Session 4: Data Structures

PODS ’20, June 14-19, 2020, Portland, OR, USA

Efficient Indexes for Diverse Top-k Range Queries’

Pankaj K. Agarwal
Duke University

ABSTRACT

Let P be a set of n (non-negatively) weighted points in R4, We
consider the problem of computing a subset of (at most) k diverse
and high-valued points of P that lie inside a query range, a problem
relevant to many areas such as search engines, recommendation
systems, and online stores. The diversity and value of a set of points
are measured as functions (say average or minimum) of their pair-
wise distances and weights, respectively. We study both bicriteria
and constrained optimization problems. In the former, we wish to
return a set of k points that maximize a weighted sum of their value
and diversity measures, and in the latter, we wish to return a set of
at most k points that maximize their value and satisfy a diversity
constraint.
We obtain three main types of results in this paper:

(1) Near-linear time (0.5 — ¢)-approximation algorithms for the
bicriteria optimization problem in the offline setting.

(2) Near-linear size indexes for the bicriteria optimization prob-
lem that for a query rectangle return a (0.5 — €)-approximate
solution in time O(k polylog(n)). The indexes can be con-
structed in O(n polylog(n)) time.

(3) Near-linear size indexes for answering constrained opti-
mization range queries. For a query rectangle, a 0.50(d).
approximate solution can be computed in O(k polylog(n))
time. If we allow some of the returned points to lie at most ¢
outside of the query rectangle then an (1 — ¢)-approximate
solution can be computed in O(k polylog(n)) time. The in-

dexes are constructed in O(n polylog(n)) and n0/e%) time,
respectively.

ACM Reference Format:

Pankaj K. Agarwal, Stavros Sintos, and Alex Steiger. 2020. Efficient Indexes
for Diverse Top-k Range Queries. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’20), June
14-19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3375395.3387667

1 INTRODUCTION

Building an index on a given set of objects so that range queries can
be answered efficiently is a fundamental problem in many fields

“Work on this paper was supported by NSF under grants CCF-15-13816, CCF-15-46392,
1IS-18-14493, and an ARO grant W911NF-15-1-0408.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODS’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7108-7/20/06...$15.00
https://doi.org/10.1145/3375395.3387667

Stavros Sintos
Duke University

213

Alex Steiger
Duke University

including databases, computational geometry, and GIS. Notwith-
standing extensive research over the last four decades, it remains
an active research topic. The early work on range searching focused
on either returning all points lying in a query range or computing
a simple aggregation function (such as sum, max, min) over the
values/weights of points lying in a query range [3, 9, 32]. In modern
applications, especially as the data sets have become very large,
neither of these formulations is satisfactory — there may be too
many points lying in a query range, and the simple aggregation
function provides very little information about the points in a query
range. As a result, there is much work in recent years on returning
a summary of points lying in a query range [2, 35, 44].

Of particular interest, motivated by several applications such
as online marketing and web keyword search, is to return a set
of top/most-relevant/most-interesting k points in a query range
[2,37, 38, 40]. The utility of an object is defined by a weight function
on objects. For example, suppose a vendor has a collection of laptops.
For simplicity, assume each laptop has two non-negative attributes
— RAM size and price. The goal is to build an index so that for a
query range p, and a parameter k, the top k laptops whose attributes
lie in p can be returned quickly.

A shortcoming of top-k queries is that the index may return

very similar objects in one query. Returning to the laptop example,
suppose there are three laptops with specifications (i) 1 GB RAM
and $1000 price, (ii) 1GB RAM and $1200 price, and (iii) 2GB RAM
and $1800 price, and suppose their weights are 2, 1.9, and 1.8. For
k = 2, the top-k query will return the first two laptops, while it
is desirable to return laptops (i) and (iii) to provide more choices
to the user. Thus the goal is to return (at most) k items (i) that
have high values, and (ii) that are diverse. The diversity between a
pair of objects can be captured by defining a metric over the set of
objects. We can then define the diversity of k items either as the
minimum pairwise distance or as the sum of pairwise distances.
We now define the problem formally.
Problem statement. We represent an object as a point in R for
some constantd > 1.Let P = {p1, ..., pn} be a set of n points in RY,
Each point p € P is assigned a weight w(p) > 0. The goal is to build
an index on P that for a query rectangle p and a parameter k > 1,
returns (at most) k points of PN p maximizing a utility function that
captures the total value of these points as well as their diversity.
We define two types of query optimization problems: bicriteria
optimization and constrained optimization.

Bicriteria optimization: We are given a utility function f :
2P — R that captures both the value and the diversity of a subset
S C P. Our goal is to construct an index that for a query rectangle
p and a positive integer k > 0, returns argmax f(S), where the
maximum is taken over all subsets S C P N p of k points. We study
two specific utility functions:

Session 4: Data Structures

Max-sum diversification (MSD) range query: For a given subset
S C P and a parameter A > 0, we define

&= D lpi—pill +2 " wips).

Pi-pjES pi€S
For a subset X C P, we define

MS(X, k) = argmaxf(S)
ScX
ISI=k
The problem of computing MS(P, k) in the offline setting is the
max-sum diversification (MSD) problem, and the special case in
which A = 0, i.e., we ignore the weights of points, is referred to as
the remote-clique! problem. Our goal is to build an index so that
given p, k, and A, MS(P N p, k) can be reported quickly.
Max-min diversification (MMD) range query: For a given subset
S C P and a parameter A > 0, we define

S) = min i — pill + A min w(p;).
£ = min i = pjl| + A min w(pi)
For a subset X C P, we define

MM(X, k) = argmaxf(S).

ScX

ISI=k
The problem of computing MM(P, k) in the offline setting is the
max-min diversification (MMD) problem, and the special case in
which 1 = 0, i.e.,, we ignore the weights of points, is referred to
as the remote-edge! problem. Our goal is to build an index so that
given p, k, and A, MM(P N p, k) can be reported quickly.

Constrained optimization: In this version, we use diversity as

a constraint and return at most k points that satisfy the diversity
constraint. For a parameter § > 0, we call a subset S C P §-diverse
k-set if |S| < k and the distance between any pair of points of
S is at least §. Here the goal is to build an index on P that for a
query rectangle p, an integer k > 0, and a parameter § > 0, quickly
returns a §-diverse k-set S € PN p whose total weight is maximized.
That is, return

CD(P N p, k, §) = argmax w(S),

where the maximum is taken over all subsets of P N p that are
d-diverse k-sets. We call such a query a constrained-diversity top-k
(CDT) range query. The special case where § = 0 is simply called a
top-k range query in other literature.

Unlike MS(X, k) and MM(X, k), CD(X, k, §) is defined so that its
size can be less than k. If we required it to have size exactly k, then
reporting a feasible solution for a CDT range query would be at
least as hard as checking the existence of an independent set of size
k in unit disk graphs? which is NP-hard [20].

We call an algorithm for any of these three problems an a-
approximation algorithm, for some & < 1, if it returns a subset
whose utility is at least a times that of an optimal solution.
Related work. There is extensive work on the MSD and MMD
problems as well as their special cases of the remote-clique and
remote-edge problems in the offline setting.

! The remote-clique and remote-edge problems are also called the max-sum and
max-min dispersion problems in other literature, respectively.

2 A unit disk graph G(P) defined for a point set P is where the vertices are the points
and a pair of points u and v are incident in G(P) if and only if ||u — v || < 1.

214

PODS ’20, June 14-19, 2020, Portland, OR, USA

Tamir [42] showed that the greedy algorithm for k-center by
Gonzalez [23], which takes O(nk) time, is a 0.5-approximation al-
gorithm for the remote-edge problem. A similar greedy algorithm
also yields an O(nk)-time 0.5-approximation for the remote-clique
problem [39] (also see [11, 12]). All of these algorithms work with
arbitrary metrics. For certain special distances that include the Eu-
clidean distance there are better approximation algorithms for the
remote-clique problem: For distances of negative type (for a formal
definition of negative type distances see Subsection 2.1) Cevallos
et al. [16] propose an O(nk? log k)-time (1 — %)-approximation al-
gorithm. The approximation factor is improved to 1 — ﬁ in [17].
For distances that are both metrics and of negative type Cevallos et
al. [17] give a O(nk? log k)-time (1 — %)—approximation algorithm.
For metrics with doubling dimension g a PTAS with running time
O(n(k+e~9)+ke 1 1og?® ?) k) is known [17], and the running time
can be improved to O(¢ %nlogk + e’dko(‘gid)) for the Euclidean
metric [15].

All the algorithms for the remote-clique and remote-edge men-
tioned above can be adapted to obtain approximation algorithms
for the MSD and MMD problem, respectively. For instance, we
can either return the solution to the remote-clique/remote-edge
problem or return the top-k items, whichever has the higher utility.
Hence, any a-approximation for the remote-clique (remote-edge)
problem gives an ¢ /2-approximation for the MSD (MMD) problem.

The problem of maximizing a linear combination of the remote-
clique objective, e.g., the sum of pairwise distances and a submod-
ular function defined on the points, is studied in [12, 16]. Notice
that this problem is a generalization of the MSD problem since
the sum of weights is a (sub)modular function. For general met-
rics, [12] give an 0.5 approximation algorithm in O(nk) time; for
metrics of negative type, [16] propose a slower algorithm with
approximation factor 1 — %. Gollapudi and Sharma [22] described
an approximation-preserving reduction from the MSD problem
to the remote-clique problem, which also leads to an O(nk)-time
0.5-approximation algorithm for MSD using the known results of
the remote-clique problem on general metrics. They also give a
reduction from MMD to the remote-edge problem, which is unfor-
tunately not correct [41]. An O(n®k)-time 0.5-approximation for
the MMD problem can be obtained by solving n — 1 instances of
the remote-edge problem (see Subsection 2.2).

Recently the notion of (composable) coresets® has been used
to get efficient algorithms for the remote-clique and remote-edge
problem in the streaming (MapReduce) setting [6, 14, 28]. Using
these coresets, one can construct indexes for both remote-clique and
remote-edge range queries in O(k? polylog(n)) time. A drawback
of such an index is that the parameter k is fixed at preprocessing
time.

To the best of our knowledge, the only work directly on describ-
ing indexes for answering MSD or MMD under range queries is
that of Wang et al. [43]. They define the RC-index that works with
arbitrary metrics and supports range queries in O(k2y4(5“) logd n)
time with an approximation ratio of (0.5 — 0.59~1), where § is an

3An a-coreset for a maximization problem is a small subset of the input point set
S C P such that the optimum solution on S approximates the optimal solution on P
within a factor of @ < 1. A collection of ar-coresets, where each is for a potentially
different point set, are composable if their union is a valid ar-coreset for the union of
the point sets.

Session 4: Data Structures

PODS ’20, June 14-19, 2020, Portland, OR, USA

Problem Approx. | Query Time Space
Problem | Approx. | Time MSD 05-¢ O(klog® 1 n) O(nlog? n)
MSD 05—¢ | O(n+klogk) 1-¢ O(k? + klog? ' n) | O(nlog? n)
1-¢ | O(nk? MMD 05-¢ | O(klog? 1n) O(nlog? n)
MMD | 05-¢ | O(n+klogk) CDT (0.5)°@ | O(klog? n) O(nlog@1n)
(k, p part of query, at most (1 + £)k points) | 1 — & O(klogk logd n) O(n logd n)

Table 1. New offline algorithms

integral query parameter, and y is the expansion constant. While in
some cases y is small, it can be O(n) even in Euclidean space.
Main results. We present three main results in this paper. We
assume ¢ € (0,0.5) to be a constant. The big-O notation in the
running time hide polynomial factors of 1/e.

Offline algorithms (Section 2): We give a (0.5—¢)-approximation
algorithm for the MSD problem that runs in O(n + klog k) time.
This is the first algorithm for the MSD problem with approximation
factor 0.5 — ¢ with runtime near-linear on both n and k. Notice
that this is faster than all previously known algorithms for the
remote-clique and MSD problems. In [26] the authors construct a
0.5-approximate solution of the MSD problem in O(n® + k? log k)
time by repeatedly taking farthest pairs of remaining points. We
derive our result by defining and using a metric function that al-
lows us to compute efficiently approximate farthest pairs of points
in weighted Euclidean space. We show that our algorithm can be
implemented using an implicit representation of P, which is useful
to answer MSD range queries. Finally, we show that the weighted
distance between two points is of negative type, which allows to
use the algorithm in [16] to get an (1 — ¢)-approximation algorithm
that runs in O(nk?) time, if ¢ > 4/k.

We also present a (0.5—¢)-approximation algorithm for the MMD
problem that runs in O(nlog n) time. This is the first algorithm for
the MMD problem with a runtime near-linear in n with this ap-
proximation factor. It is also faster than all the previously known
algorithms for the remote-edge and MMD problems. Our algorithm
closely follows the algorithms of Guha [24] and McCutchen and
Khuller [34] for the k-center clustering problem in the streaming
setting, but new ideas are needed to adapt them to the remote-edge
problem and to achieve the O(nlog n) running time. Additionally,
we show that using an implicit representation of P, we can improve
the running time to O(nlog k). The running time can be improved
even further to O(n + k log k) in expectation if we allow random-
ization. The implicit representation is also useful to answer MMD
range queries. Table 1 summarizes our results in the offline setting.

Range queries (Section 3): We use our offline algorithms and
build indexes of O(n logd n) size that for a query rectangle p and
parameters k, A, ¢, return a (0.5 — ¢)-approximate solution in time
O(k logd_1 n). We can improve the query time if ¢ is fixed in the
preprocessing phase. Table 2 summarizes the performance of our
indexes.

Constrained optimization (Section 4): The intuition for find-
ing efficient indexes for the CDT problem comes from the known
offline algorithms for the weighted independent set problem on
unit disk graphs: (1) A greedy O.SO(d)-approximation that runs in
polynomial time [29, 31]. (2) A PTAS using the shifting grid tech-

nique with running time no<€7d) [27, 29, 33]. We use the idea in

215

Table 2. New indexes

(1) to build an index of size O(n logd_1 n) that returns a 0.500).
approximate solution in O(k log? n) time. All k, ¢, 8, p are part of
the query. In order to get this result, we represent the R4 space in
a way that allows us to find the returned set of k points in a greedy
fashion inside the query rectangle p. Then, we use the shifting grid
technique to construct an index of size O(nk logd n) such that given
a query rectangle p it finds a (1 — ¢)-approximate solution for the
CDT problem among the points in p in O(k? logd n) time. We note
that in this index the parameters k, ¢, § need to be fixed in the pre-
processing phase, and the returned set of a CDT range query might
contain points that lie at most ¢ outside of the query rectangle p.
If we allow returning at most (1 + €)k points we can modify the
second index such that it has O(n logd n) space, O(klogk logd n)
query time, and k can also be part of the query.

2 OFFLINE ALGORITHMS

In this section we describe efficient offline algorithms for the MSD
and MMD problems we defined above. Later, we use these algo-
rithms to answer range queries efficiently.

2.1 MSD Problem

P is given explicitly. LetP C R? be the set of points defined
above, and let ¢ € [0,0.5) be an arbitrarily small constant. We
describe a (0.5 — ¢)-approximation algorithm for the MSD problem.

We define a distance function f : P X P — R as follows. For
apairp,q € P, f'(p.q) = 0if p = g, and f'(p.q) = llp—qll +
%(w(p) + w(q)) if p # gq. We note that f’ is a metric since
w(p) = 0 for all p € P. For any subset Q C P of k points f(Q) =
2p.qeq /(.), so the MSD problem can be formulated as comput-
ing §* = argmaxscp |s|=k Zp,qes f'(p, q). We use this formulation
of the MSD problem.

Algorithm. Let N C §971 be a centrally symmetric set of r =
O(W) unit vectors in RY (i.e., if u € N then —u € N) that is an
e-net, i.e., for any point v € S¢! there is a point u € N with angle
at most arccos(ﬁ) = O(+/¢). For a point p € P and a vector u € N,
we define the score s(p, u) = (p,u) + %w(p) For each u € N, let
P, denote the set of k points with the highest scores with respect
to vector u. We compute the desired set S of k points by repeating
the following steps k/2 times: For each pair of vectors u, —u € N,
we choose a pair of points &, £, as described below, compute the
vector # = argmaxy, s(&y,, u) + s(é—y, —u), add the pair &3, -5 to S,
and delete &3, £_; from all lists P, in which they appear®.

In each step, for a pair u, —u € N we compute &, £_; as follows.
Let ay, (resp. a—y) be the point of maximum score in Py (resp. P—y,).

4If k is odd then in the end of the algorithm we add in the point with the highest
weight among the remaining points.

Session 4: Data Structures

Figure 1. A set of 7 points in the plane (white) and their projections (black) onto a
vector u. Each point is labeled with a name and weight in parentheses. When A = 0,
a, = Gand a_, = A with s(G,u) = 44 and s(A, —-u) = —=8. When A = k — 1,
a, = Fand a_,, = B with s(F, u) =35+ 15 =50 and s(F, —u) = -13 + 12 = —1.
As A — 00, a, = a_,, = D since D is the point with the highest weight.

Ifa, # a_y,’, we set & = ay and é_y, = a_y (see Figure 1 for an
example). If a;, = a_y, then let by, (resp. b—y,) be the point with the
second largest score in Py, (resp. P_y). If s(ay, u) + s(b—y, —u) >
s(a—y, —u) + s(by, u) then we set &, = a,, and é_,, = b_,, otherwise
weset &, =byand &y, = a—y.

By maintaining each Py in a priority queue, a; and b, can be
reported in O(log k) time and a point from P, can be deleted in
O(log k) time. Hence, each round of the algorithm takes O(|N| log k)
time. Since P, can be computed in O(n) time and |[N| = O(1), the
total time taken by the algorithm is O(n + k log k).

Analysis. We now prove that f(S) > (0.5—¢)f(S*). Letd(p, q) =
maxyeN (P — ¢, u) be a distance function between p, g € P. Since N
is centrally symmetric, d(-, -) is symmetric. Furthermore, it is easy
to see that d(-, -) satisfies the triangle inequality, so it is a metric.
The following observation is straightforward from the definition
and [4, 18]: (A) For any two points x,y € R, ||x — y|| > d(x,y) >
(1-2) I - yll.

Next, we define the distance function f d/ : PXP — Ry as
£1(p.q) = 0ifp = g,and £{(p, q) = d(p. g)+ 225 (w(p) +w(q)). Since
dis a metric, f is also a metric. From (A), the next observation easily
follows: (B) For any p,q € P, f'(p,q) > f{(p.q) > (1 - &)f"(p,).

We claim the following property.

LEMMA 2.1. In each round, the algorithm computes the farthest
. . : 4
pair of points of the current set P under the metric f.

PRrOOF. Let S;_; be the set of points that the algorithm added in
S at the end of round [-1. Let p’, ¢’ be the two points added by the al-

gorithm at round . We show that f{(p’, ¢') = max;, 4ep\s,_, f{(p,).

We first show that for any u € N, &, é_,, are the points with the
farthest distance with respect to the vector u. Consider the case
where a, # a—y and &, = ay, é&-y = a—y. From the definition,
for any pair p,q € P\ S;_; we have that s(ay,u) > s(p,u) and
$(amu =) 2 5(¢. =) 50 (Eu = E-u) + g2y (W(E) +W(E-w)) = (p=
q, u)+ %(w(p)+w(q)). Then we consider the case where a, = a_y,
and &, = ay, &=, = b_y (the case where &, = by, &, = a_y, is
symmetric). Notice that s(ay, u)+s(b—y, —u) > s(by, u)+s(a—y, —u).
For any pair p,q € P\ S;_; we have two cases. If ¢ # a,, = a_y,
then by definition s(b_,, —u) > s(q, —u) and s(ay, u) > s(p, u), so

SEven if P has more than one point, @,, may be the same as a_,, if the weight of a,, is
very high.

216

PODS ’20, June 14-19, 2020, Portland, OR, USA

s(ay,u) + s(b—y, —u) = s(p,u) + s(q, —u). If p # a, = a—y, then by
definition s(by, u) > s(p, u) and s(a—y, —u) > s(q, —u), so s(ay, u) +
s(b—y, —u) > s(by,u) + s(a—y, —u) > s(p,u) + s(q, —u). In any case
we have that s(&,, u) + s(é—y, —u) > s(p, u) + s(q, —u) for any p, q €
P\S._;.

Assume that the algorithm finds the farthest pair p’, ¢’ in the
end of round ! and consider any pair of points p,q € P\ S;_;.
Let # € N be a vector such that # = argmax,en(p — ¢,), i€,
d(p,q) = {p — q, u). The algorithm considers the vector # and as
we showed in the previous paragraph it finds a pair &3, £_; such
that s(&g, @) + s(é—g, —a) = s(p,a) + s(q, —#). We conclude that
F10) 2 s(Ea0) + (- ~0) 2 s(p. @) +5(q. ~8) = £(p.q). The

lemma follows. m]

By Lemma 2.1, the algorithm at each step chooses the farthest
pair of P under the metric fd’ and deletes them from P, and repeats
this step k/2 times. The argument in [26] implies that 3, e fd’(p, q)
> 0.5maxpcp, |R|=k 2ip,qeR fi (P> @) By combining this inequality
with observation (B), we obtain that

D ez 05-0 > f(p.9.

P.q€S P.q€eS*

Hence, putting everything together we obtain the following result.

THEOREM 2.2. Given a set P of n non-negatively weighted points
in Rd, an integer k < n, a constant ¢ € (0,0.5), and a parameter
A >0, asubsetS C P ofk points can be computed in O(n + k log k)
time such that f(S) > (0.5 — ¢) f(MS(P, k)).

Cevallos et al. [17] presented a (1 — %)—approximation algorithm
with O(nk? log k) running time for the remote-clique problem as-
suming that the distance function is metric and of negative type.
Equivalently, for constant ¢ € [%, 1) their algorithm gives a (1 — ¢)-
approximation in O(nk?) time. Negative type distances are defined
as follows. Let D € R™ " be the distance metric corresponding to
a distance function dist, i.e.,, D, 3, = dist(a, b) for two items a, b.
Then we say that dist is of negative type if xT Dx < 0, Vx € R"
with 31| x; = 0. Some examples of negative type distances are I,
norms, the cosine distance, the Jaccard distance [36]. We get the
next theorem by showing that the metric function f” is of negative

type.

THEOREM 2.3. Given a set P of n points in RY, an integerk < n, a
constant € € [%, 1), and a parameter A > 0, a subset S C P of k points
can be computed in O(nk?) time such that f(S) > (1—¢) f(MS(P, k)).

Proor. Here we show that the distance function f” is of nega-
tive type, so we can use the algorithm from [16] to get the same
approximation for the MSD problem.

Let D € R™" be the distance matrix, such that D; j = f’(p;, pj)
ifi # j and D;; = 0. Furthermore, let D! € R™" be the distance
matrix, such that Dl{j = %(w(pi)+w(pj)) ifi # jand Dlli =0,and
let D? € R™" be the distance matrix, such that Dl?’j = |lpi — pjll if
i #jand D?i = 0. Notice that D = D! + D?. Let x € R" be a vector
with 37) x; = 0. We need to show that xTDx < 0.1t is known
that xT D%x < 0 [36], so if we also show that xT D1x < 0 the lemma

Session 4: Data Structures

follows.
n n
*TD'x = inDleJ = in Z i)
i,j i=1 j=1j#i
A, n
9 o~ N2
= zk ;)xlj IZJ:;tlx] = 2 7 gw(pl)xi <o.

The last inequality holds because we always consider non-negative

weights.
Hence, the distance function f” is of negative type and the theo-
rem follows. O

While the approximation ratio of this algorithm is better than
what we presented in Theorem 2.2 (for k > 4), the running time is
much slower.

Pis implicitly represented. Suppose P is implicitly represented
by a set B and an index ® defined as follows. B = {Bj,...,Bs}
is a set of pairwise disjoint orthogonal boxes, where s = O(ke~9),
such that (i) P € U7_, B;, (ii) for each j, [P N B;| > 1, and (iii) for
each j, diam(Bj) < £y where y* is the radius of optimal k-center
clustering of P and diam(B;) is the diameter of box B;. ® is such
that, for a query box B, the points of P N B are enumerated in
decreasing order of their weights one-by-one on demand in z(n)

per point after an initial query time of ¢(n) = Q(logn).
.
.
.o o
.
. .
. . .
. o X]
° 2 o.
.
. .
.
. :.’
v e [
.
4 °
.
.
o o
.
. . o
L] LEEN
.
=] L. :

Figure 2. A point set P (in black) contained in boxes B whose centers are shown in
red. For each box B; € B, we treat the points P N B; as if they coincide with the
center b; of B;.

We now describe how to adapt the above algorithm to work with
this representation of P. At a high level, we perturb the locations
of all point in P N B; to the center b; of B; (see Figure 2). Let P be
the resulting set of perturbed points. We run the above algorithm
on P. Since the points in P have k distinct locations, the algorithm
can be implemented in O(k(z(n) + ¢(n))) time.

Let N be as above except that we ensure that d(p,q) > (1 —
e/4) |lp — ql|. For each vector u € N, we construct the list P, of k
highest score points with respect to u, as follows. By querying ®
with all boxes of B, we choose the point of the maximum weight
from each box. (Since all points in P N B;, for any i, have the same
location the ranking of their scores is the same as that of their
weights.) We add all these points in a priority queue L, with the

217

PODS ’20, June 14-19, 2020, Portland, OR, USA

score of the point as the key. We repeat the following k times: We
remove the maximum score point 5 from L, and add p to P,. If
P € Bj, we retrieve the point of P N B; of the next largest weight
and add it to the queue L,. After k iterations we have the set ﬁu
It takes O(k¢(n)) time to initially query with each box of B, and
then we retrieve a total of k additional points in a total time of
O(kz(n)). We also spend O(k log k) = O(k¢(n)) time to perform k
insert/delete operations on the priority queue L. Hence, P, can
be computed in O(k(z(n) + ¢(n))) time.

After having computing all P,’s, we run the remainder of the
algorithm from Theorem 2.2 as above and compute a set Sofk
points such that f (S) = (0.5 — ¢/4) f (MS(P, k)). Finally, we perturb
the points of S back to their original locations and return those
points as the desired S. The correctness of the algorithm follows
from the following lemma.

LEmMA 2.4. f(MS(P,k)) > (1 — ¢/2) f(MS(P, k)).

7(RC(P,k))
k

Proor. From [14], we have that y* < , where y*

is the radius of optimal k-center clustering of P2 Since we have
non-negative weights it follows that for A > 0, 7(RC(P,k)) <
f(MS(P, k)) and hence y* < %. We conclude that,

2

FMS(P. k) = FMS(P. k) - 25 i () > (1-¢/2)f(MS(P, k)).
[m}

Combining Lemma 2.4 with Theorem 2.2 we obtain the following.

LEMMA 2.5. Assuming the implicit representation of P as defined
above, a subset S C P of size k can be computed in O(k(t(n) + ¢(n)))
such that f(S) > (0.5 — €) f(MS(P, k)).

Remark. Using the implicit representation of P as defined above,
we can also run the algorithm from Theorem 2.3. Skipping the
details, for a constant ¢ € [%, 1), and parameters k, A a subset S C P
of size k can be computed in O(k® + k(zr(n) + ¢(n))) time such that
f(S) = (1 - &) f(MS(P, k)).

Dependency on parameter . For the algorithm of Theorem 2.2
we have that the number of different unit vectors we consider
is [N| = O(e_(d_l)/z), hence the total running time of the algo-
rithm is O((n + k log k)f_(d_l)/z). It also follows that the runtime
in Lemma 2.5 is O(ke 4gp(n) + e @~ V/2(ke=d & k(z(n) + log k))).
Following the analysis of [17] the algorithm in Theorem 2.3 runs
in O(nk? log e™1) time.

2.2 MMD Problem

P is given explicitly. Given P, k and A, the MMD problem asks
to return a subset T* of k points that maximizes the utility func-
tion f(T) = p(T) + Aminy et w(p), where for a point set X, u(X) =
min, gex:pzq [P — gll is the closest pair distance of X. Let p1, . . ., pn
be the points of P sorted in non-increasing order of their weights
and let P; = (p1, ..). If the minimum weight point of T* is p;,
then T is the optlmal solutlon of the remote-edge (RE) problem
for P;, i.e., it is a subset of P; of size k with the largest closest-pair
distance. Hence, a A-approximate solution of the MMD problem
on P can be obtained by computing a A-approximate solution of

Session 4: Data Structures

the RE problem for each P; and returning the one with the max-
imum utility. Using the 0.5-approximation algorithm for the RE
problem by Tamir [42], we can compute a 0.5-approximate solution
for the MMD problem in O(n?k). Instead of solving the RE problem
for each P; separately, we present an algorithm that maintains a
(0.5 — ¢)-solution of the RE problem under insertion of new points.
The solution can be updated in O(log k) amortized time per inser-
tion resulting in an O(n log k) time algorithm. Our algorithm closely
follows an improved version of the so-called “doubling algorithm”
for maintaining a k-center solution under the streaming framework
[19, 24, 34]. However, these algorithms require O(k log k) time to
update the solution. We therefore need a number of new ideas to
improve the update time as well as to adapt the algorithm to the RE
problem. We first give an overview of the algorithm, which closely
resembles the description in [24], and then describe the details of
the update procedure, which is where most of the new ideas are
needed.

Overview of the algorithm. Let RE(P) denote an optimal remote-
edge solution and ¥(P, S) denote max,ep minges [|p — gl for any
point sets P and S. We define an (r, ¢)-packing [25] of a point set
P to be a subset S C P that meets two properties: (i) covering,
Y(P,S) < (1+¢)r, and (ii) separation, u(S) > r. We refer to the value
r of an (r, €)-packing as the packing’s radius.

We fix a constant € € (0, 0.5). Set J to be the smallest integer such
that (1+¢)/ > 1+,] = O(e ' loge™). Set a := (1+¢)/. Denote
by P the subset of points processed so far. Our algorithm maintains
Jradii rj, r2,. .., 7y and, for each radius r;, both an (r;, £)-packing
S; for P; of size less than k and a subset T; of size exactly k such that
1(T;) > ri/a. Furthermore, the algorithm maintains the invariant
that the largest radius ry and smallest radius ry are such that ry >
ary/(1 + ¢). It then follows that p(Tyx) > 0.5(1 +)72y (Py, Sy);
the second inequality follows from the fact that covering the k
points RE(P;) with fewer than k points requires radius at least
0.54(RE(P;)). Ty is the desired RE solution for P;. Setting ¢ :=
/5 before running the algorithm, we obtain the approximation
guarantee of (0.5 — ¢).

Suppose p1, ..., pr have been processed by the algorithm and
the invariants above hold. Let p;+1 be the next point to be inserted.
We perform the following steps for each i € {1,...,J}. If there
is a point g in S; such that ||p;+1 — ¢q|| < ri, no update is needed
onri, Si, Ti If [[pr+1 — qll > ri, we add ps41 to S;. If |S;| becomes
k after inserting p;4+1 then the radius r; is increased, T; is set to
Si, and S; is set to a maximal subset S| C S; such that u(S}) >
r; for the new value of r;. After all r;’s have been updated, we
record x;41 argmax;<jr; and mark the corresponding Ty,,,
as the desired remote-edge solution. We also compute f(Ty,,,),
the utility of Ty,,,. After having processed all points, we compute
i* = argmax;<n f(Sx,) and return Ty, as the desired subset of k
points.

Next we describe how each point can be inserted in O(log k)
amortized time.

Details of the algorithm. To process each point of P efficiently,
instead of maintaining S;, T; explicitly we maintain three subsets
Ai,N;,D; where S; = A; UN;, T; = A; U D;. Intuitively, N; and
D; are buffers that store the points recently inserted into A; and
deleted from A;, respectively; see below for details.

218

PODS ’20, June 14-19, 2020, Portland, OR, USA

To initialize the algorithm, read the first k points in the stream,
Pi. Then set r; := (1 + &) u(Pr)/a, and A;,N;,D; := @ for all
i € {1,2,...,]}. For each i < J we construct a dynamic index
ECP; for maintaining the closest-pair of A; UN; (which is the same
as S;). This concludes the initialization. Continue with the following
update procedure from the beginning of the stream. It is implied in
the following that ECP; is updated accordingly whenever a point
is inserted to or removed from A; or N;.

Next, we describe how we update r;, A;, N;, D; when we insert
a new point p. First, we check if p is within distance r; of a point
in A; U N; as follows. We insert p to ECP;, query it to find the
closest pair in A; U N; U {p}, then remove p from ECP;. If p is in
the reported closest pair and the distance between the pair is less
than r;, we are done. Otherwise we insert p to N;. If |A; UN;| = k
after the insertion, then we set r; := a™r; where m is the smallest
integer such that a"r; > p(A; U N;). To determine m, we compute
H#(A;UN;) by querying ECP;. We set A; := A;UN; and D;, N; := &,
then prune A; as follows.

Intuitively, we want to find a maximal subset of A; such that
u(A;) > ri. We achieve this by repeatedly querying ECP; for the
closest pair of points in A; and carefully removing at least one of
the pair’s points from A; until it has the desired properties. At the
start of the pruning process, let I := () be an empty set. Then let p, q
be the closest pair in A;. If [|p — g|| > r;, it must be that u(A;) > r;
as desired, and the pruning stops. Otherwise, we delete at least one
of p or q as follows. If p,q ¢ I then we check if either p or g are
covered by I, i.e., there is a point p” € I or ¢’ € I such that ||p — p/||
or ||g — ¢’|| are less than r;, respectively. If neither such p’ or g’
exist, then we add p to I, delete q from A;, then add g to D;. If at least
one of p, q is covered by I then we delete the covered point from A;,
add it to D;, and add the uncovered point to I. This concludes the
case where p, g ¢ I. Otherwise, without loss of generality, p € I and
q ¢ I in which case we delete q from A;, add g to D;, and add p to I.
This concludes how we handle the closest pair p, g obtained from
ECP;. The above, starting with the closest pair query, is repeated
until p(A;) > r;. This concludes the pruning process.

We note that the two cases for the closest pair p, g are exhaustive;
the procedure above ensures that not both points p, g of the closest
pair can be in I. We also note that we can check if a point p is
covered by a point in I by maintaining another index for closest-
pair queries on I, and using it similarly as we do ECP; to get the
minimum distance from p to the points in A; U N; at the beginning
of the update procedure.

Finally, we note that we maintain the index of the largest packing
radius, x;, and the corresponding Ay,, Dy,. To compute x; after
each t-th update, we maintain another index for closest pair queries
on A; UD; forall i < J, then query each of them and set x; to the
largest distance returned. Using ideas from persistent indexes, we
record the changes to A; and D; for all i < J so that we need O(1)
space per change and Ty, , for any ¢, can be reported in O(k) time.
This concludes the entire update procedure.

Analysis. We describe a charging scheme so that each point
p € P is charged at most O(1) operations. Fix a point p € P and
an integer i € {1,2,..., J}. Consider the update performed after
reading p from the stream. If r; is not increased in the update, then it
is easy to verify only O(1) operations are done. If 7; is increased, then
A; is pruned. In each iteration of the pruning step, O(1) operations

Session 4: Data Structures

are done, and at least one of them is the deletion of a point from
A;. Since any point is inserted to and deleted from each subset
Ai,N;, D; at most once, any point is charged O(1) total operations
by this scheme. We maintain the invariant that |A; U N;| < k
throughout the algorithm, so each operation involving ECP; takes
O(log|A; UDjl|) = O(log k) time using the index of Bespamyatnikh
[10]. All other operations take constant time. Thus, O(log k) time is
charged to every point for each i € {1,2,..., J}. We have J = O(1),
so the algorithm takes O(nlog k) assuming P is sorted by weight.
Sorting P takes O(nlog n) time, so the overall runtime is O(nlog n).

Since our algorithm is primarily a fast implementation of the
algorithms of Guha [24] and McCutchen and Khuller [34], the
correctness of it is implied by their analyses. For purposes of self-
containment, we include a full analysis in Appendix A. Putting
everything together, we obtain the following.

THEOREM 2.6. Given a set P of n non-negatively weighted points
in Rd, an integer k < n, a constant ¢ € (0,0.5), and a parameter
A >0, asubsetS C P ofk points can be computed in O(nlogn) time
such that f(S) > (0.5 — &) f(MM(P, k)).

P is implicitly represented. =~ We use the following implicit rep-
resentation of P which is the same as the one described in Sub-
section 2.1 for the MSD problem. Let B = {By,...,Bs} be a set
of s = O(ke~?) boxes with the same properties as in the implicit
representation of the MSD problem, and let ® be an index that, for a
query box B, can enumerate the points of P N B in decreasing order
of their weights one-by-one on demand in 7(n) per point, after an
initial query time of ¢(n) = Q(log n).

We now describe how to adapt the above algorithm to work
with this representation of P. For each box B; € B, we obtain the
heaviest point p; € P N B; by querying ®. Let H; be the set of
these O(k) points, and let Hy be the set of k heaviest points in P
by computing the bounding box Bof \U; Bi and querying ® with B.
We run the above algorithm from Theorem 2.6 on H := H; U Hy
in O(|H|log [H|) = O(k log k) time. It takes O(k(¢(n) + 7(n))) time
to compute H; and O(¢(n) + kz(n)) time to compute Hy, hence
H; UHg can be computed in O(k(¢(n) + 7(n)) time. The correctness
of the algorithm follows from the following lemma.

LEmMMA 2.7. f(MM(H; U Hz,k)) > (1 — ¢/2) f(MM(P, k)).

Proor. From [14], we have that yZ < p(RE(P,k)) where yZ
is the radius of optimal k-center clustering of P. Since we have
non-negative weights it follows that for A > 0, u(RE(P,k)) <
f(MM(P, k)) and hence y; < f(MM(P, k)).

Consider an optimum solution O = MM(P, k). If u(0) < iy;,
then Aminyeo w(p) 2 (1 = §)f(0). In this case, we have
ming ey, w(p) = minyeo w(p), so f(MM(Hz, k)) = (1 - §)f(0).

Otherwise, p(0) > %y; > diam(B;) for all B; € B where the
second inequality follows from the properties of B. It follows that
|[ONB;| < 1forall B; € B. Let p; be the point in B; N O (if any) for
each B; € B. By construction, there is a unique point ¢; € B; N Hy
with w(g;) > w(p;). It follows that

FMM(H k) = £(0) - 25y} > (1= ¢/2)f(O).

In either case above, we have f(MM(H;,k)) = (1 - £)f(O) for
some i € {1, 2}. Since f(MM(H; U Hg, k))
> f(MM(Hq, k)), f(MM(Hg, k)) always, we are done. O

219

PODS ’20, June 14-19, 2020, Portland, OR, USA

Combining Lemma 2.7 with Theorem 2.6 we obtain the following.

LEMMA 2.8. Assuming the implicit representation of P is as defined
above, a subset S C P of size k can be computed in O(k(z(n) + ¢(n)))
time such that f(S) > (0.5 — &) f(MM(P, k)).

Remark. When P is given explicitly, the construction of H; UH3
can be improved to only O(n) expected time, which in turn improves
the total runtime to O(n + k log k) in expectation as follows®. First,
we compute a 2-approximate k-center radius y for P using the
(expected) linear-time algorithm of Har-Peled and Raichel [25]; that
is, y; <y <2y where y; is the optimal k-center radius for P. Set

8 := ey/4Vd. Consider the axis-aligned grid in R? with sidelength
8. For each point p € P, compute the grid cell containing it, and
let B be the set of all such grid cells that contain the points in P.
It follows that | B| = O(ke~?) = O(k) [5]. Note that B satisfies the
properties of the implicit representation described in Subsection 2.1.
After computing PN B; for each B; € P by bucketing, the subsets H;
(the subset of heaviest points in each B; € B) and H (the k heaviest
points in P) required can be easily computed in O(n) time overall
using a selection algorithm. As above, we then run the algorithm
from Theorem 2.6 on input H; U Hz in O(k log k) time to obtain
the solution. By Lemma 2.7 and Theorem 2.6 we conclude to the
following theorem.

THEOREM 2.9. Given a set P of n non-negatively weighted points in
Rd, an integerk < n, a constant ¢ € (0, 0.5), and aparameter)L >0,
a subset S C P of k points can be computed in O(nlogk) time or
O(n + klog k) expected time such that f(S) > (0.5 — &) f(MM(P, k)).

Dependency on parameter . When ¢ is not a constant, the
algorithm of Theorem 2.6 takes O(ne ™! log k log e™1) time to stream
over the points after they have been sorted in O(nlogn) time. It
follows that the runtime in Lemma 2.8 is O(ks_d‘r(n) + ko(n) +
ke~d-1 log klog ¢71), and the runtime of the algorithm from Theo-
rem 2.9 is O(n + ke~@ log kloge™").

3 INDEXES FOR MSD AND MMD RANGE
QUERIES

In this section we describe indexes that answer MSD and MMD
range queries efficiently with good approximation ratios. As men-
tioned in the Introduction our main idea is that given a query
rectangle p, we obtain an implicit representation of P N p and we
use the algorithms described in Section 2 that work with an im-
plicit representation of P N p. We use the following two indexes to
compute the implicit representation of P N p:

Abrahamsen et al. [1] describe an index to answer a range Eu-
clidean k-center query. We use the following property of their index.
Given a set P of n points in R4 an index ¥(P) of size O(n logd_1 n)
can be constructed in O(nlog? ™! n) time such that given a rectan-
gle p, an integer k > 1, and a constant ¢ € (0, 1), a collection of
interior-disjoint rectangles B can be computed in O(k logd*1 n)
time such that PN p C B and |B| = O(ke~?), and for all B € B,
[P N B| > 1 and diam(B) < iy;(P N p), where y;:(X) is the radius
of the optimum k-center of X.

®Using the deterministic 2-approximation algorithm of Feder and Greene [21] instead
to construct H; U Hj results in an overall deterministic runtime of O(n log k).

Session 4: Data Structures

The second index we use is by Rahul et al. [37] for answering

top-k range queries. Given a set P of n weighted points in R4 an
index ®(P) of size O(n logd n) can be constructed in O(n logd n)
time such that for a rectangle p, a query is initialized in O(logd*1 n)
time and the points of P N p can be reported sequentially in an
non-increasing order of their weights, in an on-demand fashion,
and in O(loglog n) time per point.
MSD range queries. Given P C R9, we construct an index for
the range MSD problem that returns a (0.5 — ¢)-approximation of
the optimum answer for a query rectangle p. In this index, the
parameters k, ¢, and A can be specified by a user as part of the query.
More precisely, we build the index ¥ := ¥(P) on P and the index
® := ®(P) on P. The size of the overall index is O(n logd n), and it
takes O(n logd n) time to build ¥ and .

Given a query rectangle p, and parameters k, A, ¢, we first query
¥ with p, k, and ¢ to obtain the rectangles B = {By, ..., Bs}, where
s = O(ke_d), that cover all points in P N p. Next, for each B; € B,
we initiate a query on ® with B; and enumerate the points of PN B;
in a non-increasing order of their weights as needed. Finally, we
run the MSD algorithm with this implicit representation of P N p.
Since 7(n) = O(loglog n) and ¢(n) = O(logd_1 n) by Lemma 2.5 we
obtain the following.

THEOREM 3.1. Given a set P of n non-negatively weighted points in
RY, an index can be constructed in O(n logd n) time with O(n logd n)
space such that for a query rectangle p, an integer k < n, a constant
e €(0,0.5), and a parameter A > 0, a subset S C P N p of k points
can be computed in O(k logd_l n) time such that f(S) > (0.5 —
&)F(MS(P (1 p, k).

Remarks. 1) If the constant ¢ is fixed then we can construct
copies of the index ®(P) from [37] for each direction u € N, where
the weight of a point p € P is the inner product (p, u) and answer
a range MSD query in time O(logd_1 n + kloglogn). We describe
the full details of the index in Appendix B.

ii) Using the same indexes above, we can use Theorem 2.3 and
the remark in the end of Subsection 2.1 to construct an index of
size O(n logd n) that computes an (1 — ¢)-approximation for MSD
range queries in O(k> + k logd_l n) time.

MMD range queries. Using the same indexes as in the MSD
range query, and the result of Lemma 2.8, we obtain the following.

THEOREM 3.2. Given a set P of n non-negatively weighted points in
R<, an index can be constructed in O(n logd n) time with O(n logd n)
space such that given a rectangle p, an integer k < n, a constant
£ €(0,0.5), and a parameter A > 0, a subset S C P N p of k points
can be computed in O(k logd_1 n) time such that f(S) > (0.5 —
&) f(MM(P N p, k)).

Dependency on parameter ¢. When ¢ is not a constant, the
index of Abrahamsem et al. takes O(ke~4*1 logd_1 n+ke=?) time to
report the O(ke~?) boxes. From Lemma 2.5 and the discussion at the
end section Subsection 2.1, it follows that MSD range queries take
O(ke’d(log”l*1 n + ¢ @=1/2)) From Lemma 2.8 and the discussion
at the end section Subsection 2.2, it follows that MMD range queries
take O(ke™? logd_1 n+ ke_d_l(logd n +logkloge™1)) time.

220

PODS ’20, June 14-19, 2020, Portland, OR, USA

4 CONSTRAINED OPTIMIZATION

In this section we present efficient indexes for the constrained
diverse top-k (CDT) problem.

4.1 A coarse-approximation index

We first describe a greedy algorithm for the offline version of the
CDT problem, which will be used by the query procedure of our
index. We run the following operations k times or until there is no
point left in P: Find the heaviest point p in P. Remove all points
of P within distance § from p, including p itself. This procedure
returns a set S of at most k points. It is trivial to observe that
minp ges [lp —gll = 6.

Let C* be an optimal CDT solution for P. Let p; € P be the
point selected by the greedy algorithm in the i-th iteration, and
let C; € C* be the set of points in the optimal solution that are
removed in iteration i. By construction,

1

TR

w(p;) = max w(p) >
peCi

A packing argument shows that |C;| < 20 Hence, w(p;) >

0.59@Dy(C;). We claim that C* = |J C;. Indeed, if there is a point

p € C*\ UCi, then |S| = k, there is an i such that C; = & and

w((p) < w(()pi). We can obtain a better CDT solution of P by

replacing p with p; in C*, which contradicts the optimality of C*.
Hence, Y, w(C;) = w(C*) = w(CD(P, k, §)). Thus,

w(S) = > wipi) > 05D 3" w(C;) = 0.5%Dw(CD(P, k, 6)).

Next, we describe an index that, for a query rectangle p, enables

us to run in O(k logd n) time a slightly relaxed version of the above
procedure in which § is a soft constraint, see below.
Index. The main index that we build is the balanced box de-
composition tree (or BBD tree for short) [7, 8], a variant of the
quadtree. A BBD-tree T on a set P of n points in R? is a binary
tree of height O(log n) with exactly n leaves. Let [J be the smallest
axis-aligned hypercube containing P. Each node u of T is associated
with a region [, which is either a rectangle or a region between
two nested rectangles, and a subset P, C P of points that lie inside
(.. Notice that oot = 0. If |Py,| = 1, then u is a leaf. If |P,,| > 1,
then u has two children, say, w and z, and [J,, and [J, partition
Oy (see Figure 3). Regions associated with the nodes of T induce a
hierarchical partition of R47

Py

Figure 3. Two example BBD subtrees with identical regions [J,, at the root nodes.
On the left, [J,, is split by a vertical line. On the right, (J,, is split into [(J,,, (], by a
rectangle.

7 A BBD-tree can be viewed as a generalization of a kd-tree that combines the features
of kd-trees and quadtrees and is similar to hB-trees [30] used for answering range
queries.

Session 4: Data Structures

For each node u, we also store a bool variable by,. Initially, b, = 0
for all nodes of T. We use by, to implicitly delete the points from P.
For anode u, let P, C Py, be the subset of points that have not been
deleted. That is, if b, = 1 then P}, = @. If b, = 0 then P}, = P, for
aleaf u and P}, = P}, U P} for an interior node u with w and z as
its children. The BBD-tree takes O(n) space and can be constructed
in O(nlog n) time.

Additionally, we construct a d-dimensional range tree A for an-
swering range-max queries, i.e., for a query rectangle R, it returns
the point of maximum weight in RN P in O(logd_1 n) time. The con-
struction time and the size of our index is dominated that of A which
is constructed in O(n logd_1 n) time and has size O(n logd_1 n).

For a set Z of nodes of T, let J(Z) = |J,ez ;. For a subset
X c R¥ and for a parameter ¢ > 0, let X¢ = X @ B(0, ¢ - diam(X)) =
{yeR?|3x € X, |ly — x|| < ¢ diam(X)}.

A crucial property of a BBD-tree, which we will be using repeat-
edly, is stated in the following lemma:

LEMMA 4.1. Let C C R be a convex region and let ¢ > 0 be a
parameter.

(i) There exists a set Z¢ of O(log n+ 8_(d_1)) nodes of T such that
C c O(Z¢) C C#, the (interiors of the) regions associated with
the nodes of Z¢ are pairwise disjoint, and there are O(|Z¢|)
distinct ancestors of the nodes in Z¢. There is an algorithm to
compute Z¢ in O(logn + e_(d_l)) time.

(ii) There is also a set Z¢ of O(logn + 6‘_(d_1)) nodes such that
U(Ze) =0\ O(Zo).

The proof of part (i) can be found in [7], and the proof of (ii)
follows from the construction of T. Let CoveERREGION(C, ¢) denote
the procedure that computes Zc.

Next, we define the query procedure. Let R be a query rectangle,
and let 8, ¢, k be the parameters as described above. The query
procedure runs the above offline greedy algorithm efficiently using
T and treating § as a soft constraint. In the initialization phase,
the algorithm computes Zg using COVERREGION(R, ¢). Next, it sets
by = 1 for all v € Zg. For each node v € Zg, by querying A, it
computes the heaviest point &}, € P, N R (note that P, C R¢ but
a point of P, may lie outside R). Next, by proceeding in a bottom-
up manner, for all ancestors w of nodes in Zr, we compute &},
the maximum-weight point of P}, N R in O(1) time per node. This
completes the initialization phase.

The query procedure maintains a subset Q € P N R of at most k
points. Initially, Q = @. It also maintains two sets Z and Z of nodes
with pairwise-disjoint regions such that R\ Ugcp B(g, (1+¢)d)) €
0(2) € R* \ Uge B(g.6) and O(Z) = O\ O(Z); see Figure 4.
Initially Z = Zg and Z = Zg. If a node v is an ancestor of a node
in Z, then it also stores the point &, of P}, N R. The initialization
phase has computed initial &};’s. The procedure terminates when
Q| =korP; =@

In each iteration, the procedure performs the following steps:

(i) Add & to Q.

(ii) Using the CoverREGION(B(} ., J)) procedure, compute a
set U of nodes such that B(£};,, 6) € O(U) S B(& (1 +
€)5).

(iii) Update the sets Z and Z of nodes to satisfy the properties
above for the new value of Q.

221

PODS 20, June 14-19, 2020, Portland, OR, USA

Figure 4. An example after five iterations of the algorithm for a query rectangle R in
black with [J(Z) in green and U; B(g;, 6) inred.

The only non-trivial step is (iii). We update Z and Z as follows.
Let u be a node of the set U from step (ii). If u is a descendant of a
node Z, then there is nothing to do. Otherwise we add u to Z, set
b, = 1, and remove all descendants of u from Z and Z. Next, if an
ancestor w of u is in Z (there is at most one such node), then we
remove w from Z and add the siblings of nodes on the path from w
tou in T to Z (i.e. we shrink (J(Z) from OJ,, to (I, \ O0,). For each
node v added to Z, we compute the heaviest point in P N (RN)
using A. Then we update the £;’s at all ancestors of u. We repeat
this step for all nodes of U.

When the procedure terminates, it returns Q. It is easy to verify
that Q is a §-diverse k-set, i.e., |Q| < k and the pairwise distances
between any pair of points of Q is at least §. If the procedure
terminates with |Q| < k, then R C Ugep B(g, (1+¢)5). The analysis
of the greedy algorithm implies that w(Q) > 0.5°@w(CD(P N
p. k).

By Lemma 4.1, O(log n + £~@~1) nodes are added to or deleted
from Z or Z in each iteration. The total number of insertions
and deletions in Z, Z is O(k(logn + ¢~(@-1)) Each time a node
is added to Z a range-max query on A is performed in O(logd_1 n)
time. Finally, there are O(log n) ancestors of a node, so we spend
O(log n(log n + ¢~(@=1)) time to update the s in each iteration.
Hence, each iteration takes O(logd_1 n(log n+e9-1)) time. The time
taken by the query procedure is O(k logd_1 n(logn + e 471)). We
thus obtain the following:

THEOREM 4.2. Given a set P of n points in R?, an index can be
constructed in O(n log”l_1 n) time with O(n logd_1 n) space such that
given a rectangle p, an integer k < n, a constant ¢ € (0,1), and
a parameter 6 > 0, a §-diverse k-set S C P N p with w(S) >
0.59@Dyw(CcD(P N p,k, 8)) can be reported in O(k logd n) time.

4.2 An c-approximation index

Let P be a set of n points Rd, and let k > 1,6 > 0,¢ € (0,1)
be parameters that are fixed during the preprocessing phase. We
describe an index to preprocess P that for a query rectangle p,
returns a subset S C P of at most k points such that |S| < k,

Session 4: Data Structures

Scpa|o, 55]d,/1(5) > §, and w(S) > (1 — €)CD(P, k, §). We note
that unlike the previous index, some points of S may lie outside p
(but within distance 6 from p). Since ¢ is fixed in the beginning,
without loss of generality, we assume § = 1.8 Furthermore, for any
set A € R? and for an integer i > 0, we use CD(A, i) to denote
CD(A, i, 1). Finally, let T;(A) denote the pair (CD(A, i), w(CD(A, i)))
and 7(A) = {T1(A), ..., T (A)}.

We observe that the problem is decomposable in the following
sense: We call point sets A, B well-separated if the closest distance
between A and B is greater than 1 (recall § = 1), ie., |[[p—q| > 1
for all p € A and q € B (by definition, A N B =). Then, for any i
and well-separated subsets A, B, we have

CD(A U B, i) = CD(A, j) U CD(B, i — j)

for some j < i. Now let S be a set of points that can be partitioned
into pairwise well-separated subsets S1, S, . . ., Sjn. For t < m, set
Xt = Uj<s St- The previous observation implies that for any t < m,

W(CD(X. 1)) = max w(CDX-1. = 1) + w(CDIS.)

where Xy = 0. Using the recurrence and dynamic programming,
T(X1), ..., T (Xm) = T(S) can be computed in a total of O(mk?)
time assuming we have 7(S1), ..., 7 (Sm) at our disposal.

We are now able to describe our index, which critically uses the
above observation. For sake of exposition, we begin by describing
an offline algorithm in 1D similar to that of Hunt et al. [27] and
Matsui [33]. Then we describe the index for 1D, and finally describe
the index in higher dimensions.
1D offline algorithm. Let P be a set of n points in R!. Without
loss of generality, assume that no point in P has an integer value.
We describe a (1 — ¢)-approximation algorithm to compute CD(P, k)
using the shifted grid technique [27, 29, 33].

o b
|] |] |

®) HpieT LACRRRNRN () RMERRNYY
| | | | |

© + | | 1

C, C.

Figure 5. An example with r = 3. (a) The grid points of G, G2, G3 are shown in red,
blue, and green, respectively, and the grid points of F not in any G; are shown in grey.

(b) The darkened intervals contain the points in P\ P, (c) P and the non-empty
cells Cq, Cy, and C3 of Gj.

Set r = [1/€]. We create r grids Go, G1, . . ., Gr—1 over R! where
G; has grid points {i + ra | a € Z}. Each grid cell has length
r = O(¢71). Since no point in P has integer coordinates, each point
in P lies in exactly one grid cell for each G;.

For each grid G;, we remove the points of P that are within dis-
tance 1 (recall that § = 1) from the left endpoint of their containing
grid cells in G;. Let P() be the set of remaining points. Each point
p € P is within distance 1 from the left endpoint of its containing

81f § # 1, we can scale P as well as query rectangles by the factor 1/8 to ensure § = 1

222

PODS ’20, June 14-19, 2020, Portland, OR, USA

grid cell in exactly one grid and thus it remains in all but one grid.
See Figure 5. By a simple packing argument,

max w(CD(P;,k)) = (1 — e)w(CD(P, k)).

Thus, the goal is to compute CD(P(), k) for all i and then report
the best among them.

Fix a value of i. We compute CD(P(i), k)as follows.Let Cq,...,Cp
be the non-empty cells of G;, and let S; = C; N P for each t < m.
We describe below how we compute 77(S;) for each t < m. For now,
assume that we have 7°(S;) at our disposal. For 1 < t < ¢’ < m, we
note that Sy, Sy are well-separated because points of P N Cy lying
within distance 1 from the left endpoint of C have been deleted.
Using the dynamic programming approach outlined above, we can
compute 7 (P and thus CD(PM, k) in O(mk?) time.

We now describe the procedure for computing 7(S;) for 1 <
t < m. Notice that each grid cell C; has length r, so CD(S;, j) can
contain at most r points, even for j > r. To compute CD(S;, j), we
consider all subsets of S; of size at most min{j, r}. For each subset
X, we compute p(X). If p(X) < 1 we set w(X) = —oo, otherwise
we compute w(X). We set CD(S, j) to be the subset X* with the
highest weight, and set T;(S;) = (X*, w(X")). The total time spent
is 5,90 = |St|O(571). Summing this cost over all non-empty grid
cells of G; and adding the cost of dynamic programming, the cost
of computing 7 (P(™) is nOE™), Putting everything together, we
obtain the following:

LEMMA 4.3. Let P be a set ofn points in R! and letk, e, § be param-

eters. There exists an n®¢ ™) -time (1 — ¢€)-approximation algorithm
to compute CD(P, k, 6).

Index. Next, we describe an index that is used to implement the
above procedure efficiently in the range query setting.

Let r,Go,...,Gr—1 and P(O), R P('=1) be the same as above.
We construct a fine grid F of size 1/r,ie.,F = {a/r | a € Z}. We
note that F is a refinement of G;. We call an interval F-aligned if its
endpoints are grid points of F. For each i < ¢, we build an index (D)
on P that fora F -aligned query interval I, returns CcD(PD NI, k).

The index ¥9) consists of two parts. First, we build a 1D range
tree A) on the non-empty grid cells Cy, ..., Cpy of G;. That is, AD
is a height-balanced binary tree. Each node u € AD s associated
with an interval o, and a subset P, = P A oy of points. If u is
the i-th leftmost leaf then o, = C;, and if u is an interior node
with children w and z then oy, is the smallest interval containing
oy and ;. Each node u of A stores T(ng)). If u is a leaf, we
compute T(ng)) using the brute-force approach described above.
If u is an interior node with children w and z, then we compute
T(PS)) from T(Pg,)) and T(P(Zi)) using dynamic programming, as
outlined above.

The total time spent constructing A®) is n0E™)_ AW has O(n)
nodes and each node requires O(k?) space to store T(Pg)). On the
other hand, a point of P() is stored in at most one node for any
fixed level, so it appears at most k times in a given T(Pg)), and A
has O(log n) levels. Putting these two bounds together, we conclude
that the size of A is O(nk min{k, log n}).

The second part of the index ¥()) consists of a set of tables. In
particular, let C; be a non-empty grid cell of G;, and let S; = C; N

Session 4: Data Structures

P(). For every pair a, b of grid points of F within C;, we compute
7(PD N [a,b]) using the brute-force approach. The total size is
O(¢7*k?) for each C;, and it takes |St|o(£71) time to construct these
tables. The total size of these tables is O(nk), and we spend nOE™)
time to compute them. Hence, the size of v() is O(nk min{k, logn}),
and the preprocessing time is nOE™),

Finally, we describe the query procedure. Let I be a query interval.
If I is not F-aligned, we extend I to the smallest F-aligned interval
containing I, so let us assume that I is F-aligned. Let Cp (resp.
CR) be the cell of G; containing the left (resp. right) endpoint of
I. We split I into three sub-intervals: left interval I = I N Cp,
right interval Iz = I N Cg, and middle interval Iy; = I\ (I U IR).
Since I is F-aligned, I, (resp. IR) spans a contiguous sequence of
refined grid cells within a single cell of G;, so we already have
computed TPD NI (resp. 7(PY N IR)) during preprocessing. If
Iy # @, we compute 7(P) N Iy) as follows: We query A®) with
Ip and identify O(logn) nodes uy, ..., us such that oy, ..., oy
partition Iys. Since PS}} ey PE,Z) are well-separated and we have
precomputed T(PS:'],)) for each j, we can compute T(P(i) N Iy) in
O(k? log n) time using dynamic programming,. Finally, we compute
7 (PO A1) from T (PO N 1), T(PYD N Ig), and T (PP N Iy), again
using dynamic programming. The total query time is O(k? log n).

Repeating this for all r grids and returning the best among them,
we obtain a feasible subset of at most k points whose weight is at
least (1 — &)w(CD(P N I, k)). Putting everything together, we obtain
the following:

THEOREM 4.4. Given a set P of n points in R1, an integer k <
n, a constant ¢ € (0,1), and a parameter > 0, an index can be
constructed in nOC€™") time with O(nk min{k, log n}) space such that
given an interval p, a 5-diverse k-set S € P N (p @ [0, ¢]) with
w(S) = (1—¢e)w(CD(P N p, k, §)) can be reported in O(k? log n) time.
A modified index. We can get an index with faster query time
and smaller size that allows k to be provided at query time at the cost
of allowing the index to answer queries with ek additional points.
For any set A C R?, let 7¢(A) denote the subset {Tia4e)i (A | i €
Z.0<i< |-log1+£ |A|-|} of 7(A). To obtain the new index, we first
build the previous index for k = n. Then, for any set A for which
T (A) was stored in the index, we keep only 7 ¢(A) instead. The size
of the resulting index is O((n/¢)logn) = O(nlogn). For a query
interval I, we can compute a (1 — ¢)-approximate solution S for
PNp where |S| < (1+e)kand S € PN(I®[0, ¢5]) in O(k log k log n)
time. Note that query time is better than that of the previous index
when k > 4/log n. We refer the reader to Appendix C for the full
details and conclude with the following theorem.

THEOREM 4.5. Given a set P of n points in RY, a constant ¢ € 0, 1),
and a parameter § > 0, an index can be constructed in nOE™) time
with O(nlog n) space such that given an interval p and integerk < n,
a §-diverse k-set S C PN (p & [0, €]) withw(S) > (1 — e)w(CD(P N
p. k., 8)) can be reported in O(k log k log n) time.

Higher dimensions. Now, we discuss how to extend our index
to higher dimensions. We describe the index in R2, which extends
to d > 2 in a straightforward manner.

Setr = [26_1] and s = r2. We construct s 2-dimensional grids
Go,...,Gs—1. For i < s, if i is of the form i = ar + f, where

223

PODS ’20, June 14-19, 2020, Portland, OR, USA

a,f €[0:r—1],then
Gi={(a+ar,p+br)|abecz%.

We index a grid cell of G; by its bottom-left vertex, i.e., by grid cell
(a, p) we mean the square [a, a + r] X [f, f + r]. Similarly by row
(resp. column) o we mean the strip RX [a, ¢ +r] (resp. [ar, @ + 7] XR).
For each cell of G;, we remove the points of P that lie inside it and
within distance 1 from its bottom or left boundary. Let P() denote
the set of remaining points. We also construct a 2-dimensional fine
grid
F={(a/r,b/r) | a,beZ}.

F is a refinement of every G;. We call a rectangle F-aligned if its
vertices are grid points of F. For each i < s, we build an index
¥() on P() that for a F-aligned rectangle p, returns CD(P\) N p, k).
For a query rectangle p, we compute CD(P() N p, k) for all i < s
and return the one with the highest weight. Generalizing the 1D
argument, we can show that

max w(CD(PD 1 p, k) > (1 - e)w(CD(P N p, k).

I<s

We now describe the index ¥(!). As in 1D, ¥() consists of two
parts. First, we build a 2D range tree A() on the non-empty grid cells
C1,...,Cy of G;. The first level of AD, built on the X-projections
of Cq,...,Cp, is identical to the 1D range tree described above.
Each node u of the first level is associated with an x-interval I,
and a collection C;, of non-empty grid cells. Next, we build a 1D
range tree Agj) on the y-projections of the grid cells of C,, and
attach it as a second-level tree at u. If a node w € A(ui) is associated
with the y-interval I,,, then we also associate it with the rectangle
O, = I, x I,, and the subset P<vf,) =P 0,,. We compute and
store T(P(,f,)) at w. Again, T(PSf,)) is computed by brute-force if
w is a leaf and using dynamic programming otherwise. The total
size of A®) is O(nk log nmin{k, log n}), and the time taken to build
AD s nOE™) A yseful property of AD s that for a rectangle p
aligned with grid cells of G;, there are O(log? n) second level nodes
u1, ..., up in A such that Oy, ..., Oy, are pairwise disjoint and
contain all non-empty grid cells of G; N p, and they can be computed
in O(log? n) time.

The second part of the index is a collection of 1D indexes. Fix a
non-empty row of Gj, i.e., the strip 2, = RX [, a +r]. For a pair of
integers a < b such that [a/r,b/r] C [a,a+r],i.e, RX[a/r,b/r]is
the union of a contiguous set of rows of F that lie inside row & of G;,
let P’a"b be the x-projection of points in Pg,)b =PODARx[a/r,b/r],
ie., PZ,b ={xq | (xq,yq) € P(i),yq € [a/r,b/r]}. For an interval I,

let szl,)b [I] = {(xq.yq) € PS’)b | xq € P’;’b N1I}. By slightly adapting
the 1D index described above we build a 1D index ‘I’g p on PZ b SO
that for a F-aligned interval I, T(Ps)b [I]) can be reported quickly.

We build O(¢™*) indexes for the row & of G;, and repeat this step
for all non-empty rows of G;. Next, we do the same for each non-
empty column of G;, the only difference is that we work with the
y-projections of points. Summing over all rows and columns of G;,
the total size of these indexes is O(nk min{k, log n}), and they can
be constructed in O *) time.

Session 4: Data Structures

We now describe the query procedure. Let p = I X Iy, where
Ly = [ar, ar] and I = [fL, Br] be a query rectangle. If p is not F-
aligned, we set p to be the smallest F-aligned rectangle containing
p. So assume p is F-aligned. Suppose the bottom-left vertex (e, fr.)
of p lies in the cell (ar, br) of G, and the top-right vertex (ag, fr)
of p lies in the cell (ag, br) of G;. We partition p into (at most)
four boundary rectangles py, p5, Pys p; and (at most) one center
rectangle p. as follows (see Figure 6): Assume that ag > af, +r
and bg > by + r; the other cases can be handled similarly. Set
pe = lar +r,ar] X [bL + 1,bR], p = [er,ar + r] X [bL, + 1, bR],
px = lar,ar] X [br +1,BR], py = lar, ar] X [BrL,bL + 1], pj =
[aL, ar] X [br, Br]-

(a+nb+7)

(@ B)

P
b (apby)
p, P RUR
b+r
L p}’/

(a,5)
(aL9 bL)
a+r a,

Figure 6. An example of partitioning p into four boundary rectangles py, p%, Py> p;’
and a center rectangle p..

If p. contains a grid cell of G;, we query AD with pe and identify
t = O(log2 n) nodes of the second level trees uy, ..., u; such that
Oy, ..., 0y, induce a partition of the non-empty grid cells of

pe. Using ‘T(Pg1) ’T(Pgt)), we can compute 7(PD N pe) in
O(k? log? n) time. Next, by querying appropriate 1D indexes, we
compute 7(PY N p3), T(PD N pi), 7(PD n Py)s 7(PW N py) in
O(k? log n) time. Indeed, suppose we want to compute 7PN Py)-
Since p is F-aligned, so is p,. Let g = fi, - r (ie, f = g/r) and
h = (by +r)-r. Then P;i)h = PO N R x [Br, by, + r]. Therefore
7(PD N py) can be obtained by querying P; ,, With the interval
Iy = [ar, ar], which is F-aligned. Using the index ‘I’;‘ e We obtain

T(P;i)h [I:]) in O(k?logn) time. We can handle other boundary

rectangles in a similar manner. Putting everything together, the
overall query time is O(k? log? n).

Finally, we remark that this index can be extended to d > 2 by
constructing a d-dimensional grid, a d-dimensional range tree, and
a family of (d — 1)-dimensional range trees. A query rectangle is
partitioned into (at most) one center rectangle and 2d boundary
rectangles — one for each facet of the query rectangle. The prepro-
cessing time, size, and query time in R are nO(Eid),

O(nk logd_1 nmin{k, log n}), and O(k? logd n), respectively.

The modified index can also be easily extended to higher dimen-

sions. Hence, we conclude the following:

THEOREM 4.6. Given a set P of n points in RY, an integerk < n, a
constant e € (0, 1), and a parameter § > 0, an index can be constructed

224

PODS ’20, June 14-19, 2020, Portland, OR, USA

in n%€™) time with O(nk logd_1 nmin{k, logn}) space such that
for a query rectangle p, a 5-diverse k-set S C P N (p @ [0, £81%) with
w(S) = (1 — &)w(CD(P N p,k,8)) can be reported in O(k? logd n)
time.

Alternatively, an index can be constructed in nO€™) time with
O(nk logd n) space such that for a query rectangle p and integer
k < n, ad-diverse (1 + €)k)-set S C PN (p & [0, 55]d) with w(S) >
(1 — e)w(CD(P N p, k, §)) can be reported in O(k logklogd n) time.

Dependency on parameter ¢. For d = 1, we have O(¢7!) grids,

and the index ¥() constructed for each grid is size O(nk min{k, log n}
+ nke™*) so the total space is O(nke(min{k, log n} + £~%)). For

d = 2, we have O(s_z) grids. For each grid, we construct the 2D

range tree AD of size O(nk log n min{k, log n}) and O(¢™*) 1D in-

dexes of size O(nk(min{k,logn} + e7*)). Hence, the total space

is

O(nkgfz(log nmin{k, log n} + min{k, log nte™t +e78))

which is bounded by O(nke2(log n min{k,log n} + ¢®)). It can be
shown by induction that for any d, our d-dimensional index has
size

O(nkes_d(logd_1 nmin{k,logn} + e_4d)).
The query time can be easily bounded in O(k%¢~% log? n) time.

5 FUTURE WORK

There are still many interesting open problems to consider for
finding diverse high-valued subsets. For example: i) Can we get
(near-)linear time (1 — ¢)-approximation algorithms for the MSD or
the MMD problem? Notice that all our algorithms have approxima-
tion ratio 0.5 — ¢, while all previous algorithms with approximation
ratio 1 — ¢ have superlinear running time. Similarly, we can ask if
there are near-linear size indexes that return (1 — ¢)-approximation
solutions efficiently. ii) Can we extend our methods from the Eu-
clidean space to metrics with constant doubling dimension? iii)
Finally, it remains an open question if the MSD problem is NP-hard
in the Euclidean space for constant dimension d.

Acknowledgments. We thank Jie Xue for helpful discussions
about the MMD problem.
REFERENCES

[1] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A. D. Mehrabi. Range-
clustering queries. In B. Aronov and M. J. Katz, editors, 33rd International Sympo-
sium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia,
volume 77 of LIPIcs, pages 5:1-5:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

P. Afshani, G. S. Brodal, and N. Zeh. Ordered and unordered top-k range report-
ing in large data sets. In Proceedings of the Twenty-second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 11, pages 390-400, Philadelphia, PA,
USA, 2011. Society for Industrial and Applied Mathematics.

P. K. Agarwal, J. Erickson, et al. Geometric range searching and its relatives.
Contemporary Mathematics, 223:1-56, 1999.

P.K. Agarwal, J. Matousek, and S. Suri. Farthest neighbors, maximum spanning
trees and related problems in higher dimensions. Computational Geometry,
1(4):189-201, 1992.

P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for
clustering. Algorithmica, 33(2):201-226, 2002.

S. Aghamolaei, M. Farhadi, and H. Zarrabi-Zadeh. Diversity maximization via
composable coresets. In Proceedings of the 27th Canadian Conference on Com-
putational Geometry, CCCG 2015, Kingston, Ontario, Canada, August 10-12, 2015.
Queen’s University, Ontario, Canada, 2015.

S. Arya and D. M. Mount. Approximate range searching. Computational Geometry,
17(3-4):135-152, 2000.

[2

Session 4: Data Structures

8]

=

[10]
(1]
[12]

[13

[14]

(15

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An opti-
mal algorithm for approximate nearest neighbor searching in fixed dimensions.
Journal of the ACM (JACM), 45(6):891-923, 1998.

M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd
ed. edition, 2008.

S.N. Bespamyatnikh. An optimal algorithm for closest-pair maintenance. Discrete
& Computational Geometry, 19(2):175-195, 1998.

B. E. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-
clique algorithm using factor-revealing lps. Algorithmica, 55(1):42-59, 2009.

A. Borodin, A. Jain, H. C. Lee, and Y. Ye. Max-sum diversification, monotone
submodular functions, and dynamic updates. ACM Trans. Algorithms, 13(3):41:1—
41:25, 2017.

P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. Journal
of the ACM (JACM), 42(1):67-90, 1995.

M. Ceccarello, A. Pietracaprina, G. Pucci, and E. Upfal. Mapreduce and streaming
algorithms for diversity maximization in metric spaces of bounded doubling
dimension. Proceedings of the VLDB Endowment, 10(5):469-480, 2017.

A. Cevallos. Approximation algorithms for geometric dispersion. Technical
report, EPFL, 2016.

A. Cevallos, F. Eisenbrand, and R. Zenklusen. Local search for max-sum diversifi-
cation. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 130-142. Society for Industrial and Applied Mathe-
matics, 2017.

A. Cevallos, F. Eisenbrand, and R. Zenklusen. An improved analysis of local search
for max-sum diversification. Mathematics of Operations Research, 44(4):1494-1509,
2019.

T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. In Proceedings of the sixteenth annual symposium on
Computational geometry, pages 300-309. ACM, 2000.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. SIAM Journal on Computing, 33(6):1417-1440,
2004.

B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math.,
86(1-3):165-177, Jan. 1991.

T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In
J. Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 434-444. ACM, 1988.

S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In
Proceedings of the 18th international conference on World wide web, pages 381-390.
ACM, 2009.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293-306, 1985.

S. Guha. Tight results for clustering and summarizing data streams. In Proceedings
of the 12th International Conference on Database Theory, ICDT *09, pages 268275,
New York, NY, USA, 2009. ACM.

S. Har-Peled. Geometric approximation algorithms. Number 173. American
Mathematical Soc., 2011.

R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum
dispersion. Oper. Res. Lett., 21(3):133-137, 1997.

225

[27

[28

[29]

(31]

(32

[33

(34]

=
)

PODS ’20, June 14-19, 2020, Portland, OR, USA

H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. NC-approximation schemes for NP-and PSPACE-hard problems
for geometric graphs. Journal of algorithms, 26(2):238-274, 1998.

P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mirrokni. Composable core-sets
for diversity and coverage maximization. In R. Hull and M. Grohe, editors,
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages 100-108.
ACM, 2014.

S. Kahruman-Anderoglu. Optimization in geometric graphs: Complexity and
approximation. Texas A&M University, 2009.

D. B. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method with
good guaranteed performance. ACM Transactions on Database Systems (TODS),
15(4):625-658, 1990.

M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25(2):59-68, 1995.

J. Matousek. Geometric range searching. ACM Comput. Surv., 26(4):422-461, Dec.
1994.

T. Matsui. Approximation algorithms for maximum independent set problems
and fractional coloring problems on unit disk graphs. In Japanese Conference on
Discrete and Computational Geometry, pages 194-200. Springer, 1998.

R. Matthew Mccutchen and S. Khuller. Streaming algorithms for k-center clus-
tering with outliers and with anonymity. In Proceedings of the 11th International
Workshop, APPROX 2008, and 12th International Workshop, RANDOM 2008 on
Approximation, Randomization and Combinatorial Optimization: Algorithms and
Techniques, APPROX "08 / RANDOM ’08, pages 165-178, Berlin, Heidelberg, 2008.
Sprin, er-Verlfa‘_‘;g.

Y. Nekrich. Efficient range searching for categorical and plain data. ACM Trans.
Database Syst., 39(1):9:1-9:21, Jan. 2014.

D. R. PW and P. Elzbieta. Dissimilarity Representation For Pattern Recognition,
The: Foundations And Applications, volume 64. World scientific, 2005.

S.Rahul, P. Gupta, R. Janardan, and K. Rajan. Efficient top-k queries for orthogonal
ranges. In International Workshop on Algorithms and Computation, pages 110-121.
Springer, 2011.

S. Rahul and Y. Tao. On top-k range reporting in 2d space. In Proceedings of the
34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 15, pages 265-275, New York, NY, USA, 2015. ACM.

S.S.Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms
for dispersion problems. Operations Research, 42(2):299-310, 1994.

C. Sheng and Y. Tao. Dynamic top-k range reporting in external memory. In
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS *12, pages 121-130, New York, NY, USA, 2012. ACM.
M. Sydow. Approximation guarantees for max sum and max min facility disper-
sion with parameterised triangle inequality and applications in result diversifica-
tion. 2014.

A. Tamir. Obnoxious facility location on graphs. SIAM . Discrete Math., 4(4):550—
567, 1991.

Y. Wang, A. Meliou, and G. Miklau. Rc-index: Diversifying answers to range
queries. Proceedings of the VLDB Endowment, 11(7):773-786, 2018.

K. Yi, L. Wang, and Z. Wei. Indexing for summary queries: Theory and practice.
ACM Trans. Database Syst., 39(1):2:1-2:39, Jan. 2014.

Session 4: Data Structures

A MISSING PROOFS FROM SUBSECTION 2.2

Correctness of our algorithm. We will prove our algorithm
maintains the following invariants immediately before reading the
t-th point in the stream for each i € {1,2,...,J}:

(1) r; = @™ (1 + ¢)! p(Py) for some integer m;.

(2) (Aj UN;j)is a(r;, &)-packing of P;_1 such that |A; UN;| < k.

(3) If t > k, then |A; UD;| = k and p(A; U D;) > ri/a.

Suppose P;—1 = (p1,...,pr—1) have been processed by the al-
gorithm and the invariants above hold. Let p = p; be the next
point to be inserted, and fix i € {1,2, ..., J}. The first step of the
update procedure is to compute a closest pair x,y in A; U N; U {p}.
If p € {x,y} and ||x — y|| < r;, then the update procedure termi-
nates with all invariants held. Otherwise, p ¢ {x,y}, or p = x,
without loss of generality, and ||p — y|| > r;. In the former case,
mingea,up; [P = qll > llx — yl| > r; by the second invariant. Thus,
in either case, we have p(A; U N; U {p}) > ri, so N; is set to
N; := N; U {p} during the update. For the new value of N;, A; UN;
isa (ri, ¢)-packing of P; = P;—1 U{p}. In the case that |A; UN;| < k,
the procedure then stops with all invariants held.

When |A; U N;| = k after inserting p to N;, the update proceeds
by increasing r; by a factor of @, after which the the first invariant
holds. For purposes of analysis, denote by r; value of r; before the
increase; that is, the value of r; at the beginning of the entire update
procedure for point p. After increasing r; , we have 7; < rj/a <
1(A; UN;) < ri. Then A; is set to A; U N;, D; is emptied, and the
pruning begins. In each iteration, a closest pair x, y in A; is found
and at least one of x, y is deleted from A;. Since every point deleted
from A; is added to D;, during and after the pruning A; UD; is equal
to the value of A; UN; immediately after r; was increased. It follows
that u(A; UD;) > ri/a and thus the third invariant holds when the
pruning is complete. It remains to show the second invariant holds
when the pruning is complete.

Since r; is increased by the smallest factor of a such that u(A;) <
ri, at least one iteration of the pruning is performed and thus at
least one point is removed from A;. This ensures that |A;| < k after
the first iteration, and thus it holds when the pruning is complete.
For the second invariant to hold, it only remains to show A; is a
(ri, €)-packing of P; in the end. Recall that a set I C A; is maintained
during the pruning which is initially set to @. See that any point q
deleted from A; during the pruning is found to be within r; distance
of a point p € A; NI and that no point in I is deleted from A;. Thus,
any deleted point is within r; distance of a point in A; when the
pruning is complete; that is, (D;, A;) < r;. As mentioned earlier,
A; U D; immediately after the pruning is the same as A; U N;
immediately before r; was increased (from value 7;), and at that
time, A; U N; was a (73, £)-packing of P;. Since 7; < r;/a, we have
Y(Ps, A UD;) < (14 ¢)r;/a when the pruning stops. It follows that
Y(Ps, Ai) < Y(Pr, A UD;) + ¢(Dj, Aj) < (1 + €)r; by the triangle
inequality and fact that 1/a < /(1 + ¢). Finally, since p(A;) > r;
when the pruning is complete, we conclude A; = A; UN; is a (rj, €)-
packing of P; of size less than k. Thus, the second invariant is met.
We conclude all invariants are held when the update is complete.

Next we prove the approximation guarantee of 0.5 — ¢. Consider
any ¢t < n and the values of the radii r; and subsets S, T after
processing the t-th point. First, see that ry := max; r; and ry :=

min; r; are such that r, > (1 + 5)]_1ry = ary/(1 + ¢) by the

226

PODS ’20, June 14-19, 2020, Portland, OR, USA

first invariant and facts that « = (1 + 5)] andi € {1,2,...,]}
for all radii ;. By the third invariant, Ty = Ay U Dy is such that
(Tx) = rx/a 2 ry/(1 + ¢). Furthermore, by the second invariant,
Sy = Ay UNy is so that /(Sy, P¢) < (1+¢)ry, and thus we conclude
w(Tye) = (1+ &) 2P(Py, Tye) = 0.5(1 + &) "2 u(RE(P;)). Choosing ¢ :=
/5 at the beginning of the algorithm results in an approximation
factor of (0.5 — ¢) as desired.

B FASTER INDEXES FOR FIXED ¢

We discuss the index for the remote-clique range queries for fixed
¢. In the end we extend it to handle MSD range queries.
Preprocessing. We construct an ¢-net N. For each u € N we
compute the projection of each point p € P on u, (p, u) and we set
w(p) = (p, u). Then we construct the index ®,(P) on the weighted
point set P, where the weights are the inner products we computed.
In the end of the preprocessing phase we have built O(1) indexes .
In total, our index uses O(n Iogd n) space and can be constructed in
O(n logd n) time.

Query algorithm. The query procedure is similar to the algo-
rithm in Theorem 2.2. The only difference is that we query @, to
get the next point in P N p with the largest score (projection) on
a direction u and ®_,, to get the point in P N p with the largest
score (projection) on direction —u. Each time that we get the point
with the next largest score on a direction u we check if it is already
added in S and if this is true then we ask for the next point with
the largest score on u.

Analysis. In order to initialize the points with the largest scores
on each direction in N we spend O(logd_1 n) time. Then notice
that we may ask at most O(k) times for the point with the next
largest score, so using the index from [1] we know that we spend
O(k loglog n) in total to get the points with the largest scores after
the initialization. Finally, notice that we may visit all vectors in N
at most k times so in total our query procedure takes O(log”li1 n+
k loglog n) time.

The correctness follows from the correctness proof of Theo-
rem 2.2, since at each iteration we find the farthest pair using the
polygonal metric.

We can also use that index for the MSD range queries. Unfor-
tunately, we cannot compute the scores of points if we do not
know k, A in the preprocessing phase. However, we can get a set
S1 using the procedure above to approximate the remote-clique
and then by constructing an index ® over the weighted points
we can find the k points Sy with the largest weights among the
points in P N p. Then we compare 7(S1) with Aw(S2) and we re-
turn Sp if the former is larger than the latter, and we return Sy,
otherwise. We can observe that in any case if S is the set we return
then f(S) > (0.25 — &) f(MS(P N p, k)). It remains to show how to
compute 7(S1) and Aw(S2), given the sets Sy, Sz, in order to com-
pare them. It is trivial to compute Aw(S2) in O(k) time by taking
the sum of the weights of the points in Sy. We can also trivially
compute 7(S1) by summing up all the pairwise distances in O(k?)
time. However, we would like to have query time which is linear
on k. We approximate 7(S1) within an ¢ factor using WSPD’s.

We first give the definition of the WPSD’s. Given a set of n
points P and a separator parameter ¢, in [13] the authors show
that there exists a set W = {(A1,B1),...,(As,Bs))} of s = O(Eld)

Session 4: Data Structures

pairs such that A;,B; ¢ P, A; N B; = 0, J]_;Ai xB; = P X
P, max{diam(A;), diam(B;)} < eminpea, qeB; |lp — ql|, and for
any pair of points p,q € P there exists a unique pair Aj, Bj such
that p € Ajand g € Bj (or p € Bj and q € Aj). Such a pair
decomposition is called %—WSPD and an implicit representation of
it can be constructed in O(E% + nlogn) time [13, 25]. In particular,
a set of pair of representative points (a;, b;) where a; € A;, and
b; € B; for each i, can be computed, such that for any pair of
points p € A; and q € Bi, (1 —¢)||p — ql| < [|lai = bi]| < ||117+;1|| In
addition the cardinality of the sets A;, B; can also be derived using
the construction algorithm in [13, 25].

By constructing an %-WSPD W = {(a1, b1),...,(as, bs))} over
the set S we compute 7 = 3'5_ |la; — bi|| - |A;| - |B;|. We can easily
see that (1 —¢)7(S1) <7 < ﬁn(sl). Hence, by comparing 7 with
Aw(S3) and by setting ¢ « ¢/c for a sufficiently large constant ¢
we get that, if 7 > Aw(S3) then f(S1) > (0.25 — &) f(MS(P N p, k)),
and if 7 < Aw(Sz) then f(S2) > (0.25 — &) f(MS(P N p, k)).

We conclude with the next theorem.
THEOREM B.1. Given a set P of n points in R? and a constant

€ € (0,0.25), an index can be constructed in O(n logd n) time with
O(n logd n) space such that given the parameters k and A, and a rec-

tangle p, asetS C PNp of k points can be found in O(logd_1 +kloglogn)

time such that f(S) > (0.25 — &) f(MS(P N p, k)). The same index
can also guarantee a set S C P N p of k points such that f(S) >
(0.5 —¢)f(RC(P N p)), where RC(P N p) is the optimum solution of
the MSD problem with w(p) = 0, for each p € P.

C A MODIFIED INDEX

Here we prove Theorem 4.5. Recall the construction of the index de-
scribed in Theorem 4.4. Let r, Gy, . . ., Gy—1, F, and P(O), R p(r-1)
be defined as before. For each i < ¢, let %) be the index on P,
These indexes are composed of two parts. The first part is a 1D
range tree A that stores T(Pg)) for each node of u where ng)
subset of P() associated with node u. The second part is a collection
of tables constructed for each non-empty grid cell C; of G;: for
each pair of integers a, b € C;, we store 7(PYD N [a, b]).

To modify the index, we first build ¥(?) a5 before but with n as
the role of k. Then, for any table 7 (A) stored for a set A C P(i), we
instead store the subset 74(A) = {TL<1+£)1'J(A) | ieZ.0<i<
[loglﬂ |A|]} of T(A).

The preprocessing time for ¥()) remains the same, nOE™), By
definition, the size of 7¢(A) is le%g”g Al 1+) = O(JA|/¢) =
O(|A]). A point of P() is stored in at most one node for any fixed
level of A(i), so the size of all tables associated with nodes of a fixed
level of A is O(n). A has O(log n) levels, so the size of A is
O(nlogn). Now consider a non-empty grid cell C; of G;. The size
of each table TS(P(i) N [a, b]) for each pair of integers a,b € C; is

isa

227

PODS ’20, June 14-19, 2020, Portland, OR, USA

bounded by O(£_4|P(i) N C¢|). The total size of these tables is O(n).
Hence, the size of ¥(9) is O(nlogn).

Next, we describe the modified query procedure. Let I be a query
interval and k < n be an integer. If I is not F-aligned, we extend
I to the smallest F-aligned interval containing I, so let us assume
that I is F-aligned. We do the following for each grid G;. As before,
we partition I into three sub-intervals: I%. U Iy U IR. For Iy, we
identify s = O(log n) nodes us, . . ., us of A 1) such that Oups - -5 Oug
partition Ijs. From these nodes we obtain 7 ¢ (PS})) for t <s. From
¥()) we also obtain 7¢(P? N I) and 7¢(PY) N Iy). These inter-
vals with Iy and Ig make m = O(log n) intervals I, . . ., I, which
partition I. For each interval I;, we have 7¢(PY N I;). Like before,
we use dynamic programming to compute a CDT solution S using
these tables. The details are as follows.

Define the recurrence R(¢, t) for non-negative integers ¢, t where
{<nand0<t<mas

R((,t—1)

max R(£- L(l+€)jJ,t—l)+

R(6. 1) = max), 20F ¢

w(CD(PD NI, |(1+e)]))

and R(¢,0) = 0. A simple inductive argument shows that R(¢, ¢) is
the weight of the best CDT solution S in P N Ux <z Ix of size at
most £ where S N I is & or CD(P(i) N Iy, |_(1 + s)jXJ) for some
integer jx. R(£,t) can be computed in O(¢te™1log) = (£tlogt)
time since the tables TE(P(i) N I;) are at our disposal.

Using the above, we compute R(| (1 +)k |, m) in O(k log nlog k)
time. With standard backtracking techniques, we also identify the
corresponding solution S with w(S) = R([(1 + ¢)k] , m) in the same

tlm\;e claim w(S) > w(CD(P) NI, k)). First, let S} = I;ncD(PDNI)
and let k; = |S7| for all t < m. Let ki = l(l + £)r1°g1+r k’]J. Clearly
ki < ki < [(1+e)k:], and hence ¥, k; < |(1+e)k]. By the
properties of R(¢, t) above, we have

w(S) = R(L(1 + e)k] , m)

> ZW(CD(P(i) N1, k1))

t
> > w(s))
t
> w(CD(PD N I, k)).

We conclude S is such that |S| < (1 + ¢)k and w(S) > w(CD(Pm N
L k).

Repeating this for all r grids and returning the best solution
among them, we obtain a feasible subset of at most (1 + ¢€)k points
whose weight is at least (1 — e)w(CD(P N I, k)). Putting everything
together, we conclude with Theorem 4.5.

