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Abstract—Big data often has emergent structure that exists at
multiple levels of abstraction, which are useful for characterizing
complex interactions and dynamics of the observations. Here,
we consider multiple levels of abstraction via a multiresolution
geometry of data points at different granularities. To construct
this geometry we define a time-inhomogemeous diffusion process
that effectively condenses data points together to uncover nested
groupings at larger and larger granularities. This inhomogeneous
process creates a deep cascade of intrinsic low pass filters on the
data affinity graph that are applied in sequence to gradually elim-
inate local variability while adjusting the learned data geometry
to increasingly coarser resolutions. We provide visualizations to
exhibit our method as a “continuously-hierarchical” clustering
with directions of eliminated variation highlighted at each step.
The utility of our algorithm is demonstrated via neuronal
data condensation, where the constructed multiresolution data
geometry uncovers the organization, grouping, and connectivity
between neurons.

Index Terms—hierarchical clustering, diffusion, manifold
learning, graph signal processing
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I. INTRODUCTION

A fundamental task in data analysis is to characterize
variability that separates informative data relations from dis-
ruptive ones, e.g., due to noise or collection artifacts. In
predictive tasks such as classification, for example, one might
seek to extract and preserve information that enhances class
separation, while eliminating intra-class variance. However, in
descriptive tasks and data exploration, such knowledge does
not a priori exist, and instead data processing methods must
detect emergent patterns that encode meaningful abstractions
of the data. Furthermore, it is often the case that data ab-
straction cannot be conducted at a single scale, and instead
one must consider multiresolution data representations that
generate several scales of abstraction – each emphasizing
different properties in the data.

The need for multiresolution data representations is of
particular importance in biomedical data exploration, where
recent technological advances introduce vast amounts of un-
labeled data to be explored by limited numbers of domain
experts. For example, in single-cell transcriptomics, high-
throughput genomic and epigenetic assays have led to an
explosion in high-dimensional biological data measured from
various systems including imaging [1], [2], mass cytome-
try [3], and scRNA-seq [4], [5]. To fully utilize this transfor-
mative big data availability, computational methods are needed
that leverage the intrinsic data geometry (e.g., using manifold978-1-7281-0858-2/19/$31.00 ©2019 IEEE
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learning techniques [6]) to enable exploratory analysis upon
it.

A common approach towards data abstraction is to use clus-
tering algorithms that provide coarse-grained representations
of the data by grouping data points into salient clusters [7]–
[9], either at a single scale or hierarchically (see Section II).
However, standard clustering algorithms such as k-means [10],
[11] or expectation maximization (EM) [12] have many lim-
itations. For example, they fail to perform well on high-
dimensional data, or they require a number of assumptions
about the underlying structure of the data [13]. In particular,
a primary challenge in clustering is determining the optimal
number of clusters or groups. Many algorithms require the user
to explicitly choose the number of clusters (as in k-means) or
tune a parameter that directly relates to the number of detected
clusters (e.g., as in Phenograph [7]). In exploratory settings,
this makes it particularly challenging to detect small, unique,
or otherwise rare data type clusters, and extract new knowledge
from them.

Here, we present a new approach to address the challenge
of multiscale data coarse graining by using a data-driven time-
inhomogeneous diffusion process, which we call diffusion
condensation. Our proposed diffusion condensation process
learns a “continuous hierarchy” of coarse-grained represen-
tations by iteratively contracting the data-points towards a
time-varying data manifold that represents increasingly coarser
resolutions. At each iteration, the data points move to the
center of gravity of their local neighbors as defined by this
data-driven diffusion process [14], [15]. This in turn alters
the next steps of the diffusion process to reflect the new
data positions. Across iterations, this construction creates a
time-inhomogeneous Markov process on the data, which rep-
resents the changing affinities between data points, along with
changing granularities. The process eventually collapses the
entire data set to a single point. However, intermediate steps
in this process produce coarse-grained data representations at
particular granularities or abstraction levels. Importantly, our
results show that distinct clusters emerge at different scales
and each data point (e.g., each cell in transcriptomic data) is
represented by a time series of feature vectors that capture
multiresolution information in the data. Therefore, the data
embedding provided by the constructed diffusion condensation
process can be thought of as a dynamic video, as opposed
to static snapshots provided by traditional manifold learning,
such as diffusion maps [14] and other dimensionality reduction
methods [16].

II. RELATED WORK

Typical attempts at providing multiscale data abstraction
or summarization rely on hierarchical clustering, which is
a family of methods that attempts to derive a tree of clus-
ters based on either recursive agglomeration of datapoints
or recursive splitting. Agglommerative methods include the
popular linkage clustering, or community detection methods
including the Louvain Method [17]. Splitting based approaches
include recursive bisection [18] and divisive analysis clustering

[19]. At each iteration, these methods explicitly attempt to
discover the best split or merge at each iteration, thereby
forcing points together or apart as the case may be. Diffusion
condensation by contrast does not force any splits or mergers
at any iteration and simply allows datapoints to come together
naturally via repeated condensation steps. Thus, there may
be many iterations in which a cluster of datapoints remains
distinct from other clusters. This time length under which the
cluster persists can itself be a metric of the distinctness of a
cluster, and the agglomeration of all such cluster persistence
times creates a diagram similar to those created in persistent
homology [20], [21]. Thus the hierarchical tree created by
diffusion condensation (displayed as a Sankey diagram in
Figure 4) has branches whose lengths are meaningful in terms
of cluster separation.

III. PRELIMINARIES

a) Manifold learning: High dimensional data can often
be modeled as originating from a sampling Z = {zi}Ni=1 ⊂
Md of a d dimensional manifold Md that is mapped to n � d
dimensional observations X = {x1, . . . , xN} ⊂ R

n via a
nonlinear function xi = f(zi). Intuitively, the reason for this
phenomenon is that data collection measurements (modeled
here via f ) typically result in high dimensional observations,
even when the intrinsic dimensionality, or degrees of freedom,
in the data is relatively low. This manifold assumption is
at the core of the vast field of manifold learning (e.g., [6],
[14], [16], [22], and references therein), which leverages the
intrinsic data geometry, modeled as a manifold, for exploring
and understanding patterns, trends, and structure in data.

b) Diffusion geometry: In [14], diffusion maps were pro-
posed as a robust way to capture intrinsic manifold geometry
in data using random walks that aggregate local affinity to
reveal nonlinear relations in data and allow their embedding
in low dimensional coordinates. These local affinities are
commonly constructed using a Gaussian kernel

K(xi, xj) = exp

(
−‖xi − xj‖2

ε

)
, i, j = 1, ..., N (1)

where K is an N × N Gram matrix whose (i, j) entry is
denoted by K(xi, xj) to emphasize the dependency on the data
X . The bandwidth parameter ε controls neighborhood sizes.
A diffusion operator is defined as the row-stochastic matrix
P = D−1K where D is a diagonal matrix with D(xi, xi) =∑

j K(xi, xj), which is referred to as the degree of xi. The
matrix P defines single-step transition probabilities for a time-
homogeneous diffusion process (which is a Markovian random
walk) over the data, and is thus referred to as the diffusion
operator. Furthermore, as shown in [14], powers of this matrix
Pt, for t > 0, can be used for multiscale organization of
X , which can be interpreted geometrically when the manifold
assumption is satisfied.

c) Diffusion filters: While originally conceived for di-
mensionality reduction via the eigendecomposition of the dif-
fusion operator, recent works (e.g., [23]–[26]) have extended
the diffusion framework of [14] to allow processing of data
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features by directly using the operator P. In this case, P
serves as a smoothing operator, and may be regarded as a
generalization of a low-pass filter for either unstructured or
graph-structured data. Indeed, consider a vector v ∈ R

N that
we think of as a signal v(xi) over X . Then Pv(xi) replaces
the value v(xi) with a weighted average of the values v(xj)
for those points xj such that ‖xi−xj‖ = O(

√
ε). Applications

of this approach include data denoising and imputation [23],
data generation [24], and graph embedding with geometric
scattering [25], [26].

IV. DIFFUSION CONDENSATION

A. Time inhomogeneous heat diffusion

The matrix P defines the transition probabilities of a random
walk over the data set X . Computing powers of P runs the
walk forward, so that Pt gives the transition probabilities of
the t-step random walk. Since the same transition probabilities
are used for every step of the walk, the resulting diffusion
process is time homogeneous.

A time inhomogeneous diffusion process arises from an
inhomogeneous random walk in which the transition probabil-
ities change with every step. Its t-step transition probabilities
are given by

P(t) = PtPt−1 · · ·P1

where Pk is the Markov matrix that encodes the transition
probabilities at step k.

Suppose the data set X has an additional parameter
t = 0, 1, 2, . . . that results from measurements X(t) =
{x1(t), . . . , xN (t)} of a time-varying manifold Md(τ) at
discretely sampled times τt = εt. Let Pt be the resulting
Markov matrix derived from X(t), constructed according to
the anisotropic diffusion process of [14, Section 3] (which is
similar to the construction described in Section III). One can
show [27] the resulting inhomogeneous diffusion process P(t)

approximates heat diffusion over the time varying manifold
Md(τ). The singular vectors of this process can be used to
construct a so-called time coupled diffusion map, which gives
time-space geometric summaries of the data X .

The perspective of [27] is that the data is intrinsically time
varying. However, one can also start with a static data set X
and construct a series of deformations of the data. In this paper
we take the latter perspective and deform the data set according
to an imposed, data driven time inhomogeneous process P(t)

that reduces variability within the data over time. The resulting
process is referred to as condensation, and is described in the
next section.

B. The diffusion condensation process

Recall from Section III that the application of the operator
P to a vector v averages the values of v over small neighbor-
hoods in the data. In the case of data X = {x1, . . . , xN} ⊂ R

n

measured from an underlying manifold Md with the model
xi = f(zi) for zi ∈ Md, this averaging operator can be
directly applied to the coordinate functions f = (f1, . . . , fn).
Let fk ∈ R

N be the vector corresponding to the coordinate

function fk evaluated on the data samples, i.e., fk(zi) =
fk(zi). The resulting description of the data is given by
X̄ = {x̄1, . . . , x̄N} where x̄i = (Pf1(zi), . . . ,Pfn(zi)). The
coordinates of X̄ are smoothed versions of the coordinates of
X , which dampens high frequency variations in the coordinate
functions and thus removes small perturbations in the data.
This smoothing technique is used in [23] to impute and denoise
data.

Here we consider not only the task of eliminating variability
that originates from noise, but also coarse graining the data
coordinates to provide multiple resolutions of the captured
information in them. Therefore, we aim to gradually eliminate
local variability in the data using a time inhomogeneous dif-
fusion process that refines the constructed diffusion geometry
to the coarser resolution as time progresses. This condensation
process proceeds as follows. Let X(0) = X be the original
data set with Markov matrix P0 = P and X(1) = X̄ the
coordinate-smoothed data described in the previous paragraph.
We can iterate this process to further reduce the variability
in the data by computing the Markov matrix P1 using the
coordinate representation X(1). A new coordinate represen-
tation X(2) is obtained by applying P1 to the coordinate
functions of X(1). In general, one can apply the process for
an arbitrary number of steps, which results in the condensation
process. Let X(t) be the coordinate representation of the data
after t ≥ 0 steps so that X(t) = {x1(t), . . . , xN (t)} with
xi(t) = (f

(t)
1 (zi), . . . , f

(t)
n (zi)), where f

(0)
k = fk. We obtain

X(t+ 1) by applying Pt, the Markov matrix computed from
X(t), to the coordinate vectors f

(t)
k . This process results in:

f
(t+1)
k = Ptf

(t)
k = PtPt−1 · · ·P1P0fk, t ≥ 0 (2)

From (2) we see the coordinate functions of the conden-
sation process at time t + 1 are derived from the imposed
time inhomogeneous diffusion process P(t) = Pt · · ·P0. The
low pass operator Pt applies a localized smoothing operation
to the coordinate functions f

(t)
k . Over the entire condensa-

tion time, however, the original coordinate functions fk are
smoothed by the cascade of diffusion operators Pt · · ·P0.
This process adaptively removes the high frequency variations
in the original coordinate functions. The effect on the data
points X is to draw them towards local barycenters, which
are defined by the inhomogeneous diffusion process. Once
two or more points collapse into the same barycenter, they are
identified as being members of the same cluster. In Section V
we demonstrate condensation’s dynamic data deformations to
remove variability and collapse points into clusters.

C. Algorithm

Pseudocode is provided in Algorithm 1. Although not
strictly necessary, cluster convergence may be accelerated by
increasing the bandwidth, ε, when the l∞-norm of the differ-
ence between densities of the previous and current iterations,
Diag(Q′) and Diag(Q), falls below a threshold.

The present implementation provides proof-of-concept. We
see computational complexity is dominated by matrix multiply
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Algorithm 1: Condensation

Input : X ← NxM matrix of N data points, M features;
ε ← initial filter bandwidth
Output: Xt ← NxM data matrix after t condensations
begin

i ← 0; iprev ← −2;
Q′ ← IN ;
Qdiff ← ∞;
labels ← Range(0, N);
while i− iprev > 1 do

iprev ← i;
while Qdiff >= 1× 10−4 do

i ← i+ 1;
D ← Distance(X);
Merge(labels[Where(D < 1× 10−3)]);
A ← Affinity(D);
Q ← Diag(RowSum(A));
K ← Q−1AQ−1;
P ← RowNormalize(K);
X ← P ×X;
Qdiff ← ||Diag(Q)− Diag(Q’)||l∞ ;
Q′ ← Q;

end
ε ← ε× 2;
Qdiff ← ∞;

end
end

and is O(n4) when t ≥ n. Thus, more research is needed to
scale the algorithm.

V. PROPERTIES OF DIFFUSION CONDENSATION

A. Cluster self-organization

Unlike other state-of-the-art clustering algorithms, such as
k-means, diffusion condensation does not require the user to
a priori choose a potentially arbitrary number of data clusters
to find. Rather, condensation grows self-organizing cluster
hierarchies that emerge through local interactions among the
data manifold’s sampling density and curvature variation. To
disentangle and illustrate such properties, we provide conden-
sation video stills in Figure 1. To begin we highlight the
hyperuniformly-sampled (i.e., grid-sampled) circle manifold
on the top-left of Figure 1, which demonstrates the base
case of homogeneous data density and constant curvature.
Note the absence of cluster formation. Comparing this to
the hyperuniformly-sampled ellipse on the right of Figure 1,
we observe the formation of nontrivial condensation clusters,
particularly in the regions of high curvature.

Similarly, the uniformly-sampled circle manifold of constant
curvature in the bottom-left of Figure 1 exhibits local cluster
formation. Hence, we conjecture that nontrivial data density or
curvature variation are sufficient conditions for the formation
of diffusion condensates.

B. Cluster characterization via spectral decay

In addition to still frames, it is enlightening to consider
cluster formation via its correspondence with the spectral
decay. Figure 2 demonstrates that data condensation cor-
responds with sudden, rapid spectral decay. Recall that a
nested series of hierarchical data representations may be
achieved through diffusion maps by taking successive powers
of the diffusion operator, Pt (not P(t)), or, equivalently,
powering its eigenvalues, λt

i ∈ [0, 1) for i = 2, 3, . . . , N ,
which function as coordinates of the spectral embedding
(e.g., xj 
→ {λt

iψi(xj)}i≥2, for all xj ∈ X). Of particular
interest is the contrast between smooth decay to 0 of the
diffusion maps spectrum as t → ∞ and the rapid, finite-
time eigenvalue and singular value decays of Pt and P(t),
respectively, pictured in Figure 3. The latter characterization
may be useful in the identification of hierarchical condensation
events in high dimensions, for example. We note that while
the condensation operator, P (t), is constructed as in [27], its
use in clustering is novel. Spectral characterizations of cluster
hierarchy persistence further differentiate the present work.
For instance, Figure 2 displays many features of interest. Most
striking is the correspondence between rapid spectral decay of
Pt and cluster formation, which are depicted just before the
moment of condensation. We see three major areas of cluster
formation beginning near iteration 15, again near iteration 53,
and once again near the last iteration, 100, when the algorithm
halts.

C. Condensation allows multiscale persistence analysis

Since the condensation algorithm naturally allows points
to come together via a low pass filter application at each
iteration, the time-point in the process at which clusters
naturally come together and the length of time for which
a cluster persists (without merging) offer notions of cluster
metastability. This can be used to derive a partitioning of the
dataspace that has mixed levels of granularity. By contrast,
most clustering methods are only able to produce results at
a particular granularity; for example, k-means tends to favor
clusters that roughly divide the data into k partitions of similar
sizes. However, different parts of the dataspace may naturally
separate at different levels of granularity and this is not visible
in other methods. Even hierarchical clustering, due to forced
splits and merges, may not reveal the levels of granularity
at which data groupings are most distinct. We visualize this
persistence information using Sankey diagrams (see Figures 4
and 5) that show natural groupings of the data. In Section
VI-A we use this capability of condensation to suggest a more
relevant subtyping of retinal bipolar neurons on the basis of
their transcriptomic profile, as compared to previous literature.

VI. EMPIRICAL RESULTS

A. Single-cell transcriptomics data

A recent study of retinal bipolar neurons using single-
cell transcriptomics was performed [28] to classify cells into
coherent subtypes. The study identified 15 cell sub-types by
using the method of [17], of which 13 were well known and 2
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Fig. 1. Condensation of hyperuniform circle (top-left), uniform circle (bottom-left), and hyperuniform ellipse (right) at early/late iterations (left/right,
respectively). Point radius corresponds to local density. Arrows computed via the infinitesimal generator Pk−IN

ε
show the gradient field and clearly depict

data point acceleration during cluster condensation.

were novel. We use the findings of said study to benchmark the
condensation algorithm. From the dataset, we use a randomly
selected sample of 20,000 cells with gene expression counts
sequenced to a median depth of 8,200 mapped reads per cell to
perform condensation. The condensation ran for 64 iterations
until it achieved a metastable state of 12 clusters (close to the
15 reported in [28]). However due to the continuous clustering
history offered by condensation, we are able to assess when
these metastable clusters first form; see Figure 4 for a diagram
of iterations 44 to 64. A key advantage of the condensation
method is its ability to compute cluster persistence based on
the lengths of the clustering tree branches, which we use to
reassess the subtyping of retinal bipolar cells performed in
[28].

Using community detection methods, [28] found that cluster
BC1 (bipolar cone cells, subtype 1) is better described as two
clusters, BC1A and BC1B. Shekhar et al. [28] even confirm
that morphologically BC1B seems to be a unipolar cluster
rather than bipolar. Condensation clustering corroborates this
new finding. Indeed, as shown in Figure 4, the dark grey BC1
subclusters stay persistently separated until the last iteration
shown. Therefore, the two subcluster-state is more persistent
than the single cluster.

On the other hand, condensation suggests alternative group-
ings of other clusters not identified by previous papers on
retinal bipolar neurons including [28] . Among these, we
find that although BC3 has been described in terms of two
subcomponents, BC3A and BC3B in biological literature, and

in [28], these subclusters merge early (iteration 53) and the
transcriptional profiles are not significantly distinct overall,
despite certain selective markers such as Erbb4, Nnat being
different between the two. Additionally, we find that our results
strongly suggest that BC7 consists of 3 distinct subtypes that
persist separately until the last iteration. Previously, the BC7
cell type has been described as a Vstm2b+Casp7+ cone cell
that is distinct from other BC types as predicted by [28]. Our
analysis, however, reveals that there may be multiple sub-
populations that are distinct within this cell type designation.
While additional experimentation are required to follow up
on this finding, condensation provides a way to examine
granularities at which data is best organized based on cluster
persistence via the whole condensation history.

B. Neural connectome data

Since the condensation algorithm operates via a series
of diffusion operators, which can be regarded as types of
adjacency matrices, we sought to understand if the algorithm
would apply to coordinate-free spaces. To achieve this we took
a datatype that naturally exists as a graph: the neural con-
nectome data of the Caenorhabditis elegans brain, a neuropil
called the nerve ring consisting of 181 neurons. Here an adja-
cency matrix was created from the contact profiles determined
by images along slices of the worm, i.e., neurons that were
more frequently in contact with one another were assumed
to have a stronger connection and communication with one
another. This adjacency matrix was then eigendecomposed to
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Fig. 2. Alternative characterization of hyperuniform ellipse cluster formation via top 14 nontrivial singular values of the Markov/diffusion operators,
{{σi(Pk)}tk=0}15i=2 (far left), and corresponding video stills of hyperuniformly-sampled ellipse condensation at iterations 15, 53, and 100.

Fig. 3. Characterization of hyperuniform ellipse cluster formation via top 14 nontrivial singular values of the Markov/diffusion operators, {{σi(Pk)}tk=0}15i=2

(top, see also Figure 2), {{σi(P
(k))}tk=0}15i=2 (middle), and {{σi(P

k)}tk=0}15i=2 (bottom, diffusion maps operator).

create a coordinate space in order to perform the condensation.
The remainder of the algorithm remained as described.

First we sought to test out the robustness of the condensation
algorithm by applying it to two complete connectomes of the
Caenorhabditis elegans brain. Previous comparisons between
these connectomes had concluded that they largely share
similar structure at the level of cell morphology and synaptic
positions [30]. We therefore hypothesized that by comparing
the output from these similar connectomes we could test
the robustness of our algorithm. Specifically, we focused on

analyzing the relationship between cell-cell contact profiles
for every neuron within the two connectomes [31]. Cell-cell
contact relationships should define modules with the brain
that are bundled together, and we hypothesized that if the
algorithm was working as expected, it should extract similar
contact profiles among the two connectomes. We observed
that our algorithm produced similar condense profiles for the
two connectomes (See Figure 5), suggesting that our method
can be used to robustly analyze connectomics data. We see
that the Sankey diagrams preserve much of the structure
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Fig. 4. Sankey diagram showing results of 20 iterations of diffusion condensation on the scRNA-Seq retinal bipolar dataset. Left side representing final
clusters and right representing earlier stages of the process. The two dark strands represent BC1B and BC1A sub-populations. Red representing BC3A cell
type which becomes distinct quite early in the process. Light green being BC7, forms from three distinct strands suggesting possible subtle sub-populations.

including an important mechanosensory circuit. To quantify
the similarity between condensation clusters generated from
the two connectomes, we compute the adjusted Rand index
(ARI) at each condensation iteration from 0 to 24 and then
take the mean. This yields an ARI = 0.7, for −1 ≤ ARI ≤ 1,
where the closer to ARI = 1 the better.

A major advantage of the diffusion condensation algorithm
1 is that it allows analyses of computational iterations to
extract biologically relevant information informing the clus-
tering steps. We hypothesized that these iterative steps could
reveal units of circuit architecture underlying the brain. To
test this, we examined the clusters for well described circuits,
specifically, for the anterior body mechanosensation circuit
[29]. The anterior body mechanosensation circuit contains 2
classes of mechanosensory neurons and 4 classes of command
interneurons that contact and connect to each other, and
based on their contact profile, should be identified by the
algorithm [32], [33]. Indeed, iteration 14 (Figure 5) identified
the circuit in both worms, revealing the predicted relationships
between these connecting neurons. Interestingly, iteration 14
also contains neurons of unknown function that, upon closer
inspection, are closely associated to the circuit, but have

not been implicated in mechanosensory behaviors. Therefore
inspection of the condensation algorithm not only extracted the
known circuit, but also motivated a new hypothesis regarding
the function of unknown neurons associated to the circuit.
Together, our analyses demonstrate that the method can be
used to compare connectomics data across organisms, to
extract biologically relevant units of circuit architecture and
even to inform new experiments and discoveries of biological
importance. We propose that this method will be broadly
useful for systems level analysis of connectomics data.

C. Algorithm comparison
We compare condensation at two times with Mini Batch

K-Means, Agglomerative Clustering with Ward linkage, and
Agglomerative Clustering with average linkage. The two
condensation times are early and later, where early is half
the iterations of later. The computational experiments are
conducted on part of the scikit-learn clustering dataset with
default, tuned parameter values and datasets. The variance of
the center blob in the Gaussian blobs dataset (Figure 6, row
two) was decreased from 2.5 to 1.5 for separability.

In Figure 6 we see the earlier iteration of condensation
exhibits finer clustering by curvature than the later. Similarly,
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Fig. 5. A, B) Sankey diagrams of the condensation results for two C. elegans connectomes: a young adult (A) and an adult worm (B). C, D) Sankey
diagrams of a subset on neurons (blue in A and B) for a young adult (C) and an adult worm (D). Letter code corresponds to specific neuron names. Cells
are pseudocolored based on the function of the specific neuron in the circuit, with blue representing mechanosensory neurons, red representing interneurons,
and yellow representing additional neurons unknown to function in this circuit. Note similar condense profiles at the level of single cells between both young
adult (C) and an adult worm (D) connectomes. Cluster outlined in black is the cluster analyzed further in (E). E) Circuit diagram for the anterior body
mechanosensation circuit. We color the specific neurons according to function as in (C and D). Circuit diagram adapted from [29]. F) Cartoon depicting the
head of C. elegans. The vertical black line shows where the electron micrograph serial section was collected. G) Serial electron micrograph image. Neurons
corresponding to the brain of the animal are highlighted green. H) Cropped view of a cross section from the serial electron micrographs corresponding to the
anterior body mechanosensation circuit (represented in E). Neurons are pseudocolored as in (C-E). Note how both the relative positions contact profiles of
these neurons are similar between both animals, as predicted by the algorithm.

row three of Figure 6 exhibits coarser clustering in the later
condensation labeling. These examples demonstrate the multi-
scale nature of clusters assigned via condensation. We note that
while we employ only the Euclidean metric in these examples,
preliminary tests using other metrics yield promising results.

VII. CONCLUSION

We presented a multiresolution data abstraction approach
based on a time-inhomogeneous diffusion condensation pro-
cess that gradually coarse grains data features along the
intrinsic data geometry. We demonstrated the application of
this method to biomedical data analysis, in particular in sin-

gle cell transcriptomics. Furthermore, the presented diffusion
condensation can be seen as a cascade of data-driven lowpass
filters that gradually eliminates variations in the data to extract
increasingly abstract features. Indeed, under this interpretation,
the abstraction provided by the condensation process can be
related to common intuitions of features extracted by hidden
layers of deep convolutional networks, e.g., in image process-
ing. Such features are commonly considered as increasing in
abstraction capabilities together with the depth of the network.
However, we note that while convolutional networks typically
employ relatively-simple pointwise nonlinearities, here the
nonlinearity we employ is the reconstruction of the diffusion
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Fig. 6. Condensation results as compared with Mini Batch K-Means (center), Agglomerative Clustering with Ward linkage (center-right), and Agglomerative
Clustering with average linkage (right) on the scikit-learn clustering dataset (N = 300). The early condensation snapshot (left) is taken at half the iterations
of the later (center-left).

geometry based on the coarse grained features along the
cascade. Therefore, our cascade both learns a multiresolution
data geometry and extracts multiresolution characterizations
of groupings based on invariant features at each iteration.
Finally, we note the increasing interest in geometric deep
learning, which aims to tie together filter training in deep
networks with non-Euclidean geometric structures that often
exist intrinsically in modern data. While our approach here
relies only on lowpass filters, it opens interesting directions in
employing trained filters (or even designed diffusion wavelets,
as done in diffusion and geometric scattering [25], [26])
together with geometric reconstruction for multiscale feature
extraction from data.

Software and media: All code along with selected media are
available at https://github.com/matthew-hirn/condensation.git.

REFERENCES

[1] C. Giesen, H. A. Wang, D. Schapiro, N. Zivanovic, A. Jacobs, B. Hat-
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