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ABSTRACT: Quantitative structure−activity relationship (QSAR) is a very commonly
used technique for predicting the biological activity of a molecule using information
contained in the molecular descriptors. The large number of compounds and descriptors
and the sparseness of descriptors pose important challenges to traditional statistical
methods and machine learning (ML) algorithms (such as random forest (RF)) used in this
field. Recently, Bayesian Additive Regression Trees (BART), a flexible Bayesian
nonparametric regression approach, has been demonstrated to be competitive with widely
used ML approaches. Instead of only focusing on accurate point estimation, BART is
formulated entirely in a hierarchical Bayesian modeling framework, allowing one to also quantify uncertainties and hence to
provide both point and interval estimation for a variety of quantities of interest. We studied BART as a model builder for QSAR
and demonstrated that the approach tends to have predictive performance comparable to RF. More importantly, we investigated
BART’s natural capability to analyze truncated (or qualified) data, generate interval estimates for molecular activities as well as
descriptor importance, and conduct model diagnosis, which could not be easily handled through other approaches.

■ INTRODUCTION
In QSAR, a statistical model is generated from a training set of
molecules (represented by chemical descriptors) and their
biological activities. The model can be used to predict the
activities of molecules not in the training set. Such predictions
help prioritize the selection of experiments to perform during
the drug discovery process. Higher prediction accuracy is always
desirable and traditionally pursued by the model developers, but
another important aspect of QSAR that is often missed in
practice is estimation of the uncertainty in the activity predicted
for each molecule. The uncertainty in prediction may have
several sources including the following:

1. The original data against which a QSAR model is
calibrated (trained) has an error in the activity
measurement.

2. A model (equations, algorithms, rules, etc.) and chemical
descriptors may be grossly inadequate causing a system-
atic bias in the prediction.

3. A model is, typically, built on a finite random sample of
observations rendering the model parameter estimates to
be random variables as well.

The reason why prediction uncertainty is often overlooked is
that the development of a statistical methodology for the
uncertainty estimation is somewhat lagging behind the QSAR
model applications. This is especially true for the highly accurate
but quite complex models such as SVM, Random Forest (RF),1

Boosting,2,3 and Deep Neural Networks,4 used by QSAR
modelers. Recent research in Machine Learning and Statis-
tics5−8 resulted in several promising approaches that close the
gap between model prediction capability and estimating model

uncertainties. For example, conformal regression and classi-
fication9 allow a QSARmodeler to estimate a prediction interval
which covers the unknown “true” molecular activity with a
selected confidence. This approach is quite general and can be
applied to practically any prediction model. One of the
limitations of the conformal prediction, however, is the necessity
to have separate calibration data in order to estimate the
distribution of prediction errors, but in the case of RF10 this
limitation is not essential since so-called out-of-bag samples can
be used for calibration. Another approach specific to RF-type
models is Quantile Random Forest,7 where prediction intervals
can be constructed directly from the predicted quantiles
obtained simultaneously with the prediction of the variable of
interest. Of note here is that both conformal (with the
modification of nonconformity score10) and quantile regression
provide prediction intervals conditioned on molecule descrip-
tors, and as such have the interval width reflecting uncertainty in
the predicted activity for each molecule. This width, however,
reflects only one part of the uncertainty, i.e. uncertainty due to
the random error in the measurement of the activity. What is
unaccounted for is the uncertainty in the estimated parameters
of themodel caused by the random selection of the training data.
Simply put, if the model were trained on a different training data,
the model parameters would be different as would the prediction
interval width. Recent work by Wager et al.8 provides estimates
of this uncertainty for the RF models which we will use in this
paper.
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Methods for estimating uncertainty in the examples above and
in general are prediction model specific, adding computational
burden to the prediction itself. Bayesian modeling, on the other
hand, offers a conceptually simple way for estimating the
uncertainty as essentially a byproduct of the modeling process.
For example, an unknown function relating chemical descriptors
and biological activity can be assumed to be a realization of a
Gaussian process (GP).11−13 Under this assumption, predicted
molecular activity has a Gaussian distribution and the point
estimate of the activity is equal to the mean of this distribution.
According to the GP theory, to calculate the mean, one also
needs to calculate the standard deviation of the same
distribution, based on which the width of the prediction interval
can be obtained. Thus, one essentially obtains both predicted
molecular activity and corresponding prediction interval.
Unfortunately, the n( )3 scaling of the computational cost for
that method precludes its use in our applications when the
number of samples, n, is large.
Recently, Bayesian Additive Regression Trees (BART), a

flexible Bayesian nonlinear regression approach developed in
Chipman et al.,14 have been demonstrated to be competitive
with widely used Machine Learning models. BART is
formulated in a Bayesian hierarchical modeling framework and
as such provides both predictions and prediction interval
estimates for a variety of quantities of interest.We studied BART
as a model builder for QSAR and demonstrated that the
approach tends to have predictive performance comparable to
RF. More importantly, we investigated BART’s natural
capability to analyze truncated (or qualified) data, generate
interval estimates for molecular activities as well as descriptor
importance, and conduct model diagnosis, which could not be
easily handled through other approaches.

■ METHODS

Data Sets. The same 30 data sets as used in Ma et al.4 were
used in this study. They are in-house MSD data sets including
on-target and ADME (absorption, distribution, metabolism, and
excretion) activities. Among the 30 data sets, 15 are the same
data as were used for the Kaggle competition;4 a separate group

of 15 different data sets were used to further compare the
performance of the different methods. Training and test data for
all 30 data sets (with disguised molecule names and descriptors)
are publicly available through the Supporting Information of the
paper by Sheridan et al.3

There are several properties of the data sets that pose
important challenges to prediction of molecular activities. First,
the size of the data can be very large. For example, in the “HERG
(full data set)”, there are 318,795 molecules and 12,508
descriptors. In this paper, we used a set of descriptors that is
the union of AP, the original “atom pair” descriptor fromCarhart
et al.,15 and DP descriptors (“donor−acceptor pair”), called BP
in the work of Kearsley et al.16 Second, the number of molecules
can be smaller than the number of descriptorsthe so-called
small n large p problem. For example, for the “A-II” data, there
are 2763 molecules but 5242 descriptors. Third, the descriptors
are sparse. Among the 30 data sets, on average only 5.2± 1.8% of
the data are nonzero entries. Fourth, strong correlations may
exist between different descriptors. Fifth, there are several
qualified data sets in which data were truncated at some
threshold values. For example, we might know only that the
measured IC50 (concentration that results in 50% inhibition) is
greater than 30 μM because 30 μM was the highest
concentration in the titration. The histograms of two qualified
data sets are shown in Figure 1.
Last but not least, a usual way of splitting the data into the

training and test sets is by random selection, i.e. “split at
random”. However, the separation of training and test sets in this
study was obtained through a “time-split”. In the actual practice
in a pharmaceutical environment, QSAR models are applied
prospectively. Predictions are made for compounds not yet
tested in the appropriate assay, and these compounds may or
may not have analogs in the training set. In this study, for each
data set, the first 75% of the molecules assayed for the particular
activity formed the training set, while the remaining 25% of the
compounds assayed later formed the test set. The key to building
a high-performance machine learning model/algorithm is to
train the model/algorithm on and test it against data that come
from the same target distribution. Using “time-split”, however,
since training and test sets were not randomly selected from the

Figure 1. Histograms of two truncated data sets.
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same pool of compounds, the data distributions in these two
subsets are frequently not the same, or even similar to each
other. This violates the underlying assumption of many machine
learning methods and poses a great challenge to them.
Random Forest. One of the purposes of this study is to

compare BART with RF. Both RF and BART are ensemble-of-
trees methods. Both can capture nonlinear structures with
complex interaction in high-dimensional data. RF is a bagging
method17 that first builds a large collection of decorrelated trees
on bootstrap samples and then averages them. BART, using the
similar idea as gradient boosting,18 models the data by a
cumulative effort of trees as weak leaners. They can both handle
regression and classification problems.
RF is an ensemble of B trees T1(X), ..., TB(X), where X = (x1,

..., xp) is a p-dimensional vector of molecular descriptors or
properties of a molecule. LetD = (X1, Y1), ..., (Xn, Yn), where Xi, i
= 1, ..., n, is a vector of descriptors and Yi is either the
corresponding class label (e.g., active/inactive) or activity of
interest (e.g., −log IC50).
For each tree, define Lb(X) as the set of training examples

falling in the same “leaf” as X. The weights wi(X) then capture
the frequency with which the i-th training example falls into the
same leaf as X:

∑=
=

X Xw
B

B
w( )

1
( )i

b
bi

1

where = { ∈ }
| |Xw ( ) X X

Xbi
L

L
1( ( ) )

( )
i b

b
and 1(·) is an indicator function.

RF estimates the conditional mean activity of a molecule, E(Y|
X), by the weighted mean over the observations of the response
variable Y,

∑μ ̂ =
=

X Xw Y( ) ( )
i

n

i i
1

Assume that molecular activity and descriptors are related by
the following general model:

= + ϵX X XY f( ) ( ) ( )

where f(X) is an unknown function which we approximate by
RF, and ϵ(X) is a random error. Suppose that Ŷ(X*) is the point
estimate, i.e. the RF predicted activity of a new molecule with
descriptor vector X*, and the “true” unknown activity is Y(X*).
A prediction interval (PI) is an interval that covers Y(X*) with a
prespecified probability, e.g. equal to 95%, and as such is an
interval estimate quantifying uncertainty in the RF prediction.
To estimate PI, we use the well-known bias-variance

decomposition for the expected squared error in regression:
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where E denotes mathematical expectation and subscripts
indicate whether expectations are taken with respect to the
random training sample D or random error ϵ(X), or both. The
three terms on the right-hand side of the above equation
represent respectively, squared bias, variance of the estimate,
Var(Ŷ(X*)), and variance of the random error, Var(ϵ(X*)).
Note that all expectations are conditional with respect to the
descriptor vector X*. In the case of RF, bias in prediction error is
typically small, provided that the individual trees have sufficient

depth, and as such are approximately unbiased. Omitting the
bias term, the expected squared error becomes approximately
equal to the variance of the predicted error, Err(X*) = Y(X*) −
Ŷ(X*), where

* = ̂ * + ϵ *X X XVar Err Var Y Var( ( )) ( ( )) ( ( ))

Substituting the two variances on the right-hand side with
their estimates, ̂ *̂ XVar Y( ( )) and ϵ̂ *̂ XVar( ( )) discussed later,
one obtains an estimate of variance of Err(X*)

* = ̂ * + ϵ̂ *̂ ̂ ̂X X XVar Err Var Y Var( ( )) ( ( )) ( ( ))

Assuming that Err(X*) has Gaussian distribution with mean
zero (due to the unbiasedness of Ŷ(X*)) and variance
Var(Err(X*)), one can derive an estimate of the 100(1 − α)%
prediction interval for Y(X*) as follows:

* ∈ ̂ * − * ̂ *

+ *

̂

̂
α

α

−

−

X X X X

X

Y Y z Var Err Y

z Var Err

( ) ( ( ) ( ( )) , ( )

( ( )) )

1 /2

1 /2

where z1−α/2 is the (1 − α/2)-th percentile of the standard
normal distribution (e.g., for the 95% PI, α/2 = 0.025).
Obtaining the variance of RF prediction, Var(Ŷ(X*)), is

straightforward if one could use a bootstrap approach whereby
the training data D is repeatedly sampled with replacement; for
each of these samples a RF estimate is obtained, and the sample
variance of these estimates is calculated giving rise to the
estimate ̂ *̂ XVar Y( ( )). Note that there are two bootstrap
processes: internal and external. The external process provides,
say BE, bootstrap samples Dj, j = 1, ..., BE, each of which consists
of n samples (pairs of molecular activities and corresponding
descriptors). The internal process on the other hand, bootstraps
B times each of Dj samples to build B RF trees. Thus, estimation
of Var(Ŷ(X*)) would require BE × B bootstrap samples of the
original training data D which could be computationally
prohibitive.
Recently, Wager et al.8 proposed approaches where

estimation of Var(Ŷ(X*)) requires only B bootstrap samples
that were used to calculate the RF estimate itself, thus
significantly reducing the computational burden of the external
bootstrap. The methods proposed in Wager et al. are based on
the jackknife and infinitesimal jackknife (IJ). We used the
approach based on the IJ, since it was shown that the IJ estimator
is more efficient than the jackknife estimator by having a lower
Monte Carlo variance. We refer the reader to their paper8 for the
details.
To obtain an estimate of Var(ϵ(̂X*)), we used the following

formula:

∑ ∑

∑ | | −
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= =
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We refer to this method as IJRF hereafter.
To obtain PIs, another method proposed is the quantile

regression forests (QRF) method of Meinshausen (2006),7

which is a generalization of random forests (RF).17 The QRF
provides estimates of conditional quantiles for high-dimensional
predictor variables. Similarly to the conditional mean E(Y|X), we
can approximate

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00094
J. Chem. Inf. Model. 2019, 59, 2642−2655

2644

http://dx.doi.org/10.1021/acs.jcim.9b00094


| = ≤ | = |{ ≤ }X X XF y P Y y E I( ) ( ) ( )Y y
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i

Note that, in general, the α-th quantile, Qα(x), is defined as

α= { | ≤ }α X XQ y F y( ) inf : ( )

The quantiles provide more comprehensive information
about the distribution of Y as a function of descriptors/features
X than the conditional mean alone.
Quantile regression can be used to build prediction intervals.

The α/2 and 1 − α/2-th quantiles give the lower and upper
bounds of a corresponding 100(1−α)% interval, respectively.
For example, a 95% prediction interval for the value of Y is given
by (Q.025(x), Q.975(x)). We refer to this method as QRF
hereafter.
Furthermore, for a normal distribution,

σ− ≈Q Q 1.350.75 0.25 (1)

where σ is the standard deviation of the normal distribution.
Assuming data are normally distributed, we can use the quantile
regression to estimate Q0.75 and Q0.25 and then obtain the
estimate of Var(ϵ(X)) = σ2 based on eq 1. We refer to this
method as IJQRF hereafter.
Bayesian Additive Regression Trees. The Bayesian

additive regression tree (BART)14 uses a sum of trees to
approximate E(Y|X). By weakening the individual tree effects,
BART ends up with a sum of trees, each of which explains a small
and different portion of the underlying function. In other words,
BART, using a similar idea as gradient boosting,18 models the
data by a cumulative effort with each stage introducing a weak
learner (treeTi(X) at stage i) to compensate the shortcomings of
existing weak learners (trees T1(X), ..., Ti−1(X)). The model
combines additive and interaction effects. It also regularizes the
fit by keeping the individual tree effects small (via a penalty prior
as explained in detail below).
The BART model is as follows:

μ μ μ σ= + + + +

∼

X X X XY z

z N

( ) ( ) ( ) ... ( ) ,

(0,1)
m1 2

where μi(X) is the mean in the bottom node where X falls to in
the i-th tree. A schematic illustration of the BART model is
shown in Figure 2.

In contrast to other tree-based methods which are usually
algorithm-based, BART is formulated entirely as a Bayesian
hierarchical model, which provides great flexibility and power
for data analysis.19 It is fully characterized by the following three
components: a likelihood function, a collection of unknown
parameters, and a prior distribution over these parameters. The
Bayesian framework allows quantifying uncertainties and hence
provides both point and interval estimation for a variety of
quantities of interest, for example the credible interval of variable
importance, a goal not easily achieved by other tree-based
methods. Furthermore, within this framework, practical issues
such as the handling of truncation of qualified data and model
diagnosis can all be accommodated.
The likelihood function is as follows:

i

k
jjjjjj

y

{
zzzzzz∑ μ σ∼

=

X XY Niid ( ),j j
i

m

i j
1

2

The unknown parameters are

• The trees T1(X), ..., Tm(X).
• The node parametersMi = (μi1, ..., μiδi) for each tree i = 1,

..., m.
• The residual standard deviation σ.

The prior on tree Ti(X) is specified through a branching
process.20 The probability a current bottom node, at depth d,
gives birth to a left and right child is

α
+ βd(1 )

The usual BART defaults are α = 0.95 and β = 2. This
specification makes non-null but small trees likely. To construct
a tree, at each branching, first a descriptor is drawn uniformly
from all descriptors and then a cut-point is drawn uniformly
from the discretized range of the drawn descriptor.
For the prior on means μi = μi(X), let

μ τ∼ N(0, ), i. i. d.i
2

Note that a priori,

∑ μ τ= ∼
=

E Y N m( ) (0, )
i

m

i
1

2

Then τ is chosen by centering the data and assuming E(Y) ∈
(ymin, ymax) with high probability. For instance, setting

τ =
−y y

k m2
max min

Figure 2. Schematic illustration of the BART model.
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and taking k = 2 implies a 95% prior probability that E(Y) lies in
the observed range of the data, while taking k = 3 implies that a
99.7% prior probability. The recommended default value of k is
2.
For the prior on σ, let

σ νλ
χ

∼
ν

2
2

where the default value of ν is 3. As to λ, first get a reasonable
estimate of σ̂ of σ and then choose λ to put σ̂ at a specified
quantile of the σ prior. We take σ̂ equal to the least-squares
estimate if p < n; otherwise, it equals to sd(Y). The default
quantile is 0.9.
To obtain the posterior distribution on all unknown

parameters that determine the sum-of-trees model,

σ|p T M T M Y( , , ..., , , )m m1 1

a Metropolis within Gibbs Markov Chain Monte Carlo
(MCMC) sampler21 is used in BART.14 At each iteration, a
tree Ti and its corresponding means Mi are updated given the
other parameters based on the following conditional distribu-
tion.

σ| − − + +p T M T M T M T M T M( , , , ..., , , , , ..., , , )i i i i i i m m1 1 1 1 1 1

The residual standard deviation σ is updated based on the
conditional distribution

σ|p T M T M( , , ..., , )m m1 1

Note that to update (Ti,Mi) for one single tree each time, first
Mi is integrated out from the joint conditional distribution to
draw Ti and then Mi is drawn given Ti. This simplifies
computation by avoiding the reversible jumps between
continuous spaces of varying dimensions.20

BART updates a tree by a Metropolis−Hastings (MH)
sampler through various moves, among which is the key birth or
death proposal.20 In a birth step, a more complex tree is
proposed. In a death step, a simpler tree is proposed. See Figure
3 for an illustration. Each proposal is either accepted or rejected
by a certain probability.
BART obtains the prediction and corresponding PI of a

molecular activity through the posterior distribution of
predictive activity. The posterior distribution is a summary of
results from all MCMC iterations. In each iteration, predictions
arise from a normal distribution with mean μ∑ = X( )i

m
i1 and

standard deviation σ2. The mean from the posterior distribution
is used as the prediction, and the corresponding quantiles from
the posterior are used to construct the PI.
The Metropolis−Hastings proposals used in the original

BART algorithm could lead to poor mixing of the MCMC
sample since they do not facilitate efficient traversal of the model
space (suffering from local mode stickiness). The consequence
of poor mixing is overfitting the data and under-representing
model uncertainty. To improve mixing, a “radical restructure”
move, which proposes a large change in tree structure without
changing the number of leaves nor the partition of observations
into leaves, was proposed.22 However, this approach could not
scale up well to handle high-dimensional data. Recently,
Pratola23 proposed more efficient MH sampling algorithms
(OpenBT). The first is a rotation proposal that allows for
efficient traveling to disparate regions of high likelihood in tree
space through local moves. The second is a perturbation
proposal that uses more efficient rules to choose splitting
variables and cut-points. OpenBT-bart implements BART with
these more efficient sampling algorithms.
In the original BART model, all observations follow a normal

distribution with the same standard error. A novel hetero-
scedastic BART model (Pratola et al.)24 was developed to
alleviate this constraint. In OpenBT-hbart, the conditional mean
is still modeled as a sum of trees, each of which determines a
contribution to the overall mean; the conditional variance is
modeled with a product of trees, each of which determines a
contribution to the overall variance.

HowToHandle Truncated Data.The “true” values of data
truncated at Yt are all set at Yt. Since the smallest value of
observed activities in the training set is Yt, the lower bound of a
confidence interval from QRF has to be larger than or equal to
Yt. Therefore, the PI could not cover the “true” value Yt for those
observations that are truncated.
Using BART, the predictive value could be less than the

minimum observed value, Yt. Furthermore, we can recover the
underlying distribution with no truncation through imputation
of missing true activities. In each MCMC iteration, for a
truncated activity, we impute the missing truth, assuming the
truth follows a truncated normal distribution still with mean

μ∑ = X( )i
m

i1 and standard deviation σ2 but bounded above at Yt.
The illustration of the issue of truncated data and recovery of
underlying distribution by imputation is shown in Figure 4.

Figure 3. Illustration of birth and death step in updating trees.
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For example, in the 3A4 data set (see Figure 1), 55.85% of
−log(IC50) values from the training data were truncated at
4.3003. When training the model, instead of using the original
observed activities (−log(IC50)), if the observed value equaled
the minimum value 4.3003, then we imputed the underlying
untruncated value by simulating a value from a normal
distribution with corresponding mean of a molecule and
standard deviation of the whole training set. Note that different
molecules could have different means, although they were all
truncated at 4.3003. Due to truncation, the simulated value
needed to be less than 4.3003. Furthermore, we imputed the
truncated data repeatedly in each MCMC iteration based on the
updated mean and standard deviation in each iteration.

■ RESULTS
Comparing RF and BART for Point and PI Estimation.

The metrics to evaluate prediction performance include R2,

coverage probability of 95% PIs, and median width of 95% PIs.
The R2 is the squared Pearson correlation coefficient between
predicted and observed activities in the test set. The samemetric
was used in the Kaggle competition. For each test set, we
calculated the coverage probabilities of nominal 95% PIs of all
predicted activities. To obtain coverage probability for each test
data set, we computed first the 95% PI for each molecule and
then the percentage of how many intervals covered the true
activities. The closer the value is to 0.95, the better the result.
Besides the coverage probabilities, we compared also themedian
width of PIs. An ideal case is that an accurate coverage is not
offset by a much wider interval.
To run BART, the tuning parameters can be divided into

three categories: (1) the hyperparameters k and τ for the prior
on means μi = μi(X), the hyperparameters ν and λ for the prior
on standard deviation σ; (2) the number of trees m and α and β
for the probability to further split a bottom node; (3) the
MCMC related parameters including the number of burn-in and
number of posterior draws after burn-in.
For the QSAR data, the results were robust to the choice of

hyperparameters for means and standard deviation.We set these
at default values. Furthermore, the parameter α which decides
the probability of splitting a node at root (depth zero) was set at
the default.
There could be a relatively large difference in prediction

accuracy as the number of trees and depth of each tree vary. To
search the best set of two tree related parameters m and β, we
conducted a grid search, using 15 Kaggle data sets, over the
values m = (200, 500, 1000, 1500, 2000, 2500) and β = (0.5, 1,
1.5, 2). In general, the more complex the model with larger
number of deeper trees (larger m and smaller β), the larger the
average value of R2. In addition, the gains are marginal when
using too complex models. Zoomed in on each data set, building

Figure 4. Illustration of the issue of truncated data and recovery of
underlying distribution by imputation.

Figure 5. R2’s for different combinations of parameters m and β.
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a more complex model tended to provide larger R2 values and
especially so when increasing the number of trees. The more
complex the model, the larger the computational cost. To
balance the cost and gain of accuracy, we first set m = 2000 and
then chose β = 1; this setup generally performed better than
others. See Figure 5 for detailed results.
We set the number of burn-in as 1000 and the number of

posterior draws after burn-in at 2000. No convergence failure
was detected.
To obtain more accurate estimates of standard deviations and

hence interval estimations, we also investigated the OpenBT-
bart and OpenBT-hbart approaches. The computational cost of
OpenBT-bart andOpenBT-hbart is much higher compared with
that of BART due to the more complicated MH proposals and
model on standard deviation. For the OpenBT-bart, we set the
number of trees for meanmodel at 200, the number of burn-in at
100, the number of posterior draws after burn-in at 1000, and the
parameter β at 2. The other parameters were set at their defaults.
For OpenBT-hbart, the number of trees for the variance model
was 40, and the other parameters were the same as that in
OpenBT-bart. Note that these setups achieved significant
improvement in coverage of PIs as shown below.
For all RFmodels, following the setup inMa et al. (2015),4 we

generated 100 trees with p/3 descriptors used at each branch
point, where p is the number of unique descriptors in the
training set. Tree nodes with 5 or fewer molecules were not split
further. We applied these parameters to every data set.
Given the underlying similarities between BART and

XGBoost, we also considered the point estimate results from

XGBoost following the setup in Sheridan et al.3 The parameters
used are as follows. The maximum depth of a tree is 7; the
subsample ratio of columns when constructing each tree is 0.56;
the “eta” parameter controlling the learning rate is 0.05; the
maximum number of iterations is 745; the other parameters are
as default.
The different R2’s obtained by RF, BART, and XGBoost for

different data sets are shown in Figure 6. The mean R2 for RF,
BART, and XGBoost is 0.39, 0.41, and 0.42, respectively.
It is important to assess the uncertainty of not only a

prediction but also a performance metric.25,26 To evaluate the
uncertainty of R2, we bootstrapped the data (both training and
test) 100 times to calculate the standard deviation of R2. The
results are shown in Figure 7. The mean standard deviation for
RF, BART, and XGBoost is 0.020, 0.024, and 0.023, respectively.
The different coverage probabilities for different data sets are

shown in Figure 8. The mean coverage for QRF, IJRF, IJQRF,
BART, OpenBT-bart, and OpenBT-hbart is 0.77, 0.97, 0.98,
0.87, 0.92, and 0.93, respectively.
The different median widths for different data sets are shown

in Figure 9. To put median widths on the same scale and
compare them to each other, within each data set, we divided
each median width by the minimum width.
Comparing different methods, the QRF and BART provided

average coverage quite smaller than the nominal (especially so
for the QRF), and the coverage probabilities from IJRF, IJQRF,
OpenBT-bart, and OpenBT-hbart are much closer to the truth.
Compared to OpenBT-bart and OpenBT-hbart, the higher

Figure 6. R2 for different data sets using different methods.
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coverage of the IJRF and IJQRF generally was offset by a wider
and even much wider PI.
Note that for the truncated data, for example, “3A4” and

“2D6”, the imputation of missing values was implemented in
BART. With the attempt of recovering the missing true
activities, the standard deviation increased compared to without
imputation and hence the width of PI became obviously larger
than that from OpenBT-bart and OpenBT-hbart.
Descriptor Importance. Both RF and BART can be used to

select “important” descriptors. For RF, every descriptor in the
out-of-bag (OOB) data is randomly permuted, one at a time,
and each modified data set is also predicted by the tree. The
difference of squared prediction errors between with and
without permutation in the OOB data is calculated for each
descriptor and used to evaluate descriptor importance. The
larger the difference, the more important the descriptor. For
BART, the percentage of a descriptor used in a tree decision rule
over all trees (frequency of a descriptor appeared at branch
points) is used to evaluate descriptor importance. The larger the
percentage, the more important the descriptor.
To investigate the capability of choosing important

descriptors by BART and RF, we first conducted a simulation
study. To simulate the truth, we use the “LOGD” training data.
First, we ran BART using all descriptors to find the first 50 most
important ones. Second, we reran the BART using just the 50
descriptors picked. Third, we used the prediction in the rerun as
true activities; the 50 descriptors as true important ones; and the
reordered importance as the true order of importance for the 50
descriptors. Finally, we simulated 100 data sets each having

additional 500 noisy descriptors, which were randomly chosen
from other descriptors and permuted. We obtained the truth
using RF in a similar way as well.
For simulated data, we ran both BART and RF to select

important descriptors and then calculated the percentage of
times, among all simulated data sets, that the first 10, 20, 30, 40,
and 50 important descriptors chosen were from the correspond-
ing truth. The results are shown in Figure 10.
From the results, first, both BART and RF can screen out the

noisethe first 50 important descriptors picked almost never
included noise no matter if the truth was from BART or RF.
Second, the true order of important descriptors was generally
preserved especially when the method used was the same as in
the generation of truth.
An additional piece of information on descriptor importance

BART can provide, besides the point estimate, is the interval
estimation. Figure 11 displays the point estimate and
corresponding 90% interval of the first 50 important descriptors
in order chosen for LOGDdata. The first important descriptor is
obviously more important than the others given that there is no
overlap between its interval and the intervals of other descriptors
(the lower bound of its interval is even larger than the upper
bounds of other intervals). The next three important descriptors
picked seemed to be relatively important as well among the first
50, especially compared with the last 15 descriptors.
Another observation we had was that the descriptor

importance could be misleading when the prediction error was
high. In other words, if the model cannot predict accurately,
descriptor importance may not be useful. For example, for two

Figure 7. Standard deviation of R2 for different data sets using different methods.
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data sets “LOGD” and “RAT_F” with high and low R2, we
removed the important descriptors chosen (first 10, 20, 30
important descriptors and so on) by either RF and BART and
retrained the data, made the prediction, and obtained
corresponding R2 again. The results are shown in Figure 12.
For the “LOGD” data, removing the important descriptors did
reduce theR2. For the “RAT_F”, however, theR2 had no obvious
trend as we increased the number of important descriptors
removed. We suggest to remove important descriptors and then
retrain and repredict to confirm the results of descriptor
importance.
Interestingly we found that for the “RAT_F” data, the model

had a hard time picking important variables or it maybe was the
case that every descriptor is nonimportant under the specified
BART model. See Figure 13 for details.
BART Model Diagnostics. The specified BART model

cannot tell which variables are more important for the RAT_F
data. A natural question is then: What could go wrong or did the
model fit the data well? To study model adequacy, in the
Bayesian framework, we can use the posterior predictive
checking (PPC).19 We simulated data repeatedly under the
fitted BART model and then compared them to the observed
data to check whether there are systematic discrepancies
between real and simulated data.
A metric used in PPC is posterior predictive p-values: the

probability that the replicated data (simulated from posterior
distribution) could be more extreme than the observed data

θ θ= ≥ |p P T y T y y( ( , ) ( , ) )B
rep

∫ ∫ θ θ θ= | |θ θ≥I p y p y dy d( ) ( )T y T y
rep rep

( , ) ( , )rep

Figure 14 exhibits the posterior predictive distribution of the
maximum activity, ymax, obtained from simulated data from the
posterior distribution, and the corresponding observed value,
ymaxobserved, in the training set for “LOGD” and “RAT_F” data,
respectively. For the former, there was no potential failing of the
model found from the perspective of ymaxthe observed value is
about the same as the median of the posterior distribution. For
the latter, however, the model did not provide an adequate fit in
the tailthe minimum value of ymax from the posterior
distribution based on the model is much larger than the
observed value. The posterior predictive p-value was 0.51 and 1,
respectively, for “LOGD” and “RAT_F” data. The diagnostic
indicated the lack of fit of the BART model for “RAT_F” data
and the model needs amendment.

Software. The R package randomForestCI27 implemented
the proposed method to estimate Var(Ŷ(X*)) in Wager et al.8

The R package quantregForest28 implemented the QRF method
proposed in Meinshausen (2006).7 The BART algorithm based
on Chipman et al.14 was implemented in R packages BayesTree,
dbarts, and pgbart. The three packages provided very similar
results. One difference among them is that the construction of
the model (training) and prediction for a new data set (testing)
cannot be separated in BayesTree. The dbarts package provided
the function to separate training from testing by saving all trees
starting from version 0.9-0. However, it may need very large
memory and therefore cannot accommodate large size QSAR
data. The pgbart package can also save all the trees and worked

Figure 8.Coverage probabilities for different data sets using different methods. The black vertical line in each panel marks the nominal coverage 95%.
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Figure 9. Median widths for different data sets using different methods.

Figure 10. Important descriptors picked for simulated data.
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fine even for large size QSAR data. The OpenBT algorithms are
implemented in an R package available at https://bitbucket.org/
mpratola/openbt. The code handling truncation using BART is
available from https://bitbucket.org/mpratola/openbt. The

code for computing prediction intervals using Random Forest
and BART based methods and examples of how to use various
approaches are available from https://github.com/Merck/
BART-QSAR.

Figure 11. Point estimate and corresponding 90% interval of descriptor importance for LOGD data.

Figure 12. R2 after removing “important” descriptors.
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■ CONCLUDING REMARKS

In this paper we studied BART as a model builder for QSAR.

BART is formulated entirely in a Bayesian hierarchical modeling

framework, which provides great flexibility and power, such as

quantifying uncertainty, conducting model diagnosis, and
handling truncated data.
Uncertainty is inherent in QSAR. Besides point prediction of

an activity, the estimation of the uncertainty of the predicted
value is also criticala higher variation indicates the lack of

Figure 13. Point estimate and corresponding 90% interval of descriptor importance for RAT_F data.

Figure 14. Posterior predictive checking.
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confidence of the prediction. To properly compare BART and
RF in terms of quantifying the uncertainty, we proposed a
method, unlike previous approaches, for calculating RF
prediction intervals that takes into account RF variability due
to the random sampling of the training data. We then compared
BART with RF and demonstrated that BART provided on
average more accurate predicative activity and accurate
prediction interval that was not offset by larger width. In this
paper, we focused on the uncertainty of RF and BART based
approaches. Among the three methods: RF, XGBoost, and
BART, XGBoost provided on average the best prediction
accuracy. We plan to investigate the uncertainty of other
methods, such as XGBoost and Gaussian Process, in the future.
We suggest to provide not only point prediction of molecular

activities but corresponding prediction intervals as well to reflect
confidence of predictions. Similarly, the variance of variable
importance needs to be considered in addition to point estimate
when selecting key descriptors.
Instead of being an algorithm, BART is essentially a statistical

model. We can evaluate whether the model adequately
represents data. Model diagnostic is an essential component of
statistical inference. In this study we showed an example of using
posterior predictive checking to detect model inadequacy.When
using BART, model checking is indispensable since the lack of fit
can lead to poor prediction. We need to be cautious when using
predictions from a model with inadequacy detected. In this
paper, we focus on the BARTmodel; in the Bayesian hierarchical
model framework, we can consider different models, either
comparing them to choose a better model or implementing
model averaging.
Bayesian reasoning combines prior knowledge/experience

with current information from data newly collected to conduct
statistical analysis. For the truncation of qualified data, we built
the knowledge that the true activities are less than the minimum
value observed in the model training. In the future we will
investigate how to incorporate BART domain knowledge into
model building to achieve more accurate prediction and more
precise estimation of uncertainty.

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: dai_feng@merck.com.
*E-mail: vladimir_svetnik@merck.com.

ORCID
Dai Feng: 0000-0001-7136-5793
Robert P. Sheridan: 0000-0002-6549-1635
Author Contributions
∥D.F. and V.S. contributed equally to this work

Notes
The authors declare the following competing financial
interest(s): Dai Feng, Vladimir Svetnik and Andy Liaw are
employees of MSD (Merck Sharp & Dohme Corp., a subsidiary
of Merck & Co. Inc., Kenilworth, NJ, USA). Robert P. Sheridan
is an independent contractor paid byMSD. Matthew Pratola is a
consultant paid by MSD.

■ REFERENCES
(1) Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.;
Feuston, B. P. Random Forest: A Classification and Regression Tool for
Compound Classification and QSAR Modeling. Journal of chemical
information and computer sciences 2003, 43, 1947−1958.

(2) Svetnik, V.;Wang, T.; Tong, C.; Liaw, A.; Sheridan, R. P.; Song, Q.
Boosting: An Ensemble Learning Tool for Compound Classification
and QSAR Modeling. J. Chem. Inf. Model. 2005, 45, 786−799.
(3) Sheridan, R. P.; Wang, W. M.; Liaw, A.; Ma, J.; Gifford, E. M.
Extreme Gradient Boosting as a Method for Quantitative Structure−
Activity Relationships. J. Chem. Inf. Model. 2016, 56, 2353−2360.
(4) Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep
Neural Nets as a Method for Quantitative Structure−Activity
Relationships. J. Chem. Inf. Model. 2015, 55, 263−274.
(5) Shafer, G.; Vovk, V. A Tutorial on Conformal Prediction. Journal
of Machine Learning Research 2008, 9, 371−421.
(6) Lei, J.; G’Sell, M.; Rinaldo, A.; Tibshirani, R. J.; Wasserman, L.
Distribution-free Predictive Inference for Regression. J. Am. Stat. Assoc.
2018, 113, 1094−1111.
(7) Meinshausen, N. Quantile Regression Forests. Journal of Machine
Learning Research 2006, 7, 983−999.
(8) Wager, S.; Hastie, T.; Efron, B. Confidence Intervals for Random
Forests: The Jackknife and the Infinitesimal Jackknife. Journal of
Machine Learning Research 2014, 15, 1625−1651.
(9) Svensson, F.; Aniceto, N.; Norinder, U.; Cortes-Ciriano, I.; Spjuth,
O.; Carlsson, L.; Bender, A. Conformal Regression for Quantitative
Structure−Activity Relationship Modeling−Quantifying Prediction
Uncertainty. J. Chem. Inf. Model. 2018, 58, 1132−1140.
(10) Johansson, U.; Boström, H.; Löfström, T.; Linusson, H.
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