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The Impact of Local Oscillator Frequency Jitter and
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Abstract—Through theoretical analysis and simulation, we in-
vestigate the system impact due to a sinusoidal jitter tone and the
resultant local oscillator (LO) laser linewidth requirement in ultra-
high baud rate and long distance coherent optical systems. We also
carried out experiments in 64 Gbaud, dual-polarization (DP)-16
QAM systems to verify the theoretical analysis and simulation. We
have also obtained a jitter interference tolerance mask to qualify
LO lasers. A jitter tone with a frequency lower than ∼1 MHz has
a higher tolerance since it generally causes constant frequency or
phase shift, which can be tracked by a receiver DSP. For a jitter
tone with a frequency higher than ∼1 MHz, the tolerance becomes
much tighter since the tone will affect laser lineshape and induce
equalizer-enhanced phase noise (EEPN). Consequently, a jitter tone
in the higher frequency region could severely affect the system
performance. Theoretical analysis and numerical result illustrate
that EVM2 due to the effect of laser linewidth and a sinusoidal jitter
tone is proportional to the weighted sum of [Δν × Bs × L] and
[Δfpp × Bs × L]2, where Δν is the laser linewidth, Bs is the
baud rate, Δfpp is the laser peak-to-peak frequency deviation due
to a sinusoidal jitter tone, and L is the fiber transmission length.
This result is applicable for all orders of QAM constellations. The
implication to future 100 Gbaud and beyond systems is delineated.

Index Terms—Coherent communication, laser noise, optical
fiber communication.

I. INTRODUCTION

W ITH the explosive growth of data traffic from emerging
bandwidth-consuming services such as the mission-

critical Internet of Things (IoT), 4 k/8 k ultra-high definition
video streaming, high-speed Internet, big data processing, and
smartphones, coherent optical communication has become a
mainstream solution to high data rate transmission [1], [2].
Tunable lasers are critical to optical networking and coherent
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Fig. 1. Measured laser frequency noise power spectral density (PSD) illustrat-
ing the existence of multiple interfering tones due to switching power supplies
and circuit noise in a coherent pluggable module. Note that the interfering tones
below 1 MHz are found to be less damaging to the transmitted signal quality.

optical transmission [3], and its linewidth is a key parameter
which impacts system performance [4], [5]. Laser white fre-
quency noise induces phase variation and EEPN for long-haul
transmission. EEPN is from phase to amplitude noise conversion
caused by intermixing of the received dispersed signal, and
the phase-noise-induced sidebands of the local oscillator (LO)
in a coherent system with post-reception electrical chromatic
dispersion (CD) compensation [4], [6]–[8]. It was found that
the EVM2 due to EEPN is proportional to [Δν ×Bs × L)]
[4]. However, the system performance impact due to sinusoidal
interfering tones, which are caused by switching power supplies,
power converters, and other circuit noise in pluggable modules
and line-cards [9]–[13], have not been carefully studied.

Fig. 1 illustrates the frequency noise (FN) power spectral den-
sity (PSD), which can be measured from frequency to intensity
fluctuation conversion by using a well-designed discriminator
followed by intensity noise removing as shown in [14]. The
FN PSD includes the white noise region above 10MHz (whose
value multiplied by π is the laser linewidth [15]) and multiple
interfering tones due to the switching power supplies and circuit
noise in a pluggable coherent module. The white frequency
noise region observed in the FN PSD is suitable for linewidth
calculation in all kinds of lasers [15]. The frequency jitter tones
have a peak-to-peak frequency deviation Δfpp ranging between
0.1 MHz and several MHz. It is also worth noting that for future
smaller pluggable coherent modules, switching power supplies
would become more compact and consequently their switching
frequencies (and therefore the induced jitter tone frequencies)
would be increased beyond 1 MHz, which causes more degrada-
tions to the system performance (see Fig. 5(d) in Sec.IV). Note
thatΔfpp can be calculated from the power spectrum by carrying
out 2

√
2sqrt(·) operation on the power level of the sinusoidal

interfering tone, which is the product of a tone amplitude in the
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Fig. 2. Block diagram of the theoretical analysis under the assumption of a
perfect transmitter laser.

frequency noise spectrum and its corresponding measurement
resolution bandwidth. The impact of these interfering tones on
high baud rate coherent systems is the main topic of our paper.

Through experiments, we obtained receiver jitter tolerance
masks for 32 and 64 Gbaud DP-16QAM with a transmission
distance up to 900 km. We also performed a theoretical analysis
of the EVM variation caused by jitter tone, which was verified
by simulation and experiments. Note the result of theoretical
analysis is also applicable to higher order modulation formats.
We observed that the tone-induced phase to amplitude noise
conversion through EEPN can cause a much tighter requirement
on LO linewidth for higher baud rates (e.g., 100Gbaud), longer
transmission distances (e.g., >600 km), and higher order QAM
(e.g., 16QAM or beyond).

The paper is organized as follows. In Section II, we present the
theoretical analysis considering the jitter tone with a frequency
higher than a corner frequency, where the corner frequency is
dependent on the time duration of the carrier frequency offset
(CFO) block. Section III depicts the experimental setup of the
32-Gbaud/64-Gbaud 16-QAM coherent systems. Section IV
describes the simulation and experimental results, and Section V
gives a concluding remark.

II. THEORETICAL ANALYSIS

We perform a theoretical analysis using the block diagram
shown in Fig. 2. Assume that the symbol period is Ts, and cn is
the any order of QAM symbols in the complex data plane, the
incoming QAM data train is modeled as

∑
cnδ(t− nTs), which

passes through an ideal Nyquist pulse shaping filter, whose
interpolation function can be expressed as gT (t) = sinc(t/Ts)
to generate a band-limited signal. Considering the fact that
EEPN mainly comes from a local oscillator (LO) rather than a
transmitter in the post-CD compensation scheme [8], we assume
a perfect transmitter laser and ignore the laser relative intensity
noise (RIN). Based on the analysis in [4], after fiber dispersion,
the time domain of the demodulated signal influenced by EEPN
can be modeled as:

r′(t) =
∫ ∞

−∞
XLO(f1) · e−jkf1

2 · r(t− kf1/π)e
j2πf1tdf1 (1)

whereXLO(f1) denotes the frequency response of the LO phase
noise, which can be characterized as the Fourier transform of the
phase fluctuation ejϕLO . In Eq. (1), k = π ·D · L · c · fc is the
accumulated dispersion factor, where, D is the dispersion coef-
ficient, c is light speed, fc is the optical frequency. The transmit-
ted signal after the Nyquist filter is r(t) =

∑
cnδ(t− nTs)⊗

sinc(t/Ts) =
∑

cnsinc((t− nTs)/Ts).
The theoretical analysis and numerical simulation in [4] have

indicated that when only considering white frequency noise
(laser linewidth), the square of error vector magnitude (EVM)
is proportional to Δν ×Bs × L. In our work, a more general
model is established by incorporating not only the white fre-
quency noise but also multiple sinusoidal jitter tones, i.e., the

LO phase noise which be written as:

ejϕLO

= exp

(

j

(
∑

t

Δfppt
/(2ft) · cos(2πftt+ ϕt) + nw(t)

))

(2)

whereΔfpp and ft are the peak-to-peak frequency deviation and
the frequency of a sinusoidal jitter tone while ϕtcorresponds to
its initial phase, and nw(t) corresponds to the white frequency
noise which is related to laser linewidth [16], [17].

A. LO Phase Noise Power Spectral Density S(f)

We begin with deriving the general formula of a laser line-
shape S(f) when the laser phase noise is perturbed by a single
sinusoidal jitter tone as a simplified case in eq (2). When consid-
ering only white frequency noise, S(f) is modeled as a single
Lorentzian distribution [4]. In the following analysis, we will
show that when considering both white frequency noise and fre-
quency jitter tone, S(f) can be well approximated by a weighted
combination of frequency-shifted Lorentzian distributions.

By using Bessel series expansion [18], we can obtain the
spectrum of an LO phase noise with an interfering tone and
white frequency noise as:

S(f) = E|XLO(f)|2 =

∫∫

R2

E
(
ej(nw(t)−nw(u))

)
e2πj(t−u)f

× exp

(

j
Δfpp
2ft

(cos(2πftt)− cos(2πftu))

)

dtdu

=

∫∫

R2

E
(
ej(nw(t)−nw(u))

)
e2πj(t−u)f

×
( ∞∑

n=−∞
Jn

(
Δfpp
2ft

)

e−2πjtnft

)

×
( ∞∑

n=−∞
Jn

(
Δfpp
2ft

)

e2πjunft

)

dtdu. (3)

where Jn(z) =
∑

m≥0
(−1)m

(m+n)! (z/2)
2m+n is the n-th order

Bessel function.
The expectation involving Wiener process can reach a closed

form formula by using the characteristic functions of Gaussian
random variables [19]: E(ej(nw(t)−nw(u))) = e−π·Δν·|t−u|.

For each term of the summation in Eq (3), by changing of
variable (r = t+ u, z = t− u), we have:
∫∫

[0,T ]2
E
(
ej(nw(t)−nw(u))

)

× e2πj(t−u)fe−2πjtn1fte−2πjun2ftdtdu

=
1

2

∫ T

−T

e−π·Δν·|z|e2πjzfe−πjz(n1+n2)ft

×
∫ T+|z|

T−|z|
e−πjr(n1−n2)ftdr dz

≈
{
π
∫ T

−T e−π·Δν·|z|e2πjz(f−nft)dz, n1 = n2 = n
0, n1 �= n2

. (4)
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Therefore, we obtain:

S(f) ≈ π
∞∑

n=−∞
Jn

(
Δfpp
2ft

)2 ∫ ∞

−∞
e−π·Δν·|z|e2πjz(f−nft)dz

=
1

2

∞∑

n=−∞
Jn

(
Δfpp
2ft

)2
Δν

(f − nft)
2 +Δν2

=
1

2

∞∑

n=−∞
wnSl(f − nft)

(5)

where Sl(·) is a Lorentzian-shaped function. Eq. (5) shows that
the LO phase noise spectrum which includes an interfering tone
and white frequency noise is given by a weighted average of
frequency-shifted Lorentzian distributions, with the weight at a
frequency nft given by Jn(

Δfpp
2ft

)2.

B. Derivation of EVM

The EVM caused by the phase to amplitude conversion in a
receiver phase noise compensation block can be defined as the
mean square error of the received signal after CD compensation
normalized by the transmitted signal power [4]:

EVM2 =
E(|r′(t)| − |r(t)|)2

E (|r(t)|2) . (6)

We calculate the mean square error of |r′(t)| where t = nTs.
Since we have E|r′(t)|2 = E|r(t)|2, using the Taylor expansion√
1− x = 1− x/2− x2/8 +O(|x|3) for small x, we get:

EVM2 =
E(|r(t)| − |r′(t)|)2

E|r(t)|2 = 2− 2
E
(√|r′(t)|2|r(t)|2

)

E|r(t)|2

≈ 1

4E|r(t)|2 E

( |r(t)|2 − |r′(t)|2
|r(t)|

)2

.

(7)
By the definition of r′(t) given in Eq. (1), we obtain eq. (8)

shown at the bottom of this page.
Note that phase noise terms at different frequencies have zero

correlation. To make E(XLO(f1)XLO(f2)XLO(f3)XLO(f4))
non-zero, (f1, f2, f3, f4) must pair up into two pairs with
appropriate conjugation. There are two possibilities: (f1 =
f2, f3 = f4), and (f1 = f4, f2 = f3), leading to the following
decomposition:

EVM2 =
1

4E|r(t)|2
∫ ∞

−∞

∫ ∞

−∞
S(f1)S(f3)

E

(
1

|r(t)|2
∣
∣
∣
∣r

(

t− kf1
π

)∣
∣
∣
∣

2∣∣
∣
∣r

(

t− kf3
π

)∣
∣
∣
∣

2

− |r(t)|2
)

df1df3

+
1

4E|r(t)|2
∫ ∞

−∞

∫ ∞

−∞
S(f1)S(f3)

E

⎛

⎝ 1

|r(t)|2
∣
∣
∣
∣
∣
r

(

t− kf1
π

)

r

(

t− kf3
π

)

− |r(t)|2
∣
∣
∣
∣
∣

2
⎞

⎠ df1df3

=
1

4
(I1 + I2), (9)

For the first term I1, by doing mathematical calculation as
shown in Appendix A, we obtain:

I1 ≈ a′
k ·Δν

Ts
, (10)

Then we calculate I2 − I1 to obtain the second term I2 as
presented in Appendix B, direct calculation yields:

I2 − I1 ≈ a
k ·Δν

Ts
+ 2

∫ Ts
2k

−Ts
2k

k2f2

T 2
s

S(f)df (11)

Putting Eq. (10) and (11) together into Eq. (9):

EVM2 =
1

4
(I1 + I2) =

1

2
I1 +

1

4
(I2 − I1)

≈ a+ 2a′

4

k ·Δν

Ts
+

1

2

∫ Ts
2k

−Ts
2k

k2f2

T 2
s

S(f)df (12)

For the second term
∫ Ts

2k

−Ts
2k

k2f2

T 2
s
S(f)df , it depends only on

Δfpp but not on ft. This is the reason why the jitter tone mask in
Fig. 5(d) is flat above a corner frequency. Note that the following
identity holds true for series associated to Bessel J functions:

∞∑

n=−∞
n2Jn(β)

2 =
β2

2
. (13)

Since Δfpp, ft 	 Ts/k, we have:
∫ Ts

2k

−Ts
2k

k2f2

T 2
s

S(f)df

≈
∫ Ts/2k

−Ts/2k

k2f2

T 2
s

( ∞∑

n=−∞
wn · Sl(f − nft)

)

df

= w0

∫ Ts
2k

−Ts
2k

k2f2

T 2
s

Δν

π(Δν2 + f2)
df

+
∑

n �=0

wn

∫ Ts
2k

−Ts
2k

k2f2

T 2
s

Δν

π(Δν2 + (f − nft)
2)
df

≈ w0

∫ Ts
2k

−Ts
2k

k2f2

T 2
s

Δν

π(Δν2 + f2)
df

+
∑

n �=0

wn

∫ Ts
2k

−Ts
2k

k2

T 2
s

(f2 + nftf + n2f2
t )Δν

π(Δν2 + f2)
df

EVM2 =
1

4E|r(t)|2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E
(
XLO(f1)XLO(f2)XLO(f3)XLO(f4)

)
e2πj(f1−f2+f3−f4)t

· e−jk(f2
1−f2

2+f2
3−f2

4 ) · E

(

r
(
t− kf1

π

)
r
(
t− kf2

π

)
− |r(t)|2

)(

r
(
t− kf3

π

)
r
(
t− kf4

π

)
− |r(t)|2

)

|r(t)|2 df1df2df3df4

(8)
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Fig. 3. Experimental setup of the 64/32-Gbaud DP-16QAM coherent transmission. Pre-eq: Pre-equalization, TL: Tunable laser, CDM: coherent driver modulator,
DAC: digital-to-analog convertor, EDFA: Erbium-doped fiber amplifier, OSA: optical spectrum analyzer, PM: phase modulator, ICR: Intradyne coherent receiver.
Inset: Frequency noise PSD of the phase modulated LO with a 20 MHz tone and Δfpp = 25.77 MHz.

Fig. 4. Simulation block diagram of the coherent systems.

≈
∫ Ts

2k

−Ts
2k

k2f2

T 2
s

Δν

π(Δν2 + f2)
df +

k2

T 2
s

∞∑

n=−∞
wnn

2f2
t

= a′
k ·Δν

Ts
+ c

k2Δfpp
2

Ts
2 (14)

Therefore, the EVM can be decomposed into two parts,
representing the contribution from white noise and sinusoidal
frequency jitter, respectively:

EVM2 = EVM1
2 + α · EVM2

2,

EVM1
2 ∝ k ·Δν/Ts ∝ L ·Δν/Ts,

EVM2
2 ∝ k2 ·Δfpp

2/Ts
2 ∝ L2 ·Δfpp

2/Ts
2. (15)

In essence, this means that the integral under Lorentzian
distribution (in Eq. (5)) at carrier frequency leads to the term
EVM2

1 , representing the contribution from white noise; while
each frequency-shifted, weighted term in Eq. (5) contributes to
theEVM2

2 term, representing the effect of sinusoidal frequency
jitter. The relative weight α are independent of the fiber length,
baud rate, and laser linewidth, but may vary with different
DSP algorithms. The exact value of α can be obtained through
numerical analysis, as illustrated in Sec. IV B.

The theoretical analysis above illustrates the dependence of
EVM on baud rate, fiber distance, laser linewidth, and the
peak-to-peak interfering tone amplitude. The result is suitable
for different constellations. It is worth noting that, for higher
order QAM, the required EVM would be more stringent, in this
case, the system tolerance to laser linewidth and frequency jitter
tone amplitude would be reduced.

III. EXPERIMENTAL SETUP AND SIMULATION PROCEDURE

A. Experimental Setup

Fig. 3 shows the experimental setup of the DP-16-QAM
coherent optical system to investigate the impact of the laser
frequency jitter tone. Both the transmitter and LO external cavity
lasers (ECLs) had a linewidth of 35 KHz and operating at a
frequency around 193.5 THz. Four uncorrelated data sequences
were applied with pre-equalizer with 11 taps and then were

loaded to four 64 GSa/s digital to analog converters (DACs)
operating at 1 Sa/symbol. The signal is then modulated by a
coherent driver modulator (CDM), whose 3 dB bandwidth was
40 GHz and Vπ was 2 V. A CD emulator with an 8-dB insertion
loss was used to emulate a total CD of 450 or 900 km standard
single-mode fiber (SSMF). Comparing to using SSMF spools
and in-line EDFAs, the CD emulator completely removes the
concern of mixing fiber nonlinearity in the study. At the receiver
side, a phase modulator and a low-speed arbitrary waveform gen-
erator (AWG) were used to modulate the LO with a sinusoidal
tone by loading a sine wave to the AWG. As presented in the inset
of Fig. 3, after PM, the laser frequency noise PSD exhibits a sharp
peak at 20 MHz with a peak-to-peak amplitude (Δfpp) equals
25.77 MHz (Note that 25.77 MHz was obtained as follows: The
peak of the frequency noise PSD in Fig. 3 is 83e6 Hz2/Hz, and the
corresponding resolution bandwidth is 1e6 Hz, and we obtain the
Δfpp from 2

√
2×√

83e6× 1e6 = 25.77 MHz. By changing
the driving voltage of the PM and the period of the loading sine
wave, we can sweep Δfpp and frequency (ft) of the sinusoidal
tone in the experiment. After the intradyne coherent receiver
(ICR), a 4-channel 80-GSa/s real-time scope captures the data
at 1.25 Sa/symbol. In the offline-DSP, the data is resampled
to 2 Sa/symbol, orthonormalized using Gram-Schmidt orthogo-
nalization procedure, followed by CD and CFO compensation,
polarization demultiplexing and equalization with 64 taps 4×2
butterfly adaptive equalizer, and blind-phase search carrier phase
recovery (CPR).

B. Simulation

The simulation procedure is shown in Fig. 4. Firstly, we
measured the signal EVM (based on average normalization) at
the transmitter and receiver in a back-to-back setup to obtain
EVMtx and EVMtotal, respectively, and convert them to elec-
trical SNRtx and SNRtotal, respectively, through EVM2 =

1
SNR (which is valid for a high OSNR, required for baud rate
≥64Gbaud and modulation order ≥16QAM) [20]. The trans-
mitter SNRtx includes the booster EDFA’s and DAC’s ASE
noise, as shown in Fig. 4. The receiver SNR (SNRRx), which
accounts for the ICR and ADC induced SNR degradation, can
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Fig. 5. Experimental results with single jitter interference (rec. opt. power =−8 dBm). (a) Benchmarks of BER versus OSNR between adding jitter interference
at transmitter and receiver side in 32-Gbaud 900-km transmission with a 10-MHz tone and Δfpp = 45 MHz. (b) BER versus OSNR for 32-Gbaud DP-16QAM
BtB/450/900-km transmission with a 10-MHz sinusoidal tone andΔfpp = 45 MHz causing 0.8 dB OSNR penalty. (c) BER versus OSNR for 64-Gbaud DP-16QAM
BtB/450-km transmission with a 5-MHz sinusoidal tone and Δfpp = 25 MHz causing 0.8dB OSNR penalty. (d) Single sinusoidal jitter tolerance versus sinusoidal
frequency, at 0.5dB rOSNR penalty, for various baud rates and distances. (e) Corner frequency versus CFO block length in symbols for 32-Gbaud transmission. (f)
Time domain expression of the effective frequency deviation Δfpp as a function of the initial phase of the sinusoidal tone. (Upper diagram: Jitter tone with higher
ft; lower diagram: jitter tone with lower ft).

be obtained from 1
SNRtotal

= 1
SNRtx

+ 1
SNRRx

. Secondly, the
transmitter laser phase noise is based on a 35 kHz linewidth,
and the receiver LO phase noise is based on a 35 kHz linewidth
with jitter tone. Thirdly, the transmission link is modeled as
g(f) = exp(−j π·c·L·CD·f2

(fc−f)2
) [21], where fc is the carrier fre-

quency, L is the fiber length, and CD is the fiber dispersion
coefficient. CD is set as 17 ps/(nm × km) in simulation. Finally,
ASE noise loading was applied to the received optical signal in
order to vary the received OSNR.

In the simulation, we used a roll off factor of 0.2 for 64-Gbaud
and 0.1 for 100-Gbaud systems, respectively, in order to match
with the experimental signal spectrum. Note also that the same
DSP was used for both the simulation and experiment.

IV. EXPERIMENTAL AND SIMULATION RESULTS

A. Jitter Tone Tolerance Mask

As shown in Fig. 5(a), firstly, we compare the BER versus
OSNR performance between loading frequency jitter tone at the
transmitter laser and LO in a 32-Gbaud 900-km DP-16 QAM
system. We set the bit error rate (BER) curve without sinusoidal
interference as a baseline. We can observe that a 10-MHz tone
with Δfpp = 45 MHz at LO side induces 0.8-dB optical signal
to noise ratio (OSNR) penalty at the BER of 1e-2. On the
other hand, the curve of the same tone at the transmitter side
overlaps with baseline and shows no penalty. This is because
the transmitter laser phase noise has little impact on the system
performance [4]. Therefore, in the following study, we will focus
on the system performance effect due to a sinusoidal frequency
jitter tone imposed on an LO only.

Fig. 5(b) and (c) illustrate the BER versus OSNR after adding
a sinusoidal frequency jitter tone to an LO in 32- and 64Gbaud
transmission systems, respectively. In 32-Gbaud 900 km trans-
mission, a 10-MHz sinusoidal jitter with a Δfpp = 45 MHz
introduces a 0.8-dB OSNR penalty at a BER of 1e-2. In Fig. 5(c),
a 5-MHz sinusoidal frequency jitter tone with a peak-to-peak
frequency deviation Δfpp = 25 MHz causes 0.8-dB OSNR
penalty at a BER of 1e-2. Therefore, a higher baud rate sys-
tem would be more sensitive to a frequency jitter tone, and
therefore a smaller Δfpp is required. Also, the dashed lines are
the simulation results, which match well with the experimental
results. Therefore, the BER versus OSNR curves established our
baseline for both experiment and simulation.

Fig. 5(d) presents the measured LO frequency jitter mask,
which is defined as the allowableΔfpp versus the jitter frequency
ft with a certain penalty threshold. We swept the frequency and
Δfpp of the sinusoidal tone to get a 0.5-dB rOSNR penalty
at BER = 1e-2 in both the experiment and simulation. Note
that above a certain corner frequency, the jitter mask is inde-
pendent of the tone frequency (for a fixed EVM or BER, baud
rate, and transmission distance), as predicted in Eq. (15). The
resultant frequency jitter mask includes various baud rates and
transmission distances so that a trend can be revealed, i.e., a
tighter mask is required when the baud rate is higher or the
transmission distance is longer. For example, in a 32-Gbaud
DP-16QAM 450-km transmission system, the maximum allow-
able Δfpp is 70 MHz while it is reduced to 40 MHz when the
transmission distance is increased to 900-km. For a 64-Gbaud
transmission, the maximum allowable Δfpp is reduced from
21 MHz to 8.5 MHz when the distance is extended from 450-km
to 900-km. The mask floor is further reduced to 4.7 MHz for
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Fig. 6. Simulation results (for 64Gbaud/DP-16QAM signals) with single jitter sinusoidal tone. (a) EVM2
1 versus Δν, fiber length, and baud rate, with

EVM2 = 0 (Δfpp = 0). (b) EVM2
2 versus Δf2

pp, (fiber length)2, and (baud rate)2, with a fixed small EVM1 (laser linewidth = 1 kHz). (c) EVM2 versus
single tone Δf2

pp with different laser linewidths at 64-Gbaud/DP-16QAM, 450-km transmission. (d) EVM2 versus single tone Δf2
pp with different laser linewidths

for 100-Gbaud/DP-16QAM, 450-km transmission. Fiber reach versus Δfpp with 35 and 300 kHz intrinsic linewidth for (e) 0.5-dB penalty at BER = 1e-2 in
64/100-Gbaud DP-16QAM transmission, and (f) 0.1-dB penalty at BER = 1e-2 in 64/100-Gbaud DP-16QAM transmission.

a 100 Gbaud DP-16QAM signal over 1000 km. Based on the
measured Δfpp range of a few MHz in Fig. 1, we can say that
the impact of frequency jitter tone is of particular importance
for 100 Gbaud/DP-16QAM and beyond, and for over 1000 km.
In Fig. 5(d), it is worth noting that the frequency jitter mask
is divided into two regions by a corner frequency fc, which
is inversely proportional to the block length (in time) of the
CFO compensation. As shown in Fig. 5(e), the corner frequency
is roughly proportional to 1/(Block Length of symbols · Ts).
The block length (in number of symbols×Ts) corresponds to the
CFO estimator observation time. In CFO estimation, we usually
utilize a sufficient long block size to get a more accurate CFO
value. However, the longer the CFO block length, the longer the
observation time of phase noise [15], which in turn causing a
reduced corner frequency and a tighter jitter mask.

The slow frequency drift in region I does not affect laser
lineshape [7] and is handled by the CFO compensation section
in a receiver DSP, while the faster frequency jitter in region II
affects the laser lineshape and results in phase variance as well as
EEPN. Fig. 5(f) illustrates that the frequency deviation in region
I is not only determined by Δfpp but also related to initial phase
when the jitter tone does not complete a period in the observation
time [7], [22]. In our experiment, the observation time is around
1 μs. Take Fig. 5(f) as an example, the observation time is about
the time interval between the two dashed lines with the same
color, which lasts for Δt. The higher frequency jitter (frequency
> 1/Δt)such as the upper curve can complete at least one
period for the whole observation time while the lower frequency
jitter (lower curve) may or may not complete a complete cycle
depending on the initial phase. Therefore, during a fixed obser-
vation time, higher frequency interfering tones should induce the

same Δfpp independent of the initial phase. However, for lower
frequency interfering tones, the induced effective Δfpp could
vary depending on the initial phase. For instance, as shown in the
lower curve in Fig. 5(f), the π initial phase induces larger Δfpp
than π/2 initial phase since it has a sharper slope. In Region
I, i.e., the lower frequency region, we have swept the initial
phase of tones and chosen the worst case Δfpp to ensure the
tightest Δfpp tolerance. As for Region II, the performance will
not be determined by the initial phase and it is only dependent
on Δfpp. As shown in Fig. 5(f), since Region II exhibits higher
frequency, the jitter source can always complete several periods
during the observation time. For back-to-back (BtB) transmis-
sion, the tolerance in region II is dominated by CPR capability. In
addition, after CD emulator, the tolerance mask is much tighter
with the increasing of baud rate and dispersion distances due
to EEPN. EEPN cannot be mitigated by CPR and introduces
timing error and amplitude distortions. Thus, the frequency jitter
tolerance in region II is obviously much tighter than that of
region I.

In the following analysis, we focus on the system impact of
frequency jitter tones in Region II because that is where the worst
performance occurs, and the performance is only dependent on
Δfpp.

B. Verification of Theoretical Analysis

Here we verify the validity of Eq. (15) which gives the
combined effect of laser linewidth and LO frequency jitter.
Fig. 6(a) demonstrates the proportionality of theEVM1

2 caused
by the white frequency noise (through simulation) by setting
EVM2

2 to zero. Fig. 6(b) demonstrates the proportionality of
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Fig. 7. Simulation results of the impact of multiple tones (Δfpp = 5 MHz) when the LO linewidth is either 35 KHz or 300 KHz. BER versus OSNR in 100-Gbaud
DP-16QAM transmission with the impact of different linewidths and number of tones: (a) with 450-km fiber and (b) 900-km fiber. (c) Penalty at the BER of 1e-2
versus number of tones in in 64/100-Gbaud DP-16QAM 900-km transmission in cases of different linewidth.
pt

the EVM2
2 caused by the sinusoidal frequency jitter (through

simulation) by setting EVM1
2 to a small value with laser Δν

equals to 1 kHz. Note all results are obtained for a 64Gbaud
DP-16QAM system. In Fig. 6(b), EVM2

2 versus L2 is obtained
with the Δfpp = 15 MHz, EVM2

2 versus baud rate2 is obtained
withΔfpp = 15 MHz and L= 450 km, andEVM2

2 versusΔf2
pp

is presented with 450-km transmission.
Fig. 6(c) and (d) show the simulation results of EVM2 versus

Δf2
pp at a transmission distance of 450 km for three different

laser linewidths of 1, 450, and 900 kHz for 64-Gbaud/DP-
16QAM 450-km transmission and 100-Gbaud/DP-16QAM 450-
km transmission, respectively. These result prove that EVM1

2

(due to laser linewidth) andEVM2
2 (due to LO frequency jitter)

are additive since the three curves are parallel and show even
gap between curves. In addition, We can observe in Figs. 6(c)
and 6(d) that for the same EVM2, in case of 64-Gbaud/DP-
16QAM transmission, a change in Δν of 450 kHz is equiv-
alent to a change in Δf2

pp of approximately 400 MHz2. For
100-Gbaud/DP-16QAM system, a change of 450 kHz in
linewidth is the same as a change in Δf2

pp of approximately
300MHz2. By plugging the value in the curves of either Fig. 6(c)
or Fig. 6(d) into Equation (15), we can obtain the numerical
conclusion:

EVM2 = EVM1
2 + 0.09 · EVM2

2,

EVM1
2 = 0.46 · k ·Δν/Ts,

EVM2
2 = 0.46 · k2 ·Δfpp

2/Ts
2. (16)

The relative weighting between EVM1
2 and EVM2

2 is
0.09, and it is independent on the baud rate. Note that EVM1

2

is consistent with the conclusion in [4], which showed that
EVM1

2 ≈ 0.5 · k ·Δν/Ts.
With EVM1

2 and EVM2
2 given in Eq. (16), we obtain

Figs. 6(e) and 6(f), for an OSNR penalty of 0.5 dB and 0.1 dB at
a BER = 1e-2, respectively, the achievable fiber distance versus
Δfpp for 64 and 100 Gbaud DP-16QAM, and for two laser
linewidths of 35 and 300 KHz. Experimental results, shown by
the star symbol, are also included, which match well with the
simulation results. Several interesting facts can be observed from
Fig. 6(e) and (f): (i) The transmission distance decreases faster
for the smaller Δfpp, and less so for the larger Δfpp, which
implies the higher sensitivity of transmission distance to the
smaller LO frequency jitter range. (ii) Judging from Fig. 6(e), for

the typical range of Δfpp (as discussed in Section I) of 0.5 MHz
to several MHz the 35 KHz linewidth laser exhibits much longer
fiber reach than that of the 300 KHz linewidth laser. For instance,
Fig. 6(e) shows that for 100Gbaud DP-16QAM transmission,
with Δfpp equals to 5 MHz, 35 kHz linewidth extends the
300 KHz linewidth’s reach from 250 km to 800 km. (iii) The
higher the baud rate, the shorter the transmission distance, which
implies when the transmission baud rate is increased beyond
100Gbaud, laser linewidth close to or even lower than 35 KHz
would be required.

C. Simulation for Multiple Interfering Tones

In practice, multiple frequency jitter tones could occur (as
shown in Fig. 1). Therefore, we performed simulations of
multiple tones with random initial phases. All of the tones are set
as the same Δfpp of 5 MHz. Fig. 7(a) and (b) illustrate the BER
performance in 450-km and 900-km 100-Gbaud DP 16QAM
transmission under the impact of multiple tones. For 450-km and
a single tone, 300-kHz linewidth exhibits∼0.6-dB penalty at the
BER of 1e-2 compared with that of a 35 kHz linewidth, while
the penalty from the additional 4 jitter tones are not significant
(around 0.25 dB). When the distance is increased to 900 km,
the penalty from the additional 4 tones becomes higher. With
four tones (ft at 1 MHz, 3 MHz, 6 MHz, and 10 MHz), the
additional penalty from tones is 2 dB for 35 kHz and 2.5 dB for
300 kHz while for a single tone the penalty is small (0.15 dB). It
indicates that the existence of multiple jitter tones would result
in a tighter frequency jitter mask in Fig. 5(d). Fig. 7(c) presents
the result of the OSNR penalty (relative to back-to-back case
without any interfering tone) at a BER of 1e-2 with respect to
the number of jitter tones. With the increasing of the number
of jitter tones, the penalty also increases. It is worth noting that
the increasing of penalty is not linear but a bit exponential for
the case of 100Gbaud. Moreover, the combined effect of higher
laser linewidth and jitter tones would introduce more penalty in
high baud rate transmission.

V. CONCLUSION

Through theoretical, simulations, and experiments, we have
found that, while EVM2 due to EEPN is proportional to (baud
rate × LO linewidth × transmission distance) when consid-
ering only the laser linewidth effect [4], it is proportional to
(baud rate× frequency jitter tone peak-to-peak frequency drift
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× transmission distance)2 when considering the sinusoidal fre-
quency jitter tone effect. The latter is an important factor to
consider for a transmission system performance because the
sinusoidal jitter tones often occurs in a pluggable transceiver
or line-card due to unavoidable switching power supplies and
other circuit noise. We found that the total EVM2 is the weighted
sum of the contributions from laser linewidth and frequency
jitter tone. As a result, it is expected that a narrower laser
linewidth would provide a higher margin for LO frequency jitter
tolerance.

The fact that a system performance is sensitive to LO sinu-
soidal frequency jitter indicates the importance of setting up a
jitter tolerance mask shown in Fig. 5(d) to qualify tunable lasers.
In practice, Eq. (15) can be utilized to qualify the jitter tone
tolerance mask with a certain EVM requirement with various
fiber distances, baud rates, and laser linewidths. Also, we can
sweep the jitter tone tolerance in a numerical or experimental
analysis by using a phase modulator at the LO, as shown in
Fig. 3. The higher the baud rate, the longer the transmission
distance, the higher the order of modulation, and the more jitter
tones would cause a tighter jitter tolerance mask.

APPENDIX

A. Derviation of I1

The following analysis calculates I1. For t = nTs, we have
r(t) = cn. Since the process is stationary, namely, the distri-
butions of signal and the phase noise do not change with n,
without loss of generality, we can assume n = 0. Plugging in
the expression for r(t) and expanding the square of summation,
we obtain:

E

∣
∣
∣r
(
t− kf1

π

)∣
∣
∣
2∣∣
∣r
(
t− kf3

π

)∣
∣
∣
2

|r(t)|2

= E

(
1

|c0|2 E

((
∑

m

|cm|2s2m(f1)

)(
∑

m

|cm|2s2m(f3)

)

|c0
))

+ E

⎛

⎝ 1

|c0|2 E

⎛

⎝
∑

m1 �=m2

|cm1
|2|cm2

|2

sm1
(f1)sm2

(f1)sm1
(f3)sm2

(f3)|c0
⎞

⎠

⎞

⎠

= Z1(f1, f3) + Z2(f1, f3) (17)

where we denote sn(f) = sinc(kf/Ts + nπ).
By plugging Eq. (17) into the first term in Eq. (9), we can

decompose E
|r(t− kf1

π )|2|r(t− kf3
π )|2

|r(t)|2 into two terms, and write I1
as:

I1 =
1

E|r(t)|2
∫ ∞

−∞

∫ ∞

−∞
S(f1)S(f3)(Z1(f1, f3)

+ Z2(f1, f3)− 1)df1df3

For Z1, by changing the order of integration, we have:

Z1 (f1, f3) = E

(
1

|c0|2 E
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∑

m

|cm|2s2m(f1)

)

×
(
∑

m
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|c0
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= E|c0|2s20(f1)s20(f3) + E|cm|2

×
⎛
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2
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2
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For Z2, direct calculation yields:
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[(
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∑
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[

1− 1
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(
k(f1 − f3)
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)2

−
∑

m

sm
2
(f1)sm

2(f3)

]

The expression of I1 relies on taking integral of Z1 and Z2

under the power spectral density S(f), which involves integrals
of squared sinc function. In the following we first analyze the
behavior of sinc functions in this problem. For x 	 1, we use
the following Taylor expansion of sinc function to approximately
evaluate I1:

sinc(x) = 1− 1

6
x2 +O(x4),

sinc(x−mπ) =
(−1)mx

mπ
+O(x3).

By making the decomposition kfi/Ts = qi + xi, with integer
qi and |xi| < 1/2, for i = 1, 2, 3, 4. By the Taylor expansion
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approximation, we have:

sm(fi) =

{
(−1)qi−m

(qi−m)π xi +O(x3
i ), qi �= m

1− 1
6x

2
i +O(x4

i ), qi = m

When applying the power spectral densities as kernels, de-
composing kfi/Ts into qi + xi and plugging in the Taylor
approximation, we obtain:

∫ ∞

−∞
s2m(f)S(f)df

≈
(

k

Ts

)2 ∑

q �=m

∫ Ts
2k

−Ts
2k
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df
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2k
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1− k2

3Ts
2 f

2
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S

(
Ts

k
m+ f

)

df

In the second term, we are using the approximation
(1− x)2 ≈ 1− 2x for small x.

In our problem, we have Ts/k � Δfpp, Δν(Ts/k ∈ [109,
1011], Δfpp ∈ [105, 108], Δν ∼ 105). As derived in Section
II.A, the power spectral density is approximated by a mixture
of Lorentzian distributions S(f) ≈∑∞

n=−∞ wn · Sl(f − nft),
with each mixture component centered at scale Δfpp and with
width Δν. For |f | ≥ Ts/k, we can use S(f) ≈ Δυ/πf2, and
the integral within [−Ts/k, Ts/k] will be calculated later using
the mixture of Lorentz distributions derived in Section II.A. If
m = 0, we have:

∫ ∞

−∞
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≈ Ts
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2S(f)df + a1

k ·Δν
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The value of universal constant a1 is independent of all other
parameters, which can be explicitly calculated, but the specific
value is irrelevant to our discussion and is dependent on the DSP
algorithm that employed at the receiver side.

For the case of m �= 0, we have:
∫ ∞
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2k

−Ts
2k
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2S (f) df + a2

k ·Δν

m2Ts
.

Similar to a1, a2 is a universal constant that does not change
with other parameters.

Going back to I1, we need the integral ofZ1(f1, f3) under the
kernelS(f1)S(f3). By plugging in the approximate formulae for
each term in the expression of Z1(f1, f3), we obtain:

1
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The above calculation involves four steps. Step (i) is by
exchanging the order of summation and differentiation; step
(ii) is by plugging in the approximate formulae for the squared
integral of sinc functions; step (iii) is discarding high-order terms
when the integrals are less than 1, and step (iv) is using the
identity

∑
n≥1 n

−2 = π2

6 .
In the above calculation, we omit all the high order terms. The

last squared term in the expression is negligible because it is of
the same order of square of other terms.

For Z2(f1, f3), we have:
∫ ∞
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Since k ·Δν/Ts 	 1, the integral of Z2 is much smaller than
k ·Δν/Ts, which is the scale of the integral of Z1. Therefore,
the contribution by Z2 in the final expression of I1 is negligible,
and we obtain:

I1 ≈ a′
k ·Δν

Ts
,

for some constant a′ > 0.

B. Derivation of I2 − I1

Now we turn to the term I2. Note that:
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And as in the estimate for I1, the integral outside the region
[−Ts/2k, Ts/2k]× [−Ts/2k, Ts/2k] is approximately a con-
stant multiple of k ·Δν/Ts. Therefore, we have:
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k ·Δν

Ts
+

∫ Ts
2k

−Ts
2k

∫ Ts
2k

−Ts
2k

k2

T 2
s

(f2
1 + f2

3 − 2f1f3)

× S (f1)S(f3)df1df3

≈ a
k ·Δν

Ts
+ 2

∫ Ts
2k

−Ts
2k

k2f2

T 2
s

S(f)df

The cross term integrates to zero because the power spectral
density is a symmetric function.
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