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ABSTRACT: Neonicotinoids are the most widely used insecti-
cides in the world and are commonly measured in aquatic
environments, including freshwater wetlands. We report for the
first time the synergistic transformation of neonicotinoids by a
Lemna duckweed and microbial system collected from an
agricultural pond in Iowa, USA. Imidacloprid and thiacloprid
were removed at statistically indistinguishable rates (0.63 ± 0.07
and 0.62 ± 0.05 day−1, respectively) from hydroponic medium
only when in the presence of both duckweed and its associated
microbial community. As evidence for this duckweed−microbial
synergy, experiments with surface-sterilized duckweed, duckweed-
associated microbes, pond water microbes alone, and two other
plant species (Typha sp. and Ceratophyllum demersum) did not yield significant neonicotinoid removal beyond initial biomass
sorption. Degradation of imidacloprid and thiacloprid by the duckweed−microbial system generated multiple, known
neonicotinoid metabolites (desnitro-imidacloprid, imidacloprid urea, thiacloprid amide, and 6-chloronicotinic acid). Measured
metabolites with increased insect or vertebrate toxicity were either absent (imidacloprid olefin) or present only in small
amounts (desnitro-imidacloprid; <1% of the parent). The neonicotinoid parent and metabolite mass balance did not fully
account for total neonicotinoid removal, suggesting mineralization and/or other unidentified transformation products with
unknown toxicity. This novel duckweed- and microbe-facilitated neonicotinoid degradation may represent an important
contribution to the environmental fate of neonicotinoids.

■ INTRODUCTION

Neonicotinoids are the most widely used insecticides in the
world.1 They are applied to a diverse variety of common
agricultural crops,2−4 residential gardens/turf,1,5 and trees1,6

and employed for flea and tick control on pets.1,7

Neonicotinoids have been implicated in numerous ecosystem
effects, including the decline of pollinators and insectivorous
birds.8−10 Due in part to their wide usage, large application
volume, and solubility in water,11 neonicotinoids have been
reported in surface waters with an average concentration12 of
0.13 μg/L and much higher maximum concentrations13 (e.g.,
320 μg/L). Neonicotinoids are also present in drinking water,
stormwater, groundwater, and wastewater.4,12,14−17

Neonicotinoids exert selective toxicity through an electro-
negative nitro or cyano pharmacophore that preferentially
binds to insect nicotinic acetylcholine receptors.18 This
selective binding makes neonicotinoids more target-specific
than many preceding pesticides.16 Nevertheless, modification
of the neonicotinoid insecticidal pharmacophore through
microbial activity2,19−24 (largely documented in soil microbes)
or an abiotic process such as photolysis25−27 can alter binding
specificity and subsequently impact nontarget organisms. For

example, loss of the nitro group from imidacloprid can
generate desnitro-imidacloprid,15,16 which contains a moiety
with a positive charge distribution that influences receptor
binding and makes this metabolite 317 times more toxic than
imidacloprid16,17 to vertebrates (based on IC50). Desnitro-
imidacloprid can be further microbially transformed to less-
insecticidal compounds imidacloprid urea and 6-chloronico-
tinic acid (6-CNA);19 mineralization routes for 6-CNA have
also been reported.19,28,29

Despite the frequent occurrence of neonicotinoids in surface
waters worldwide and the demonstrated capability of soil
microbes to transform neonicotinoids, there is a paucity of
research on neonicotinoid transformation by aquatic plants
and their associated microbial communities.2,12,19−24 A recent
study30 reported that, of several environmental factors, lower
concentrations and a lower detection frequency of neonicoti-
noids (including imidacloprid) in shallow marsh water were
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the most highly correlated with the presence of select
dominant plant species, such as a duckweed (Lemna
turionifera). Other dominant plants, such as cattails (Typha
latifolia), correlated with higher frequencies of neonicotinoid
detection and higher concentrations in shallow marsh water;
however, mechanisms were not elucidated with any plant
species. Duckweed, and in some cases its associated microbial
communities, can transform contaminants in water, e.g.,
antidepressants,31 anti-inflammatories,31 arsenic,32 and phe-
nols.33,34 Due to the prevalence of duckweed in aquatic
environments worldwide,35 duckweed-facilitated transforma-
tion of neonicotinoids could represent a critical environmental
fate mechanism. Therefore, the objectives of this work were
(1) to determine if Lemna duckweed and/or its associated
microbial community can remove imidacloprid and/or
thiacloprid from water and (2) to quantify the formation of
select environmentally relevant metabolites, including those
with greater insect or vertebrate toxicity.

■ MATERIALS AND METHODS

Plant Sources and Neonicotinoid Removal Experi-
ments. Two aquatic macrophytes, duckweed [Lemna spp.,
tentatively identified as Lemna turionifera (Figure S2)] and
coontail (Ceratophyllum demersum), as well as pond water were
collected from a pond in Johnson County, Iowa, in an
agricultural region. Plant experiments were conducted in
Magenta boxes in a climate-controlled growth chamber using a
method similar to previously established methods,36−39 with
3.1−3.3 g (fresh weight) of plant biomass and 10 mL of filter-
sterilized 0.5× Schenk and Hildebrandt medium,40 pH 6.0
(unless otherwise noted), per box. Experiments were
conducted sacrificially in triplicate, unless otherwise
noted. Sorption experiments forneonicotinoids to unsterilized
duckweed tissue are described in the Supporting Information.
Plant tissue was extracted for LC−MS/MS analysis using our
previously established methods,41−44 with minor adaptations
noted in the Supporting Information.
The transformation of imidacloprid and thiacloprid and the

formation of known metabolites were tested. Imidacloprid is
one of the most widely used neonicotinoids,1 and thiacloprid is
structurally similar but contains a cyano group rather than a
nitro group as the insecticidal pharmacophore. Treatments
consisted of (1) unsterilized duckweed in imidacloprid or
thiacloprid-spiked medium, (2) microbes separated from
unsterilized duckweed (method details in the Supporting
Information) in imidacloprid-spiked medium, and (3) duck-
weed, sterilized following established procedures45,46 with
minor modifications, in medium with both imidacloprid and
thiacloprid. The initial imidacloprid concentrations (10−18.6
μg/L) and thiacloprid concentrations (2.4−6.0 μg/L) in this
study were chosen to be within the range of reported
worldwide surface water neonicotinoid concentrations.12

In addition, unsterilized duckweed was tested in parallel with
another unsterilized aquatic plant (“coontail”, C. demersum)
and unfiltered pond water from the same duckweed source
pond. Treatments consisted of (1) coontail and pond water,
(2) duckweed and pond water, and (3) pond water only. Pond
water for all treatments had macrophytes removed and was
spiked with imidacloprid. Full details about the experimental
design, growth conditions, sampling, sorption testing, and
extraction for all experiments are provided in the Supporting
Information.

Analytical Methods and Data Analysis. Samples were
analyzed via high-performance liquid chromatography (Agilent
1260) coupled to a triple-quadrupole mass spectrometer (LC−
MS/MS; Agilent 6460 Triple Quadrupole MS with Mass-
Hunter, version B.07.00) operating in multiple-reaction
monitoring (MRM) positive mode and electrospray ionization
(ESI) as established in our prior work14,47 (Table S1).
Isotopically labeled imidacloprid (d4) was used as an internal
standard (for medium samples) or surrogate (for plant tissue
extraction samples). A d4-imidacloprid-normalized external
calibration curve was used to account for surrogate recovery
and matrix effects during ionization, unless noted otherwise in
the Supporting Information. Full analytical and quality
assurance details are provided in the Supporting Information.
GraphPad Prism 8 (GraphPad, La Jolla, CA) was used for all

statistics. Matched-pairs t tests assessed differences between
treatments and controls (α = 0.05). Departure from the linear
null slope at the 95% confidence interval determined if a
significant change in compound concentration occurred over
time.

■ RESULTS AND DISCUSSION
Neonicotinoid Removal and Metabolite Formation

via Unsterilized Duckweed. Unsterilized duckweed re-
moved imidacloprid and thiacloprid (Figure 1a) from the
liquid medium at significant rates (p < 0.0001 for both),
whereas no significant losses occurred in the medium of the
abiotic negative controls [p = 0.12 and p = 0.29, respectively
(Figure S6)]. Thus, ongoing neonicotinoid removal was driven
by biotic processes, with sorption of 2.6−2.7 μg/L to
duckweed tissue occurring in the first day (Figure S7). First-
order removal rates in the medium for imidacloprid [for C0 =
18.6 μg/L; k ± standard error = 0.63 ± 0.07 day−1 (Figure
S4)] and thiacloprid [for C0 = 2.4 μg/L; k = 0.62 ± 0.05 day−1

(Figure S4)] were statistically indistinguishable [p = 0.21
(Figure S3)]. The similar rates suggest that the chemical
differences between the two compounds, including nitro versus
cyano pharmacophores, do not significantly impact the
removal rate.
Following imidacloprid exposure, the unsterilized duckweed

treatment generated small quantities of known imidacloprid
metabolites in the medium (no metabolite exceeding 6% of the
initial imidacloprid mass at any time point) and in the plant
tissue (no metabolite exceeding 0.1% of the initial imidacloprid
mass at any time point): desnitro-imidacloprid, imidacloprid
urea, and 6-CNA (Figure 1b). These metabolites may be part
of the duckweed-facilitated imidacloprid degradation pathway.
Previously documented pathways for imidacloprid degradation
include bacterial transformation from imidacloprid to desnitro-
imidacloprid to imidacloprid urea to 6-CNA to mineralized
end products (Figure 1c), which could be occurring
here.19,23,29,48−52 Imidacloprid urea and 6-CNA, both of
which are less insecticidal than the parent imidacloprid,53,54

were present in the treatment but not the abiotic control. The
lack of substantial quantities of metabolites that are more
vertebrate-toxic than the parent neonicotinoid (i.e., desnitro-
imidacloprid) in the unsterilized duckweed treatment, coupled
with no measured imidacloprid olefin (more insecticidal than
imidacloprid),54,55 has potentially positive implications for
duckweed phytoremediation.
The previously identified, less toxic metabolites thiacloprid

amide and 6-CNA were present in the unsterilized thiacloprid
duckweed treatment. Thiacloprid amide in the unsterilized
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duckweed treatment medium (Figure 1b) represented ≤30%
of the initial thiacloprid mass at a given time point. Thiacloprid
amide was also present on and/or in the duckweed plant tissue
[≤16% of the initial mass (Figure 1b)] but not in the abiotic
control medium (Figure S6b), suggesting a biological origin.
Thiacloprid amide is less insecticidal than thiacloprid56 and
less acutely vertebrate-toxic than thiacloprid.57 6-CNA was
found in only the duckweed treatment medium below the LLD
(Figure 1b) and only in a single replicate of the abiotic control
medium near the LLD (Figure S6b). A small amount of 6-
CNA may be abiotically generated from thiacloprid (e.g., by
hydroxyl radicals40,58,59) in the abiotic control before further
degradation.60 The presence of 6-CNA in only a single
replicate at one time point of the abiotic control along with the
lack of significant thiacloprid removal in the abiotic control
(Figure S6b) indicates that abiotic 6-CNA production is not a
major pathway. In contrast, 6-CNA was detected in almost half
of all thiacloprid duckweed treatment plant medium replicates,
in small quantities. 6-CNA may therefore be a minor or rapidly
transformed intermediate metabolite of thiacloprid trans-
formation by the duckweed system. Taken together, the
generation of thiacloprid amide and 6-CNA in the duckweed
treatment, coupled with the removal of thiacloprid, represents
a likely overall decrease in toxicity.
Using the selected commercially available metabolites, 5%

and 33% of the initial imidacloprid and thiacloprid masses,
respectively, were accounted for at the end of the experiment
in the unsterilized duckweed treatments. Therefore, further
degradation of the measured metabolites and/or other

degradation pathways with unknown toxicological outcomes
likely occurred in these systems.

Duckweed−Microbial Synergy of the Neonicotinoid
Transformation. Degradation of imidacloprid and thiacloprid
by the duckweed−microbial system appears to be synergistic.
Surface-sterilized duckweed alone (Figure 2) did not
significantly remove imidacloprid (p = 0.13 for 112 ng at
time zero) or thiacloprid [p = 0.30 when the t = 0 data point is
neglected; removal during the first day is likely sorption to
duckweed tissue (Figure S7)]. Microbes that had migrated off
the duckweed into the liquid medium, which had demon-
strated viability and growth [i.e., in parallel plating experiments
(Figure S8b)], did not significantly remove imidacloprid in the
absence of duckweed [p = 0.84 for a nominal C0 of 10 μg/L
(Figure S8a)]. Additionally, unsterilized pond water from the
same duckweed source pond, representing the native
planktonic microbial community in the pond, did not
significantly remove imidacloprid [p = 0.06 for a C0 of 9.3
μg/L representing 559 ng of imidacloprid (Figure 3)]. Thus,
degradation of the two neonicotinoids tested required the
presence of duckweed and its associated microbial community,
suggesting that the duckweed−microbial degradation process
is synergistic.
Additionally, the duckweed−microbial synergy appears to be

distinct, as not all unsterilized aquatic plants that we tested
were able to degrade neonicotinoids. Locally collected Typha
sp. (“cattail”) exposed to imidacloprid-spiked medium did not
significantly remove imidacloprid over 7 days [p = 0.31, for
158 μg of imidacloprid at time zero (Figure S9)]. Although the

Figure 1. (a) Mass balances of parent imidacloprid and thiacloprid neonicotinoids in the unsterilized duckweed treatments and abiotic controls.
Removal of each neonicotinoid represents synergistic duckweed−microbial degradation. Neither imidacloprid nor thiacloprid occurred at
consistently high levels in the plant tissue, suggesting overall degradation of the parent compound. Initial conditions: 18.6 μg/L imidacloprid (186
ng) and 2.4 μg/L thiacloprid (24 ng). (b) Measured metabolites in hydroponic medium and plant tissue, reported as molar equivalents of the
parent compound. Imidacloprid metabolite results are also presented with an expanded y-axis in Figure S5; 5% and 33% of the imidacloprid and
thiacloprid mass balances, respectively, were closed on day 6, suggesting the likely presence of other metabolites and/or rapid transformation of
these metabolites. (c) Literature-established microbial degradation pathways. The insecticidal pharmacophore is colored red. For imidacloprid, no
imidacloprid olefin was found in the treatment or control; the other metabolites were detected. For thiacloprid, both metabolites occurred in the
duckweed treatment. Error bars represent the standard error (n = 3) with nonvisible error bars obscured by data symbols. Evapotranspiration is
accounted for via box weight measurements.
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exact Typha species was not identified, this result corresponds
to the finding of Main et al.30 that T. latifolia was associated
with a higher neonicotinoid detection frequency and a higher
concentration in shallow marsh water. Additionally, another
macrophyte (C. demersum, “coontail”) collected from the same
pond as the duckweed did not remove imidacloprid beyond
initial biomass sorption [p = 0.09 (Figure 3)]. The 17% loss of

imidacloprid mass in the coontail treatment medium between
days 0 and 1 is similar to the 21% sorption loss in the first day
of the test of sorption of imidacloprid to duckweed (Figure
S7).
Our results demonstrating pollutant removal with duck-

weed−microbial combinations and decreased or no pollutant
removal with surface-sterilized duckweed are consistent with
evidence from prior literature. For example, 4-tert-butylphenol
was degraded by a duckweed (Spirodela polyrrhiza)-associated
rhizosphere bacterium stimulated by duckweed root exu-
dates;33 however, duckweed alone did not degrade the
compound. Similarly, a symbiotic relationship between
Lemna aoukikusa and a rhizosphere bacterium degraded
phenol.34 A combination of predominately Landoltia punctata
and Lemna minor duckweed species enhanced microbial
ibuprofen removal.31 Similar relationships exist that enable
transformation of inorganic pollutants; e.g., arsenite oxidation
occurred only when Wolf f ia australiana duckweed was grown
with its associated bacterial community and did not occur with
sterile duckweed.32 This work is the first documented instance
of a duckweed−microbial synergy that degrades neonicoti-
noids.

Environmental Implications. Duckweed, prevalent in
aquatic ecosystems worldwide, may play an important
environmental role in degrading insect-toxic neonicotinoids
and generating less-insecticidal and less vertebrate-toxic
metabolites. The full pathways and toxicological impact of
imidacloprid and thiacloprid processing by duckweed and
characterization of the duckweed-associated microbial com-
munities remain to be established. This work, however, is
consistent with and provides a mechanistic basis for a
previously published field correlation30 between the dominant
aquatic plant type and the wetland water neonicotinoid
detection frequency and concentration. Further research is
needed to determine the impact of these results at field scale.
We estimate using our laboratory removal rate with full
duckweed coverage that under conditions similar to those of
the small farm pond where the duckweed and water were
collected, approximately 0.5% (quiescent conditions), 14%
(stratified conditions), or 33% (completely mixed conditions)
of the imidacloprid mass in the pond could be removed after 5
days (calculation assumptions described in the Supporting
Information). Similar results for thiacloprid are expected on
the basis of the indistinguishable laboratory removal rates for
imidacloprid and thiacloprid we report here (Figure S3). The
greater surface area:depth ratio in the pond (151 m2 of surface
area/m of depth) versus the experimental conditions (0.16 m2

of surface area/m of depth) may yield levels of field removal
higher than these estimates. This novel synergistic duckweed−
microbial pollutant processing therefore may contribute to
regulating the toxicological impact of neonicotinoids in
environmental waters, with implications for aquatic life as
well as human exposure through drinking water sources.14,47

This work can also inform engineered natural treatment
systems that contain aquatic plants, such as constructed
treatment wetlands. The impact of aquatic macrophyte surface
coverage, however, must be balanced with other relevant
removal processes (e.g., photolysis of neonicotinoids61,62) for
trace organic contaminants in treatment wetlands.63 Addition-
ally, future research is needed to further characterize the
microbial community of duckweed plants and the neonicoti-
noid metabolites generated to fully understand and advanta-

Figure 2. Removal of thiacloprid or imidacloprid from liquid 0.5×
Schenk and Hildebrandt hydroponic medium spiked with both
neonicotinoids, pH 6.0, by surface-sterilized duckweed. The surface-
sterilized duckweed did not significantly remove imidacloprid (p =
0.13) or thiacloprid (p = 0.30 when the t = 0 data point is neglected).
Removal during the first day is likely sorption to duckweed tissue, as
suggested in a separate duckweed neonicotinoid sorption experiment
(Figure S7). Evapotranspiration was accounted for through box
weight measurements. At time zero, 112 ng (11.2 μg/L) of
imidacloprid and 60 ng (6.0 μg/L) of thiacloprid were present in
the medium. Error bars for time zero represent the standard error,
with nonvisible error bars obscured by the data symbols (n = 1, except
n = 3 for time zero).

Figure 3. Removal of imidacloprid (C0 = 9.3 μg/L, 559 ng of IMI)
from 60 mL of pond water by unsterilized duckweed, unsterilized
coontail (C. demersum), and pond water. The unsterilized pond water
with a native microbial population did not yield significant
imidacloprid removal (p = 0.06), whereas the unsterilized duckweed
treatment generated significant, ongoing removal (p < 0.0001).
Removal in the coontail treatment was not significant (p = 0.09) when
the losses during the first day of data, attributed to initial biomass
sorption, are neglected. Volume loss due to sampling was factored
into the results; evapotranspiration was not measured. Error bars
represent the standard error (n = 4).
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geously use the discovered synergistic pollutant transformation
potential.
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(60) Žabar, R.; Dolenc, D.; Jerman, T.; Franko, M.; Trebsě, P.
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