≤ ‖HU‖Lp→Lp .

Here cp, Cp, Cp,ε are constants only depending on p or p, ε, respectively.

We note that parts (i) and (ii) of each theorem follow immediately from part (iii) of
the same theorem.

We discuss some examples. We have pcr(U) = 1 for lacunary U and we have
pcr(U) = 2 if U contains any intervals. There are many interesting intermediate examples
with 1 < pcr(U) < 2; see Seeger et al. [11]. One may take for U a self-similar Cantor set
Cβ of Minkowski dimension β, contained in [1, 2]; then pcr(Cβ) = 1 + β. This remains true
if for U we take

⋃
k∈Z

2kCβ in Theorem 1.1, or with finite F ⊂ Z, we take U =
⋃

k∈F 2kCβ

in Theorem 1.2.
Another set of examples comes from considering convex sequences. One may take

Sa = {1 + n−a : n ∈ N}, then pcr(Sa) = (2 + a)/(1 + a). Again we may also take suit-
able unions of dilates of Sa; that is, for U we can take

⋃
k∈Z

2kSa in Theorem 1.1, or
U =

⋃
k∈F 2kSa in Theorem 1.2, provided that F ⊂ Z is finite.

We shall in fact prove sharper but more technical versions of Theorems 1.1 and 1.2.
The term Cε,pδ

−εKp(U, δ) can be replaced with one with logarithmic dependence,
namely

Cp[log(2/δ)]AKp(U, δ)

for A > 14/p − 6. More precisely, we have the following theorem.
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Theorem 1.3. Let 1 < p ≤ 2. Then there is C independent of p and U so that

‖MU‖Lp→Lp ≤ C
∑
�≥1

ϑp,�Kp(U, 2−�), (1.4)

where ϑp,� = (p − 1)3−10/p if � ≤ (p − 1)−1 and ϑp,� = �7(2/p−1) if � > (p − 1)−1.
Moreover,

‖HU‖Lp→Lp ≤ C(p − 1)−7
√

log(N(U)) + C(p − 1)−2
∑
�≥1

ϑp,�Kp(U, 2−�). (1.5)

Structure of the paper. In § 2 we decompose the operators MU , HU in the spirit of Guo
et al. [6] in order to prepare for the proof of Theorem 1.3. The proof of Theorem 1.3 is
then completed in § 3 and § 4. Finally, the lower bounds claimed in Theorems 1.1 and 1.2
are addressed in § 5.

2. Basic reductions

We recall some notation and basic reductions from Guo et al. [6]. By the assumption
of homogeneity and γb(±1) �= 0 there are c± �= 0 such that γb(t) = c+tb for t > 0, and
γb(t) = c−(−t)b for t < 0, and finally γb(0) = 0. We note that by scaling we may always
assume that c− = 1. Let χ+ ∈ C∞

c be supported in (1/2, 2) such that

∑
j∈Z

χ+(2jt) = 1 for t > 0.

Let χ−(t) = χ+(−t) and χ = χ+ + χ− . We define measures τ0, σ0, σ± by

〈τ0, f〉 =
∫

f(t, γb(t))χ+(t) dt,

〈σ± , f〉 =
∫

f(t, γb(t))χ±(t)
dt

t
,

σ0 = σ+ + σ−.

For j ∈ Z, let the measures τu
j , σu

j be defined by

〈τu
j , f〉 =

∫
f(t, uγb(t))2jχ+(2jt) dt,

〈σu
j , f〉 =

∫
f(t, uγb(t))χ(2jt)

dt

t
.

By homogeneity of γb we have τu
j = 2j(1+b)τu

0 (δb
2j ·) with δb

tx = (tx1, t
bx2), as well as the

analogous relation between σu
j and σu

0 . We note that the τu
j are positive measures and

the σu
j have cancellation.
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402 S. Guo et al.

For Schwartz functions f the Hilbert transform along Γu
b can be written as

H(u)f =
∑
j∈Z

σu
j ∗ f.

For the maximal function it is easy to see that there is the pointwise estimate

M (u)f(x) ≤ C sup
j∈Z

τu
j ∗ |f |. (2.1)

Following Guo et al. [6, § 2], we further decompose σ0 and τ0. Choose Schwartz function
η0, supported in {|ξ| ≤ 100} and equal with η0(ξ) = 1 for |ξ| ≤ 50. Let ς+ ∈ C∞

c (R) be
supported in

(
b(1/4)b−1, b4b−1

)
and equal to 1 on

[
b(2/7)b−1, b(7/2)b−1

]
. Let ς− ∈ C∞

c (R)
be supported on

( − b4b−1,−b(1/4)b−1
)

and equal to 1 on
[ − b(7/2)b−1,−b(2/7)b−1

]
.

One then decomposes

σ0 = φ0 + μ0,+ + μ0,−,

τ0 = ϕ0 + ρ0,

where φ0, ϕ0 are given by

φ̂0(ξ) = η0(ξ)σ̂0(ξ) + (1 − η0(ξ))
(

1 − ς−

(
ξ1

c+ξ2

))
σ̂+(ξ)

+ (1 − η0(ξ))
(

1 − ς+

(
ξ1

c−ξ2

))
σ̂−(ξ)

and

ϕ̂0(ξ) = η0(ξ)τ̂0(ξ) + (1 − η0(ξ))
(

1 − ς−

(
ξ1

c+ξ2

))
τ̂(ξ).

The measures and μ
0,± and ρ0 are given via the Fourier transform by

μ̂0,+(ξ) = (1 − η0(ξ))ς−

(
ξ1

c+ξ2

)
σ̂+(ξ),

μ̂0,−(ξ) = (1 − η0(ξ))ς+

(
ξ1

c−ξ2

)
σ̂−(ξ)

and

ρ̂0(ξ) = (1 − η0(ξ))ς−

(
ξ1

c+ξ2

)
τ̂0(ξ). (2.2)

As in Lemma 2.1 of Guo et al. [6], the functions ϕ0, φ0 are Schwartz functions.
In addition, we have φ̂0(0) = 0.
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Maximal functions associated with families of homogeneous curves 403

For j ∈ Z, define ϕj and φj by scaling via ϕ̂j(ξ) = ϕ̂0(2−jξ1, 2−jbξ2)f̂(ξ) and
φ̂j(ξ) = φ̂0(2−jξ1, 2−jbξ2)f̂(ξ). Define Au

j,0f by

Âu
j,0f(ξ) = ϕ̂j(ξ1, uξ2)f̂(ξ)

and let M0f(x) = supj∈Z supu∈R |Au
j,0f(x)|. Let

Ŝ(u)f(ξ) =
∑
j∈Z

φ̂j(ξ1, uξ2)f̂(ξ).

Let M strf denote the strong maximal function of f . For p ∈ (1, 2) we have

‖M str‖Lp→Lp ≤ C(p − 1)−2. (2.3)

This follows from the pointwise bound M str ≤ M (1) ◦ M (2), where M (k) denotes the
Hardy–Littlewood maximal operator taken in the kth variable. Indeed, M (k) is of weak
type (1, 1) so Marcinkiewicz interpolation gives ‖M (k)‖Lp→Lp ≤ C(p − 1)−1 for some
constant C > 0 and all p ∈ (1, 2], which implies (2.3).

Lemma 2.1. There exists a constant C such that, for all p ∈ (1, 2),

(i)

‖M0f‖p ≤ C(p − 1)−2‖f‖p,

(ii)

‖ sup
u∈U

|S(u)f |‖p ≤ C(p − 1)−7
√

log N(U)‖f‖p.

Proof. Part (i) follows from the estimate

|Au
j,0f(x)| ≤ CM strf(x). (2.4)

Part (ii) is more substantial and relies on the Chang–Wilson–Wolff bounds for martingales
[2]. This is the subject of Theorem 2.2 in Guo et al. [6]. The dependence on p was not
specified there, but can be obtained by a literal reading of the proof provided in Guo et al.
[6, § 4]. We remark that the exponent 7 can probably be improved, but it is satisfactory
for our purposes here. �

We also decompose ρ̂0 and μ̂0,± further by making an isotropic decomposition for
large frequencies. Let ζ0 ∈ C∞

c (R2) supported in {ξ : |ξ| < 2} and such that ζ0(ξ) = 1 for
|ξ| ≤ 5/4. For � = 1, 2, 3, . . . , let

ζ�(ξ) = ζ0(2−�ξ) − ζ0(21−�ξ).

Then for � > 0, ζ� is supported in the annulus {ξ : 2�−1 < |ξ| < 2�+1} and we have
1 =

∑
�>0 ζ�(ξ) for ξ in the support of ρ̂0, μ̂0,±.
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404 S. Guo et al.

Define operators Au
j,� and Tu

j,�,± by

Âu
j,�f(ξ) = ζ�(2−jξ1, 2−jbuξ2)ρ̂0(2−jξ1, 2−jbuξ2)f̂(ξ), (2.5)

T̂u
j,�,±f(ξ) = ζ�(2−jξ1, 2−jbuξ2)μ̂0,±(2−jξ1, 2−jbuξ2)f̂(ξ). (2.6)

We shall show the following proposition.

Proposition 2.2. There is C > 0 such that for each � > 0, p ∈ (1, 2], we have

‖ sup
u∈U

sup
j∈Z

|Au
j,�f | ‖p ≤ Cϑp,�Kp(U, 2−�)‖f‖p, (2.7)

where ϑp,� = (p − 1)3−10/p1�≤(p−1)−1 + �7(2/p−1)1�>(p−1)−1 and∥∥∥∥ sup
u∈U

∣∣∣∣ ∑
j∈Z

Tu
j,�,±f

∣∣∣∣
∥∥∥∥

p

≤ C(p − 1)−2ϑp,�Kp(U, 2−�)‖f‖p. (2.8)

We claim that Proposition 2.2 implies Theorem 1.3. Indeed, we have for
non-negative f ,

MUf � M0f +
∑
�>0

sup
u∈U

sup
j∈Z

|Au
j,�f |

and thus (1.4) follows from part (i) of Lemma 2.1 and (2.7). It remains to show (1.5).
But in view of the decomposition

H(u) = S(u) +
∑
±

∑
�>0

∑
j∈Z

Tu
j,�,±,

this follows from part (ii) of Lemma 2.1 and (2.8). This finishes the proof of Theorem 1.3.
We conclude this section with some estimates that will be used in the proof of Propo-

sition 2.2. We will harvest the required decay in � from the following simple estimate. For
p ∈ [1, 2], � > 0, j ∈ Z, u ∈ (0,∞), we have

‖Au
j,�f‖p ≤ C2−�(1−1/p)‖f‖p. (2.9)

Indeed, the endpoint p = 2 is a consequence of Plancherel’s theorem and van der Cor-
put’s lemma, while p = 1 follows because the convolution kernel of Au

j,�f is L1-normalized.
Another key ingredient will be the following pointwise estimate. From the definition of
Au

j,� in (2.5) we have, for � > 0, j ∈ Z, u ∈ (0,∞), that

|Au
j,�f | ≤ CM str(τu

j ∗ |f |). (2.10)

This follows because we have

Au
j,�f = (f ∗ τu

j ) ∗ κu
j,�,

with κu
j,� certain Schwartz functions that can be read off from definitions (2.2) and (2.5)

and satisfy |f ∗ κu
j,�| ≤ CM strf with C > 0 not depending on j, �, u.
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We also need to introduce appropriate Littlewood–Paley decompositions. Let χ(1) be
an even C∞ function supported on

{ξ1 : |c+|b2−3b−1 ≤ |ξ1| ≤ |c+|b23b+1}

and equal to 1 for |c+|b2−3b ≤ |ξ1| ≤ |c+|b23b. Let χ(2) be an even C∞ function supported
on

{ξ2 : 2−2b−1 ≤ |ξ2| ≤ 22b+1}

and equal to 1 for 2−2b ≤ |ξ2| ≤ 22b. Define P
(1)
k1,�, P

(2)
k2,�,b by

̂
P

(1)
k1,�f(ξ) = χ(1)(2−k1−�ξ1)f̂(ξ),

̂
P

(2)
k2,�,bf(ξ) = χ(2)(2−k2b−�ξ2)f̂(ξ).

Then for s ∈ [1, 2b],

A2bns
j,� = A2bns

j,� P
(2)
j−n,�,bP

(1)
j,� = P

(1)
j,� P

(2)
j−n,�,bA

2bns
j,� . (2.11)

For p ∈ (1, 2) we have the Littlewood–Paley inequalities

∥∥∥∥
( ∑

k1∈Z

∑
k2∈Z

∣∣∣∣P (1)
k1,�P

(2)
k2,�,bf

∣∣∣∣2
)1/2∥∥∥∥

p

≤ C(p − 1)−2‖f‖p (2.12)

and

∥∥∥∥ ∑
k1∈Z

∑
k2∈Z

P
(1)
k1,�P

(2)
k2,�,bfk1,k2

∥∥∥∥
p

≤ C(p − 1)−2

∥∥∥∥
( ∑

k1∈Z

∑
k2∈Z

|fk1,k2 |2
)1/2∥∥∥∥

p

, (2.13)

which also hold for Hilbert-space-valued functions. Similarly to (2.3), both of these
inequalities follows from two applications of appropriate one-dimensional Littlewood–
Paley inequalities and the fact that these come with a constant of (p − 1)−1 each, owing
to Marcinkiewicz interpolation with the weak (1, 1) endpoint.

3. A positive bilinear operator

In this section we are given for every n ∈ Z an at most countable set

S(n) = {sn(i) : i = 1, 2, . . .} ⊂ [1, 2b].
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406 S. Guo et al.

Proposition 3.1. There is a constant C, independent of the choice of the sets S(n) =
{sn(i)}, n ∈ N, such that, for 1 < p ≤ 2 and � > 0,

∥∥∥∥
( ∑

j,n∈Z

∑
i∈N

∣∣∣∣wn(i)A2bnsn(i)
j,� f

∣∣∣∣2
)1/2∥∥∥∥

p

≤ C(p − 1)3−10/p2−�(p−1)/2 sup
n∈Z

‖wn‖�p‖f‖p

for all functions f and wn : N → C. This holds for A2bnsn(i)
j,� being any one of the following:

A
2bnsn(i)
j,� , 2−� d

ds
A2bns

j,�

∣∣∣∣
s=sn(i)

, T
2bnsn(i)
j,�,± , 2−� d

ds
T 2bns

j,�,±

∣∣∣∣
s=sn(i)

.

We will only detail the proof in the case A2bnsn(i)
j,� = A

2bnsn(i)
j,� . The other cases follow

mutatis mutandis. To this end note that the corresponding variants of the main ingredients
(2.9)–(2.11) also hold for each of the other cases, the underlying reasoning being identical
in each case.

In the proof of the proposition we use a bootstrapping argument by Nagel et al. [9] in
a simplified and improved form given in unpublished work by Christ (see Carbery [1] for
an exposition).

We first introduce an auxiliary maximal operator. For R ∈ N, let

MR[f, w](x) = sup
−R≤j,n≤R

sup
i∈N

|wn(i) τ
2bnsn(i)
j ∗ f(x)|.

We let Bp(R) be the best constant C in the inequality

‖MR[f, w]‖p ≤ C sup
n∈Z

‖wn‖�p‖f‖p,

that is,

Bp(R) = sup
{
‖MR[f, w]‖p : ‖f‖p ≤ 1, sup

n∈Z

‖wn‖�p ≤ 1
}

. (3.1)

The positive number Bp(R) is finite, as from the uniform Lp-boundedness of the operator
f �→ τu

j ∗ f we have Bp(R) ≤ C(2R + 1)2/p. It is our objective to show that Bp(R) is
independent of R. More precisely, we claim that there is a constant C independent of the
choice of the sets S(n), such that for 1 < p ≤ 2,

Bp(R) ≤ C(p − 1)2−10/p. (3.2)

We begin with an estimate for a vector-valued operator.
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Maximal functions associated with families of homogeneous curves 407

Lemma 3.2. Let 1 < p ≤ 2, p ≤ q ≤ ∞. Then∥∥∥∥
( ∑

−R≤j,n≤R

∑
i∈N

|wn(i)A
2bnsn(i)
j,� gj,n|q

)1/q∥∥∥∥
p

≤ C(p − 1)−2(1−p/q)Bp(R)1−p/q2−�(1−1/p)pq sup
n∈Z

‖wn‖�p

∥∥∥∥
( ∑

j,n∈Z

|gj,n|q
)1/q∥∥∥∥

p

. (3.3)

Proof. The case q = p of (3.3) follows from (2.9). For q = ∞ we use (2.10) to estimate∥∥∥∥ sup
−R≤j,n≤R

sup
i∈N

|wn(i)A
2bnsn(i)
j,� gj,n|

∥∥∥∥
p

≤ C

∥∥∥∥ sup
−R≤j,n≤R

sup
i∈N

|wn(i)|M str[τ2bnsn(i)
j ∗ |gj,n|]

∥∥∥∥
p

≤ C

∥∥∥∥M str

[
sup

−R≤j,n≤R
sup
i∈N

|wn(i)| τ2bnsn(i)
j ∗

(
sup

j′,n′∈Z

|gj′,n′ |
)]∥∥∥∥

p

,

where we have used the positivity of the operators f �→ τu
j ∗ f . By (2.3) we can dominate

the last displayed expression by

C ′(p − 1)−2

∥∥∥∥ sup
−R≤j,n≤R

sup
i∈N

|wn(i)| τ2bnsn(i)
j ∗

[
sup

j′,n′∈Z

|gj′,n′ |
]∥∥∥∥

p

� (p − 1)−2Bp(R) sup
n∈Z

‖wn‖�p

∥∥∥∥ sup
j′,n′∈Z

|gj′,n′ |
∥∥∥∥

p

which establishes the case q = ∞. The case p < q < ∞ follows by interpolation. �

Proof of Proposition 3.1. We use the decomposition τu
j ∗ f =

∑∞
�=0 Au

j,�f . By (2.4)
we get ∥∥∥∥ sup

j,n∈Z

sup
i∈N

|wn(i)A
2bnsn(i)
j,0 f |

∥∥∥∥
p

� (p − 1)−2 sup
n∈Z

‖wn‖�∞‖f‖p.

For � > 0, we have∥∥∥∥ sup
−R≤j,n≤R

sup
i∈N

|wn(i)A
2bnsn(i)
j,� f |

∥∥∥∥
p

≤
∥∥∥∥
( ∑

−R≤j,n≤R

∑
i∈N

|wn(i)A
2bnsn(i)
j,� f |2

)1/2∥∥∥∥
p

and, by (2.11) and Lemma 3.2 for q = 2, and (2.12),∥∥∥∥
( ∑

−R≤j,n≤R

∑
i∈N

|wn(i)A
2bnsn(i)
j,� f |2

)1/2∥∥∥∥
p

� (p − 1)−2(1−p/2)Bp(R)1−p/22−�(1−1/p)p/2 sup
n∈Z

‖wn‖�p

∥∥∥∥
( ∑

j,n∈Z

|P (2)
j−n,�,bP

(1)
j,� f |2

)1/2∥∥∥∥
p

� (p − 1)p−42−�(p−1)/2Bp(R)1−p/2 sup
n∈Z

‖wn‖�p‖f‖p. (3.4)
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This implies, for 1 < p ≤ 2,

Bp(R) �
[
(p − 1)−2 +

∑
�>0

(p − 1)p−42−�(p−1)/2Bp(R)1−p/2

]

� (p − 1)−2 + (p − 1)p−5Bp(R)1−p/2

which leads to

Bp(R) � (p − 1)2−10/p.

If we use this inequality in (3.4) and observe

p − 4 + (2 − 10/p)(1 − p/2) = 3 − 10/p,

then the claimed inequality in Proposition 3.1 follows by the monotone convergence
theorem. �

4. Proof of Proposition 2.2

For n ∈ Z, let Un ⊂ [1, 2b] be defined by

Un = {2−bnu : u ∈ [2bn, 2b(n+1)] ∩ U}

and let

Nn,�(U) = #{k : [2−�k, 2−�(k + 1)) ∩ Un �= ∅}.
Then we have

2−�(1−1/p) sup
n∈Z

Nn,�(U) ≈ Kp(U, 2−�).

We cover each set Un with dyadic intervals of the form

Ik,� = [k2−�, (k + 1)2−�),

where k ∈ N. Denote by Sn,� the left endpoints of these intervals and note that Nn,�(U) =
#Sn,�. We label the set of points in Sn,� by {sn,�(i)}Nn,�(U)

i=1 and write

sup
j∈Z

sup
u∈U

|Au
j,�f(x)| = sup

j∈Z

sup
n∈Z

sup
s∈Un

|A2nbs
j,� f(x)|

≤ sup
j,n∈Z

sup
i=1,...,Nn,�(U)

|A2nbsn,�(i)
j,� f(x)|

+ sup
j,n∈Z

sup
i=1,...,Nn,�(U)

∫ 2−�

0

∣∣∣∣ d
dα

A
2nb(sn,�(i)+α)
j,� f(x)

∣∣∣∣ dα.
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Hence

∥∥∥∥ sup
j∈Z

sup
u∈U

|Au
j,�f |

∥∥∥∥
p

≤
∥∥∥∥
( ∑

j,n∈Z

Nn,�(U)∑
i=1

|A2nbsn,�(i)
j,� f |2

)1/2∥∥∥∥
p

+
∫ 2−�

0

∥∥∥∥
( ∑

j,n∈Z

Nn,�(U)∑
i=1

∣∣∣∣ d
dα

A
2nb(sn,�(i)+α)
j,� f

∣∣∣∣2
)1/2∥∥∥∥

p

dα,

and by part (ii) of Proposition 3.1 both expressions on the right-hand side can be
estimated by

C(p − 1)3−10/p2−�(p−1)/2 sup
n∈Z

Nn,�(U)1/p‖f‖p. (4.1)

This estimate is efficient for 1 < p < 1 + �−1. Note that in this range 2−C�(1−1/p) ≈ 1 and
Nn,�(U)1/p ≈ Kp(U, 2−�). For p = 2 we have the inequality

∥∥∥∥
( ∑

j,n∈Z

Nn,�(U)∑
i=1

|A2nbsn,�(i)
j,� f |2

)1/2∥∥∥∥
2

+
∫ 2−�

0

∥∥∥∥
( ∑

j,n∈Z

Nn,�(U)∑
i=1

∣∣∣∣ d
dα

A
2nb(sn,�(i)+α)
j,� f

∣∣∣∣2
)1/2∥∥∥∥

2

dα

� 2−�/2 sup
n∈Z

Nn,�(U)1/2‖f‖2. (4.2)

For p� := 1 + �−1 < p < 2 we use the Riesz–Thorin interpolation theorem (together
with the fact that (p� − 1)C/� ≈C 1 and (p� − 1)−A = �A). We then obtain, for p� < p < 2,

∥∥∥∥
( ∑

j,n∈Z

Nn,�(U)∑
i=1

|A2nbsn,�(i)
j,� f |2

)1/2∥∥∥∥
p

+
∫ 2−�

0

∥∥∥∥
( ∑

j,n∈Z

Nn,�(U)∑
i=1

∣∣∣∣ d
dα

A
2nb(sn,�(i)+α)
j,� f

∣∣∣∣2
)1/2∥∥∥∥

p

dα

� 2−�(1−1/p) sup
n∈Z

Nn,�(U)1/p�7(2/p−1)‖f‖p. (4.3)

Thus we have established (2.7). The proof of (2.8) is similar but the reduction to a square-
function estimate requires one more use of a Littlewood–Paley estimate. We have, using
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the analogue of (2.11) for T 2bns
j,�,+,∥∥∥∥ sup

n∈Z

sup
u∈U∩[2nb,2(n+1)b]

∣∣∣∣ ∑
j∈Z

Tu
j,�,+f

∣∣∣∣
∥∥∥∥

p

≤
∥∥∥∥
( ∑

n∈Z

Nn,�∑
i=1

∣∣∣∣ ∑
j∈Z

P
(1)
j,� P

(2)
j−n,�,bT

2nbsn,�(i)
j,�,+ f

∣∣∣∣2
)1/2∥∥∥∥

p

+
∫ 2−�

0

∥∥∥∥
( ∑

n∈Z

Nn,�(U)∑
i=1

∣∣∣∣ ∑
j∈Z

P
(1)
j,� P

(2)
j−n,�,b

d
dα

T
2nb(sn,�(i)+α)
j,�,+ f

∣∣∣∣2
)1/2∥∥∥∥

p

dα,

which by (2.13) is bounded by

C(p − 1)−2

[∥∥∥∥
( ∑

n∈Z

Nn,�(U)∑
i=1

∑
j∈Z

|T 2nbsn,�(i)
j,�,+ f |2

)1/2∥∥∥∥
p

+
∫ 2−�

0

∥∥∥∥
( ∑

n∈Z

Nn,�(U)∑
i=1

∑
j∈Z

∣∣∣∣ d
dα

T
2nb(sn,�(i)+α)
j,�,+ f

∣∣∣∣2
)1/2∥∥∥∥

p

dα

]
.

From here on the estimation is exactly analogous to the previous square function: just
replace Au

j,� with Tu
j,�,+. The arguments for the corresponding terms with Tu

j,�,− are similar
(or could be reduced to the previous case by a change of variable and curve). This
concludes the proof of Theorem 2.2.

5. Lower bounds for p ≤ 2

As mentioned before, the lower bound (log N(U))1/2 for ‖HU‖Lp→Lp , based on ideas of
Karagulyan [7], was established in Guo et al. [6]. We now show the easier lower bound in
terms of the quantity supδ>0 Kp(U, δ) (where we only have to consider the cases δ < 1).
The same calculation gives the same type of lower bound for ‖MU‖Lp→Lp .

By rescaling in the second variable and reflection we may assume that c+ = 1. For
u ∈ U and δ ∈ (0, 1) we define

Vδ(u) = {(x1, x2) : 1 ≤ x1 ≤ 2, |x2 − uxb
1| ≤ δ/4},

and let fδ be the characteristic function of the ball of radius δ centred at the origin.
Observe that for 1 ≤ x1, u ≤ 2 , ε < 1 and x1 ≤ t ≤ x1 + εδ, we have u(tb − xb

1) ≤ 2b ·
3b−1εδ. Thus for εb = (8b · 3b−1)−1 we get fδ(x1 − t, x2 − utb) = 1 and thus

H(u)fδ(x) ≥ 1
3

∫ x1+εbδ

x1

fδ(x1 − t, x2 − utb) dt ≥ εb

3
δ, x ∈ Vδ(u).

By rescaling in the second variable we have, for every r > 0, that

‖HU‖Lp→Lp ≥ ‖HUr‖Lp→Lp ,
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Maximal functions associated with families of homogeneous curves 411

where Ur = r−1U ∩ [1, 2]. Let Ur(δ) be a maximal 2bδ-separated subset of Ur; then
#Ur(δ) � N(Ur, δ). This implies

HUr(δ)fδ(x) � δ for x ∈ Vr,δ :=
⋃

u∈Ur(δ)

Vδ(u).

For different u1, u2 ∈ Ur(δ) the sets Vδ(u1) and Vδ(u2) are disjoint and therefore we have
meas(Vr,δ) � δ#(Ur(δ)). Hence we get

‖HUr(δ)fδ‖p ≥ cδ1+1/p#(Ur(δ))1/p.

Since also ‖fδ‖p � δ2/p, we obtain

‖HU‖Lp→Lp ≥ ‖HUr(δ)‖Lp→Lp � δ1−1/p#(Ur(δ))1/p � δ1−1/pN(Ur, δ)1/p,

which gives the uniform lower bound

‖HU‖Lp→Lp � Kp(U, δ) (5.1)

for sufficiently small δ.
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