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ABSTRACT

Let P be a set of n (non-negatively) weighted points in Rd . We

consider the problem of computing a subset of (at most) k diverse

and high-valued points of P that lie inside a query range, a problem

relevant to many areas such as search engines, recommendation

systems, and online stores. The diversity and value of a set of points

are measured as functions (say average or minimum) of their pair-

wise distances and weights, respectively. We study both bicriteria

and constrained optimization problems. In the former, we wish to

return a set of k points that maximize a weighted sum of their value

and diversity measures, and in the latter, we wish to return a set of

at most k points that maximize their value and satisfy a diversity

constraint.

We obtain three main types of results in this paper:

(1) Near-linear time (0.5 − ε)-approximation algorithms for the

bicriteria optimization problem in the offline setting.

(2) Near-linear size indexes for the bicriteria optimization prob-

lem that for a query rectangle return a (0.5− ε)-approximate

solution in time O(k polylog(n)). The indexes can be con-

structed in O(n polylog(n)) time.

(3) Near-linear size indexes for answering constrained opti-

mization range queries. For a query rectangle, a 0.5O (d )-

approximate solution can be computed in O(k polylog(n))

time. If we allow some of the returned points to lie at most ε

outside of the query rectangle then an (1 − ε)-approximate

solution can be computed in O(k polylog(n)) time. The in-

dexes are constructed in O(n polylog(n)) and nO (1/εd ) time,

respectively.
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1 INTRODUCTION

Building an index on a given set of objects so that range queries can

be answered efficiently is a fundamental problem in many fields
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including databases, computational geometry, and GIS. Notwith-

standing extensive research over the last four decades, it remains

an active research topic. The early work on range searching focused

on either returning all points lying in a query range or computing

a simple aggregation function (such as sum, max, min) over the

values/weights of points lying in a query range [3, 9, 32]. In modern

applications, especially as the data sets have become very large,

neither of these formulations is satisfactory — there may be too

many points lying in a query range, and the simple aggregation

function provides very little information about the points in a query

range. As a result, there is much work in recent years on returning

a summary of points lying in a query range [2, 35, 44].

Of particular interest, motivated by several applications such

as online marketing and web keyword search, is to return a set

of top/most-relevant/most-interesting k points in a query range

[2, 37, 38, 40]. The utility of an object is defined by a weight function

on objects. For example, suppose a vendor has a collection of laptops.

For simplicity, assume each laptop has two non-negative attributes

— RAM size and price. The goal is to build an index so that for a

query range ρ, and a parameter k , the top k laptops whose attributes

lie in ρ can be returned quickly.

A shortcoming of top-k queries is that the index may return

very similar objects in one query. Returning to the laptop example,

suppose there are three laptops with specifications (i) 1 GB RAM

and $1000 price, (ii) 1GB RAM and $1200 price, and (iii) 2GB RAM

and $1800 price, and suppose their weights are 2, 1.9, and 1.8. For

k = 2, the top-k query will return the first two laptops, while it

is desirable to return laptops (i) and (iii) to provide more choices

to the user. Thus the goal is to return (at most) k items (i) that

have high values, and (ii) that are diverse. The diversity between a

pair of objects can be captured by defining a metric over the set of

objects. We can then define the diversity of k items either as the

minimum pairwise distance or as the sum of pairwise distances.

We now define the problem formally.

Problem statement. We represent an object as a point in Rd for

some constant d ≥ 1. Let P = {p1, . . . ,pn } be a set of n points in Rd .

Each point p ∈ P is assigned a weightw(p) ≥ 0. The goal is to build

an index on P that for a query rectangle ρ and a parameter k ≥ 1,

returns (at most) k points of P∩ρ maximizing a utility function that

captures the total value of these points as well as their diversity.

We define two types of query optimization problems: bicriteria

optimization and constrained optimization.

Bicriteria optimization: We are given a utility function f :

2P → R≥0 that captures both the value and the diversity of a subset

S ⊆ P. Our goal is to construct an index that for a query rectangle

ρ and a positive integer k > 0, returns argmax f (S), where the

maximum is taken over all subsets S ⊆ P ∩ ρ of k points. We study

two specific utility functions:
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Max-sum diversification (MSD) range query: For a given subset

S ⊆ P and a parameter λ ≥ 0, we define

f (S) =
∑

pi ,pj ∈S



pi − pj



+ λ

∑

pi ∈S
w(pi ).

For a subset X ⊆ P, we define

MS(X ,k) = argmax
S⊆X
|S |=k

f (S)

The problem of computing MS(P,k) in the offline setting is the

max-sum diversification (MSD) problem, and the special case in

which λ = 0, i.e., we ignore the weights of points, is referred to as

the remote-clique1 problem. Our goal is to build an index so that

given ρ, k , and λ, MS(P ∩ ρ,k) can be reported quickly.

Max-min diversification (MMD) range query: For a given subset

S ⊆ P and a parameter λ ≥ 0, we define

f (S) = min
pi ,pj ∈S



pi − pj



+ λmin

pi ∈S
w(pi ).

For a subset X ⊆ P, we define

MM(X ,k) = argmax
S⊆X
|S |=k

f (S).

The problem of computing MM(P,k) in the offline setting is the

max-min diversification (MMD) problem, and the special case in

which λ = 0, i.e., we ignore the weights of points, is referred to

as the remote-edge1 problem. Our goal is to build an index so that

given ρ, k , and λ, MM(P ∩ ρ,k) can be reported quickly.

Constrained optimization: In this version, we use diversity as

a constraint and return at most k points that satisfy the diversity

constraint. For a parameter δ > 0, we call a subset S ⊆ P δ -diverse

k-set if |S| ≤ k and the distance between any pair of points of

S is at least δ . Here the goal is to build an index on P that for a

query rectangle ρ, an integer k > 0, and a parameter δ ≥ 0, quickly

returns a δ -diverse k-set S ⊆ P∩ρ whose total weight is maximized.

That is, return

CD(P ∩ ρ,k, δ ) = argmaxw(S),

where the maximum is taken over all subsets of P ∩ ρ that are

δ -diverse k-sets. We call such a query a constrained-diversity top-k

(CDT) range query. The special case where δ = 0 is simply called a

top-k range query in other literature.

Unlike MS(X ,k) and MM(X ,k), CD(X ,k, δ ) is defined so that its

size can be less than k . If we required it to have size exactly k , then

reporting a feasible solution for a CDT range query would be at

least as hard as checking the existence of an independent set of size

k in unit disk graphs2 which is NP-hard [20].

We call an algorithm for any of these three problems an α-

approximation algorithm, for some α ≤ 1, if it returns a subset

whose utility is at least α times that of an optimal solution.

Related work. There is extensive work on the MSD and MMD

problems as well as their special cases of the remote-clique and

remote-edge problems in the offline setting.

1 The remote-clique and remote-edge problems are also called the max-sum and
max-min dispersion problems in other literature, respectively.
2A unit disk graphG(P) defined for a point set P is where the vertices are the points
and a pair of points u and v are incident in G(P) if and only if ‖u − v ‖ ≤ 1.

Tamir [42] showed that the greedy algorithm for k-center by

Gonzalez [23], which takes O(nk) time, is a 0.5-approximation al-

gorithm for the remote-edge problem. A similar greedy algorithm

also yields an O(nk)-time 0.5-approximation for the remote-clique

problem [39] (also see [11, 12]). All of these algorithms work with

arbitrary metrics. For certain special distances that include the Eu-

clidean distance there are better approximation algorithms for the

remote-clique problem: For distances of negative type (for a formal

definition of negative type distances see Subsection 2.1) Cevallos

et al. [16] propose an O(nk2 logk)-time (1 − 4
k
)-approximation al-

gorithm. The approximation factor is improved to 1 − 4
k+2

in [17].

For distances that are both metrics and of negative type Cevallos et

al. [17] give a O(nk2 logk)-time (1 − 2
k
)-approximation algorithm.

For metrics with doubling dimension q a PTAS with running time

O(n(k+ε−q )+kε−1 logO (ε−q ) k) is known [17], and the running time

can be improved to O(ε−dn logk + ε−dkO (ε−d )) for the Euclidean
metric [15].

All the algorithms for the remote-clique and remote-edge men-

tioned above can be adapted to obtain approximation algorithms

for the MSD and MMD problem, respectively. For instance, we

can either return the solution to the remote-clique/remote-edge

problem or return the top-k items, whichever has the higher utility.

Hence, any α-approximation for the remote-clique (remote-edge)

problem gives an α/2-approximation for the MSD (MMD) problem.

The problem of maximizing a linear combination of the remote-

clique objective, e.g., the sum of pairwise distances and a submod-

ular function defined on the points, is studied in [12, 16]. Notice

that this problem is a generalization of the MSD problem since

the sum of weights is a (sub)modular function. For general met-

rics, [12] give an 0.5 approximation algorithm in O(nk) time; for

metrics of negative type, [16] propose a slower algorithm with

approximation factor 1 − 4
k
. Gollapudi and Sharma [22] described

an approximation-preserving reduction from the MSD problem

to the remote-clique problem, which also leads to an O(nk)-time

0.5-approximation algorithm for MSD using the known results of

the remote-clique problem on general metrics. They also give a

reduction from MMD to the remote-edge problem, which is unfor-

tunately not correct [41]. An O(n2k)-time 0.5-approximation for

the MMD problem can be obtained by solving n − 1 instances of
the remote-edge problem (see Subsection 2.2).

Recently the notion of (composable) coresets3 has been used

to get efficient algorithms for the remote-clique and remote-edge

problem in the streaming (MapReduce) setting [6, 14, 28]. Using

these coresets, one can construct indexes for both remote-clique and

remote-edge range queries in O(k2 polylog(n)) time. A drawback

of such an index is that the parameter k is fixed at preprocessing

time.

To the best of our knowledge, the only work directly on describ-

ing indexes for answering MSD or MMD under range queries is

that of Wang et al. [43]. They define the RC-index that works with

arbitrary metrics and supports range queries inO(k2γ 4(δ+1) logd n)
time with an approximation ratio of (0.5 − 0.5δ−1), where δ is an

3An α -coreset for a maximization problem is a small subset of the input point set
S ⊆ P such that the optimum solution on S approximates the optimal solution on P

within a factor of α < 1. A collection of α -coresets, where each is for a potentially
different point set, are composable if their union is a valid α -coreset for the union of
the point sets.
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Problem Approx. Time

MSD 0.5 − ε O(n + k logk)
1 − ε O(nk2)

MMD 0.5 − ε O(n + k logk)

Table 1. New offline algorithms

Problem Approx. Query Time Space

MSD 0.5 − ε O(k logd−1 n) O(n logd n)
1 − ε O(k3 + k logd−1 n) O(n logd n)

MMD 0.5 − ε O(k logd−1 n) O(n logd n)
CDT (0.5)O (d ) O(k logd n) O(n logd−1 n)
(k , ρ part of query, at most (1 + ε )k points) 1 − ε O(k logk logd n) O(n logd n)

Table 2. New indexes

integral query parameter, and γ is the expansion constant. While in

some cases γ is small, it can be O(n) even in Euclidean space.

Main results. We present three main results in this paper. We

assume ε ∈ (0, 0.5) to be a constant. The big-O notation in the

running time hide polynomial factors of 1/ε .
Offline algorithms (Section 2):We give a (0.5−ε)-approximation

algorithm for the MSD problem that runs in O(n + k logk) time.

This is the first algorithm for the MSD problem with approximation

factor 0.5 − ε with runtime near-linear on both n and k . Notice

that this is faster than all previously known algorithms for the

remote-clique and MSD problems. In [26] the authors construct a

0.5-approximate solution of the MSD problem in O(n2 + k2 logk)
time by repeatedly taking farthest pairs of remaining points. We

derive our result by defining and using a metric function that al-

lows us to compute efficiently approximate farthest pairs of points

in weighted Euclidean space. We show that our algorithm can be

implemented using an implicit representation of P, which is useful

to answer MSD range queries. Finally, we show that the weighted

distance between two points is of negative type, which allows to

use the algorithm in [16] to get an (1− ε)-approximation algorithm

that runs in O(nk2) time, if ε ≥ 4/k .
We also present a (0.5−ε)-approximation algorithm for theMMD

problem that runs in O(n logn) time. This is the first algorithm for

the MMD problem with a runtime near-linear in n with this ap-

proximation factor. It is also faster than all the previously known

algorithms for the remote-edge and MMD problems. Our algorithm

closely follows the algorithms of Guha [24] and McCutchen and

Khuller [34] for the k-center clustering problem in the streaming

setting, but new ideas are needed to adapt them to the remote-edge

problem and to achieve the O(n logn) running time. Additionally,

we show that using an implicit representation of P, we can improve

the running time to O(n logk). The running time can be improved

even further to O(n + k logk) in expectation if we allow random-

ization. The implicit representation is also useful to answer MMD

range queries. Table 1 summarizes our results in the offline setting.

Range queries (Section 3): We use our offline algorithms and

build indexes of O(n logd n) size that for a query rectangle ρ and

parameters k, λ, ε , return a (0.5 − ε)-approximate solution in time

O(k logd−1 n). We can improve the query time if ε is fixed in the

preprocessing phase. Table 2 summarizes the performance of our

indexes.

Constrained optimization (Section 4): The intuition for find-

ing efficient indexes for the CDT problem comes from the known

offline algorithms for the weighted independent set problem on

unit disk graphs: (1) A greedy 0.5O (d )-approximation that runs in

polynomial time [29, 31]. (2) A PTAS using the shifting grid tech-

nique with running time nO (ε
−d ) [27, 29, 33]. We use the idea in

(1) to build an index of size O(n logd−1 n) that returns a 0.5O (d )-
approximate solution in O(k logd n) time. All k, ε, δ , ρ are part of

the query. In order to get this result, we represent the Rd space in

a way that allows us to find the returned set of k points in a greedy

fashion inside the query rectangle ρ. Then, we use the shifting grid

technique to construct an index of sizeO(nk logd n) such that given

a query rectangle ρ it finds a (1 − ε)-approximate solution for the

CDT problem among the points in ρ in O(k2 logd n) time. We note

that in this index the parameters k, ε, δ need to be fixed in the pre-

processing phase, and the returned set of a CDT range query might

contain points that lie at most ε outside of the query rectangle ρ.

If we allow returning at most (1 + ε)k points we can modify the

second index such that it has O(n logd n) space, O(k logk logd n)
query time, and k can also be part of the query.

2 OFFLINE ALGORITHMS

In this section we describe efficient offline algorithms for the MSD

and MMD problems we defined above. Later, we use these algo-

rithms to answer range queries efficiently.

2.1 MSD Problem

P is given explicitly. Let P ⊆ Rd be the set of points defined

above, and let ε ∈ [0, 0.5) be an arbitrarily small constant. We

describe a (0.5 − ε)-approximation algorithm for the MSD problem.

We define a distance function f ′ : P × P→ R≥0 as follows. For
a pair p,q ∈ P, f ′(p,q) = 0 if p = q, and f ′(p,q) = ‖p − q‖ +
λ

k−1 (w(p) + w(q)) if p , q. We note that f ′ is a metric since

w(p) ≥ 0 for all p ∈ P. For any subset Q ⊆ P of k points f (Q) =∑
p,q∈Q f ′(p,q), so the MSD problem can be formulated as comput-

ing S∗ = argmaxS⊆P, |S |=k
∑
p,q∈S f

′(p,q). We use this formulation

of the MSD problem.

Algorithm. Let N ⊆ Sd−1 be a centrally symmetric set of r =

O( 1
ε (d−1)/2

) unit vectors in Rd (i.e., if u ∈ N then −u ∈ N) that is an
ε-net, i.e., for any point v ∈ Sd−1 there is a point u ∈ N with angle

at most arccos( 1
1+ε ) = O(

√
ε). For a point p ∈ P and a vector u ∈ N,

we define the score s(p,u) = 〈p,u〉 + λ
k−1w(p). For each u ∈ N, let

Pu denote the set of k points with the highest scores with respect

to vector u. We compute the desired set S of k points by repeating

the following steps k/2 times: For each pair of vectors u,−u ∈ N,
we choose a pair of points ξu , ξ−u as described below, compute the

vector ū = argmaxu s(ξu ,u) + s(ξ−u ,−u), add the pair ξū , ξ−ū to S,

and delete ξū , ξ−ū from all lists Pu in which they appear4.

In each step, for a pair u,−u ∈ N we compute ξu , ξ−u as follows.

Let au (resp. a−u ) be the point of maximum score in Pu (resp. P−u ).

4If k is odd then in the end of the algorithm we add in the point with the highest
weight among the remaining points.
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Figure 1. A set of 7 points in the plane (white) and their projections (black) onto a
vector u . Each point is labeled with a name and weight in parentheses. When λ = 0,
au = G and a−u = A with s(G , u) = 44 and s(A, −u) = −8. When λ = k − 1,
au = F and a−u = B with s(F , u) = 35 + 15 = 50 and s(F , −u) = −13 + 12 = −1.
As λ →∞, au = a−u = D since D is the point with the highest weight.

If au , a−u 5, we set ξu = au and ξ−u = a−u (see Figure 1 for an

example). If au = a−u then let bu (resp. b−u ) be the point with the

second largest score in Pu (resp. P−u ). If s(au ,u) + s(b−u ,−u) ≥
s(a−u ,−u)+ s(bu ,u) then we set ξu = au and ξ−u = b−u otherwise

we set ξu = bu and ξ−u = a−u .
By maintaining each Pu in a priority queue, au and bu can be

reported in O(logk) time and a point from Pu can be deleted in

O(logk) time. Hence, each round of the algorithm takesO(|N| logk)
time. Since Pu can be computed in O(n) time and |N| = O(1), the
total time taken by the algorithm is O(n + k logk).

Analysis.We now prove that f (S) ≥ (0.5−ε)f (S∗). Let d(p,q) =
maxu ∈N〈p − q,u〉 be a distance function between p,q ∈ P. Since N
is centrally symmetric, d(·, ·) is symmetric. Furthermore, it is easy

to see that d(·, ·) satisfies the triangle inequality, so it is a metric.

The following observation is straightforward from the definition

and [4, 18]: (A) For any two points x,y ∈ Rd , ‖x − y‖ ≥ d(x,y) ≥
(1 − ε) ‖x − y‖.

Next, we define the distance function f ′
d
: P × P → R≥0 as

f ′
d
(p,q) = 0 ifp = q, and f ′

d
(p,q) = d(p,q)+ λ

k−1 (w(p)+w(q)). Since
d is ametric, f ′

d
is also ametric. From (A), the next observation easily

follows: (B) For any p,q ∈ P, f ′(p,q) ≥ f ′
d
(p,q) ≥ (1 − ε)f ′(p,q).

We claim the following property.

Lemma 2.1. In each round, the algorithm computes the farthest

pair of points of the current set P under the metric f ′
d
.

Proof. Let Sl−1 be the set of points that the algorithm added in

S at the end of round l−1. Letp′,q′ be the two points added by the al-
gorithm at round l .We show that f ′

d
(p′,q′) = maxp,q∈P\Sl−1 f

′
d
(p,q).

We first show that for any u ∈ N, ξu , ξ−u are the points with the

farthest distance with respect to the vector u. Consider the case

where au , a−u and ξu = au , ξ−u = a−u . From the definition,

for any pair p,q ∈ P \ Sl−1 we have that s(au ,u) ≥ s(p,u) and
s(a−u ,−u) ≥ s(q,−u) so 〈ξu −ξ−u ,u〉+ λ

k−1 (w(ξu )+w(ξ−u )) ≥ 〈p−
q,u〉+ λ

k−1 (w(p)+w(q)). Then we consider the case where au = a−u
and ξu = au , ξ−u = b−u (the case where ξu = bu , ξ−u = a−u is

symmetric). Notice that s(au ,u)+s(b−u ,−u) ≥ s(bu ,u)+s(a−u ,−u).
For any pair p,q ∈ P \ Sl−1 we have two cases. If q , au = a−u
then by definition s(b−u ,−u) ≥ s(q,−u) and s(au ,u) ≥ s(p,u), so
5Even if P has more than one point, au may be the same as a−u if the weight of au is
very high.

s(au ,u) + s(b−u ,−u) ≥ s(p,u) + s(q,−u). If p , au = a−u then by

definition s(bu ,u) ≥ s(p,u) and s(a−u ,−u) ≥ s(q,−u), so s(au ,u) +
s(b−u ,−u) ≥ s(bu ,u) + s(a−u ,−u) ≥ s(p,u) + s(q,−u). In any case

we have that s(ξu ,u) + s(ξ−u ,−u) ≥ s(p,u) + s(q,−u) for any p,q ∈
P \ Sl−1.

Assume that the algorithm finds the farthest pair p′,q′ in the

end of round l and consider any pair of points p,q ∈ P \ Sl−1.
Let ū ∈ N be a vector such that ū = argmaxu ∈N〈p − q, ū〉, i.e.,
d(p,q) = 〈p − q, ū〉. The algorithm considers the vector ū and as

we showed in the previous paragraph it finds a pair ξū , ξ−ū such

that s(ξū , ū) + s(ξ−ū ,−ū) ≥ s(p, ū) + s(q,−ū). We conclude that

f ′
d
(p′,q′) ≥ s(ξū , ū)+s(ξ−ū ,−ū) ≥ s(p, ū)+s(q,−ū) = f ′

d
(p,q). The

lemma follows. �

By Lemma 2.1, the algorithm at each step chooses the farthest

pair of P under the metric f ′
d
and deletes them from P, and repeats

this stepk/2 times. The argument in [26] implies that
∑
p,q∈S f

′
d
(p,q)

≥ 0.5maxR⊂P, |R |=k
∑
p,q∈R f

′
d
(p,q). By combining this inequality

with observation (B), we obtain that
∑

p,q∈S
f ′(p,q) ≥ (0.5 − ε)

∑

p,q∈S∗
f ′(p,q).

Hence, putting everything together we obtain the following result.

Theorem 2.2. Given a set P of n non-negatively weighted points

in Rd , an integer k ≤ n, a constant ε ∈ (0, 0.5), and a parameter

λ ≥ 0, a subset S ⊆ P of k points can be computed in O(n + k logk)
time such that f (S) ≥ (0.5 − ε)f (MS(P,k)).

Cevallos et al. [17] presented a (1− 2
k
)-approximation algorithm

with O(nk2 logk) running time for the remote-clique problem as-

suming that the distance function is metric and of negative type.

Equivalently, for constant ε ∈ [ 2
k
, 1) their algorithm gives a (1 − ε)-

approximation in O(nk2) time. Negative type distances are defined

as follows. Let D ∈ Rn×n be the distance metric corresponding to

a distance function dist , i.e., Da,b = dist(a,b) for two items a,b.

Then we say that dist is of negative type if xTDx ≤ 0, ∀x ∈ Rn
with

∑n
i=1 xi = 0. Some examples of negative type distances are lp

norms, the cosine distance, the Jaccard distance [36]. We get the

next theorem by showing that the metric function f ′ is of negative
type.

Theorem 2.3. Given a set P of n points in Rd , an integer k ≤ n, a
constant ε ∈ [ 2

k
, 1), and a parameter λ ≥ 0, a subset S ⊆ P of k points

can be computed inO(nk2) time such that f (S) ≥ (1− ε)f (MS(P,k)).

Proof. Here we show that the distance function f ′ is of nega-
tive type, so we can use the algorithm from [16] to get the same

approximation for the MSD problem.

Let D ∈ Rn×n be the distance matrix, such that Di , j = f ′(pi ,pj )
if i , j and Dii = 0. Furthermore, let D1 ∈ Rn×n be the distance

matrix, such thatD1
i , j =

λ
k−1 (w(pi )+w(pj )) if i , j andD

1
ii = 0, and

let D2 ∈ Rn×n be the distance matrix, such that D2
i , j = | |pi − pj | | if

i , j and D2
ii = 0. Notice that D = D1

+ D2. Let x ∈ Rn be a vector

with
∑n
i=0 xi = 0. We need to show that xTDx ≤ 0. It is known

that xTD2x ≤ 0 [36], so if we also show that xTD1x ≤ 0 the lemma
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follows.

xTD1x =
∑

i , j

xiD
1
i jx j =

n∑

i=1

xi

n∑

j=1, j,i

x j
λ

k − 1 (w(pi ) +w(pj ))

= 2
λ

k − 1

n∑

i=1

w(pi )xi
n∑

j=1, j,i

x j = −2
λ

k − 1

n∑

i=1

w(pi )x2i ≤ 0.

The last inequality holds because we always consider non-negative

weights.

Hence, the distance function f ′ is of negative type and the theo-

rem follows. �

While the approximation ratio of this algorithm is better than

what we presented in Theorem 2.2 (for k > 4), the running time is

much slower.

P is implicitly represented. Suppose P is implicitly represented

by a set B and an index Φ defined as follows. B = {B1, . . . ,Bs }
is a set of pairwise disjoint orthogonal boxes, where s = O(kε−d ),
such that (i) P ⊆ ⋃s

i=1 Bi , (ii) for each j, |P ∩ Bj | ≥ 1, and (iii) for

each j, diam(Bj ) ≤ ε
4γ
∗ where γ ∗ is the radius of optimal k-center

clustering of P and diam(Bj ) is the diameter of box Bj . Φ is such

that, for a query box B, the points of P ∩ B are enumerated in

decreasing order of their weights one-by-one on demand in τ (n)
per point after an initial query time of φ(n) = Ω(logn).

Figure 2. A point set P (in black) contained in boxesB whose centers are shown in
red. For each box Bi ∈ B, we treat the points P ∩ Bi as if they coincide with the
center bi of Bi .

We now describe how to adapt the above algorithm to work with

this representation of P. At a high level, we perturb the locations

of all point in P ∩ Bi to the center bi of Bi (see Figure 2). Let P̃ be

the resulting set of perturbed points. We run the above algorithm

on P̃. Since the points in P̃ have k distinct locations, the algorithm

can be implemented in O(k(τ (n) + φ(n))) time.

Let N be as above except that we ensure that d(p,q) ≥ (1 −
ε/4) ‖p − q‖. For each vector u ∈ N, we construct the list P̃u of k

highest score points with respect to u, as follows. By querying Φ

with all boxes of B, we choose the point of the maximum weight

from each box. (Since all points in P̃ ∩ Bi , for any i , have the same

location the ranking of their scores is the same as that of their

weights.) We add all these points in a priority queue Lu with the

score of the point as the key. We repeat the following k times: We

remove the maximum score point p̃ from Lu and add p̃ to P̃u . If

p̃ ∈ Bi , we retrieve the point of P̃ ∩ Bi of the next largest weight
and add it to the queue Lu . After k iterations we have the set P̃u .

It takes O(kφ(n)) time to initially query with each box of B, and

then we retrieve a total of k additional points in a total time of

O(kτ (n)). We also spend O(k logk) = O(kφ(n)) time to perform k

insert/delete operations on the priority queue Lu . Hence, P̃u can

be computed in O(k(τ (n) + φ(n))) time.

After having computing all P̃u ’s, we run the remainder of the

algorithm from Theorem 2.2 as above and compute a set S̃ of k

points such that f (̃S) ≥ (0.5 − ε/4)f (MS(̃P,k)). Finally, we perturb
the points of S̃ back to their original locations and return those

points as the desired S. The correctness of the algorithm follows

from the following lemma.

Lemma 2.4. f (MS(̃P,k)) ≥ (1 − ε/2)f (MS(P,k)).

Proof. From [14], we have that γ ∗ ≤ π (RC(P,k ))
(k2)

, where γ ∗

is the radius of optimal k-center clustering of P. Since we have

non-negative weights it follows that for λ > 0, π (RC(P,k)) ≤
f (MS(P,k)) and hence γ ∗ ≤ f (MS(P,k))

(k2)
. We conclude that,

f (MS(̃P,k)) ≥ f (MS(P,k)) − 2 ε
4
γ ∗

(
k

2

)
≥ (1 − ε/2)f (MS(P,k)).

�

Combining Lemma 2.4 with Theorem 2.2 we obtain the following.

Lemma 2.5. Assuming the implicit representation of P as defined

above, a subset S ⊆ P of size k can be computed in O(k(τ (n) + φ(n)))
such that f (S) ≥ (0.5 − ε)f (MS(P,k)).

Remark. Using the implicit representation of P as defined above,

we can also run the algorithm from Theorem 2.3. Skipping the

details, for a constant ε ∈ [ 4
k
, 1), and parameters k, λ a subset S ⊆ P

of size k can be computed in O(k3 + k(τ (n) + φ(n))) time such that

f (S) ≥ (1 − ε)f (MS(P,k)).
Dependency on parameter ε . For the algorithm of Theorem 2.2

we have that the number of different unit vectors we consider

is |N| = O(ε−(d−1)/2), hence the total running time of the algo-

rithm is O((n + k logk)ε−(d−1)/2). It also follows that the runtime

in Lemma 2.5 is O(kε−dφ(n) + ε−(d−1)/2(kε−d + k(τ (n) + logk))).
Following the analysis of [17] the algorithm in Theorem 2.3 runs

in O(nk2 log ε−1) time.

2.2 MMD Problem

P is given explicitly. Given P,k and λ, the MMD problem asks

to return a subset T∗ of k points that maximizes the utility func-

tion f (T) = µ(T) + λminp∈Tw(p), where for a point set X , µ(X ) =
minp,q∈X ;p,q ‖p − q‖ is the closest pair distance ofX . Letp1, . . . ,pn
be the points of P sorted in non-increasing order of their weights

and let Pi = 〈p1, . . . ,pi 〉. If the minimum weight point of T∗ is pi ,
then T∗ is the optimal solution of the remote-edge (RE) problem

for Pi , i.e., it is a subset of Pi of size k with the largest closest-pair

distance. Hence, a ∆-approximate solution of the MMD problem

on P can be obtained by computing a ∆-approximate solution of
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the RE problem for each Pi and returning the one with the max-

imum utility. Using the 0.5-approximation algorithm for the RE

problem by Tamir [42], we can compute a 0.5-approximate solution

for the MMD problem inO(n2k). Instead of solving the RE problem

for each Pi separately, we present an algorithm that maintains a

(0.5 − ε)-solution of the RE problem under insertion of new points.

The solution can be updated in O(logk) amortized time per inser-

tion resulting in anO(n logk) time algorithm. Our algorithm closely

follows an improved version of the so-called “doubling algorithm”

for maintaining a k-center solution under the streaming framework

[19, 24, 34]. However, these algorithms require O(k logk) time to

update the solution. We therefore need a number of new ideas to

improve the update time as well as to adapt the algorithm to the RE

problem. We first give an overview of the algorithm, which closely

resembles the description in [24], and then describe the details of

the update procedure, which is where most of the new ideas are

needed.

Overview of the algorithm. Let RE(P) denote an optimal remote-

edge solution and ψ (P, S) denote maxp∈Pminq∈S ‖p − q‖ for any
point sets P and S. We define an (r , ε)-packing [25] of a point set

P to be a subset S ⊆ P that meets two properties: (i) covering,

ψ (P, S) ≤ (1+ε)r , and (ii) separation, µ(S) ≥ r . We refer to the value

r of an (r , ε)-packing as the packing’s radius.
We fix a constant ε ∈ (0, 0.5). Set J to be the smallest integer such

that (1+ ε)J ≥ 1+ ε−1; J = O(ε−1 log ε−1). Set α := (1+ ε)J . Denote
by Pt the subset of points processed so far. Our algorithmmaintains

J radii ri , r2, . . . , r J and, for each radius ri , both an (ri , ε)-packing
Si for Pt of size less than k and a subset Ti of size exactly k such that

µ(Ti ) ≥ ri/α . Furthermore, the algorithm maintains the invariant

that the largest radius rx and smallest radius ry are such that rx ≥
αry/(1 + ε). It then follows that µ(Tx ) ≥ 0.5(1 + ε)−2ψ (Pt , Sy );
the second inequality follows from the fact that covering the k

points RE(Pt ) with fewer than k points requires radius at least

0.5µ(RE(Pt )). Tx is the desired RE solution for Pt . Setting ε :=

ε/5 before running the algorithm, we obtain the approximation

guarantee of (0.5 − ε).
Suppose p1, . . . ,pt have been processed by the algorithm and

the invariants above hold. Let pt+1 be the next point to be inserted.

We perform the following steps for each i ∈ {1, . . . , J }. If there
is a point q in Si such that ‖pt+1 − q‖ ≤ ri , no update is needed

on ri , Si , Ti . If ‖pt+1 − q‖ > ri , we add pt+1 to Si . If |Si | becomes

k after inserting pt+1 then the radius ri is increased, Ti is set to

Si , and Si is set to a maximal subset S′i ⊂ Si such that µ(S′i ) ≥
ri for the new value of ri . After all ri ’s have been updated, we

record xt+1 = argmaxi≤ J ri and mark the corresponding Txt+1
as the desired remote-edge solution. We also compute f (Txt+1 ),
the utility of Txt+1 . After having processed all points, we compute

i∗ = argmaxt ≤n f (Sxt ) and return Txi∗ as the desired subset of k

points.

Next we describe how each point can be inserted in O(logk)
amortized time.

Details of the algorithm. To process each point of P efficiently,

instead of maintaining Si , Ti explicitly we maintain three subsets

Ai ,Ni ,Di where Si = Ai ∪ Ni , Ti = Ai ∪ Di . Intuitively, Ni and

Di are buffers that store the points recently inserted into Ai and

deleted from Ai , respectively; see below for details.

To initialize the algorithm, read the first k points in the stream,

Pk . Then set ri := (1 + ε)i µ(Pk )/α , and Ai ,Ni ,Di := ∅ for all

i ∈ {1, 2, . . . , J }. For each i ≤ J we construct a dynamic index

ECPi for maintaining the closest-pair of Ai ∪Ni (which is the same

as Si ). This concludes the initialization. Continue with the following

update procedure from the beginning of the stream. It is implied in

the following that ECPi is updated accordingly whenever a point

is inserted to or removed from Ai or Ni .

Next, we describe how we update ri ,Ai ,Ni ,Di when we insert

a new point p. First, we check if p is within distance ri of a point

in Ai ∪ Ni as follows. We insert p to ECPi , query it to find the

closest pair in Ai ∪ Ni ∪ {p}, then remove p from ECPi . If p is in

the reported closest pair and the distance between the pair is less

than ri , we are done. Otherwise we insert p to Ni . If |Ai ∪ Ni | = k
after the insertion, then we set ri := α

mri wherem is the smallest

integer such that αmri > µ(Ai ∪ Ni ). To determinem, we compute

µ(Ai∪Ni ) by querying ECPi . We setAi := Ai∪Ni andDi ,Ni := ∅,

then prune Ai as follows.

Intuitively, we want to find a maximal subset of Ai such that

µ(Ai ) ≥ ri . We achieve this by repeatedly querying ECPi for the
closest pair of points in Ai and carefully removing at least one of

the pair’s points from Ai until it has the desired properties. At the

start of the pruning process, let I := ∅ be an empty set. Then let p,q

be the closest pair in Ai . If ‖p − q‖ ≥ ri , it must be that µ(Ai ) ≥ ri
as desired, and the pruning stops. Otherwise, we delete at least one

of p or q as follows. If p,q < I then we check if either p or q are

covered by I , i.e., there is a point p′ ∈ I or q′ ∈ I such that ‖p − p′‖
or ‖q − q′‖ are less than ri , respectively. If neither such p′ or q′
exist, then we addp to I , deleteq from Ai , then addq toDi . If at least

one of p,q is covered by I then we delete the covered point from Ai ,

add it to Di , and add the uncovered point to I . This concludes the

case where p,q < I . Otherwise, without loss of generality, p ∈ I and
q < I in which case we delete q from Ai , add q to Di , and add p to I .

This concludes how we handle the closest pair p,q obtained from

ECPi . The above, starting with the closest pair query, is repeated

until µ(Ai ) ≥ ri . This concludes the pruning process.
We note that the two cases for the closest pair p,q are exhaustive;

the procedure above ensures that not both points p,q of the closest

pair can be in I . We also note that we can check if a point p is

covered by a point in I by maintaining another index for closest-

pair queries on I , and using it similarly as we do ECPi to get the

minimum distance from p to the points in Ai ∪Ni at the beginning

of the update procedure.

Finally, we note that we maintain the index of the largest packing

radius, xt , and the corresponding Axt ,Dxt . To compute xt after

each t-th update, we maintain another index for closest pair queries

on Ai ∪ Di for all i ≤ J , then query each of them and set xt to the

largest distance returned. Using ideas from persistent indexes, we

record the changes to Ai and Di for all i ≤ J so that we need O(1)
space per change and Txt , for any t , can be reported in O(k) time.

This concludes the entire update procedure.

Analysis. We describe a charging scheme so that each point

p ∈ P is charged at most O(1) operations. Fix a point p ∈ P and

an integer i ∈ {1, 2, . . . , J }. Consider the update performed after

readingp from the stream. If ri is not increased in the update, then it

is easy to verify onlyO(1) operations are done. If ri is increased, then
Ai is pruned. In each iteration of the pruning step, O(1) operations
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are done, and at least one of them is the deletion of a point from

Ai . Since any point is inserted to and deleted from each subset

Ai ,Ni ,Di at most once, any point is charged O(1) total operations
by this scheme. We maintain the invariant that |Ai ∪ Ni | ≤ k

throughout the algorithm, so each operation involving ECPi takes
O(log |Ai ∪Di |) = O(logk) time using the index of Bespamyatnikh

[10]. All other operations take constant time. Thus,O(logk) time is

charged to every point for each i ∈ {1, 2, . . . , J }. We have J = O(1),
so the algorithm takes O(n logk) assuming P is sorted by weight.

Sorting P takes O(n logn) time, so the overall runtime is O(n logn).
Since our algorithm is primarily a fast implementation of the

algorithms of Guha [24] and McCutchen and Khuller [34], the

correctness of it is implied by their analyses. For purposes of self-

containment, we include a full analysis in Appendix A. Putting

everything together, we obtain the following.

Theorem 2.6. Given a set P of n non-negatively weighted points

in Rd , an integer k ≤ n, a constant ε ∈ (0, 0.5), and a parameter

λ ≥ 0, a subset S ⊆ P of k points can be computed in O(n logn) time

such that f (S) ≥ (0.5 − ε)f (MM(P,k)).
P is implicitly represented. We use the following implicit rep-

resentation of P which is the same as the one described in Sub-

section 2.1 for the MSD problem. Let B = {B1, . . . ,Bs } be a set

of s = O(kε−d ) boxes with the same properties as in the implicit

representation of the MSD problem, and let Φ be an index that, for a

query box B, can enumerate the points of P∩ B in decreasing order

of their weights one-by-one on demand in τ (n) per point, after an
initial query time of φ(n) = Ω(logn).

We now describe how to adapt the above algorithm to work

with this representation of P. For each box Bi ∈ B, we obtain the

heaviest point pi ∈ P ∩ Bi by querying Φ. Let H1 be the set of

these O(k) points, and let H2 be the set of k heaviest points in P

by computing the bounding box B̂ of
⋃
i Bi and querying Φ with B̂.

We run the above algorithm from Theorem 2.6 on H := H1 ∪ H2

in O(|H| log |H|) = O(k logk) time. It takes O(k(φ(n) + τ (n))) time

to compute H1 and O(φ(n) + kτ (n)) time to compute H2, hence

H1 ∪H2 can be computed inO(k(φ(n)+τ (n)) time. The correctness

of the algorithm follows from the following lemma.

Lemma 2.7. f (MM(H1 ∪ H2,k)) ≥ (1 − ε/2)f (MM(P,k)).

Proof. From [14], we have that γ ∗
k
≤ µ(RE(P,k)) where γ ∗

k
is the radius of optimal k-center clustering of P. Since we have

non-negative weights it follows that for λ ≥ 0, µ(RE(P,k)) ≤
f (MM(P,k)) and hence γ ∗

k
≤ f (MM(P,k)).

Consider an optimum solution O = MM(P,k). If µ(O) ≤ ε
4γ
∗
k
,

then λminp∈O w(p) ≥ (1 − ε
4 )f (O). In this case, we have

minp∈H2
w(p) ≥ minp∈O w(p), so f (MM(H2,k)) ≥ (1 − ε

4 )f (O).
Otherwise, µ(O) > ε

4γ
∗
k
≥ diam(Bi ) for all Bi ∈ B where the

second inequality follows from the properties of B. It follows that

|O ∩ Bi | ≤ 1 for all Bi ∈ B. Let pi be the point in Bi ∩O (if any) for

each Bi ∈ B. By construction, there is a unique point qi ∈ Bi ∩ H1

withw(qi ) ≥ w(pi ). It follows that

f (MM(H1,k)) ≥ f (O) − 2 ε
4
γ ∗
k
≥ (1 − ε/2)f (O).

In either case above, we have f (MM(Hi ,k)) ≥ (1 − ε
2 )f (O) for

some i ∈ {1, 2}. Since f (MM(H1 ∪ H2,k))
≥ f (MM(H1,k)), f (MM(H2,k)) always, we are done. �

Combining Lemma 2.7 with Theorem 2.6 we obtain the following.

Lemma 2.8. Assuming the implicit representation of P is as defined

above, a subset S ⊆ P of size k can be computed in O(k(τ (n) + φ(n)))
time such that f (S) ≥ (0.5 − ε)f (MM(P,k)).

Remark. When P is given explicitly, the construction ofH1∪H2

can be improved to onlyO(n) expected time, which in turn improves

the total runtime to O(n + k logk) in expectation as follows6. First,

we compute a 2-approximate k-center radius γ for P using the

(expected) linear-time algorithm of Har-Peled and Raichel [25]; that

is, γ ∗
k
≤ γ ≤ 2γ ∗

k
where γ ∗

k
is the optimal k-center radius for P. Set

δ := εγ/4
√
d . Consider the axis-aligned grid in Rd with sidelength

δ . For each point p ∈ P, compute the grid cell containing it, and

let B be the set of all such grid cells that contain the points in P.

It follows that |B| = O(kε−d ) = O(k) [5]. Note that B satisfies the

properties of the implicit representation described in Subsection 2.1.

After computing P∩Bi for each Bi ∈ P by bucketing, the subsetsH1

(the subset of heaviest points in each Bi ∈ B) andH2 (the k heaviest

points in P) required can be easily computed in O(n) time overall

using a selection algorithm. As above, we then run the algorithm

from Theorem 2.6 on input H1 ∪ H2 in O(k logk) time to obtain

the solution. By Lemma 2.7 and Theorem 2.6 we conclude to the

following theorem.

Theorem 2.9. Given a set P of n non-negatively weighted points in

R
d , an integer k ≤ n, a constant ε ∈ (0, 0.5), and a parameter λ ≥ 0,

a subset S ⊆ P of k points can be computed in O(n logk) time or

O(n + k logk) expected time such that f (S) ≥ (0.5 − ε)f (MM(P,k)).

Dependency on parameter ε . When ε is not a constant, the

algorithm of Theorem 2.6 takesO(nε−1 logk log ε−1) time to stream

over the points after they have been sorted in O(n logn) time. It

follows that the runtime in Lemma 2.8 is O(kε−dτ (n) + kφ(n) +
kε−d−1 logk log ε−1), and the runtime of the algorithm from Theo-

rem 2.9 is O(n + kε−d−1 logk log ε−1).

3 INDEXES FOR MSD AND MMD RANGE

QUERIES

In this section we describe indexes that answer MSD and MMD

range queries efficiently with good approximation ratios. As men-

tioned in the Introduction our main idea is that given a query

rectangle ρ, we obtain an implicit representation of P ∩ ρ and we

use the algorithms described in Section 2 that work with an im-

plicit representation of P ∩ ρ. We use the following two indexes to

compute the implicit representation of P ∩ ρ:
Abrahamsen et al. [1] describe an index to answer a range Eu-

clidean k-center query. We use the following property of their index.

Given a set P of n points in Rd an index Ψ(P) of size O(n logd−1 n)
can be constructed in O(n logd−1 n) time such that given a rectan-

gle ρ, an integer k ≥ 1, and a constant ε ∈ (0, 1), a collection of

interior-disjoint rectangles B can be computed in O(k logd−1 n)
time such that P ∩ ρ ⊆ B and |B| = O(kε−d ), and for all B ∈ B,

|P ∩ B | ≥ 1 and diam(B) ≤ ε
4γ
∗
k
(P ∩ ρ), where γ ∗

k
(X ) is the radius

of the optimum k-center of X .

6Using the deterministic 2-approximation algorithm of Feder and Greene [21] instead
to construct H1 ∪ H2 results in an overall deterministic runtime ofO (n logk ).
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The second index we use is by Rahul et al. [37] for answering

top-k range queries. Given a set P of n weighted points in Rd an

index Φ(P) of size O(n logd n) can be constructed in O(n logd n)
time such that for a rectangle ρ, a query is initialized inO(logd−1 n)
time and the points of P ∩ ρ can be reported sequentially in an

non-increasing order of their weights, in an on-demand fashion,

and in O(log logn) time per point.

MSD range queries. Given P ⊂ Rd , we construct an index for

the range MSD problem that returns a (0.5 − ε)-approximation of

the optimum answer for a query rectangle ρ. In this index, the

parameters k, ε , and λ can be specified by a user as part of the query.

More precisely, we build the index Ψ := Ψ(P) on P and the index

Φ := Φ(P) on P. The size of the overall index is O(n logd n), and it

takes O(n logd n) time to build Ψ and Φ.

Given a query rectangle ρ, and parameters k, λ, ε , we first query

Ψ with ρ, k , and ε to obtain the rectanglesB = {B1, . . . ,Bs }, where
s = O(kε−d ), that cover all points in P ∩ ρ. Next, for each Bi ∈ B,
we initiate a query on Φ with Bi and enumerate the points of P∩Bi
in a non-increasing order of their weights as needed. Finally, we

run the MSD algorithm with this implicit representation of P ∩ ρ.
Since τ (n) = O(log logn) and φ(n) = O(logd−1 n) by Lemma 2.5 we

obtain the following.

Theorem 3.1. Given a set P of n non-negatively weighted points in

R
d , an index can be constructed inO(n logd n) time withO(n logd n)

space such that for a query rectangle ρ, an integer k ≤ n, a constant
ε ∈ (0, 0.5), and a parameter λ ≥ 0, a subset S ⊆ P ∩ ρ of k points

can be computed in O(k logd−1 n) time such that f (S) ≥ (0.5 −
ε)f (MS(P ∩ ρ,k)).

Remarks. i) If the constant ε is fixed then we can construct

copies of the index Φ(P) from [37] for each direction u ∈ N, where
the weight of a point p ∈ P is the inner product 〈p,u〉 and answer

a range MSD query in time O(logd−1 n + k log logn). We describe

the full details of the index in Appendix B.

ii) Using the same indexes above, we can use Theorem 2.3 and

the remark in the end of Subsection 2.1 to construct an index of

size O(n logd n) that computes an (1 − ε)-approximation for MSD

range queries in O(k3 + k logd−1 n) time.

MMD range queries. Using the same indexes as in the MSD

range query, and the result of Lemma 2.8, we obtain the following.

Theorem 3.2. Given a set P of n non-negatively weighted points in

R
d , an index can be constructed inO(n logd n) time withO(n logd n)

space such that given a rectangle ρ, an integer k ≤ n, a constant

ε ∈ (0, 0.5), and a parameter λ ≥ 0, a subset S ⊆ P ∩ ρ of k points

can be computed in O(k logd−1 n) time such that f (S) ≥ (0.5 −
ε)f (MM(P ∩ ρ,k)).

Dependency on parameter ε . When ε is not a constant, the

index of Abrahamsem et al. takesO(kε−d+1 logd−1 n+kε−d ) time to

report theO(kε−d ) boxes. From Lemma 2.5 and the discussion at the

end section Subsection 2.1, it follows that MSD range queries take

O(kε−d (logd−1 n + ε−(d−1)/2)). From Lemma 2.8 and the discussion

at the end section Subsection 2.2, it follows that MMD range queries

take O(kε−d logd−1 n + kε−d−1(logd n + logk log ε−1)) time.

4 CONSTRAINED OPTIMIZATION

In this section we present efficient indexes for the constrained

diverse top-k (CDT) problem.

4.1 A coarse-approximation index

We first describe a greedy algorithm for the offline version of the

CDT problem, which will be used by the query procedure of our

index. We run the following operations k times or until there is no

point left in P: Find the heaviest point p in P. Remove all points

of P within distance δ from p, including p itself. This procedure

returns a set S of at most k points. It is trivial to observe that

minp,q∈S | |p − q | | ≥ δ .
Let C∗ be an optimal CDT solution for P. Let pi ∈ P be the

point selected by the greedy algorithm in the i-th iteration, and

let Ci ⊆ C∗ be the set of points in the optimal solution that are

removed in iteration i . By construction,

w(pi ) ≥ max
p∈Ci

w(p) ≥ 1

|Ci |
·w(Ci ).

A packing argument shows that |Ci | ≤ 2O (d ). Hence, w(pi ) ≥
0.5O (d )w(Ci ). We claim that C∗ =

⋃
Ci . Indeed, if there is a point

p ∈ C∗ \ ⋃Ci , then |S| = k , there is an i such that Ci = ∅ and

w(()p) < w(()pi ). We can obtain a better CDT solution of P by

replacing p with pi in C
∗, which contradicts the optimality of C∗.

Hence,
∑
w(Ci ) = w(C∗) = w(CD(P,k, δ )). Thus,

w(S) =
∑

w(pi ) ≥ 0.50(d )
∑

w(Ci ) = 0.5O (d )w(CD(P,k, δ )).

Next, we describe an index that, for a query rectangle ρ, enables

us to run inO(k logd n) time a slightly relaxed version of the above

procedure in which δ is a soft constraint, see below.

Index. The main index that we build is the balanced box de-

composition tree (or BBD tree for short) [7, 8], a variant of the

quadtree. A BBD-tree T on a set P of n points in Rd is a binary

tree of height O(logn) with exactly n leaves. Let � be the smallest

axis-aligned hypercube containing P. Each nodeu ofT is associated

with a region �u , which is either a rectangle or a region between

two nested rectangles, and a subset Pu ⊆ P of points that lie inside

�u . Notice that �root = �. If |Pu | = 1, then u is a leaf. If |Pu | > 1,

then u has two children, say, w and z, and �w and �z partition

�u (see Figure 3). Regions associated with the nodes of T induce a

hierarchical partition of Rd .7

✟u ✟u

✟z✟w ✟w ✟z

u

zw

u

zw

Figure 3. Two example BBD subtrees with identical regions �u at the root nodes.
On the left,�u is split by a vertical line. On the right,�u is split into�w ,�z by a
rectangle.

7A BBD-tree can be viewed as a generalization of a kd-tree that combines the features
of kd-trees and quadtrees and is similar to hB-trees [30] used for answering range
queries.
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S ⊆ ρ ⊕ [0, εδ ]d , µ(S) ≥ δ , andw(S) ≥ (1 − ε)CD(P,k, δ ). We note

that unlike the previous index, some points of S may lie outside ρ

(but within distance εδ from ρ). Since δ is fixed in the beginning,

without loss of generality, we assume δ = 1.8 Furthermore, for any

set A ⊆ Rd and for an integer i > 0, we use CD(A, i) to denote

CD(A, i, 1). Finally, let Ti (A) denote the pair (CD(A, i),w(CD(A, i)))
and T(A) = {T1(A), . . . ,Tk (A)}.

We observe that the problem is decomposable in the following

sense: We call point sets A,B well-separated if the closest distance

between A and B is greater than 1 (recall δ = 1), i.e., ‖p − q‖ > 1

for all p ∈ A and q ∈ B (by definition, A ∩ B = ∅). Then, for any i

and well-separated subsets A,B, we have

CD(A ∪ B, i) = CD(A, j) ∪ CD(B, i − j)

for some j ≤ i . Now let S be a set of points that can be partitioned

into pairwise well-separated subsets S1, S2, . . . , Sm . For t ≤ m, set

Xt =
⋃
j≤t St . The previous observation implies that for any t ≤ m,

w(CD(Xt , i)) = max
0≤j≤i

w(CD(Xt−1, i − j)) +w(CD(St , j))

where X0 = ∅. Using the recurrence and dynamic programming,

T(X1), . . . ,T(Xm ) = T(S) can be computed in a total of O(mk2)
time assuming we have T(S1), . . . ,T(Sm ) at our disposal.

We are now able to describe our index, which critically uses the

above observation. For sake of exposition, we begin by describing

an offline algorithm in 1D similar to that of Hunt et al. [27] and

Matsui [33]. Then we describe the index for 1D, and finally describe

the index in higher dimensions.

1D offline algorithm. Let P be a set of n points in R1. Without

loss of generality, assume that no point in P has an integer value.

We describe a (1−ε)-approximation algorithm to compute CD(P,k)
using the shifted grid technique [27, 29, 33].

�✁ �✂ �✄

(a)

(b)

(c)

Figure 5. An example with r = 3. (a) The grid points ofG1,G2,G3 are shown in red,
blue, and green, respectively, and the grid points of F not in anyGi are shown in grey.

(b) The darkened intervals contain the points in P \ P(1) . (c) P(1) and the non-empty
cells C1, C2 , and C3 of G1 .

Set r = ⌈1/ε⌉. We create r gridsG0,G1, . . . ,Gr−1 over R1 where
Gi has grid points {i + ra | a ∈ Z}. Each grid cell has length

r = O(ε−1). Since no point in P has integer coordinates, each point

in P lies in exactly one grid cell for each Gi .

For each gridGi , we remove the points of P that are within dis-

tance 1 (recall that δ = 1) from the left endpoint of their containing

grid cells in Gi . Let P
(i) be the set of remaining points. Each point

p ∈ P is within distance 1 from the left endpoint of its containing

8If δ , 1, we can scale P as well as query rectangles by the factor 1/δ to ensure δ = 1

grid cell in exactly one grid and thus it remains in all but one grid.

See Figure 5. By a simple packing argument,

max
i<r

w(CD(Pi ,k)) ≥ (1 − ε)w(CD(P,k)).

Thus, the goal is to compute CD(P(i),k) for all i and then report

the best among them.

Fix a value of i .We computeCD(P(i),k) as follows. LetC1, . . . ,Cm

be the non-empty cells ofGi , and let St = Ct ∩ P(i) for each t ≤ m.

We describe below how we compute T(St ) for each t ≤ m. For now,

assume that we have T(St ) at our disposal. For 1 ≤ t < t ′ ≤ m, we

note that St , St ′ are well-separated because points of P ∩ Ct ′ lying

within distance 1 from the left endpoint of Ct ′ have been deleted.

Using the dynamic programming approach outlined above, we can

compute T(P(i)) and thus CD(P(i),k) in O(mk2) time.

We now describe the procedure for computing T(St ) for 1 ≤
t ≤ m. Notice that each grid cell Ct has length r , so CD(St , j) can
contain at most r points, even for j > r . To compute CD(St , j), we
consider all subsets of St of size at most min{j, r }. For each subset

X, we compute µ(X). If µ(X) ≤ 1 we set w(X ) = −∞, otherwise
we compute w(X ). We set CD(St , j) to be the subset X∗ with the

highest weight, and set Tj (St ) = (X∗,w(X∗)). The total time spent

is |St |O (r ) = |St |O (ε
−1). Summing this cost over all non-empty grid

cells of Gi and adding the cost of dynamic programming, the cost

of computing T(P(i)) is nO (ε−1). Putting everything together, we

obtain the following:

Lemma 4.3. Let P be a set of n points in R1 and let k, ε, δ be param-

eters. There exists an nO (ε
−1)-time (1 − ε)-approximation algorithm

to compute CD(P,k, δ ).
Index. Next, we describe an index that is used to implement the

above procedure efficiently in the range query setting.

Let r ,G0, . . . ,Gr−1 and P(0), . . . , P(r−1) be the same as above.

We construct a fine grid F of size 1/r , i.e., F = {a/r | a ∈ Z}. We

note that F is a refinement ofGi . We call an interval F -aligned if its

endpoints are grid points of F . For each i ≤ t , we build an index Ψ(i)
on P(i) that for a F -aligned query interval I , returns CD(P (i) ∩ I ,k).

The index Ψ
(i) consists of two parts. First, we build a 1D range

tree Λ(i) on the non-empty grid cells C1, . . . ,Cm ofGi . That is, Λ
(i)

is a height-balanced binary tree. Each node u ∈ Λ(i) is associated
with an interval σu and a subset Pu = P(i) ∩ σu of points. If u is

the i-th leftmost leaf then σu = Ci , and if u is an interior node

with childrenw and z then σu is the smallest interval containing

σw and σz . Each node u of Λ(i) stores T(P(i)u ). If u is a leaf, we

compute T(P(i)u ) using the brute-force approach described above.

If u is an interior node with children w and z, then we compute

T(P(i)u ) from T(P
(i)
w ) and T(P

(i)
z ) using dynamic programming, as

outlined above.

The total time spent constructing Λ
(i) is nO (ε

−1). Λ(i) has O(n)
nodes and each node requires O(k2) space to store T(P(i)u ). On the

other hand, a point of P(i) is stored in at most one node for any

fixed level, so it appears at most k times in a given T(P(i)u ), and Λ(i)
hasO(logn) levels. Putting these two bounds together, we conclude
that the size of Λ(i) is O(nk min{k, logn}).

The second part of the index Ψ
(i) consists of a set of tables. In

particular, let Ct be a non-empty grid cell of Gi , and let St = Ct ∩
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P(i). For every pair a,b of grid points of F within Ct , we compute

T(P(i) ∩ [a,b]) using the brute-force approach. The total size is

O(ε−4k2) for each Ct , and it takes |St |O (ε
−1) time to construct these

tables. The total size of these tables is O(nk), and we spend nO (ε
−1)

time to compute them. Hence, the size ofΨ(i) isO(nk min{k, logn}),
and the preprocessing time is nO (ε

−1).
Finally, we describe the query procedure. Let I be a query interval.

If I is not F -aligned, we extend I to the smallest F -aligned interval

containing I , so let us assume that I is F -aligned. Let CL (resp.

CR ) be the cell of Gi containing the left (resp. right) endpoint of

I . We split I into three sub-intervals: left interval IL = I ∩ CL ,

right interval IR = I ∩ CR , and middle interval IM = I \ (IL ∪ IR ).
Since I is F -aligned, IL (resp. IR ) spans a contiguous sequence of

refined grid cells within a single cell of Gi , so we already have

computed T(P(i) ∩ IL) (resp. T(P(i) ∩ IR )) during preprocessing. If

IM , ∅, we compute T(P(i) ∩ IM ) as follows: We query Λ
(i) with

IM and identify O(logn) nodes u1, . . . ,us such that σu1 , . . . ,σus
partition IM . Since P

(i)
u1 , . . . , P

(i)
us are well-separated and we have

precomputed T(P(i)uj ) for each j, we can compute T(P(i) ∩ IM ) in
O(k2 logn) time using dynamic programming. Finally, we compute

T(P(i) ∩ I ) from T(P(i) ∩ IL),T(P(i) ∩ IR ), and T(P(i) ∩ IM ), again
using dynamic programming. The total query time is O(k2 logn).

Repeating this for all r grids and returning the best among them,

we obtain a feasible subset of at most k points whose weight is at

least (1− ε)w(CD(P∩ I ,k)). Putting everything together, we obtain
the following:

Theorem 4.4. Given a set P of n points in R1, an integer k ≤
n, a constant ε ∈ (0, 1), and a parameter δ > 0, an index can be

constructed in nO (ε
−1) time withO(nk min{k, logn}) space such that

given an interval ρ, a δ -diverse k-set S ⊆ P ∩ (ρ ⊕ [0, ε]) with
w(S) ≥ (1− ε)w(CD(P∩ ρ,k, δ )) can be reported inO(k2 logn) time.

A modified index. We can get an index with faster query time

and smaller size that allowsk to be provided at query time at the cost

of allowing the index to answer queries with εk additional points.

For any set A ⊆ Rd , let T ε (A) denote the subset {T ⌊(1+ε )i ⌋ (A) | i ∈
Z. 0 ≤ i ≤

⌈
log1+ε |A|

⌉
} of T(A). To obtain the new index, we first

build the previous index for k = n. Then, for any set A for which

T(A)was stored in the index, we keep only T ε (A) instead. The size
of the resulting index is O((n/ε) logn) = O(n logn). For a query

interval I , we can compute a (1 − ε)-approximate solution S for

P∩ρ where |S| ≤ (1+ε)k and S ⊆ P∩(I ⊕[0, εδ ]) inO(k logk logn)
time. Note that query time is better than that of the previous index

when k >
√
logn. We refer the reader to Appendix C for the full

details and conclude with the following theorem.

Theorem 4.5. Given a set P of n points in R1, a constant ε ∈ (0, 1),
and a parameter δ > 0, an index can be constructed in nO (ε

−1) time

withO(n logn) space such that given an interval ρ and integer k ≤ n,
a δ -diverse k-set S ⊆ P ∩ (ρ ⊕ [0, ε]) withw(S) ≥ (1 − ε)w(CD(P ∩
ρ,k, δ )) can be reported in O(k logk logn) time.

Higher dimensions. Now, we discuss how to extend our index

to higher dimensions. We describe the index in R2, which extends

to d > 2 in a straightforward manner.

Set r =
⌈
2ε−1

⌉
and s = r2. We construct s 2-dimensional grids

G0, . . . ,Gs−1. For i < s , if i is of the form i = αr + β , where

α, β ∈ [0 : r − 1], then

Gi = {(α + ar , β + br ) | a,b ∈ Zd }.

We index a grid cell of Gi by its bottom-left vertex, i.e., by grid cell

(α, β) we mean the square [α,α + r ] × [β, β + r ]. Similarly by row

(resp. column) α wemean the strip R×[α,α+r ] (resp. [α,α+r ]×R).
For each cell of Gi , we remove the points of P that lie inside it and

within distance 1 from its bottom or left boundary. Let P(i) denote
the set of remaining points. We also construct a 2-dimensional fine

grid

F = {(a/r ,b/r ) | a,b ∈ Z}.
F is a refinement of every Gi . We call a rectangle F -aligned if its

vertices are grid points of F . For each i < s , we build an index

Ψ
(i) on P(i) that for a F -aligned rectangle ρ, returns CD(P(i) ∩ ρ,k).

For a query rectangle ρ, we compute CD(P(i) ∩ ρ,k) for all i < s
and return the one with the highest weight. Generalizing the 1D

argument, we can show that

max
i<s

w(CD(P(i) ∩ ρ,k)) ≥ (1 − ε)w(CD(P ∩ ρ,k)).

We now describe the index Ψ
(i). As in 1D, Ψ(i) consists of two

parts. First, we build a 2D range treeΛ(i) on the non-empty grid cells

C1, . . . ,Cm of Gi . The first level of Λ
(i), built on the x-projections

of C1, . . . ,Cm , is identical to the 1D range tree described above.

Each node u of the first level is associated with an x-interval Ix
and a collection Cu of non-empty grid cells. Next, we build a 1D

range tree Λ
(i)
u on the y-projections of the grid cells of Cu and

attach it as a second-level tree at u. If a nodew ∈ Λ(i)u is associated

with the y-interval Iw , then we also associate it with the rectangle

�w = Iu × Iw and the subset P
(i)
w = P(i) ∩ �w . We compute and

store T(P(i)w ) at w . Again, T(P
(i)
w ) is computed by brute-force if

w is a leaf and using dynamic programming otherwise. The total

size of Λ(i) isO(nk lognmin{k, logn}), and the time taken to build

Λ
(i) is nO (ε

−2). A useful property of Λ(i) is that for a rectangle ρ
aligned with grid cells ofGi , there areO(log2 n) second level nodes
u1, . . . ,ut in Λ

(i) such that �u1 , . . . ,�ut are pairwise disjoint and

contain all non-empty grid cells ofGi ∩ρ, and they can be computed

in O(log2 n) time.

The second part of the index is a collection of 1D indexes. Fix a

non-empty row ofGi , i.e., the strip Σα = R×[α,α +r ]. For a pair of
integers a < b such that [a/r ,b/r ] ⊆ [α,α + r ], i.e., R× [a/r ,b/r ] is
the union of a contiguous set of rows of F that lie inside row α ofGi ,

let Px
a,b

be the x-projection of points in P
(i)
a,b
= P(i) ∩R× [a/r ,b/r ],

i.e., Px
a,b
= {xq | (xq ,yq ) ∈ P(i),yq ∈ [a/r ,b/r ]}. For an interval I ,

let P
(i)
a,b
[I ] = {(xq ,yq ) ∈ P(i)a,b | xq ∈ P

x
a,b
∩ I }. By slightly adapting

the 1D index described above we build a 1D index Ψ
x
a,b

on Px
a,b

so

that for a F -aligned interval I , T(P(i)
a,b
[I ]) can be reported quickly.

We build O(ε−4) indexes for the row α of Gi , and repeat this step

for all non-empty rows of Gi . Next, we do the same for each non-

empty column of Gi , the only difference is that we work with the

y-projections of points. Summing over all rows and columns of Gi ,

the total size of these indexes is O(nk min{k, logn}), and they can

be constructed in nO (ε
−2) time.
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We now describe the query procedure. Let ρ = Ix × Iy , where
Ix = [αL,αR ] and Iy = [βL, βR ] be a query rectangle. If ρ is not F -

aligned, we set ρ to be the smallest F -aligned rectangle containing

ρ. So assume ρ is F -aligned. Suppose the bottom-left vertex (αL, βL)
of ρ lies in the cell (aL,bL) of Gi , and the top-right vertex (αR , βR )
of ρ lies in the cell (aR ,bR ) of Gi . We partition ρ into (at most)

four boundary rectangles ρ−x , ρ
+

x , ρ
−
y , ρ
+

y and (at most) one center

rectangle ρc as follows (see Figure 6): Assume that aR > aL + r

and bR > bL + r ; the other cases can be handled similarly. Set

ρc = [aL + r ,aR ] × [bL + r ,bR ], ρ−x = [αL,aL + r ] × [bL + r ,bR ],
ρ+x = [aR ,αR ] × [bL + r , βR ], ρ−y = [αL,αR ] × [βL,bL + r ], ρ+y =
[αL,αR ] × [bR , βR ].

a
L
+r a

R

✄-
y

✄+
y

✄+
x

✄-
x

✄
c

(a
R
+r,b

R
+r)

(a
R
,b

R
)

(�
L
,✁

L
)

(a
L
,b

L
)

(�
R
,✁

R
)✄

b
L
+r

b
R

Figure 6.An example of partitioning ρ into four boundary rectangles ρ−x , ρ
+

x , ρ
−
y , ρ

+

y

and a center rectangle ρc .

If ρc contains a grid cell ofGi , we queryΛ
(i) with ρc and identify

t = O(log2 n) nodes of the second level trees u1, . . . ,ut such that

�u1 , . . . ,�ut induce a partition of the non-empty grid cells of

ρc . Using T(P(i)u1 ), . . . ,T(P
(i)
ut ), we can compute T(P(i) ∩ ρc ) in

O(k2 log2 n) time. Next, by querying appropriate 1D indexes, we

compute T(P(i) ∩ ρ−x ),T(P(i) ∩ ρ+x ),T(P(i) ∩ ρ−y ),T(P(i) ∩ ρ+y ) in
O(k2 logn) time. Indeed, suppose we want to compute T(P(i)∩ρ−y ).
Since ρ is F -aligned, so is ρ−y . Let д = βL · r (i.e., βL = д/r ) and
h = (bL + r ) · r . Then P

(i)
д,h
= P(i) ∩ R × [βL,bL + r ]. Therefore

T(P(i) ∩ ρ−y ) can be obtained by querying Px
д,h

with the interval

Ix = [αL,αR ], which is F -aligned. Using the index Ψ
x
д,h

, we obtain

T(P(i)
д,h
[Ix ]) in O(k2 logn) time. We can handle other boundary

rectangles in a similar manner. Putting everything together, the

overall query time is O(k2 log2 n).
Finally, we remark that this index can be extended to d > 2 by

constructing a d-dimensional grid, a d-dimensional range tree, and

a family of (d − 1)-dimensional range trees. A query rectangle is

partitioned into (at most) one center rectangle and 2d boundary

rectangles – one for each facet of the query rectangle. The prepro-

cessing time, size, and query time in Rd are nO (ε
−d ),

O(nk logd−1 nmin{k, logn}), and O(k2 logd n), respectively.
The modified index can also be easily extended to higher dimen-

sions. Hence, we conclude the following:

Theorem 4.6. Given a set P of n points in Rd , an integer k ≤ n, a
constant ε ∈ (0, 1), and a parameter δ > 0, an index can be constructed

in nO (ε
−d ) time with O(nk logd−1 nmin{k, logn}) space such that

for a query rectangle ρ, a δ -diverse k-set S ⊆ P ∩ (ρ ⊕ [0, εδ ]d ) with
w(S) ≥ (1 − ε)w(CD(P ∩ ρ,k, δ )) can be reported in O(k2 logd n)
time.

Alternatively, an index can be constructed in nO (ε
−d ) time with

O(nk logd n) space such that for a query rectangle ρ and integer

k ≤ n, a δ -diverse ((1 + ε)k)-set S ⊆ P ∩ (ρ ⊕ [0, εδ ]d ) withw(S) ≥
(1 − ε)w(CD(P ∩ ρ,k, δ )) can be reported in O(k logk logd n) time.

Dependency on parameter ε . For d = 1, we haveO(ε−1) grids,
and the indexΨ(i) constructed for each grid is sizeO(nk min{k, logn}
+ nkε−4) so the total space is O(nkε−1(min{k, logn} + ε−4)). For
d = 2, we have O(ε−2) grids. For each grid, we construct the 2D

range tree Λ(i) of size O(nk lognmin{k, logn}) and O(ε−4) 1D in-

dexes of size O(nk(min{k, logn} + ε−4)). Hence, the total space

is

O(nkε−2(lognmin{k, logn} +min{k, logn}ε−4 + ε−8))

which is bounded by O(nkε−2(lognmin{k, logn} + ε−8)). It can be

shown by induction that for any d , our d-dimensional index has

size

O(nkε−d (logd−1 nmin{k, logn} + ε−4d )).
The query time can be easily bounded in O(k2ε−d logd n) time.

5 FUTURE WORK

There are still many interesting open problems to consider for

finding diverse high-valued subsets. For example: i) Can we get

(near-)linear time (1 − ε)-approximation algorithms for the MSD or

the MMD problem? Notice that all our algorithms have approxima-

tion ratio 0.5− ε , while all previous algorithms with approximation

ratio 1 − ε have superlinear running time. Similarly, we can ask if

there are near-linear size indexes that return (1− ε)-approximation

solutions efficiently. ii) Can we extend our methods from the Eu-

clidean space to metrics with constant doubling dimension? iii)

Finally, it remains an open question if the MSD problem is NP-hard

in the Euclidean space for constant dimension d .
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A MISSING PROOFS FROM SUBSECTION 2.2

Correctness of our algorithm. We will prove our algorithm

maintains the following invariants immediately before reading the

t-th point in the stream for each i ∈ {1, 2, . . . , J }:
(1) ri = α

mi (1 + ε)i µ(Pk ) for some integermi .

(2) (Ai ∪Ni ) is a (ri , ε)-packing of Pt−1 such that |Ai ∪Ni | < k .
(3) If t > k , then |Ai ∪ Di | = k and µ(Ai ∪ Di ) ≥ ri/α .
Suppose Pt−1 = 〈p1, . . . ,pt−1〉 have been processed by the al-

gorithm and the invariants above hold. Let p = pt be the next

point to be inserted, and fix i ∈ {1, 2, . . . , J }. The first step of the

update procedure is to compute a closest pair x,y in Ai ∪ Ni ∪ {p}.
If p ∈ {x,y} and ‖x − y‖ ≤ ri , then the update procedure termi-

nates with all invariants held. Otherwise, p < {x,y}, or p = x ,

without loss of generality, and ‖p − y‖ > ri . In the former case,

minq∈Ai∪Di ‖p − q‖ ≥ ‖x − y‖ ≥ ri by the second invariant. Thus,

in either case, we have µ(Ai ∪ Ni ∪ {p}) ≥ ri , so Ni is set to

Ni := Ni ∪ {p} during the update. For the new value of Ni , Ai ∪Ni

is a (ri , ε)-packing of Pt = Pt−1∪{p}. In the case that |Ai ∪Ni | < k ,
the procedure then stops with all invariants held.

When |Ai ∪ Ni | = k after inserting p to Ni , the update proceeds

by increasing ri by a factor of α , after which the the first invariant

holds. For purposes of analysis, denote by r̂i value of ri before the

increase; that is, the value of ri at the beginning of the entire update

procedure for point p. After increasing ri , we have r̂i ≤ ri/α ≤
µ(Ai ∪ Ni ) < ri . Then Ai is set to Ai ∪ Ni , Di is emptied, and the

pruning begins. In each iteration, a closest pair x,y in Ai is found

and at least one of x,y is deleted from Ai . Since every point deleted

from Ai is added toDi , during and after the pruning Ai ∪Di is equal

to the value of Ai ∪Ni immediately after ri was increased. It follows

that µ(Ai ∪Di ) ≥ ri/α and thus the third invariant holds when the

pruning is complete. It remains to show the second invariant holds

when the pruning is complete.

Since ri is increased by the smallest factor of α such that µ(Ai ) <
ri , at least one iteration of the pruning is performed and thus at

least one point is removed from Ai . This ensures that |Ai | < k after

the first iteration, and thus it holds when the pruning is complete.

For the second invariant to hold, it only remains to show Ai is a

(ri , ε)-packing of Pt in the end. Recall that a set I ⊆ Ai is maintained

during the pruning which is initially set to ∅. See that any point q

deleted from Ai during the pruning is found to be within ri distance

of a point p ∈ Ai ∩ I and that no point in I is deleted from Ai . Thus,

any deleted point is within ri distance of a point in Ai when the

pruning is complete; that is,ψ (Di ,Ai ) ≤ ri . As mentioned earlier,

Ai ∪ Di immediately after the pruning is the same as Ai ∪ Ni

immediately before ri was increased (from value r̂i ), and at that

time, Ai ∪ Ni was a (r̂i , ε)-packing of Pt . Since r̂i ≤ ri/α , we have
ψ (Pt ,Ai ∪Di ) ≤ (1+ ε)ri/α when the pruning stops. It follows that

ψ (Pt ,Ai ) ≤ ψ (Pt ,Ai ∪ Di ) +ψ (Di ,Ai ) ≤ (1 + ε)ri by the triangle

inequality and fact that 1/α < ε/(1 + ε). Finally, since µ(Ai ) ≥ ri
when the pruning is complete, we conclude Ai = Ai ∪Ni is a (ri , ε)-
packing of Pt of size less than k . Thus, the second invariant is met.

We conclude all invariants are held when the update is complete.

Next we prove the approximation guarantee of 0.5 − ε . Consider
any t ≤ n and the values of the radii ri and subsets St , Tt after

processing the t-th point. First, see that rx := maxi ri and ry :=

mini ri are such that rx ≥ (1 + ε)J−1ry = αry/(1 + ε) by the

first invariant and facts that α = (1 + ε)J and i ∈ {1, 2, . . . , J }
for all radii ri . By the third invariant, Tx = Ax ∪ Dx is such that

µ(Tx ) ≥ rx /α ≥ ry/(1 + ε). Furthermore, by the second invariant,

Sy = Ay ∪Ny is so thatψ (Sy , Pt ) ≤ (1+ε)ry , and thus we conclude
µ(Tx ) ≥ (1 + ε)−2ψ (Pt , Tx ) ≥ 0.5(1 + ε)−2µ(RE(Pt )). Choosing ε :=
ε/5 at the beginning of the algorithm results in an approximation

factor of (0.5 − ε) as desired.

B FASTER INDEXES FOR FIXED ε

We discuss the index for the remote-clique range queries for fixed

ε . In the end we extend it to handle MSD range queries.

Preprocessing. We construct an ε-net N. For each u ∈ N we

compute the projection of each point p ∈ P on u, 〈p,u〉 and we set

w(p) = 〈p,u〉. Then we construct the index Φu (P) on the weighted

point set P , where the weights are the inner products we computed.

In the end of the preprocessing phase we have builtO(1) indexes Φ.
In total, our index usesO(n logd n) space and can be constructed in

O(n logd n) time.

Query algorithm. The query procedure is similar to the algo-

rithm in Theorem 2.2. The only difference is that we query Φu to

get the next point in P ∩ ρ with the largest score (projection) on

a direction u and Φ−u to get the point in P ∩ ρ with the largest

score (projection) on direction −u. Each time that we get the point

with the next largest score on a direction u we check if it is already

added in S and if this is true then we ask for the next point with

the largest score on u.

Analysis. In order to initialize the points with the largest scores

on each direction in N we spend O(logd−1 n) time. Then notice

that we may ask at most O(k) times for the point with the next

largest score, so using the index from [1] we know that we spend

O(k log logn) in total to get the points with the largest scores after

the initialization. Finally, notice that we may visit all vectors in N

at most k times so in total our query procedure takes O(logd−1 n +
k log logn) time.

The correctness follows from the correctness proof of Theo-

rem 2.2, since at each iteration we find the farthest pair using the

polygonal metric.

We can also use that index for the MSD range queries. Unfor-

tunately, we cannot compute the scores of points if we do not

know k, λ in the preprocessing phase. However, we can get a set

S1 using the procedure above to approximate the remote-clique

and then by constructing an index Φ over the weighted points

we can find the k points S2 with the largest weights among the

points in P ∩ ρ. Then we compare π (S1) with λw(S2) and we re-

turn S1 if the former is larger than the latter, and we return S2,

otherwise. We can observe that in any case if S is the set we return

then f (S) ≥ (0.25 − ε)f (MS(P ∩ ρ,k)). It remains to show how to

compute π (S1) and λw(S2), given the sets S1, S2, in order to com-

pare them. It is trivial to compute λw(S2) in O(k) time by taking

the sum of the weights of the points in S2. We can also trivially

compute π (S1) by summing up all the pairwise distances in O(k2)
time. However, we would like to have query time which is linear

on k . We approximate π (S1) within an ε factor using WSPD’s.

We first give the definition of the WPSD’s. Given a set of n

points P and a separator parameter ε , in [13] the authors show

that there exists a setW = {(A1,B1), . . . , (As ,Bs ))} of s = O( nεd )

Session 4: Data Structures PODS ’20, June 14–19, 2020, Portland, OR, USA

226



pairs such that Ai ,Bi ⊂ P, Ai ∩ Bi = ∅,
⋃s
i=1Ai × Bi = P ×

P, max{diam(Ai ), diam(Bi )} ≤ ε minp∈Ai ,q∈Bi | |p − q | |, and for

any pair of points p,q ∈ P there exists a unique pair Aj ,Bj such

that p ∈ Aj and q ∈ Bj (or p ∈ Bj and q ∈ Aj ). Such a pair

decomposition is called 1
ε -WSPD and an implicit representation of

it can be constructed in O( n
εd
+ n logn) time [13, 25]. In particular,

a set of pair of representative points (ai ,bi ) where ai ∈ Ai , and
bi ∈ Bi for each i , can be computed, such that for any pair of

points p ∈ Ai and q ∈ Bi , (1 − ε)| |p − q | | ≤ | |ai − bi | | ≤ | |p−q | |1−ε . In

addition the cardinality of the sets Ai ,Bi can also be derived using

the construction algorithm in [13, 25].

By constructing an 1
ε -WSPDW = {(a1,b1), . . . , (as ,bs ))} over

the set S1 we compute τ =
∑s
i=1 | |ai −bi | | · |Ai | · |Bi |. We can easily

see that (1 − ε)π (S1) ≤ τ ≤ 1
1−ε π (S1). Hence, by comparing τ with

λw(S2) and by setting ε ← ε/c for a sufficiently large constant c

we get that, if τ ≥ λw(S2) then f (S1) ≥ (0.25 − ε)f (MS(P ∩ ρ,k)),
and if τ < λw(S2) then f (S2) ≥ (0.25 − ε)f (MS(P ∩ ρ,k)).

We conclude with the next theorem.

Theorem B.1. Given a set P of n points in Rd and a constant

ε ∈ (0, 0.25), an index can be constructed in O(n logd n) time with

O(n logd n) space such that given the parameters k and λ, and a rec-

tangle ρ, a set S ⊆ P∩ρ ofk points can be found inO(logd−1 +k log logn)
time such that f (S) ≥ (0.25 − ε)f (MS(P ∩ ρ,k)). The same index

can also guarantee a set S ⊆ P ∩ ρ of k points such that f (S) ≥
(0.5 − ε)f (RC(P ∩ ρ)), where RC(P ∩ ρ) is the optimum solution of

the MSD problem withw(p) = 0, for each p ∈ P.

C A MODIFIED INDEX

Here we prove Theorem 4.5. Recall the construction of the index de-

scribed in Theorem 4.4. Let r ,G0, . . . ,Gr−1, F , and P(0), . . . , P(r−1)

be defined as before. For each i ≤ t , let Ψ(i) be the index on P(i).
These indexes are composed of two parts. The first part is a 1D

range tree Λ(i) that stores T(P(i)u ) for each node of u where P
(i)
u is a

subset of P(i) associated with nodeu. The second part is a collection
of tables constructed for each non-empty grid cell Ct of Gi : for

each pair of integers a,b ∈ Ct , we store T(P(i) ∩ [a,b]).
To modify the index, we first build Ψ

(i) as before but with n as

the role of k . Then, for any table T(A) stored for a set A ⊆ P(i), we
instead store the subset T ε (A) = {T ⌊(1+ε )i ⌋ (A) | i ∈ Z. 0 ≤ i ≤⌈
log1+ε |A|

⌉
} of T(A).

The preprocessing time for Ψ(i) remains the same, nO (ε
−1). By

definition, the size of T ε (A) is ∑⌈log1+ε |A |⌉i=0 (1 + ε)i = O(|A|/ε) =
O(|A|). A point of P(i) is stored in at most one node for any fixed

level of Λ(i), so the size of all tables associated with nodes of a fixed

level of Λ(i) is O(n). Λ(i) has O(logn) levels, so the size of Λ(i) is
O(n logn). Now consider a non-empty grid cell Ct of Gi . The size

of each table T ε (P(i) ∩ [a,b]) for each pair of integers a,b ∈ Ct is

bounded by O(ε−4 |P(i) ∩ Ct |). The total size of these tables is O(n).
Hence, the size of Ψ(i) is O(n logn).

Next, we describe the modified query procedure. Let I be a query

interval and k ≤ n be an integer. If I is not F -aligned, we extend

I to the smallest F -aligned interval containing I , so let us assume

that I is F -aligned. We do the following for each gridGi . As before,

we partition I into three sub-intervals: IL ∪ IM ∪ IR . For IM , we
identify s = O(logn) nodesu1, . . . ,us of Λ(i) such that σu1 , . . . ,σus
partition IM . From these nodes we obtain T ε (P(i)ut ) for t ≤ s . From
Ψ
(i) we also obtain T ε (P(i) ∩ IL) and T ε (P(i) ∩ IR ). These inter-

vals with IL and IR makem = O(logn) intervals I1, . . . , Im which

partition I . For each interval It , we have T ε (P(i) ∩ It ). Like before,
we use dynamic programming to compute a CDT solution S using

these tables. The details are as follows.

Define the recurrence R(ℓ, t) for non-negative integers ℓ, t where
ℓ ≤ n and 0 < t ≤ m as

R(ℓ, t) = max




R(ℓ, t − 1)
max

0≤j≤log1+ε ℓ
R
(
ℓ −

⌊
(1 + ε)j

⌋
, t − 1

)
+

w(CD
(
P(i) ∩ It ,

⌊
(1 + ε)j

⌋ )
)

and R(ℓ, 0) = 0. A simple inductive argument shows that R(ℓ, t) is
the weight of the best CDT solution S in P(i) ∩⋃x ≤t Ix of size at

most ℓ where S ∩ Ix is ∅ or CD
(
P(i) ∩ Ix ,

⌊
(1 + ε)jx

⌋ )
for some

integer jx . R(ℓ, t) can be computed in O(ℓtε−1 log ℓ) = (ℓt log ℓ)
time since the tables T ε (P(i) ∩ It ) are at our disposal.

Using the above, we compute R(⌊(1 + ε)k⌋ ,m) inO(k logn logk)
time. With standard backtracking techniques, we also identify the

corresponding solution S withw(S) = R(⌊(1 + ε)k⌋ ,m) in the same

time.

We claimw(S) ≥ w(CD(P(i)∩I ,k)). First, let S∗t = It∩CD(P(i)∩I )
and let kt = |S∗t | for all t ≤ m. Let k̂t =

⌊
(1 + ε)⌈log1+ε kt ⌉

⌋
. Clearly

kt ≤ k̂t ≤ ⌊(1 + ε)kt ⌋, and hence
∑
t k̂t ≤ ⌊(1 + ε)k⌋. By the

properties of R(ℓ, t) above, we have
w(S) = R(⌊(1 + ε)k⌋ ,m)

≥
∑

t

w(CD(P(i) ∩ It , k̂t ))

≥
∑

t

w(S∗t )

≥ w(CD(P(i) ∩ I ,k)).

We conclude S is such that |S| ≤ (1 + ε)k andw(S) ≥ w(CD(P(i) ∩
I ,k).

Repeating this for all r grids and returning the best solution

among them, we obtain a feasible subset of at most (1 + ε)k points

whose weight is at least (1 − ε)w(CD(P ∩ I ,k)). Putting everything

together, we conclude with Theorem 4.5.
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