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Abstract

Insightful findings in political science often re-

quire researchers to analyze documents of a

certain subject or type, yet these documents

are usually contained in large corpora that

do not distinguish between pertinent and non-

pertinent documents. In contrast, we can find

corpora that label relevant documents but have

limitations (e.g., from a single source or era),

preventing their use for political science re-

search. To bridge this gap, we present adaptive

ensembling, an unsupervised domain adapta-

tion framework, equipped with a novel text

classification model and time-aware training to

ensure our methods work well with diachronic

corpora. Experiments on an expert-annotated

dataset show that our framework outperforms

strong benchmarks. Further analysis indicates

that our methods are more stable, learn bet-

ter representations, and extract cleaner corpora

for fine-grained analysis.

1 Introduction

Recent progress in natural language processing

and computational social science have pushed po-

litical science research into new frontiers. For

example, scholars have studied language use in

presidential elections (Acree et al., 2018), legisla-

tive text in Congress (de Marchi et al., 2018), and

similarities in national constitutions (Elkins and

Shaffer, 2019). However, datasets used by polit-

ical scientists are mostly homogeneous in terms

of subject (e.g., immigration) or document type

(e.g., constitutions). Labeled corpora with perti-

nent documents usually only stem from a single

source; this makes it difficult to generalize con-

clusions derived from them to other sources. On

the other hand, corpora spanning multiple decades

and sources tend to be unlabeled. These cor-

pora are largely untouched by political scientists;

to illustrate some problems that arise with study-

ing such data, Table 1 shows a sample of topics

Topic 1 like, day, would, a.m., center
Topic 2 two, samour, family, veronica, son
Topic 3 would, hospital, also, car, hyundai
Topic 4 said, people, one, years, think
Topic 5 city, 6-4, last, wine, york

Table 1: Randomly sampled topics and top keywords

derived from a 50-topic LDA model trained on a sam-

ple of COHA documents. Topic modeling results on a

political subset of COHA are presented in Table 5. Ad-

ditionally, topic model hyperparameters are detailed in

Appendix A.

generated by Latent Dirichlet Allocation (LDA)

(Blei et al., 2003), a popular topic model in so-

cial science, trained on 60,000 documents sampled

from the Corpus of Historical American English

(COHA) (Davies, 2008). The generated topics are

extremely vague and not specific to politics.

This paper bridges the gap between labeled

and unlabeled corpora by framing the problem

as one of domain adaptation. We develop adap-

tive ensembling, an unsupervised domain adapta-

tion framework that learns from a single-source,

labeled corpus (the source domain) and utilizes

these representations effectively to obtain labels

for a multi-source, unlabeled corpus (the tar-

get domain). Our method draws upon consis-

tency regularization, a popular technique that sta-

bilizes model predictions under input or weight

perturbations (Athiwaratkun et al., 2019). At

the framework-level, we introduce an adaptive,

feature-specific approach to optimization; at the

model-level, we develop a novel text classification

model that works well with our framework. To

better handle the diachronic nature of our corpora,

we also incorporate time-aware training and rep-

resentations.

Our experiments use the New York Times An-

notated Corpus (NYT) (Sandhaus, 2008) as our

source domain corpus and COHA as our target do-
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main corpus. Concretely, we construct two classi-

fication tasks: a binary task to determine whether

a document is political or non-political; and a

multi-label task to categorize a document under

three major areas of political science in the US:

American Government, Political Economy, and In-

ternational Relations (Goodin, 2009). We subse-

quently introduce an expert-labeled test set from

COHA to evaluate our methods.

Our framework, equipped with our best model,

significantly outperforms existing domain adap-

tation algorithms on our tasks. In particu-

lar, adaptive ensembling achieves gains of 11.4

and 10.1 macro-averaged F1 on the binary

and multi-label tasks, respectively. Qualita-

tively, adaptive ensembling conditions the opti-

mization process, learns smoother latent repre-

sentations, and yields precise but diverse top-

ics as demonstrated by LDA on an extracted

political subcorpus of COHA. We release our

code and datasets at http://github.com/

shreydesai/adaptive-ensembling.

2 Motivation from Political Science

Quantitative studies of American public opinion

over time have mostly been restricted to surveys

such as the American National Election Survey

(Baldassarri and Gelman, 2008; Campbell et al.,

1980). However, surveys often do not pose well-

formed questions, reflect true voter opinion, or

capture mass public opinion (Zaller et al., 1992;

Bishop, 2004). Therefore, researchers often seek

to compare survey findings with those of mass me-

dia as the relationship between public opinion and

the media has been widely established (Baum and

Potter, 2008; McCombs, 2018). Press media, one

form of mass media, manifests itself in large, di-

achronic collections of newspaper articles; such

corpora provide a promising avenue for study-

ing public opinion and testing theories, provided

scholars can be confident that the measures they

obtain over time are substantively invariant (Davi-

dov et al., 2014). However, as alluded to earlier,

such diachronic corpora are often unlabeled; polit-

ical scientists cannot draw conclusions from these

corpora in their raw form as they are unable to dis-

tinguish between political and non-political arti-

cles. We frame this problem as an exchange be-

tween two domains: a source, labeled corpus with

modern articles (NYT) and a target, unlabeled cor-

pus with decades of articles originating from a

multitude of news sources (COHA). Using domain

adaptation methods, we can extract a political sub-

corpus from COHA that would be amenable for

the study of public opinion research over time.

3 Unsupervised Domain Adaptation

In this section, we detail the core concepts behind

our unsupervised domain adaptation framework.

We describe the problem setup (§3.1), an overview

of self-ensembling and consistency regularization

(§3.2-§3.4), and our novel contributions to this

framework (§3.5-§3.6).

3.1 Problem Setup

Let X and Y denote the input and output spaces,

respectively. We have access to labeled samples

{x
(i)
L , y

(i)
L }

N
i=1 from a source domain DS and un-

labeled samples {x
(i)
U }

M
i=1 from a target domain

DT . The goal of unsupervised domain adaptation

is to learn a function f : X → Y that maximizes

the likelihood of the target domain samples by

only leveraging supervision from the source do-

main samples. We also assume the existence of a

small amount of labeled target domain samples in

order to create a development set, following exist-

ing work in unsupervised domain adaptation (Glo-

rot et al., 2011; Chen et al., 2012; French et al.,

2018; Zhang et al., 2017).

3.2 Self-Ensembling

Our unsupervised domain adaptation framework

builds on top of self-ensembling (Laine and Aila,

2017), a semi-supervised learning algorithm based

on consistency regularization, whereby models

are trained to be robust against injected noise

(Athiwaratkun et al., 2019).

Self-ensembling is an interplay between two

neural networks: a student network f(x; θ) and a

teacher network f(x;φ). The inputs to both net-

works are perturbed separately, and the objective

is to measure the consistency of the student net-

work’s predictions against the teacher’s. Both net-

works share the same base model architecture and

initial parameter values, but follow different train-

ing paradigms (Laine and Aila, 2017). In particu-

lar, the student network is updated via backpropa-

gation, then the teacher network is updated with

an exponential average of the student network’s

parameters (Tarvainen and Valpola, 2017). The

networks are trained in an alternating fashion un-

til they converge. During test time, the teacher
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Figure 1: Visualization of the self-ensembling training

procedure. Descriptions of individual components are

detailed in §3.2-§3.4.

network is used to infer the labels for target do-

main samples. Figure 1 visualizes the overall

training procedure. Further intuition behind self-

ensembling is available in Appendix B.

Next, we discuss the training process for the stu-

dent network (§3.3), the original fixed ensembling

method in Tarvainen and Valpola (2017) (§3.4),

and our proposed adaptive ensembling method

(§3.5).

3.3 Student Training

The student network uses labeled samples from

the source domain and unlabeled samples from the

target domain to learn domain-invariant features.

This is realized by using multiple loss functions,

each with its own objective. The supervised loss

is simply the cross-entropy loss of the student net-

work outputs given source domain samples:

LCE(θ) =
∑

(x,y)∈DS

log p(y|x′)

However, the supervised loss alone prevents the

student network from learning anything useful

about the target domain. To address this, Laine

and Aila (2017) introduce an unsupervised loss

to ensure that the student and teacher networks

have similar predictions for target domain sam-

ples. French et al. (2018) only enforce the consis-

tency constraint for target domain samples, but we

propose using both source and target domain sam-

ples with separately perturbed inputs x′ and x′′;

this provides a balanced source of supervision to

train our adaptive constants, discussed in §3.5:

LMSE(θ, φ) =
∑

x∈DS∪DT

||f(x′; θ)− f(x′′;φ)||2

The overall objective is a combination of the

two loss functions:

L(θ, φ) = LCE + LMSE

3.4 Fixed Ensembling

The teacher network’s parameters form an ensem-

ble of the student network’s parameters over the

course of training:

φ(t+1) ← αφ(t) + (1− α)θ(t)

where α is a smoothing factor that controls the

magnitude of the parameter updates. Since the la-

bels for the target domain samples are inherently

unknown, ensembling parameters in the presence

of noise helps the teacher network’s predictions

converge to the true label (Tarvainen and Valpola,

2017).

Limitations Empirically, we find that the highly

unstable loss surface presented by textual datasets

causes large instabilities in the optimization pro-

cess. One of the key insights of this paper is that

these instabilities are due to the dynamics of the

unsupervised loss. Because the unsupervised loss

effectively regularizes the source domain repre-

sentations to work well in the target domain (Laine

and Aila, 2017), performance degrades rapidly if

this loss fails to converge. This is a strong in-

dicator that self-ensembling fails to learn useful,

shared representations for knowledge transfer be-

tween textual domains. Qualitative evidence of

the unsupervised loss’ instability is shown in Fig-

ure 6a and further discussed in §7.

3.5 Adaptive Ensembling

We hypothesize that smoothing with a fixed hy-

perparameter α is responsible for said instabili-

ties. For any given weight matrix (or bias vec-

tor), each hidden unit can be conceptualized as

controlling one highly specific feature or attribute

(Bau et al., 2019). These units may need to be up-

dated with varying degrees throughout the course

of training; therefore, smoothing each unit with a

fixed constant severely overlooks dynamics at the

parameter-level. We propose modifying fixed en-

sembling by introducing trainable smoothing con-

stants for each unit—hereafter termed adaptive

constants—as opposed to using a fixed smoothing

constant:

φ(t+1) ← C
(t) ⊙ φ(t) + (1−C

(t))⊙ θ(t)

where a matrix of adaptive constants C is applied

element-wise to φ and θ at each step.
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5 Datasets

We present a dataset for identifying political doc-

uments with manual annotation from political sci-

ence graduate students. The dataset is constructed

for binary and multi-label tasks: (1) identifying

whether a document is political (i.e. containing

notable political content) and (2) if so, the area(s)

among three major political science subfields in

the US: American Government, Political Econ-

omy, and International Relations (Goodin, 2009).

Source We use NYT as the source dataset as

it contains fine-grained descriptors of article con-

tent. We sample 4,800 articles with the descrip-

tor US POLITICS & GOVERNMENT. To obtain

non-political articles, we sample 4,800 documents

whose descriptors do not overlap with an exhaus-

tive list of political descriptors identified by a po-

litical science graduate student. For our multi-

label task, the annotator grouped descriptors in

NYT that belong to each area label we consider1.

Target Our target data are historical documents

from COHA, which contains a large collection

of news articles since the 1800s. To ensure

our dataset is useful for diachronic analysis (e.g.,

public opinion over time), we sample only from

news sources that consistently appear across the

decades. Further, we ensure there are at least 8,000

total documents in each decade group; this nar-

rows down our time span to 1922–1986. From

this subset, we sample∼250 documents from each

decade for annotation. Two political science grad-

uate students each annotated a subset of the data.

To train our unsupervised domain adaptation

framework, we use 9,600 unlabeled target exam-

ples (same number as NYT). The expert-annotated

dataset is divided into three subsets: a training set

of 984 documents (only for training the In-Domain

classifier discussed in §6.2), development set of

246 documents, and test set of 350 documents (50

per decade)2.

6 Experiments

6.1 Settings

Our CNN has 8 layers, each with 256 channels,

f = 3, d = 2i (for the ith layer), and ReLU acti-

vation. We enforce a maximum sequence length

1These descriptors are available in Appendix C.
2The news sources used and label distributions for the

expert-annotated dataset are available in Appendix D.

Binary Task Multi-Label Task

Method Mi-F Ma-F Ma-P Ma-R Ma-F

Source Only 55.7 46.2 28.8 70.0 39.6
mSDA 57.4 49.7 41.0 63.7 48.1
DANN 68.2 65.8 50.8 36.3 42.2
SE 64.0 59.5 42.7 64.1 51.0
+ curriculum 66.4 62.3 44.4 71.7 54.5

AE (ours) 75.1 74.5 46.1 75.3 57.2
+ curriculum 77.4 77.1 48.2 83.5 61.1

In-Domain 81.7 81.6 86.5 83.5 84.8

Table 2: Framework results for the binary label task

(left) and multi-label task (right). For the binary task,

we show micro- and macro-averaged F1 scores. For

the multi-label task, we show macro-averaged preci-

sion, recall, and F1 scores.

of 200 and minimum word count from [1, 2, 3]
to build the vocabulary. The embedding matrix

uses 300-D GloVe embeddings (Pennington et al.,

2014) with a dropout rate of 0.5 (Srivastava et al.,

2014). We history-pad our input with a zero vec-

tor, the state connections are obtained using av-

erage pooling, and the time embedding has a di-

mensionality of 10. The model is optimized with

Adam (Kingma and Ba, 2015), learning rate from

[10−4, 5 · 10−5, 10−5], and mini-batch size from

[16, 32]. Hyperparameters were discovered using

a grid search on the held-out development set.

6.2 Framework Results

Using our best model, we benchmark our unsuper-

vised domain adaptation framework against estab-

lished methods: (1) Marginalized Stacked De-

noising Autoencoders (mSDA): Denoising au-

toencoders that marginalize out noise, enabling

learning on infinitely many corrupted training sam-

ples (Chen et al., 2012). (2) Self-Ensembling

(SE): A consistency regularization framework that

stabilizes student and teacher network predic-

tions under injected noise (discussed in detail

in §3.2-§3.4) (Laine and Aila, 2017; Tarvainen

and Valpola, 2017; French et al., 2018). (3)

Domain-Adversarial Neural Network (DANN):

Multi-component framework that learns domain-

invariant representations through adversarial train-

ing (Ganin et al., 2016). We also benchmark

against Source Only (classifier trained on the

source domain only) and In-Domain (classifier

trained on the target domain only) to establish

lower and upper performance bounds, respectively

(Zhang et al., 2017).

Framework results are presented in Table 2. Our
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A LDA Topic Model

We experimented with a range of hyperparameters

to ensure the Latent Dirichlet Allocation (LDA)

model was best optimized for our datasets, lever-

aging the Gensim3 library. In particular, we re-

moved all stopwords, extremely rare words (tail

10-20% from a unigram distribution), and set the

number of topics to 50.

B Self-Ensembling

The core intuition behind consistency regulariza-

tion is that ensembled predictions are more likely

to be correct than single predictions (Laine and

Aila, 2017; Tarvainen and Valpola, 2017). To this

end, Laine and Aila (2017) introduce a student

and teacher network that yield single predictions

and ensembled predictions, respectively.

After learning from labeled samples, the stu-

dent may produce varying, dissimilar predictions

for unlabeled samples due to the stochastic na-

ture of optimization. One potential solution is to

ensemble predictions across time to converge at

the most likely prediction (Laine and Aila, 2017).

Tarvainen and Valpola (2017) improve upon this

method by showing that ensembling parameters

(as opposed to predictions) results in better pre-

dictions. Because the teacher’s parameters are

smoothed with the student’s learned parameters at

each iteration, the teacher effectively becomes an

ensemble of the student across time.

Further, to ensure that the features learned from

the labeled samples are compatible with the unla-

beled samples, Laine and Aila (2017); Tarvainen

and Valpola (2017); French et al. (2018) motivate

a consistency-enforcing approach to bring the stu-

dent and teacher’s predictions closer together. In

essence, if a feature learned from samples in the

labeled domain is incompatible with samples in

the unlabeled domain, the consistency (unsuper-

vised) loss penalizes its incompatibility. There-

fore, the interplay between these two networks

creates a robust, domain-invariant feature space

that characterizes both labeled and unlabeled sam-

ples (French et al., 2018). A detailed visualization

of the training procedure is presented in Figure 1

in the main body of this paper.

3https://radimrehurek.com/gensim/

Political Non-Political

AG PE IR

Train 333 8 156 497
Dev 82 1 33 116
Test 125 8 47 208

Table 6: Distribution of train (In-Domain benchmark

only), dev, test documents in our expert-annotated

COHA subcorpus. For political documents, we

break down the distribution into American Government

(AG), Political Economy (PE), and International Rela-

tions (IR).

C NYT Descriptors

We build a list of “political” descriptors in NYT to

determine (a) which labels we can or cannot sam-

ple non-political documents from; and (b) which

descriptors fall under the three areas of politi-

cal science we consider for our multi-label task

(American Government, Political Economy, and

International Relations).

Because documents can be tagged with multiple

descriptors, we build a list of descriptors whose

documents have significant overlap with US POL-

ITICS & GOVERNMENT. The second author, a po-

litical science graduate student, filtered this list to

57 descriptors that are political in nature.

For (a), we sample 4,600 non-political docu-

ments whose descriptors do not overlap with the

57 political descriptors described above. For (b),

the same political science graduate student assigns

each descriptor with one or more area labels. We

use this label information to build an NYT dataset

for our tasks. The 57 political descriptors and their

corresponding area labels are tabulated in Table 7.

D Expert-Annotated Dataset

To create an initial COHA subcorpus of 56,000

documents (8,000 per decade), we sample from

the following news sources that consistently ap-

pear in across decades: Chicago Tribune, Chris-

tian Science Monitor, New York Times, Time

Magazine, and Wall Street Journal. Note that these

NYT articles (up to year 1986) do not appear in the

NYT annotated corpus (Sandhaus, 2008) (starting

from year 1987), which we used as our source,

training dataset.

From this subcorpus, we perform additional

steps to create an expert-annotated dataset (§5).

Label distributions for our dataset are presented

in Table 6. Although political economy (PE) is
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severely underrepresented, we experimentally find

that these documents have salient features and are

not as difficult to classify. In addition, we employ

class imbalance penalties to prevent our model

from ignoring these documents.

The source dataset (NYT) was already anno-

tated; to ensure label agreement with our tar-

get dataset (COHA), we sampled documents from

the source dataset and had our political science

graduate students label them to compare against

the original label. There were minimal prob-

lems here—because NYT has fine-grained labels

for their documents, the politically-labeled articles

were clearly political and vice-versa.

The target datatset (COHA) was divided into

halves and each political science graduate student

annotated a half. Prior to annotation, they agreed

upon a set of rules to minimize bias in the anno-

tation process. In addition, both of them worked

side-by-side during all annotation periods, so they

were able to ask each other’s opinion in case there

was confusion. We also took measures to ensure

label correctness after annotation was completed.

Each political science graduate student sampled a

batch of their political and non-political annota-

tions and sent it to the other to evaluate. Again,

there was not much disagreement here as the rules

decided upon in the beginning were sufficient to

cover most edge cases. Quantitatively, Cohen’s

κ = 0.95 as calculated on a mutually annotated

subset (Cohen, 1960).

Area Label

Topic AG PE IR

International Relations X

Presidents and Presidency (US) X

Presidential Elections (US) X

War and Revolution X

Presidential Election of 2000 X

Presidential Election of 2004 X

Law and Legislation X

Civil War and Guerrilla Warfare X

International Trade and World Market X

Presidential Election of 1996 X

Public Opinion

Economic Conditions and Trends X

Bombs and Explosives X

Arms Sales Abroad X

United States Economy X

Missiles and Missile Defense Systems X

Oil (Petroleum) and Gasoline X

Appointments and Executive Changes X

Foreign Service X

Prisoners of War X

War Crimes, Genocide and Crimes
Against Humanity

X

Vice Presidents and Vice Presidency
(US)

X

Arms Control and Limitation and Dis-
armament

X

Military Bases and Installations X

Presidential Election of 2008 X

Whitewater Case X

Vietnam War X X

Governors (US) X

Energy and Power X

Stocks and Bonds X

State of the Union Message (US) X

Wages and Salaries X

Church-State Relations X

Shiite Muslims X

Special Prosecutors (Independent
Counsel)

X

White House (Washington, DC) X

Federal Taxes (US) X

Illegal Aliens X

Social Security (US) X

Political Prisoners X X

Watergate Affair X

Government Employees X

Sunni Muslims X

Third World and Developing Countries X

Customs (Tariff) X

Welfare (US) X

Gun Control X

Global Warming X

Interest Rates X

Vetoes (US) X

Futures and Options Trading X

Attorneys General X

Layoffs and Job Reductions X

Nazi Policies Toward Jews and Minori-
ties

X

Government Bonds X

Police Brutality and Misconduct X

Executive Privilege, Doctrine of X

Table 7: Political descriptors in NYT. Each descriptor

is categorized under one or more political science ar-

eas: American Government (AG), Political Economy

(PE), and International Relations (IR).


