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Abstract— When people pick routes to minimize their travel
time, the total experienced delay, or social cost, may be
significantly greater than if people followed routes assigned to
them by a social planner. This effect is accentuated when human
drivers share roads with autonomous vehicles. When routed
optimally, autonomous vehicles can make traffic networks
more efficient, but when acting selfishly, the introduction of
autonomous vehicles can actually worsen congestion. We seek
to mitigate this effect by influencing routing choices via tolling.
We consider a network of parallel roads with affine latency
functions that are heterogeneous, meaning that the increase in
capacity due to to the presence of autonomous vehicles may
vary from road to road. We show that if human drivers and
autonomous users have the same tolls, the social cost may be
arbitrarily worse than when optimally routed. We then prove
qualities of the optimal routing and use them to design tolls that
are guaranteed to minimize social cost at equilibrium. To the
best of our knowledge, this is the first tolling scheme that yields
a unique socially optimal equilibrium for parallel heterogeneous
network with affine latency functions.

I. INTRODUCTION

Road congestion in the United States alone costs billions

of dollars in wasted time and fuel, even neglecting the

associated environmental degradation and negative health

impacts [1]. Moreover, this cost is projected to only increase.

One potential way to mitigate this is through the introduction

of autonomous vehicles, which can increase throughput on

urban roads by a factor of two or three [2]. However, for

the foreseeable future, autonomous vehicles will share roads

with human drivers, rendering the mobility benefits less clear.

Moreover, it is important to consider that human drivers,

and likely the users of autonomous vehicles, will make selfish

decisions – they will pick routes that minimizes their travel

time without considering the effect of their choice on the

overall traffic congestion. This leads to a gap between the

overall traffic delay in selfish equilibria and the minimum

possible overall delay, which would occur if vehicles fol-

lowed directions from some benevolent social planner [3].

The gap between these costs can be bounded with a bound

that depends on the relationship between road delay and

the flow of vehicles on that road. However, this gap can

be much greater in networks with mixed autonomy than in

networks with a single vehicle type, and the gap may even

be unbounded [4].
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In a similar phenomenon, converting some fraction of

vehicles to be autonomous can make equilibria worse, even

though the presence of these vehicles increases the capacity

of roads [5]. This effect is related to Braess’ Paradox, in

which adding a road to a road network may increase the

equilibrium delay. These phenomena further complicate how

congestion in traffic networks will change as autonomous

vehicle manufacturers release their cars onto public roads.

To address this, we wish to somehow influence how people

choose their routes, and a natural mechanism to consider is

tolling. Beckmann et al. [6] found optimal tolls when there

is a single type of car on the road and others extend this

to when there are multiple vehicle types [7]. However, the

setting of mixed autonomy violates key assumptions made

in these classic works; consequently, optimality is no longer

guaranteed. Because of this, we investigate how to guarantee

socially optimal routing via tolling. We consider the case

of parallel roads and, motivated by previously established

capacity and delay models, we consider road delay functions

that are affine with respect to the flow of each type of vehicle.

We establish theoretical results about the optimal routing and

use these results to design an optimal tolling scheme.

Our contributions are as follows:

• We bound the increase in the overall latency when

autonomous vehicles are introduced to road networks,

• we show that optimal undifferentiated tolls yield equi-

libria that can be arbitrarily worse than the social

optima, and

• we prove qualities of the optimal routing for vehicles

on shared roads and use these results to design tolls

that yield a unique, socially optimal equilibrium.

Previous Work. Many works have shown how autonomous

vehicles can decrease congestion, either via platooning [2],

[8], by dissipating shockwaves in congested vehicle flow

[9], [10], or by managing merging vehicles at bottlenecks

[11], [12]. Other works characterize the capacity of a road

as a function of the fraction of vehicles on a road that

are autonomous [8], [13]. This allows the formulation of

a congestion game with mixed autonomy [14]. Many works

have studied aspects of congestion games, such as how to

optimally route vehicles of differing types [15], as well

as bound the Price of Anarchy (PoA), the maximum ratio

between total latency under selfish routing to that under

optimal routing [16]–[19]. The PoA has been bounded in

the case of mixed autonomy as well [4], [14]. Properties of

selfish routing were first introduced by Wardrop [20] and



have been expanded in many subsequent works [21]–[23].

In the case of a single vehicle type, marginal cost tolls

yield an essentially unique equilibrium that minimizes total

latency [6]. Under certain conditions, the same can be said

when there are multiple vehicle types on a road [7]. However,

these conditions are violated when the two vehicle types

are capable of maintaining different headways. Specifically,

[7] assumes that the Jacobians of the latency functions

are positive definite; the latency function derived in (3) in

Section II violate this assumption.

This is addressed in [24]; there the authors show by

example that in multicommodity networks (networks with

multiple source-destination pairs), if autonomous vehicles

and human drivers experience the same tolls, it is not

always possible to create an equilibrium that minimizes

social cost. However, they have positive results for a ho-

mogeneous network; a network in which all roads see the

same multiplicative increase in capacity from the presence

of autonomous vehicles. In this case, they show that through

proper tolling, all equilibria will minimize social cost. The

tolling used to achieve this is marginal cost tolling, in which

each user pays the value of the marginal increase in delay

they cause for all others who would be using that road

in the optimal routing. This means that human drivers and

autonomous users pay different amounts for traveling on a

road, since human drivers will generally contribute more to

congestion.

We are interested in the case in which the network is not

homogeneous, and different roads will see differing benefits

from autonomy. This is relevant as platooning may yield

greater capacity increases on highways than on urban roads.

For heterogeneous networks and affine cost function, we

develop the first tolling scheme that provably achieves a

unique socially optimal equilibrium.

On a broader level, we are motivated by the results of

[5], which show that converting some demand from human-

driven vehicles to autonomous vehicles can counterintuitively

worsen aggregate delay in equilibrium. In [25] the authors

bound the effect of this phenomena in homogeneous net-

works to be no greater than the PoA for the class of cost

functions with a single vehicle type. We extend this to

the heterogeneous case in Section III. Before doing so, we

describe the model for our network and the relationship

between vehicle flow and travel delay on the roads.

II. MODEL

In this section we specify the structure of the road network,

road latency functions, and the tolls considered, as well as

characteristics of equilibria. We consider n parallel roads

and use [n] = {1, 2, . . . , n} to denote the set of roads. We

use f h
i and f a

i respectively to denote the human-driven and

autonomous flow on road i; the vectors f h, f a ∈ R
n
≥0 denote

the flow on all roads. We use the term routing to refer to a

flow pair (f h, f a).
We consider nonatomic flow, meaning each user controls

an infinitesimally small unit of the flow, and does not indi-

vidually change the travel delay on a road. We use f̄ h and f̄ a

to denote the flow demand of human-driven and autonomous

vehicles, respectively. This demand is considered nonelastic,

meaning that the demand is constant and independent of the

road latencies.

Each road has an associated delay function or latency

function, ℓi(f
h
i , f

a
i ) : R

2
≥0 → R≥0. A traveler who chooses

a road experiences a cost that is the sum of the latency

and the toll they pay to travel on the road; we assume that

all users have the same sensitivity to tolls. Human drivers

and autonomous users may have different tolls, respectively

denoted τ h
i and τ a

i . The experienced costs for the vehicle

types are then

ch
i (f

h
i , f

a
i ) = ℓi(f

h
i , f

a
i ) + τ h

i ,

ca
i(f

h
i , f

a
i ) = ℓi(f

h
i , f

a
i ) + τ a

i .

The social cost is the total negative consequence of a given

traffic pattern. We consider tolls that are recirculated back

into the public coffers, so the only harm incurred to society

is the latency experienced by the network users. The social

cost is then as follows:

C(f h, f a) =
∑

i∈[n]

(f h
i + f a

i )ℓi(f
h
i , f

a
i ) . (1)

A road’s latency function depends on the capacity of the

road, which in turn depends on the autonomy level αi, the

fraction of vehicles on road i that are autonomous. The road

capacity is the maximum vehicle flow that can travel on

that road. Let autonomous vehicles occupy M−1
i meters,

including headway, when traveling at nominal velocity on

road i, and let human-driven vehicles occupy m−1
i meters.

We denote the road length as di and the free-flow velocity

as vi. Then, as in [8], [13], the road capacity is as follows1.

qi(αi) = vidi/(αiM
−1
i + (1− αi)m

−1
i ) .

We use this in conjunction with the well known Bureau of

Public Roads road latency model [27], [28], as in [5], [14].

This yields the following road latency function.

ℓi(f
h
i , f

a
i ) = ti

(

1 + ρi

(

f h
i

mi
+

f a
i

Mi

)σi
)

. (2)

In this paper, except for when bounding the Price of

Autonomy, we consider σi = 1 ∀i ∈ [n]. Then we combine

the parameters, with ai = tiρi/Mi and ki = Mi/mi. The

latency function is then affine with respect to the vehicle

flows,

ℓi(f
h
i , f

a
i ) = kiaif

h
i + aif

a
i + ti . (3)

Equilibria. We are concerned with characterizing Wardrop

Equilibria of a traffic network, meaning situations in which

no user has incentive to change their strategy [20]. We treat

equilibria as reasonable predictions of user behavior.

1This model assumes either that autonomous vehicles do not rely on
vehicle-to-vehicle communication and maintain the same headways behind
the vehicle that they follow regardless of vehicle types, or that the au-
tonomous vehicles can rearrange themselves to form one large platoon, as
in [26].



We consider both human drivers and autonomous users to

be selfish. This means that in Wardrop Equilibrium, if there

is positive human-driven flow on road i, this implies that

ch
i (f

h
i , f

a
i ) ≤ ch

i′(f
h
i′ , f

a
i′), ∀i′ ∈ [n],

and similarly, for autonomous flow, f a
i > 0 implies

ca
i(f

h
i , f

a
i ) ≤ ca

i′(f
h
i′ , f

a
i′), ∀i′ ∈ [n].

Since we consider parallel roads, all users of the same type

will experience the same cost.

As mentioned earlier, equilibria can often incur far greater

social cost than the optimal routing. Because of this, our goal

is to design tolls such that the only equilibrium that exists

minimizes the social cost.

III. EFFICIENCY AND TOLLING

To begin our discussion of tolling, we expand previous

results to bound how much worse equilibria can be when

some vehicles are autonomous as compared to when all

vehicles are human driven. Following this, we show that

tolling cannot help in any significant way when we are

forced to toll humans and autonomous vehicles identically.

We then develop properties of optimal routing and provide

a method for calculating optimal tolls.

Bounding the Price of Autonomy. As mentioned earlier,

[25] shows that converting some vehicles to be autonomous

may worsen the aggregate delay in equilibrium. This work

bounds this effect when a network is homogeneous, meaning

that there the multiplicative increase in capacity due to

autonomy is uniform on all roads, i.e. Mi/mi = Mi′/mi′

∀i, i′ ∈ [n]. In particular, [25] shows that the delay will not

increase by a factor more than the Price of Anarchy for that

class of cost functions with a single vehicle type. However,

if the roads have varying characteristics such as speed limits

and separation from pedestrian traffic, the network will not

be homogeneous and this bound will not hold. Motivated

by this, we bound this quantity for general (not necessarily

parallel) heterogeneous networks.

First we define the maximum degree of asymmetry

k = max
i∈[n]

Mi/mi

and the maximum polynomial degree

σ = max
i∈[n]

σi .

Let

ξ(σ) = σ(σ + 1)−(σ+1)/σ .

Proposition 1: Consider a general network with social

cost as defined in (1) and road latency functions of the form

(2), and let Mi/mi ≥ 1 ∀i ∈ [n]. Let (g̃h, 0) be a Wardrop

Equilibrium routing with human flow demand f̄ and zero

autonomous flow demand. Let (f̃ h, f̃ a) be an equilibrium

routing with human flow demand f̄ h and autonomous flow

demand f̄ − f̄ h, where f̄ h ∈ [0, f̄ ]. Then,

C(f̃ h, f̃ a) ≤
kσ

1− ξ(σ)
C(g̃h, 0) .

s t

ℓ1(f
h
1 , f

a
1) = kf h

1 + f a
1

ℓ2(f
h
2 , f

a
2) = f h

2 + kf a
2

Fig. 1: Example of the futility of undifferentiated tolling in a simple network.
Consider one unit of flow demand for each human-driven and autonomous
vehicles – equilibrium under the best undifferentiated toll may be arbitrarily
worse than the socially optimal routing.

Proof: Let (g*h, 0) denote the socially optimal routing

for human flow demand f̄ and zero autonomous demand, and

let (f *h, f *a) be a socially optimal routing for human flow

demand f̄ h and autonomous flow demand f̄ − f̄ h, where

f̄ h ∈ [0, f̄ ].

The results in [14] imply that

C(f̃ h, f̃ a) ≤
kσ

1− ξ(σ)
C(f *h, f *a) .

Then,

C(f *h, f *a) ≤ C(g*h, 0)

≤ C(g̃h, 0) ,

due to the assumption that Mi/mi ≥ 1 ∀i ∈ [n] and the

definition of optimal flow.

Together, these imply the proposition.

Note that the assumption that Mi/mi ≥ 1 ∀i ∈ [n] is

required for this proposition, but is not required for the

subsequent theoretical results.

This bound for the heterogeneous case is equal to the

Price of Anarchy bound for mixed autonomy in [14],

Theorem 1. Though the increase in inefficiency is bounded

with respect to k and σ, it grows with these parameters.

With this motivation, we look to mitigate this inefficiency

through tolling.

Undifferentiated tolls. First we consider whether we can

enforce optimal routing with undifferentiated tolls, meaning

a tolling scheme in which human drivers and autonomous

vehicles pay the same toll for a road. Can such a tolling

scheme yield a unique socially-optimal equilibrium?

Previous work has answered this question negatively – in

[24], the authors show an example of a network with multiple

source destination pairs in which undifferentiated tolls fail

to minimize social cost in equilibrium. In this section we

extend these results and show a simple two-road network in

which undifferentiated tolls fail. We further show that the

best undifferentiated tolling scheme in this network yields

an equilibrium with social cost that can be arbitrarily worse

than the social cost under optimal routing.

Consider the network in Fig. 1, with one unit of human-

driven flow demand and one unit of autonomous flow de-

mand. Let k ≥ 1. The socially-optimal routing has social



cost 2, with all autonomous flow on road 1 and all human-

driven flow on road 2. The worst-case equilibrium has this

routing reversed for a social cost of 2k.

Without loss of generality, we can consider a toll on just

one of the roads, since only the difference between the tolls

on the two roads will affect the equilibrium. This example

is symmetric, so without loss of generality let the top road

be the road with a positive toll. In the resulting worst-case

equilibrium, the top road has some of the human-driven flow

and the bottom road has the remainder of the human-driven

flow and all the autonomous flow. To investigate how well

the best toll can do, we derive the following.

min
f h
1
∈[0,1]

f h
1ℓ1(f

h
1 , 0) + (1− f h

1 + 1)ℓ2(1− f h
1 , 1)

= min
f h
1
∈[0,1]

k(f h
1)

2 + (1− f h
1 + 1)(1− f h

1 + k)

=
7k + 3

4
−

1

k + 1
< 2k .

We see that the toll decreases our cost from that of the worst-

case equilibrium. However, the worst-case equilibrium cost

increases linearly with k, as does the worst-case equilibrium

cost when using optimal undifferentiated tolls, while

the socially optimal cost is constant. Therefore, optimal

undifferentiated tolling can yield unboundedly worse social

cost than the socially optimal routing in mixed autonomy,

even in a two-road network with affine latency functions.

Because of this, we turn our attention to the case in which

we can leverage different tolls to the two vehicle types.

Differentiated tolls. What if we allow different tolls based

on the type of vehicle traveling on a road? In order to develop

this, we first present a result regarding the optimal routing of

our vehicle flows, which will be useful in considering how

to levy tolls

Theorem 1: Consider a network of parallel roads with

latency functions of the form (3) and assume that ki = 1 for

at most one road. Then, any routing which minimizes social

cost will have at most one road shared between human-driven

and autonomous vehicles.

Proof: We prove this by contradiction. Assume that

an optimal routing f∗ has positive human-driven and au-

tonomous flow on both roads i and j ∈ [n], i.e. f *h
i >

0, f *a
i > 0 and f *h

j > 0, f *a
j > 0, where i 6= j. We fix the

sum of the flow of each type on those two roads, denoting

f̄ h = f *h
i +f *h

j and f̄ a = f *a
i +f *a

j . To show the contradiction,

it is sufficient to show that there is a routing with lower social

cost, with the same fixed total flow on the two roads.

The cost of the flow on these two roads, as a function of

f h
i and f a

i and parameterized by the demands, is as follows.

J(f h
i , f

a
i , f̄

h, f̄ a) = (kiaif
h
i + aif

a
i + ti)(f

h
i + f a

i ) +

(kjaj(f̄
h − f h

i ) + aj(f̄
a − f a

i ) + tj)(f̄
h − f h

i + f̄ a − f a
i ) .

The fact that 0 < f *h
i < f̄ a and 0 < f *a

i < f̄ a implies

that there is a minimum in the feasible set, implying that

the Hessian of the cost function with respect to f *h
i and f *a

i

has positive eigenvalues at some point in the feasible set.

However, the Hessian is as follows:

[

2aiki + 2ajkj (ki + 1)ai + (kj + 1)aj
(ki + 1)ai + (kj + 1)aj 2ai + 2aj

]

,

which has determinant −(ai(ki − 1) + aj(kj − 1))2, which

is negative if not both ki and kj equal one. This matrix has

both positive and negative eigenvalues, implying that no local

minimum exists that is not on the boundary, contradicting

the premise. Therefore, no two roads can have both positive

human-driven flow and autonomous flow.

Note that we haven’t shown that the optimal solution is

unique, rather we’ve established a property of any optimal

solution. To assist with our analysis, for a given optimal

routing f∗ we denote the set of roads without autonomous

vehicles as [nh] and the set of roads without human-driven

vehicles as [na]. Some of the roads may have no flow in f∗;

these roads will be in both sets.

We’ve shown that to minimize social cost we want to

separate the human-driven and autonomous flow as much

as possible. By exploiting this property, we will derive an

optimal tolling scheme. Conceptually, by using this property

and controlling which roads each vehicle type can use, we

can rule out the possible existence of suboptimal equilibria.

Since we can use differentiated tolls, we influence which

roads each vehicle type chooses by leveraging large tolls

to keep them off of roads on which they don’t travel

in the chosen optimal routing. We use tolls of the form

of Dafermos’ path tolls [7] for the remaining roads. We

formalize this in the following theorem.

Theorem 2: Consider a network of parallel roads with

latency functions of the form (3) and assume that ki = 1
for at most one road. Further, assume that latency is strictly

increasing with vehicle flow, i.e. ki > 0 and ai > 0 ∀i ∈ [n].
Solve for a socially optimal routing f∗, and use [nh] to denote

the set of roads without autonomous vehicles and use [na]
to denote the set of roads without human-driven vehicles in

f∗. Then levy the following tolls. Let

τ h
i = P if i ∈ [na]

µ− ℓi(f
*h
i , f *a

i ) otherwise

τ a
i = P if i ∈ [nh]

µ− ℓi(f
*h
i , f *a

i ) otherwise ,

(4)

for arbitrary µ and sufficiently large P . Then, all resulting

equilibria will have the same social cost, which is equal to

that of the socially optimal routing f∗.

Proof: First, Theorem 1 guarantees that a socially

optimal routing will have at most one mixed road. Now we

must prove 1) that f∗ is an equilibrium with the new tolls

and 2) that any equilibrium will have the same social cost as

f∗. The first follows directly from the construction of the toll

and the definition of an equilibrium. When following routing

f∗, all users will experience cost µ and any other option

would have cost at least µ, therefore satisfying conditions

for equilibrium.



Now we must prove essential uniqueness for this equilib-

rium, meaning that any other equilibrium will have the same

social cost as f∗. First note that for P sufficiently large, we

will never have an equilibrium with human-driven flow on

roads in [na] and similarly, there will never be autonomous

vehicles on roads [nh]. Now, first consider the case in which

there is no mixed road. In this case we can split the network

in two and consider each part separately – Dafermos [7]

(Proposition 3.2) ensures essential uniqueness on each part.

Next, consider the event that a mixed road exists, and use

m to denote its index. Now if we can fix the flow on m
to be (f *h

m , f *a
m), we can again split the network in two and

consider each separately. But can we guarantee that road m
will have flow (f *h

m , f *a
m)?

Let us denote the total human-driven and autonomous

vehicle flow as f̄ h and f̄ a, respectively. We split the flow

of each type into two: the flow on the mixed road, f h
m and

f a
m, and the remaining flow, f̄ h − f h

m and f̄ a − f a
m. There

exists a large enough P such that f a
i = 0 ∀i ∈ [nh] and

f h
i = 0 ∀i ∈ [na]. As established in Section II, all users of

the same type will experience the same cost. Accordingly,

all users on the roads [nh] will experience the same cost

which is increasing with respect to the flow demand – we

use ĉh : R≥0 → R≥0 to denote the cost experienced by the

users of roads [nh] as a function of the total flow on those

roads, and similarly with ĉa : R≥0 → R≥0 for the users of

roads [na]. Both of these functions will be strictly increasing

in their arguments as a result of our assumption that ki > 0
and ai > 0 ∀i ∈ [n]. Similarly, the cost on the mixed road

is increasing in both arguments.

Further, note that the experienced cost of the human

drivers and autonomous users on the mixed road will be the

same on the mixed road, since they have identical tolls on

that road. Formally,

ch
m(f h

m, f a
m) = ca

m(f h
m, f a

m) . (5)

Finally, note that that if there are human drivers on the mixed

road, then ch
m(f h

m, f a
m) = ĉh(f̄ h − f h

m) and similarly for

autonomous vehicles.

Now, consider for the purpose of contradiction that there

exists a second equilibrium f̃ with greater social cost, i.e.

C(f̃ h, f̃ a) > C(f *h, f *a). Due to the properties of essential

uniqueness discussed above, to have a different social cost

the new equilibrium must have different flow on the mixed

road. We therefore first consider the case that f̃ h
m > f *h

m . If

f̃ a
m ≥ f *a

m there is an immediate contradiction, as

ĉh(f̄ h − f̃ h
m) < ĉh(f̄ h − f *h

m ) = ch
m(f *h

m , f *a
m) < ch

m(f̃ h
m, f̃ a

m)

violating the equilibrium conditions for the human-driven

vehicles, contradicting the premise. If instead f̃ h
m > f *h

m and

f̃ a
m < f *a

m ,

ĉh(f̄ h − f̃ h
m) < ĉh(f̄ h − f *h

m ) = ch
m(f *h

m , f *a
m) = ca

m(f *h
m , f *a

m)

= ĉa(f̄ a − f *a
m) < ĉa(f̄ a − f *a

m) ,

and the equilibrium conditions with (5) yield

ĉh(f̄ h − f̃ h
m) = ch

m(f̃ h
m, f̃ a

m) = ca
m(f̃ h

m, f̃ a
m) .

s t

ℓ1(f
h
1 , f

a
1) = 4f h

1 + f a
1 + 0.5

ℓ2(f
h
2 , f

a
2) = 2f h

2 + f a
2 + 1

ℓ3(f
h
3 , f

a
3) = f h

3 + 3f a
3 + 0.5

Fig. 2: An example of a network that benefits from the tolling scheme
described in this paper. Consider human-driven flow demand f̄h

= 2.625
and autonomous flow demand f̄ a

= 2.5.

Together this implies that ca
m(f̃ h

m, f̃ a
m) < ĉa(f̄ a−f *a

m) violat-

ing the conditions for equilibrium for f̃ . The same analysis

can be done with switching autonomous and human-driven

vehicles. The contradiction then proves that all equilibria will

have the same flow on the mixed road, completing the proof.

Remark 1: We have a degree of freedom in choosing µ.

One would likely choose µ to be greater than the maximum

latency in f∗ so as to avoid paying anyone to travel on a

road.

Remark 2: We could relax the assumption that ki = 1 for

at most one road, since it would only matter if those roads

were the mixed roads. If they are, then we have essential

uniqueness there as well and a more complicated version of

the proof would hold.

Example. We provide the following example to demon-

strate the benefit of the tolling scheme described above.

Consider the heterogeneous network in Fig. 2, which has

three roads with varying characteristics. One can consider

the top road to be a highway, on which autonomous vehicle

platooning offers significant benefits, the middle road to

be an urban road, and the bottom road to be a road in a

residential community with many bike paths and pedestrian

crossings. Let the human-driven flow demand be f̄ h = 2.625
and autonomous flow demand be f̄ a = 2.5.

We list the numerical values for the worst-case equilibrium

routing, the optimal routing, and the tolls that yield optimal

routing in Table I. We choose our free variable for tolling

to be µ = 3 to keep the tolls relatively low. In summary, in

the worst-equilibrium routing, road 1 has only human-driven

vehicles and road 3 has only autonomous vehicles; in the

optimal routing this is reversed. As expected from Thm. 1,

in the optimal routing there is only one mixed road, which is

road 2. In the worst-case equilibrium all roads have positive

flow and therefore have the same latency, which is 5; the

social cost is then 25.625. In the optimal routing, which is

enforced by the tolls provided, road latency varies but all

latencies are well below 5, and the social cost is 12.92 – an

improvement by approximately a factor of 2.



TABLE I: Routings, Latency, and Tolls for the Example Network

Worst eq. routing, Opt. routing, Opt. Tolls
social cost: 25.625 social cost: 12.92

Road Human Aut. ℓ Human Aut. ℓ τ h τ a

1 1.125 0 5 0 1.65 1.67 P 1.33
2 1.5 1 5 0.37 0.85 2.58 0.42 0.42
3 0 1.5 5 2.26 0 2.76 0.24 P

IV. CONCLUSION AND FUTURE WORK

In this paper we investigated tolling for roads with a

mixture of human-driven and autonomous vehicles. We

showed that if human drivers and autonomous vehicles are

given the same tolls, the resulting equilibrium may have

unboundedly worse total delay than the best-case routing.

Allowing ourselves to toll human drivers and autonomous

vehicles differently, we first established theoretical properties

of the optimal routing of this mixed traffic on parallel roads,

then used these results to find an optimal tolling scheme.

There is room for expanding these results, specifically in

the following directions.

• This work deals with affine latency functions; the BPR

model used generalizes easily to higher-order polyno-

mials. It would be worthwhile to investigate tolling with

these higher-order functions.

• This work could be expanded by analyzing more general

network models, including those with multiple popula-

tions, each with its own source-destination pair.

• One can consider the Stackelberg case, assuming the

routing for autonomous vehicles can be directly con-

trolled. It may be fruitful to develop a unified Stackel-

berg (for autonomous vehicles) and tolling (for human-

driven vehicles) scheme.

These would result in further steps towards ensuring the

efficient operation of traffic networks with the emergence

of autonomous vehicles.
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