
Selecting Data to Clean for Fact Checking: Minimizing
Uncertainty vs. Maximizing Surprise∗

Stavros Sintos, Pankaj K. Agarwal, and Jun Yang
Department of Computer Science, Duke University

{ssintos, pankaj, junyang}@cs.duke.edu

ABSTRACT

We study the optimization problem of selecting numerical quan-

tities to clean in order to fact-check claims based on such data.

Oftentimes, such claims are technically correct, but they can still

mislead for two reasons. First, data may contain uncertainty and

errors. Second, data can be “fished” to advance particular posi-

tions. In practice, fact-checkers cannot afford to clean all data and

must choose to clean what “matters the most” to checking a claim.

We explore alternative definitions of what “matters the most”: one

is to ascertain claim qualities (by minimizing uncertainty in these

measures), while an alternative is just to counter the claim (by max-

imizing the probability of finding a counterargument). We show

whether the two objectives align with each other, with important

implications on when fact-checkers should exercise care in selec-

tive data cleaning, to avoid potential bias introduced by their desire

to counter claims. We develop efficient algorithms for solving the

various variants of the optimization problem, showing significant

improvements over naive solutions. The problem is particularly

challenging because the objectives in the fact-checking context are

complex, non-linear functions over data. We obtain results that

generalize to a large class of functions, with potential applications

beyond fact-checking.

PVLDB Reference Format:

Stavros Sintos, Pankaj K. Agarwal, Jun Yang. Selecting Data to Clean for
Fact Checking: Minimizing Uncertainty vs. Maximizing Surprise. PVLDB,
12(13): 2408 - 2421, 2019.
DOI: https://doi.org/10.14778/3358701.3358708

1. INTRODUCTION

We proud ourselves in basing our decisions on data and evidence,

yet “data determinism” is not without its own issues. Two glaring

issues are data quality—where inaccurate data leads to incorrect

conclusions—and the practice of data fishing—where, even when

∗This work was supported by NSF grants CCF-15-13816, CCF-15-
46392, IIS-14-08846, IIS-17-18398, IIS-18-14493, OIA-19-37143,
an ARO grant W911NF-15-1-0408, a grant from the Knight Foun-
dation, and a Google Faculty Award. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the
funding agencies.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 13
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3358701.3358708

assuming perfect data, one can cherry-pick data to make correct

but still misleading claims. Journalists and fact-checkers devote an

enormous amount of effort to checking claims based on data, and

have to struggle constantly with both issues, often with limited time

and resources. Consider the following example.

EXAMPLE 1. Our world is never short of controversial and con-

tradictory claims about crime statistics. “There have been huge

drops in the murder rates in cities.” “Neighborhoods have become

more violent under his watch.” The list goes on. While we have left

out the specifics here, a few internet searches will reveal a long list

of such claims, all seemingly backed by data.

Fact-checking such claims is no easy task. First, there are nu-

merous well-documented data quality issues with crime data [3,

32]. In the U.S., a primary source for such data is the Uniform

Crime Reports, which relies on voluntary reporting from law en-

forcement agencies at the different levels of jurisdiction. Coding

errors and inconsistencies, changes to reporting guidelines, or even

reporting delays and personnel changes can lead to under- or over-

statement of crimes for particular jurisdictions in particular time

periods. To “clean” a potentially erroneous value, a fact-checker

may need to go through local agencies and/or consult with experts

who have previously worked with the data. With limited time and

resources, it is often impractical to clean all relevant data items.

Second, many claims are correct but misleading. For example, a

claim about rising or falling crime rate may be made over a partic-

ular time period. However, if we simply change the period a bit, the

trend may become less pronounced or even reversed. In that case,

the claim is not fair or robust, and we can show a “counter” claim,

similar in form to the original but with a different conclusion, to

help refute the original. As another example, if the claim is in-

tended as an attack on the leadership for a particular jurisdiction,

we can check whether similar claims can be made for other juris-

dictions or for other previous leaderships. If yes, then the original

claim is not unique. Fact-checkers frequently employ such analyses

in rebutting correct but misleading claims, e.g. [3, 17, 37].

To combat the problems of data quality and data fishing, we can

draw methods from data cleaning [16, 21] and recent work on fact-

checking correct but misleading claims [43, 44]. This paper ex-

plores the following specific question: given a limited budget to

fact-check a claim, which data items should we choose to clean?

Intuitively, we would like to prioritize efforts towards those parts

of data that “matter the most” to fact-checking the given claim.

Consider claims that can be modeled as queries over a database.

When the values in the database are uncertain, the correctness of

the claim (query result) is uncertain too. We can spend some budget

to remove uncertainty in some data values, which can help reduce

uncertainty in claim correctness. For fact-checking, however, we

2408

must go beyond correctness. Instead, following the perturbation

framework of [43, 44], we consider perturbations of the original

claim, which provide a larger context in which we can assess var-

ious claim qualities—including fairness, robustness, and unique-

ness—or to find counterarguments. The goal of data cleaning hence

needs to be extended to help with such analyses.

An important question is how the objective of cleaning (i.e., how

we define what “matter the most”) affects fact-checking. A reason-

able objective is minimizing uncertainty in some numeric measure

of claim quality (e.g., fairness, uniqueness)—the goal is to ascer-

tain claim quality. Another possibility is maximizing the chance of

finding a counterargument to the given claim after cleaning—the

goal is to purely counter the claim. One key question is whether

these two goals align with each other. If not, fact-checkers need to

be careful in avoiding potential bias of their data cleaning choices

introduced by their desire to counter claims.

EXAMPLE 2. To illustrate, consider the numbers of crimes in a

particular jurisdiction in recent years (subscripts are years):
X2014 X2015 X2016 X2017 X2018

9,010 9,275 9,300 9,125 9,430

Suppose the data may contain errors. Cleaning each Xi may yield

a number different from the above, but it would take considerable

effort and we do not have enough resources to clean every Xi.

We wish to check the claim “crimes (in 2018) have gone up by

more than 300 cases from last year,” which attempts to put the

blame on the current administration. This claim can be modeled

as a simple query X2018 −X2017. Obviously, cleaning X2018 and

X2017 will let us tell whether the claim is outright incorrect.

But fact-checking goes beyond verifying correctness. Implicitly,

this claim suggests that having an increase of 300 in a year is an

unusual event. To assess whether this claim is really “unique,”

we consider a series of perturbations (more in Section 2.2), i.e.,

additional queries that help put the original one in context—how

much did crimes go up by from 2016 to 2017, from 2015 to 2016,

and from 2014 to 2015? We can then quantify the uniqueness of

the original claim by counting the number of perturbations that

yield a result no weaker than the original (i.e., > 300). To make

this assessment, we would need a whole lot of data beyond the two

specific years originally referenced.

The question of what data to clean now becomes more involved.

Suppose our goal is to purely counter the claim by finding another

instance of big increase in recent years. For this simple example,

we would intuitively want to clean X2015. If the result goes up just

by a little, say, from 9,275 to 9,315, we will be able to make the

counterargument that crimes went up just as much from 2014 to

2015 (implying that the previous administration could be blamed

too). In contrast, cleaning X2016 is probably not a good invest-

ment, because it will unlikely yield a high enough number to make

the increase over 2015–2016 significant, or a low enough number

to make the increase over 2016–2017 significant.

On the other hand, the cleaning strategy above begs the ques-

tion of whether it is “cherry-picking” in a way that can lead to

unfair assessment of the original claim. A more impartial objective

would be minimizing uncertainty in some measure of claim quality

(e.g., uniqueness here). Would this objective lead to very differ-

ent choices of data items to clean? Are there situations where two

objectives actually align with each other? These are some of the

questions this paper seeks to answer.

Note that this paper focuses on how to select data to clean, as op-

posed to specific data cleaning techniques. We assume that a clean-

ing procedure can resolve the uncertainty in a value by paying a

cost; our algorithms are general enough to work for multiple sce-

narios, including manual cleaning.

Our contributions. Given a claim to check against a database

with uncertain values, we solve the problem of choosing what val-

ues to clean under a cost budget in order to—roughly speaking—

either 1) minimize uncertainty in some measure of claim quality, or

2) maximize the chance of finding a counterargument after clean-

ing. By appropriately defining a query function f over the database,

we show that the above problem reduces to the following, more

fundamental problems of choosing data to clean under a budget

constraint, with different objectives:

• (MinVar) Minimize the uncertainty in the result of f , or more

precisely, the expected variance in the result of f after cleaning.

• (MaxPr) Maximize the probability that the result of f after

cleaning deviates significantly from its result before.

These optimization problems in general have applications beyond

fact-checking. We give hardness results and greedy algorithms that

work well in practice. Under certain assumptions, we can exploit

properties of the data distribution and query function f to obtain

efficient algorithms with good approximation guarantees.1

We apply our results to fact-checking and evaluate our algo-

rithms using experiments. Fact-checking poses hard instances of

the above problems (e.g., query functions can involve indicator and

quadratic functions), but our results are general enough to apply.

For the question regarding the differing goals of fact-checking, we

show that in general, these two goals do not align. More interest-

ingly, we also show that, under certain assumptions that may be

reasonable in practice, these two goals can in fact align with each

other. These results provide practical tools and guidelines that help

fact-checkers clean data effectively while avoiding potential bias.

2. MODEL
We will first define our problems generally in terms of a query

function f over uncertain data. The objective is to clean some data

to either minimize the uncertainty in the result of f , or maximize

the probability that the result of f after cleaning deviates signifi-

cantly from the result before. Then, we show how to map concrete

fact-checking tasks to special instances of these general problems,

by defining appropriate f and choosing an objective.

2.1 Problem Definition
Let O = (o1, . . . , on) be a set of n objects. We assume that

their identities are certain but their values are not. Each object oi
has a current value ui ∈ IR, which may be incorrect; let u =
(u1, . . . , un)

⊺
. We model the true value of oi as a random variable

Xi with support Vi, and assume that we know the joint probability

distribution of X = (X1, . . . , Xn)
⊺

with support V. Cleaning

object oi costs ci, and reveals its true value drawn from X.

A query function f is a real-valued function of the object val-

ues. Informally, given f and a cost budget C, our problem is to

choose a subset of objects T ⊆ O to clean in order to 1) minimize

the uncertainty in f(X), or 2) maximize the probability that clean-

ing T leads to a large deviation from f(u). We describe the two

objectives further below and formally define the problems.

Given T = {oi1 , oi2 , . . . , oi|T |
} ⊆ O where 1 ≤ i1 < i2 <

· · · < i|T | ≤ n, we denote (Xi1 , Xi2 , . . . , Xi|T |)
)⊺ by XT and

its support by VT . In general, by subscripting an n-vector with

1
We note that our solution to MinVar is also of technical interest because

of its connection to the submodular function maximization problem with
applications in sensor placement to reduce uncertainty [27, 28]. Despite
apparent similarity, there is an intriguing dichotomy between the two prob-
lems that necessitates different approaches. We point out this dichotomy in
the full version of this paper [38].

2409

T = {oi1 , . . . , oi|T |
}, we mean the |T |-vector consisting of just

those elements at positions i1, . . . , i|T |.

Minimizing uncertainty. The outcome of cleaning T is uncer-

tain. While cleaning a particular oi always removes uncertainty in

Xi, doing so may, counterintuitively, increase uncertainty in f(X),
as illustrated by the following example.

EXAMPLE 3 (UNCERTAIN EFFECT OF CLEANING). Consider

a database of three objects with binary values X1, X2, and X3,

and query function f(X) = 1 [X1 +X2 +X3 < 3], an indica-

tor function that returns 1 if the sum of values is less than 3, or 0
otherwise. Intuitively, the indicator condition may become harder

or easier to satisfy depending on the outcome of cleaning an object

value, say X1. As a concrete example, suppose X1, X2, and X3 are

independent Bernoulli random variables with success probabilities
1
2

, 1
3

, and 1
4

, resp. Without cleaning, f(X) = 0 with probabil-

ity 1
2
· 1

3
· 1

4
= 1

24
. If we clean X1, there are two outcomes: If

X1 = 0: here we know the sum cannot exceed 2, so f(X) = 1 for

sure, and uncertainty is reduced. Otherwise, X1 = 1: in this case,

f(X) = 0 with probability Pr [X2 +X3 ≥ 2] = 1
3
· 1

4
= 1

12
,

which is closer to a toss-up than the probability of 1
24

for the case

without any cleaning. In other words, uncertainty has increased.

Hence, when choosing what to clean, we can only minimize un-

certainty in the expected sense. To this end, consider VT , which

forms the sample space containing all possible outcomes of clean-

ing T . The uncertainty in the query function result (due to remain-

ing uncertainty in O\T) can be regarded as a random variable over

VT . Our objective is then to minimize its expected value.

There are various measures of uncertainty in random variables

(e.g. entropy). In this paper we consider variance, which is useful

when the actual spread and magnitude of the numerical quantity

matters (for example the number of crimes in Example 1). For-

mally, we define the optimization problem MinVar as follows:

(MinVar) min
T⊆O

∑

v∈VT

Pr [XT = v] ·Var [f(X) | XT = v] ,

subject to:
∑

oi∈T

ci ≤ C.
(1)

Note that the above definition assumes the value domains to be

discrete; the case when they are continuous can be defined anal-

ogously by integrating a probability density function.

Notice that so far, the current object values (u) have no bearing

on the problem definition. However, in the scenario to be discussed

next, the current values play a more important role.

Maximizing surprise. The value of f before cleaning T is f(u).
By cleaning T , we replace, for each object oi ∈ T , the current

value ui with a random draw of Xi, with the hope of lowering the

value of f by more than a given threshold τ ≥ 0—intuitively, find-

ing a “surprise.” Because the outcomes are random, we maximize

the probability that our goal is met. Formally, the optimization

problem, which we call MaxPr, is as follows:

(MaxPr) max
T⊆O

Pr
[

f(X) < f(u)− τ | XO\T = uO\T

]

,

subject to:
∑

oi∈T

ci ≤ C.
(2)

Note the objective function has value 0 for T = ∅.

Discussion. Note that we assume each object oi has a cleaning

cost ci; i.e., if we want to learn its correct value we need to pay

ci. This cost model has been widely used in data cleaning literature

(e.g., [6, 7, 8, 31]). It is general enough to allow any individual

costs to be specified, be they estimated or actual, monetary costs

or human efforts. However, we do not yet consider more general

cases where the cost function is non-additive.

We also assume that the distribution for each object’s value is

known. Such distributional knowledge can come in many ways,

e.g., from the design of some sampling procedure, by modeling

measurement errors of sensors, by resolving conflicting data from

different sources [13], or by opinion pooling [5, 14, 26]. Such

knowledge has been used in other related data cleaning models

(e.g., [7]) as well as probabilistic databases (e.g., [4, 9, 10, 40]).

2.2 Application in Fact Checking
We now show how to apply the general problems defined ear-

lier to concrete fact-checking tasks. Following [43, 44], we model

a claim as a query (called the claim function) over a database in-

stance. Let q◦ denote the claim function for the “original” claim

to be checked, which returns q◦(u) given the current values of the

database objects. Intuitively, q◦ captures the original claim’s par-

ticular view of the data. Checking this claim involves considering

various perturbations to q◦ and see how they compare with q◦(u).
Let Q = {q1, . . . , qm} denote the set of m perturbations, each

of which is a claim function obtained by changing (the parameters

and/or form of) q◦ in some way.

A real-valued relative strength function ∆(·, ·) is used to com-

pare two claim function results: if ∆(qk(u), q
◦(u)) is positive

(negative), then qk strengthens (weakens, resp.) q◦; the absolute

value of ∆(qk(u), q
◦(u)) measures the extent of strengthening

(weakening, resp.).

Not all perturbations are equally relevant to the original claim.

For example, a perturbation qk whose parameters are close to those

of q◦ is more relevant than one whose parameters are far away.

Therefore, we associate each perturbation qk with a sensibility sk ≥
0 such that

∑

1≤k≤m
sk = 1. The higher the sensibility, the

more relevant this perturbation is to q◦. Together, the sensibilities

s = (s1, . . . , sm) define a probability distribution over Q.

EXAMPLE 4 (WINDOW AGGREGATE COMPARISON CLAIMS).

A window aggregate comparison [43] claim compares the aggre-

gate values computed over two time windows of equal length. A

real-life example is a claim made by Rudy Giuliani in 2007 [24],

which stated that “adoptions went up 65 to 70 percent” in New

York City between the periods 1990–1995 and 1996–2001. Here,

the claim function is a linear function over subsets of values in the

windows compared; i.e., q◦(u) =
∑l+w−1

i=l
ui −

∑r+w−1
i=r

ui, for

1 ≤ l, r ≤ n, where w is length of each window and ui is the num-

ber of adoptions in year i. The first summation is over values in the

earlier window, while the second summation is over the later win-

dow. The ∆ function in this case is simply the difference between

qk(u) (perturbation) and q◦(u) (original claim). Sensibility of a

perturbation qk in this case may be defined to decay exponentially

over its distance to q◦, as measured by the number of years between

the endpoints of their comparison periods. The intuition is that we

care mostly about perturbations with temporal contexts similar to

the original claim, which is when Guiliani was the mayor.

Ascertaining claim quality. The following measures of claim

quality were introduced in [43]. They all involve summarizing, in

some way, over all perturbations, the difference between the result

of each perturbation and that of the original claim function. In the

following, X = u if there is no uncertainty in the object values.

• Fairness can be measured by the amount of bias in q◦(u), de-

fined as bias(q◦(u),X) =
∑

1≤k≤m
sk · ∆(qk(X), q◦(u)).

Intuitively, bias of 0 means perturbations on average return the

2410

same result as the original claim, so the original claim is fair.

Negative bias means the original claim exaggerates, while pos-

itive bias means it understates.

• Uniqueness can be measured by the degree of duplicity in q◦(u),
defined as dup(q◦(u),X)=

∑

1≤k≤m
1[∆(qk(X), q◦(u))≥0].

Intuitively, duplicity is the number of perturbations that yield

stronger results than the original claim. The lower the duplicity,

the more unique the claim.

• Robustness can be measured by the fragility in q◦(u), defined

as frag(q◦(u),X)=
∑

1≤k≤m
sk·(min{∆(qk(X), q◦(u)),0})2.

Intuitively, low fragility implies that the original claim is robust;

i.e., it is difficult to find perturbations that weaken the original

claim.

When the object values X are uncertain, the results of claim

functions are uncertain, so the claim quality measures become ran-

dom variables over X, whose uncertainty can be measured by their

variance. A reasonable goal for a fact-checker, given a limited bud-

get for data cleaning, would be to clean a subset of the object values

in order to minimize the variance in some measure of claim quality.

Because the outcome of data cleaning is uncertain, we minimize

the expected variance over all possible outcomes. This problem is

hence an instance of MinVar introduced in Section 2.1, with query

function f set to the corresponding claim quality measure.

Increasing the chance of finding counterarguments. Consider

a fact-checker with a “random” strategy, who picks a perturbation

at random—with probability proportional to its sensibility—and

hopes that it weakens the original claim q◦. Given the current ob-

ject values u, bias(q◦(u),u), the bias in q◦(u) as defined in Fair-

ness, computes the expected extent to which the original claim will

be weakened by a random perturbation. Intuitively, if the bias is

well below some (negative) threshold, then we have a good chance

of finding a strong counterargument to the original claim.

With data uncertainty, we can choose to clean a subset of the ob-

ject values, and arrive at a new database instance u
′ consisting of

the resulting values as well as old values from u for any objects

not cleaned. The bias in q◦(u) computed on this new database in-

stance, bias(q◦(u),u′), would reflect how easy it is to find a strong

counterargument after cleaning. Because the outcome of cleaning

is uncertain, the amount of improvement—between bias(q◦(u),u′)
and the baseline of bias(q◦(u),u)—is uncertain. If our goal is

purely to counter q◦, we would like to choose objects to clean in a

way to maximize the probability that the improvement is tangible,

i.e., bias(q◦(u),u′) < bias(q◦(u),u)− τ , where τ ≥ 0 is a user-

define threshold. This problem is hence an instance of MaxPr in

Section 2.1 with query function f(X) = bias(q◦(u),X).

Comparing the two objectives. We now return to the inter-

esting question raised at the beginning of this paper: how do the

two objectives above—ascertaining claim quality and increasing

the chance of finding counterarguments—compare with each other?

Under certain assumptions the two objectives do agree—namely,

if X is a multivariate normal distribution centered at the current val-

ues u (independence assumption not needed), then for linear claim

functions, maximizing the chance of finding a counterargument is

equivalent to reducing the uncertainty in fairness. We formally state

the result in the end of Section 3. Note that the assumption above

is not unreasonable in practice. Oftentimes we have limited prior

knowledge of the distribution of X, and there is no reason to be-

lieve that database values are biased. In such scenarios, a multi-

variate normal with current values at the center would indeed be a

reasonable starting assumption, and fact-checkers can rest assured

that the goal of finding counters is equivalent to that of developing

a better understanding of the fairness of the original claim.

However, the two objectives do not generally agree. Next, we

show how they disagree on a simple concrete example involving

only independently and uniformly distributed values and in Sec-

tion 4, we empirically evaluate how much these objectives diverge.

EXAMPLE 5 (DIFFERING FACT-CHECKING OBJECTIVES).

We consider a database of two objects with values X = (X1, X2)
⊺
,

where X1 and X2 are independently and uniformly distributed over

{0, 1
2
, 1, 3

2
, 2} and { 1

3
, 1, 5

3
}, resp. The current (uncleaned) values

are u = (1, 1)⊺. Note that Var [X1] =
1
2

and Var [X2] =
8
27

.

The claim function to be checked is q◦(X) = X1+X2. Suppose

the only relevant “perturbation” of q◦ is itself (i.e., Q = {q◦}), so

bias(q◦(u),X) = X1+X2−q◦(u) = X1+X2−2. We are given

enough budget to clean either X1 or X2, but not both. We compare

the objective of reducing the expected variance in bias(q◦,X) ver-

sus that of increasing the chance of finding a strong counterargu-

ment, where X1 +X2 < 17
12

(below the baseline of q◦(u) = 2).

For the first objective, note that with no cleaning at all,

Var [bias(q◦(u),X)] = Var [X1] + Var [X2] = 1
2
+ 8

27
;

cleaning X1 reduces it to 8
27

while cleaning X2 reduces it to 1
2

.

Hence, the optimal choice (minimizing uncertainty) is to clean X1.

For the second objective, if we clean X1 (and leave X2 = 1),

we have Pr
[

X1 +X2 < 17
12

]

= Pr
[

X1 < 5
12

]

= 1
5

; if we

clean X2 (and leave X1 = 1), we have Pr
[

X1 +X2 < 17
12

]

=

Pr
[

X2 < 5
12

]

= 1
3

. Hence, the optimal choice is to clean X2.

3. ALGORITHMS
The problems in Section 2.1 are difficult in general—even sim-

pler forms are NP-hard (for example, the well-known Knapsack

problem can be easily reduced to a special instance of the MinVar).

We begin in Section 3.1 with simple greedy algorithms that pri-

oritize objects to clean until the cost budget is exceeded. These

algorithms are used as general heuristics for our problems.

We consider certain properties of the data distributions and/or

query functions in Sections 3.2 and 3.3 that enable better theoreti-

cal bounds for greedy algorithms or more sophisticated algorithms.

By assuming independent errors, we can show a number of interest-

ing results: a) With an affine query function f , the objective func-

tions of MinVar and MaxPr (additionally assuming zero-mean er-

rors) become modularizable, allowing us to map these problems to

Knapsack, for which better algorithms exist and even greedy offers

constant-factor approximation. b) Remarkably, for any query func-

tion f , MinVar is equivalent to minimizing a submodular function

with a cost upper bound constraint, allowing us to apply existing

approximation algorithms with theoretical guarantees.

Finally, we return to the fact-checking applications in Section 3.4.

We discuss how to compute expected variance (needed for running

our algorithms) for fact-checking efficiently. We also show an in-

teresting coincidence: under some conditions, namely when claims

are linear and data errors are zero-mean multivariate normal, then

the objective of minimizing uncertainty in claim quality (MinVar)

and that of maximizing the chance of finding counters (MaxPr) in

fact align with each other.

All formal proofs of the next lemmas and theorems can be found

in the full version of the paper [38].

3.1 Greedy Algorithms
Algorithm 1 shows the template for our greedy algorithms. The

code is parameterized by a benefit estimation function β : O→ R,

to score objects for greedy selection. Intuitively, Greedy chooses

the object with the highest benefit per unit cost (β(oi)/ci) to clean

next until the total cost exceeds C. In the end, we ensure that we

always find a good solution, in particular a 2-approximation, for a

2411

Algorithm 1: Greedy. The algorithm is parameterized by β :
O→ R, a function that returns the estimated benefit of cleaning

a given object. In general, β may refer to the set T of objects

that have already been chosen.

1 T ← ∅; c← 0;

2 while ∃oi ∈ O \ T : c+ ci ≤ C do

3 oi ← argmaxoi∈O\T : c+ci≤C β(oi)/ci;

4 T ← T ∪ {oi}; c← c+ ci;

5 if O \ T 6= ∅ then // check to ensure 2-approximation

6 oi ← argmaxoi∈O\T : ci≤C β(oi)/ci;

7 if β(oi) >
∑

oj∈T
β(oj) then

8 T ← {oi};

9 return T ;

class of objective functions [19] (special cases of our defined prob-

lems) by checking if the next object ol with highest ratio β(ol)/cl
has larger benefit than the sum of benefits of the objects we have

chosen before. For example, consider the well known 0-1 knap-

sack problem with two items x1, x2. The values of the items are

β(x1) = 0.1 and β(x2) = 10, while the costs are c1 = 0.0001
and c2 = 2. With budget C = 2, the goal is to choose a set of items

with cost at most 2 with the maximum value. Greedy would choose

item x1, because 0.1
0.0001

> 10
2

, and hence the value of the knapsack

is 0.1. However, the optimal choice is to select item x2 with value

10. In the end, our algorithm considers the benefit of the next non-

cleaned object (Lines 5-8 in Algorithm 1) so it ensures that in such

a case we take the item x2 in our final solution.

A naive greedy algorithm. The simplest instance of Greedy,

which we call GreedyNaive, uses the benefit estimation function

β(oi) = Var [Xi] (but 0 if the query function does not reference

Xi). Note that β(·) does not depend on the objects already chosen,

so one can sort O by β(oi)/ci once and then proceed accordingly.

Therefore, the running time of GreedyNaive is O(n(t + log n)),
where t is the complexity of computing each Var [Xi], which is

O(|Vi|).
While efficient, GreedyNaive tends to produce poor solutions

in practice (see Section 4). Intuitively, GreedyNaive assumes that

cleaning the value with the highest variance reaps the most bene-

fit. At first glance, this estimation makes sense for both MinVar

and MaxPr: the most uncertain object value may contribute the

most to the query function result uncertainty, and a random draw of

this value may cause the largest deviation from the original query

function result. However, both assumptions easily fail in practice.

Recognizing GreedyNaive’s shortcoming of ignoring the objective

when deciding what to clean, we next show a different greedy

method that does consider the objective in its decision.

Estimating benefits from optimization objectives. A better

strategy is to derive Greedy’s benefit estimation function from the

actual optimization objectives. We call the resulting greedy algo-

rithms GreedyMinVar and GreedyMaxPr. Recall that T denotes

the set of objects chosen so far. For oi ∈ O \ T , let δi denote the

change in the objective if T changes to T ∪{oi}. Let β(oi) = −δi
for GreedyMinVar and β(oi) = δi for GreedyMaxPr.

Next, we show an example that illustrates why GreedyMinVar

performs better than GreedyNaive even in the simple case where

Xi’s are mutually independent with unit cleaning cost, and the

query function is symmetric in them.

EXAMPLE 6 (GreedyNaive VS GreedyMinVar). Recall the

database setup in Example 5, where X1 and X2 are independently

and uniformly distributed over {0, 1
2
, 1, 3

2
, 2} and { 1

3
, 1, 5

3
}, resp.

Suppose objects have unit cleaning cost and we have budget to

clean only one object. GreedyNaive will choose to clean X1 be-

cause Var [X1] > Var [X2].
Consider MinVar with query function 1

[

X1 +X2 < 11
12

]

. Note

that this function returns 1 for only two realizations of (X1, X2),
namely (0, 1

3
) and (1

2
, 1
3
). Thus, Var

[

1
[

X1+X2<
11
12

]]

= 26
225

.

GreedyMinVar decides the item to clean by computing, for each

item, the fraction of the variance improvement over the cost.

If we clean X1:

• With probability 2
5

, X1 ∈ {0, 1
2
}, so 1

[

X1 +X2 < 11
12

]

= 1

with probability Pr
[

X2 = 1
3

]

= 1
3

. Therefore,

Var
[

1
[

X1+X2<
11
12

]

|X1∈{0, 1
2
}
]

=1
3
(1− 1

3
)=2

9
.

• With probability 3
5

, X1 ≥ 1, so 1
[

X1 +X2 < 11
12

]

= 0 for

certain. Therefore, Var
[

1
[

X1+X2<
11
12

]

|X1≥1
]

=0.

Overall, the expected variance after cleaning X1 is 2
5
· 2

9
= 4

45
,

and the improvement is 26
225
− 4

45
≈ 0.0266

On the other hand, if we clean X2 instead:

• With probability 1
3

, X2 = 1
3

, so 1
[

X1 +X2 < 11
12

]

= 1 with

probability Pr
[

X1 ∈ {0, 1
2
}
]

= 2
5

. Therefore,

Var
[

1
[

X1 +X2 < 11
12

]

| X2 = 1
3

]

= 2
5
(1− 2

5
) = 6

25
.

• With probability 2
3

, X2 ≥ 1, so 1
[

X1 +X2 < 11
12

]

= 0 for

certain. Therefore, Var
[

1
[

X1+X2<
11
12

]

|X2≥1
]

= 0.

Overall, the expected variance after cleaning X2 is 1
3
· 6

25
= 2

25
,

and the improvement is 26
225
− 2

25
= 0.0355.

Hence, GreedyMinVar chooses to clean X2. The expected un-

certainty after cleaning X2 (2
25

) is lower than that of cleaning X1

(4
45

). In other words, GreedyMinVar’s choice of cleaning X2 is

better than the choice of GreedyNaive’s choice.

Since β(·) depends on T , we need to evaluate β(·) in every itera-

tion. Therefore, a straightforward implementation of GreedyMinVar

and GreedyMaxPr would have a time complexity of O(n2γ), where

γ is the complexity of computing the objective function. This com-

plexity is highly dependent on the forms of the data distribution and

query function. Without any assumption about such forms, a brute-

force implementation would enumerate all possible realizations of

X, implying that γ = O(|V|), which is exponential in n. To avoid

this high complexity, one possibility is to estimate δi using Monte

Carlo methods. Another possibility is to use more efficient algo-

rithms for certain forms of data distributions and query functions;

we defer that discussion to the next subsection.

3.2 Modular Objectives
We now examine some practical cases when we can prove good

theoretical bounds for the greedy algorithms, or devise algorithms

with even better guarantees. We start with a simple case where

the optimization objective is essentially linear. An objective for

MinVar or MaxPr is modularizable over O if it is equivalent to

maximizing
∑

oi∈T
wi for some w = (w1, w2, . . . , wn) ∈ R

n,

where w does not depend on T . Modular objectives have a number

of applications in practise. For example, window aggregate com-

parison claims can be expressed as linear claim queries. In this

case, notice that the fairness of a claim is a linear function, in the

form aX where a = (a1, a2, . . . , an). Hence, the problem of min-

imizing the variance of fairness of linear claims is a special case of

optimizing a modular function over a weighted constraint.

The next lemma shows some conditions where MinVar, MaxPr

problems have modular objectives.

LEMMA 3.1. If components of X are pairwise uncorrelated and

f(X) is affine (i.e., f(X) = b+aX, where a = (a1, a2, . . . , an)),

2412

then MinVar has a modularizable optimization objective, with wi =
a2
iVar [Xi].
If components of X are independently and normally distributed

and centered around their current values (i.e., Xi ∼ N(ui, σ
2
i)),

and f(X) is affine (i.e., f(X) = b+ aX, where a =
(a1, a2, . . . , an)), then MaxPr has a modularizable optimization

objective, with wi = a2
iσ

2
i .

It is easy to see that MinVar with modularizable objective is

equivalent to the standard minimum knapsack problem: given a

cost budget C′, choose T ′ ⊆ O to minimize
∑

oi∈T ′ wi subject

to
∑

oi∈T ′ ci ≥ C′. Similarly, the MaxPr problem with mod-

ularizable objective is equivalent to the standard maximum knap-

sack problem: given a cost budget C, choose T ⊆ O to maximize
∑

oi∈T
wi subject to

∑

oi∈T
ci ≤ C. This observation shows that

MinVar and MaxPr are NP-hard problems. Using [2] we can get

the following results.

LEMMA 3.2. For MinVar, suppose the components of X are

pairwise uncorrelated and f(X) is affine. Let t denote the com-

plexity of computing each Var [Xi]. Then:

• An optimal solution can be computed in O(n(t+ C)) time.

• For a parameter ǫ > 0, an (1+ ǫ)-approximate solution can be

computed in O(nt+ n3/ǫ) time.

Next we show the results for the MaxPr problem. We can take an

exact pseudo-polynomial time algorithm for the maximum Knap-

sack problem and attain an exact solution for the MaxPr problem.

Furthermore, an approximate solution for the equivalent Knapsack

problem can be used to find an approximation solution to our orig-

inal MaxPr problem.

LEMMA 3.3. For MaxPr, suppose the components of X are in-

dependently and normally distributed and centered around their

current values, and f(X) is affine. Then:

• An optimal solution can be computed in O(nC) time.

• Let OPT denote the optimal objective function value. There is

an algorithm that returns in O(n
3

ǫ
) time a value A such that

A = O(OPT) if OPT > 0.05.

Greedy for modularizable objectives. By Lemma 3.1, the ben-

efit estimation function for GreedyMinVar and GreedyMaxPr for

the cases they cover, is simply β(oi) = a2
iVar [Xi], the vari-

ance of Xi weighted by (the square of) its contribution to the query

function—this estimation is in fact exact. Since the benefit does

not depend on the objects already chosen, we can sort O upfront by

β(oi)/ci, without computing argmax in each iteration of the loop.

Therefore, the running times of GreedyMinVar and GreedyMaxPr

algorithms for these cases are the same as that of GreedyNaive,

which is O(n(t + log n)), where t = O(|Vi|) for GreedyMinVar

and t = O(1) for GreedyMaxPr.

A well-known result on the knapsack problem is that Greedy

achieves 2-approximation. Thus, by Lemma 3.1, GreedyMinVar

provides a 2-approximation. Furthermore, by adapting the proof of

Lemma 3.3 we can show that GreedyMaxPr provides a constant

approximation for the MaxPr problem (similarly to the second part

of Lemma 3.3).

3.3 General Query Functions
Now we consider the general case with arbitrary query function

f . Interestingly, it turns out that as long as the Xi’s are mutually

independent, MinVar’s objective function is submodular regardless

of what the query function f is. A set function g is submodular if

for any set A ⊂ B and for any element x /∈ B, g(A∪x)−g(A) ≥
g(B ∪ x) − g(B). This powerful observation enables us to draw

techniques from the rich literature on submodular function opti-

mization [15, 22, 35, 41]. These observations would lead to ap-

proximation algorithms for minimizing the expected variance of

uniqueness, robustness or any other function over the claims. No-

tice that the results hold for any claim query (not only linear claim

queries), as long as the random distributions Xi’s are mutually in-

dependent.

Our main technical contributions are the following: If the ran-

dom distributions Xi’s are mutually independent then i) we show

that the objective of MinVar is non-increasing and submodular re-

gardless of what the query function is, and ii) we map MinVar to

a minimization problem with a non-decreasing submodular objec-

tive function and a linear lower bound cost constraint. Finally, (ii)

allows us to use the algorithms in [23] and get efficient approxima-

tion algorithms for MinVar.

In the following, let

EV(T)=
∑

v∈VT

Pr [XT=v] ·Var [f(X)|XT=v]

denote the objective function of MinVar.

We first start with another observation that EV(·) is non-increasing,

which holds in general, regardless of data distribution and query

function. Then, we show that EV(·) is submodular as long as the

Xi’s are mutually independent.

LEMMA 3.4. The objective function of MinVar is monotone non-

increasing in T ; i.e., for all T ⊆ O and o′ ∈ O, EV(T) ≥
EV(T ∪ {o′}).

LEMMA 3.5. If components of X are mutually independent, then

the objective function of MinVar is submodular in T ; i.e., for all

T ⊂ T ′ ⊂ O and oj ∈ O \ T ′, EV(T ∪ {oj}) − EV(T) ≥
EV(T ′ ∪ {oj})− EV(T ′).

Therefore, MinVar with mutually independent Xi’s is a problem

of minimizing a non-increasing submodular function with a linear

cost upper bound constraint. Next, we show that the MinVar prob-

lem can be mapped to a problem of minimizing a non-decreasing

submodular function with a linear cost lower bound constraint. That

will allow us to use known algorithms from the literature of sub-

modular optimization. The key idea is that instead of choosing the

subset T of objects to clean, we choose the subset T of objects to

not clean (the cost constraint is complemented accordingly). Let

MinVar be the problem defined as follows: Choose T ⊆ O to min-

imize EV(T) = EV(O \ T) subject to
∑

oi∈T
ci ≥ C, where

C =
(

∑

oi∈O
ci
)

− C.

LEMMA 3.6. The MinVar problem can be mapped to MinVar,

with non-decreasing and submodular EV(·).

Iyer and Bilmes in [23] propose efficient approximation algo-

rithms for the problem of minimizing a non-decreasing submodu-

lar function with a submodular lower bound constraint. Notice that

the MinVar problem has a linear lower bound constraint which is

a (sub)modular function. Hence, we can use the algorithms in [23]

to solve the MinVar problem and hence the MinVar problem (from

Lemma 3.6). In particular, they present an algorithm with approx-

imation ratio O(H
1−κ

), where κ = 1 − minoi∈O

EV(∅)−EV({oi})
EV(O\{oi})

(curvature of function EV(·)), and H , in our case, is the approxima-

tion ratio of an algorithm that minimizes a modular objective with

a linear lower bound constraint (Knapsack problem). Using [2] we

2413

can get in polynomial time a O(1)-approximation for the minimiza-

tion knapsack problem, so that gives a O(1
1−κ

)-approximation for

the MinVar problem. If κ = 1, we can use the observations in [23]

to get a O(
√
n log n

√
H) = O(

√
n log n)-approximation algo-

rithm for the MinVar problem.

The running time of the above algorithms is polynomial assum-

ing that EV(·) can be computed in polynomial time. However, in

the worst case EV(·) cannot be computed efficiently. There are in-

stances of the EV(·) function that are #P -hard to compute exactly

and no approximation algorithm is known [25]. In the next section

we show how the function EV(·) can be computed efficiently for

fact checking applications.

Putting everything together we obtain the following result.

THEOREM 3.7. MinVar has an O(1
1−κ

)-approximation algo-

rithm that runs in polynomial time, assuming that the EV(·) func-

tion can be computed in polynomial time, where κ is the curvature

of EV(·). If κ = 1, the approximation ratio is O(
√
n log n).

If the objects have unit cleaning cost, applying the techniques from

[18, 41], a bi-criteria approximation algorithm can be obtained. In

particular, we can compute a set T such that EV(T) ≤ 1
α
EV(T ∗)

and
∑

oi∈T
ci ≤ 1

1−α
C, for any 0 < α < 1.

3.4 Application in Fact Checking
We now return to fact-checking and show how specific problems

in this application domain can be solved using the algorithms pro-

posed earlier in this section. We then return to the comparison be-

tween ascertaining claim quality and finding counters, and show

when these two goals may align with each other.

General claims. As shown in Section 2.2, we formulate the

problems of cleaning data to ascertain claim quality and to find

counters as MinVar and MaxPr, respectively. Without any assump-

tion on the data distribution or type of the claims, we can only solve

the general instances of MinVar and MaxPr using GreedyMinVar

and GreedyMaxPr, but without any theoretical guarantee on opti-

mality. However, if we assume independent Xi’s—in other words,

errors in data values are independent—then by Theorem 3.7, we

can apply the techniques from Iyer and Bilmes [23] to MinVar to

obtain an efficient algorithm with approximation guarantees. In

particular, for any claim, we show that we can compute the EV()
function efficiently for fairness, uniqueness, and robustness, the

three measures of claim quality introduced in Section 2 (and in [43]).

This result implies that we can indeed run the algorithm in Theo-

rem 3.7 for MinVar in polynomial time for fact-checking.

THEOREM 3.8. Let V be the maximum support of distributions

in X and W the maximum number of objects referenced by each

claim. Assuming that the components of X are independent and

q(u) for each claim q ∈ Q can be computed in O(W) time, then

for any set T ⊆ O, the EV(T) of bias(q◦(u),X), dup(q◦(u),X),
and frag(q◦(u),X) can be computed in O(m2V 3WW + n) time.

Note that in practice W is a small constant (e.g., W = 8 in Giu-

liani’s claims), so we can compute the EV(·) function and even-

tually run the algorithm from Theorem 3.7 in O(poly(n,m, V)).
Also note that if we always clean the values referenced by the orig-

inal claim q◦ upfront, then the time to compute EV(·) can be im-

proved to O(mLV 2WW), where L is the maximum degree of a

claim (the degree of claim q is defined as the number of claims that

share at least one object with q).

Linear claims. Linear claim functions are those that can be ex-

pressed in the form aX where a = (a1, a2, . . . , an) is a vector of

weights associated with each object value. For example, the win-

dow aggregate comparison claims considered in Example 4 are lin-

ear: ai = −1 if oi belongs to the first window but not the second,

1 if oi belongs to the second window but not the first, and 0 oth-

erwise. In general, any SQL aggregation query over selections and

joins is linear, provided that selection and join conditions involve

only attribute values that are certain and therefore not included in

X.

We show that faster fact-checking algorithms can be developed

for linear claims. Suppose the original claim function q◦ is linear;

let a◦ denotes the weights used by q◦. Perturbations q1, . . . , qm
of a linear query are linear too; let A be an m × n matrix where

row ak,∗ denotes the weights used by qk; i.e., qk(X) = ak,1X1 +
ak,2X2 + · · · + ak,nXn. Let a∗,i denote the i-th column of A,

i.e., the weights used for Xi by the m perturbation queries. Further

suppose that relative strength function ∆(·, ·) simply subtracts its

inputs, which is a natural choice for linear claim functions.

The fairness of the original claim can be ascertained by solving

MinVar with query function bias(q◦(u),X) (Section 2.2). This

query function is linear for linear claim functions. More specifi-

cally, bias(q◦(u),X) = wX where wi =
∑

1≤k≤m
s(qk)(ak,i−

a◦
i). Hence, as long as the components of X are pairwise uncorre-

lated, the query function is modular and can be solved efficiently

as a knapsack problem (Section 3.2).

Note that for the task of ascertaining claim qualities, linear claim

functions do not always imply linear query functions for MinVar.

For example, the query functions dup(q◦(u),X), frag(q◦(u),X)
introduce non-linearity through with their additional use of indi-

cator and quadratic functions. For MinVar with these two query

functions, the results for modular objective functions do not ap-

ply. Instead, we can use Theorems 3.7 and 3.8 for constant W
and find a good approximation for MinVar with dup(q◦(u),X) or

frag(q◦(u),X) in polynomial time.

Now for the task of finding counters, we need to solve MaxPr

with query function bias(q◦(u),X) (Section 2.2). As discussed

earlier, this query function is linear given linear claim functions.

Therefore, we can solve this problem as a knapsack problem if the

components of X are independently and normally distributed and

centered around their current values (Section 3.2).

Ascertaining claim quality vs. finding counters. Finally, we

return to the comparison between ascertaining claim quality and

finding counters. As seen in Example 5 of Section 2.2, the two

objectives in general differ. However, we show here that they turn

out to agree with each other for linear claim queries. Following the

analysis earlier in this subsection on linear claim queries, it is not

hard to see that MinVar with query function bias(q◦(u),X) (i.e.,

the goal of ascertaining claim fairness) and MaxPr with query func-

tion bias(q◦(u),X) (i.e., the goal of finding counters) are aligned

for linear claim functions when the components of X are indepen-

dently and normally distributed and centered around their current

values. In fact, we can extend this observation and show a stronger

result for any multivariate normal distribution, without making the

independence assumption.

THEOREM 3.9. If X follows a multivariate normal distribution

centered around the current values u, and if all claim functions

q◦, q1, . . . , qm are linear and the relative strength function ∆(·, ·)
is the subtraction operation, then for query function bias(q◦(u),X),
the optimal solutions to MinVar and MaxPr are the same.

4. EXPERIMENTS
In this section, we experimentally evaluate the effectiveness of

our proposed algorithms in achieving their objectives. We also

2414

demonstrate their efficiency, and examine how different optimiza-

tion objectives can lead to different outcomes, with implications to

the practice of fact-checking. Our experiments use realistic claim

functions and a combination of synthetic and real data. We use

synthetic value uncertainty and cost distributions when such infor-

mation is unavailable, and when we want to evaluate with different

distributions. Details on the datasets are presented below; claim

functions will be specified for individual experiments later.

Adoptions is a dataset derived from the number of adoptions in

the New York City during 1989–2014. While the numbers were

real, there was no published error model, so we assume that the data

contains error modeled as follows. Xi, the number of adoptions in

a particular year, follows a normal distribution with mean ui, the

current (reported) value, and standard deviation drawn uniformly

from [1, 50]. We assume that the cost of cleaning each Xi is drawn

uniformly at random from [1, 100].
CDC-firearms and CDC-causes are real datasets complete with

error models published by the Centers for Disease Control and Pre-

vention (CDC) [1]. CDC routinely collects statistics on injuries

and deaths by various causes through established sampling meth-

ods, and publishes the data along with statistics like standard errors,

coefficients of variation, and 95% confidence intervals. Note that

sampling procedures used by CDC ensure that the errors are inde-

pendent and follow approximately normal distributions. For CDC-

firearms, we get the estimated numbers of nonfatal firearms injuries

in the USA during 2001–2017, along with the standard deviations.

For CDC-causes, in addition to nonfatal firearms injuries, we also

get the data on injuries due to transportation, as well as drownings

and falls over the same time period; this results in a larger dataset

with 68 values and enables more varieties of claim queries. We do

not know the actual costs of cleaning, but a reasonable assumption

is that acquiring older historical data is more expensive. Therefore,

we generate cleaning costs in a way such that they decrease with re-

cency: the cost of cleaning a value from the year 2001 is a random

number in 195–200, the cost for 2002 is in 190–195, etc.

Synthetic datasets URx, LNx, and SMx are used to explore how

different value distributions and dataset sizes affect various algo-

rithms. For each value Xi, we first choose the size of its support

uniformly at random from [1, 6]. Then, we generate the distribution

for Xi with one of the following methods:

• URx generates fairly “random” distributions. We choose ele-

ments of supp(Xi) uniformly at random from [1, 100] with-

out replacement. For each element, we assign its probability in

proportion to a number drawn uniformly at random from (0, 1]
(normalized such that the total over all of supp(Xi) is 1).

• LNx generates skewed but unimodal value distributions. We

start with a log-normal distribution with parameters µ = 0 and

σ chosen uniformly at random in (0, 1]. We quantilize distri-

bution into as many equal-probability intervals as |supp(Xi)|,
and choose elements of supp(Xi) to be close to the right ends

of these intervals. For each element, we then assign its proba-

bility in proportion to its probability density in the log-normal

distribution (again, normalized to sum to 1). Note that result-

ing range is typically much smaller than the other two methods

(which are based on [1, 100]).

• SMx generates more complex multimodal distributions. We

choose elements of supp(Xi) in the same way as URx, but

for each element, we assign its probability in proportion to a

random number in (1, 0.1] ∪ [0.9, 1], i.e., either low or high.

For cleaning cost, we draw it uniformly at random from [1, 10] for

each object. We have also experimented with a different cost dis-

tribution where individual costs are more extreme (either 1 or 10).

It led to similar results and revealed no additional insights; hence

we omitted the results here.

4.1 Effectiveness for Modular Objectives
We start by evaluating the effectiveness of our approach for the

(simpler) case of modular objectives discussed in Section 3.2. We

will focus on the scenario of minimizing uncertainty in the fairness

measure of a window aggregate comparison claim (Example 4); our

algorithm for this scenario is GreedyMinVar. (We omit the results

for GreedyMaxPr because they are similar.)

Workloads. We consider Giuliani’s adoption claim (Example 4)

over Adoptions. The claim function subtracts the total adoption

numbers over two four-year periods back-to-back (1993–1996 vs.

1989–1992). For analysis of fairness, we consider 18 perturbations

of the original claim, all having the same form but each ending

with a different year. To capture the intuition that important pertur-

bations are those closest to the original in terms of the time periods

compared, we let the sensibility of a perturbation decay exponen-

tially (at rate λ = 1.5) over its distance to the original claim (as

measured by the number of years between the endpoints of their

comparison periods). Overall, the query function corresponding to

fairness is complex albeit still linear, where the weight on each Xi

incorporates the sensibilities of perturbations involving Xi.

We also consider claims over CDC-firearms and CDC-causes.

For CDC-firearms, the claim function subtracts the numbers of

firearms injuries over two four-year periods back-to-back, 2001–

2004 vs. 2005–2008; such claims can be used to argue, for ex-

ample, that current policy is more (or less) effective than the pre-

vious one. We consider 10 perturbations, with sensibility set up

similarly as Giuliani’s adoption claim. For CDC-causes, the claim

function aggregates injury numbers across causes for comparison:

“the number of injuries due to transportation is more than 30% of

all other causes combined over the last 2-year period.” We consider

16 perturbations, again with a similar sensibility setup.

Algorithms compared.

• Random simply chooses a next object to clean uniformly at ran-

dom (with no replacement), until the budget is exceeded.

• GreedyNaiveCostBlind sorts the objects according to the vari-

ances in individual Xi’s, and chooses them in descending order

of uncertainty to clean, until the budget is exceeded.

• GreedyNaive (discussed in Section 3.1) estimates the benefit of

cleaning Xi simply as its variance, and cleans objects in de-

scending order of benefit/cost ratios.

• GreedyMinVar (our proposed algorithm) estimates the benefit

of each Xi from the optimization objective—which considers

the claim function as well as the structure and sensibilities of

perturbations—and cleans objects in descending order of bene-

fit/cost ratios.

• Optimum (discussed in Lemma 3.2) solves the same knapsack

problem as GreedyMinVar, but uses dynamic programming to

find the optimum solution in pseudo-polynomial time, which is

much slower than GreedyMinVar.

Results and discussion. Figure 1 compares the effectiveness of

the above algorithms in reducing uncertainty in claim fairness. The

horizontal axis shows the cost budget as a percentage of the total

cost of cleaning all data. Given a budget, we run each algorithm and

plot the uncertainty (variance) that remains in the fairness of the

original claim after cleaning the values chosen by the algorithm.2

Note that the range of variance values depends on the dataset and

2
Since Random randomly chooses data to clean, its result can vary signifi-

cantly depending on its random choices. We conduct 100 runs of Random

2415

claim in question, so we should focus on the relative performance

of algorithms instead of absolute variance values.

From Figure 1a, we see a large gap between Random and other

algorithms. With Random, uncertainty decreases linearly with in-

creasing budget. Other algorithms are able to reduce far more un-

certainty even with relatively low budgets; however, as budget in-

creases, the reduction in uncertainty eventually slows down as ex-

pected. To better show the differences among other algorithms,

we omit Random from other figures; Figure 1b is a zoomed ver-

sion of Figure 1a. On all datasets, we see that our algorithm,

GreedyMinVar, is very effective and almost indistinguishable from

Optimum. For example, in Giuliani’s adoption claim, with only

3% of the total cleaning cost, it is able to reduce uncertainty by a

factor of 2.8. We also observe that GreedyMinVar clearly outper-

forms its less sophisticated cousins GreedyNaive (which ignores

the query function of interest) and GreedyNaiveCostBlind (which

further ignores differences in cleaning costs) in all datasets.

4.2 Effectiveness for Non­Modular Objectives
Here we focus on the scenario of minimizing uncertainty in claim

uniqueness and robustness, where the optimization objective is no

longer modular but the results of Section 3.3 apply.

Workloads. For minimizing the uncertainty on uniqueness, for

CDC-firearms and CDC-causes datasets, we consider a claim of

the form: “in the last two years, the number of injuries by firearms

(or across four categories, resp.) is as low as Γ.” To assess claim

quality, we consider 8 perturbations, each summing 2 (or 8, resp.)

object values. Intuitively, checking uniqueness involves counting

how many perturbations yield results no higher than Γ. For mini-

mizing the uncertainty on robustness, for CDC-firearms and CDC-

causes datasets, we consider a claim of the form: “in the last two

years, the number of injuries by firearms (or across four categories,

resp.) is as high as Γ′.” We consider the same number of pertur-

bations as in the uniqueness case. Intuitively, checking robustness

involves assessing how easy it is to find a perturbation that yields

a result much lower than Γ′. Note that in all cases the query func-

tions are non-linear. The goal is to choose a set of values to clean

to minimize the variance in uniqueness or robustness.

We also use the three synthetic datasets in order to study how var-

ious value distributions affect the effectiveness of algorithms. The

claim sums up 4 consecutive object value and states that the sum

is as low as Γ (for uniqueness) or as high as Γ′ (for robustness).

For experiments on uniqueness, we generate small datasets with 40
uncertain values each, which make results easier to interpret (Sec-

tion 4.4 experiments with larger datasets to evaluate efficiency); 10
perturbations of the original claim are used to assess uniqueness.

For experiments on robustness, we generate bigger datasets with

100 uncertain values each; 25 perturbations are used to assess ro-

bustness. Note that the value of Γ or Γ′ appearing in the original

claim can affect both the initial uncertainty and how much reduc-

tion cleaning each value would bring, because certain sums can be

more likely than others depending on the value distribution. To

study this effect, we also test claims with different Γ/Γ′ values.

Algorithms compared. Besides GreedyNaive and GreedyMinVar,

we also implemented Best, the O(1
1−κ

)-approximation algorithm

from [23] with theoretical guarantees described in Section 3. Note

that Best does not guarantee an optimum solution, but it has the

best known theoretical guarantee; hence, we use it as a yardstick

for comparison. Since these algorithms work with discrete distri-

butions, for CDC datasets, we discretize each normal distribution

and plot the average remaining variance. For other algorithms, the remain-
ing uncertainty is computed exactly given their (deterministic) choices.

with the given mean and standard deviation using 6 and 4 discrete

values for CDC-firearms and CDC-causes, respectively.

We do not compare our algorithms with those that focus on how

to repair data instead of which data to repair; most algorithms sur-

veyed in [16, 21] fall into this category. For example, [36] cleans up

the data upfront and which data it cleans does not depend on the un-

derlying objective function. These approaches may end up cleaning

a lot of data that do not help with the underlying goal. This is par-

ticularly problematic to fact-checkers because in practice they are

severely constrained by time and resources. The GreedyNaive al-

gorithm we test in this section is in fact a representative instance of

this approach and thus we have not implemented these algorithms.

Results and discussion. Figure 2 shows how various algorithms

decrease uncertainty in claim uniqueness with increasing budget for

CDC-firearms and CDC-causes. The horizontal axes show the bud-

get, while the vertical axes show the (computed) expected variance

after cleaning the values chosen by each algorithm. We observe

that Best and GreedyMinVar have almost the same performance

and they outperform GreedyNaive in all cases. For example, in Fig-

ure 2b, with 20% of the maximum budget, Best and GreedyMinVar

find strategies that lead to half of the variance of what GreedyNaive

is able to achieve. (Note that even though the range of variance val-

ues seems small, it needs to be interpreted in context—as the range

of dup(·, ·) is also small in this case, even a variance of 1 implies

significant uncertainty.)

Figure 3 compares how various algorithms reduce uncertainty in

claim uniqueness for the three synthetic datasets. Subfigures in the

same row are for the same dataset, but each have a claim with a

different Γ parameter. Overall, we find GreedyMinVar and Best

effective across different value distributions, budgets, and claim

parameters (Γ). Despite being simpler, GreedyMinVar is at least

comparable to Best, and sometimes better. Generally speaking,

they outperform the less sophisticated GreedyNaive, and the lead

can be substantial. There is only one case where Best is slightly

beaten by GreedyNaive (Figure 3b with Γ = 200 and enough bud-

get), but even there GreedyMinVar consistently beats GreedyNaive.

A second observation is the effect of Γ, which can be seen across

the subfigures in each row of Figure 3. Generally, the initial uncer-

tainty (when cleaning budget is 0, i.e., no data is cleaned yet) is the

highest if Γ is in the midrange where the indicator functions in the

query function could easily go either way—which confirms intu-

ition. We discuss this observation more in the full version of this

paper [38], where it becomes more visible with additional results.

As a related observation, when uncertainty is low to begin with,

the advantages of GreedyMinVar and Best over GreedyNaive, in

relative terms, are more pronounced. This observation is encourag-

ing because in practice, most claims we are interested in involve Γ
values that are out of ordinary, which correspond to regions where

GreedyMinVar and Best significantly outperform GreedyNaive.

To sum up, GreedyMinVar consistently does the best job in re-

moving uncertainty in uniqueness across various value distribu-

tions, budgets, and claims in these experiments. In some cases

it even beats our yardstick, Best, but that should not be surpris-

ing since Best’s guaranteed approximation factor depends on the

curvature of the objective function (as discussed in Theorem 3.7),

which means Best may not be optimum in practice.

Results on robustness are similar. Figure 4 samples some of

the results, specifically for CDC-firearms and URx. Again, we

see that GreedyMinVar and Best have almost the same perfor-

mance and both outperform GreedyNaive. For example, for CDC-

firearms, using the 30% of the budget, GreedyMinVar and Best

reduce the expected variance to almost half of GreedyNaive. For

URx, GreedyNaive performs much worse than GreedyMinVar and

2416

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1,000

1,200

Budget (fraction)

V
a

ri
a

n
ce

in
fa

ir
n

es
s

a
ft

er
cl

ea
n

in
g

Random

GreedyNaiveCostBlind

GreedyNaive

GreedyMinVar

Optimum

(a) Adoptions

6 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18
0

200

400

600

Budget (fraction)

V
a

ri
a

n
ce

in
fa

ir
n

es
s

a
ft

er
cl

ea
n

in
g

GreedyNaiveCostBlind

GreedyNaive

GreedyMinVar

Optimum

(b) Zoomed (a), no Random

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

·109

Budget (fraction)

V
a

ri
a

n
ce

in
fa

ir
n

es
s

a
ft

er
cl

ea
n

in
g

GreedyNaiveCostBlind

GreedyNaive

GreedyMinVar

Optimum

(c) CDC-firearms

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1
·1011

Budget (fraction)

V
a

ri
a

n
ce

in
fa

ir
n

es
s

a
ft

er
cl

ea
n

in
g

GreedyNaiveCostBlind

GreedyNaive

GreedyMinVar

Optimum

(d) CDC-causes

Figure 1: Effectiveness of algorithms in reducing uncer-

tainty in claim fairness.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(a) CDC-firearms

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(b) CDC-causes

Figure 2: Effectiveness of algorithms in reducing uncer-

tainty in claim uniqueness (CDC datasets).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(a) URx; claim with Γ = 100

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(b) URx; claim with Γ=200

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(c) URx; claim with Γ = 300

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(d) LNx; claim with Γ = 3.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(e) LNx; claim with Γ = 4.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(f) LNx; claim with Γ = 5.5

0 0.2 0.4 0.6 0.8 1
0

5

10

15

·10−2

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(g) SMx; claim with Γ=100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(h) SMx; claim with Γ=200

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Budget (fraction)

E
xp

ec
te

d
va

ri
a

n
ce

a
ft

er
cl

ea
n

in
g

GreedyNaive

GreedyMinVar

Best

(i) SMx; claim with Γ = 300

Figure 3: Effectiveness of algorithms in reducing uncertainty in claim uniqueness

(synthetic datasets).

Best. Overall, the consistency of results on uniqueness and robust-

ness is not surprising since our algorithms makes no assumption on

the function used for ascertaining the claim quality (Section 3).

4.3 Effectiveness in Action

Ascertaining claim quality. Earlier in this section, we have seen

how our proposed algorithms reduce the expected uncertainty in

claim quality. However, given a specific scenario, a fact-checker

using these algorithms to make data cleaning decisions will not

necessarily experience the expected uncertainty—instead, after the

true values of cleaned objects are revealed, a specific amount of

uncertainty would remain. To help us evaluate the effectiveness

of our algorithms in action from the perspective of a fact-checker,

we perform experiments here to simulate a specific scenario. We

consider the same data and workload as in Section 4.2. First, we

establish the true values for all objects, which are generated from

the given value distributions. These values are hidden from the

fact-checker and our algorithms. Next, as the budget varies, we let

each algorithm pick its set of objects to clean and reveal their true

values, with which we can estimate the uniqueness of the claim (in

terms of the mean and standard deviation of the degree of duplic-

ity). Figure 5 plots the mean and standard deviation (respectively)

of the estimates resulted from each algorithm’s decision as func-

tions of budget. The dataset here is CDC-causes, and the claim

has the same form as in Figure 2b. For this specific scenario, the

true degree of duplicity for the claim happens to be 5. From Fig-

ure 5, we see that Best and GreedyMinVar generate better esti-

mates faster than GreedyNaive. For example, at 20% of the total

cost, GreedyNaive’s estimated mean is 3.7, with a standard devi-

ation of 0.7, which is still difficult for the fact-checker to gauge

true uniqueness. In comparison, GreedyMinVar and Best finds the

mean to be 4.9 (which is closer to the true value) with a lower

standard deviation of 0.4. While Figure 5 only illustrates one par-

ticular scenario, additional results in [38] support the same con-

clusion. Generally speaking, combining the results here and those

in Section 4.2, we observe that GreedyMinVar in expectation re-

quires cleaning less data than GreedyNaive for fact-checkers to as-

sess claim qualities.

Finding counters. Similarly, we simulate scenarios to evaluate

how our algorithms can help find counterarguments. We describe

the results for one scenario on CDC-firearms here (other results

in [38] are similar). To establish the (hidden) true values as well

as the current (noisy) values, we randomly sample from the value

distribution of each object. We want to check the claim that “in the

past four year, we had only 310000 injuries by firearms, lowest in

recent history.” If we assume the current noisy values to be correct,

there would be no counterexample in the database, i.e., there is no

other period with fewer injuries. However, if we clean all data to

reveal the true values, there is a counterargument for the period

2002–2006. A fact-checker must clean some tuples to counter the

original claim. We observe that GreedyMaxPr uses only 7% of the

budget to find the couterargument with high probability (more than

98%), while GreedyNaive uses 74% of the budget to achieve the

same. The result here of course is for one specific scenario, but it

does reaffirm the effectiveness of GreedyMaxPr in maximizing the

probability of finding a counter.

4.4 Efficiency
Having seen the effectiveness of GreedyMinVar in earlier exper-

iments, we now evaluate its efficiency. We note that Best is gen-

2417

0 0.2 0.4 0.6 0.8 1
0

1

2

3

·109

Budget (fraction)

E
xp

ec
te

d
va

ri
an

ce
af

te
r

cl
ea

ni
ng

GreedyNaive

GreedyMinVar

Best

(a) CDC-firearms

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1,000

Budget (fraction)

E
xp

ec
te

d
va

ri
an

ce
af

te
r

cl
ea

ni
ng

GreedyNaive

GreedyMinVar

Best

(b) URx; claim with Γ′ = 100
Figure 4: Effectiveness of algorithms in reducing uncertainty in the

claim robustness (selected datasets).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Budget (fraction)

M
ea

n

GreedyNaive

GreedyMinVar

Best

(a) Mean

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Budget (fraction)

St
an

da
rd

de
vi

at
io

n

GreedyNaive

GreedyMinVar

Best

(b) Standard deviation
Figure 5: Mean and standard deviation of estimates of claim

uniqueness as functions of budget. CDC-causes.

erally slower than GreedyMinVar (often by factors of more than 5
in our experiments) and does not seem to deliver better solutions

in practice. On the other hand, GreedyNaive is much faster than

GreedyMinVar because of naive benefit estimation, but it is not

nearly as effective as shown earlier.

First, we consider the same scenarios as in Figure 3, but scale

up each synthetic dataset to contain 10,000 uncertain values. We

also proportionally increase the number of perturbations considered

to 2,500 such that together they cover all values. We report the

results for URx; other datasets are similar. Figure 6a shows the

running time of GreedyMinVar as we give it increasing budgets

to work with. We see that running time increases roughly linearly

with budget. Even with a budget that allows 30% of all data to be

cleaned, GreedyMinVar completes under 2 minutes.

Next, to study the effect of dataset size on running time, we con-

sider progressively bigger datasets, from 50,000 to 1,000,000 un-

certain values, whose distributions are still generated using URx.

Again, we scale up the number of perturbations considered accord-

ingly. We fix the budget at 5000 to allow about 1,000 values to be

cleaned. Figure 6b shows how GreedyMinVar’s running time (in

log10 scale) increases with data size. We observe that each time that

the data size increases by a factor of 10, the running time to clean

about 1,000 tuples is 18–19 times larger. Even with a large dataset

containing 100,000 uncertain values, it takes less than 12 minutes

for GreedyMinVar to suggest cleaning 1,000 values, which trans-

lates to about 0.725 seconds per recommendation.

4.5 Handling Dependency
We note that our theoretical guarantees require the independence

assumption among the object values. Nevertheless, our algorithms

can still be applied to situations where the independence assump-

tion does not hold. To see how our algorithms perform practically

in such situations, we design additional experiments by modifying

the CDC-firearms dataset. Recall that for each object Xi, CDC

reports its standard deviation σi. Although errors across Xi’s are

actually independent because of CDC’s data sampling procedure,

we artificially introduce dependency as follows. We create a co-

variance matrix where the covariance between two objects Xi, Xj

(where i < j refer to the years) is given by γj−iσiσj , where the

1% 5% 10% 20% 30%
0

20

40

60

80

100

Budget

Ti
m

e
(s

ec
)

GreedyMinVar

(a) n = 10,000, varying budget

5000 10000 100000 500000 1000000
1

2

3

4

n

lo
g 1

0
Ti

m
e

(s
ec

)

GreedyMinVar

(b) varying n, budget = 5000
Figure 6: Running time of GreedyMinVar when reducing uncer-

tainty in claim uniqueness. URx; claim with Γ = 100.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

·109

Budget (fraction)

V
a
ri

a
n
ce

in
fa

ir
n
es

s
a
ft

er
cl

ea
n
in

g

GreedyNaiveCostBlind

GreedyNaive

GreedyMinVar

Optimum

OPT

GreedyDep

(a) γ = 0.7, varying budget

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

·108

γ

V
a
ri

a
n
ce

in
fa

ir
n
es

s
a
ft

er
cl

ea
n
in

g

GreedyMinVar

OPT

GreedyDep

(b) varying degrees of depen-
dency; budget = 30%

Figure 7: Effectiveness of algorithms in reducing uncertainty in

claim fairness. CDC-firearms with dependencies injected.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Budget (fraction)

E
xp

ec
te

d
va

ri
an

ce

MinVar

MaxPr

(a) reducing uncertainty
(objective of MinVar)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
·10−2

Budget (fraction)

P
ro

ba
bi

lit
y

MinVar

MaxPr

(b) improving prob. of countering
(objective of MaxPr)

Figure 8: How Optimum (for MinVar) and GreedyMaxPr (for

MaxPr) achieve different objectives.

parameter γ ∈ [0, 1] controls the degree of the dependency (the

closer γ is to 1, the more dependent Xi’s become). The exponent

j− i in this covariance model captures the intuition that the farther

apart the two years are, the smaller their dependency is. The claim

in question is the same as in Section 4.1.

Since we do not have an efficient algorithm capable of handling

dependencies with good theoretical guarantees, for this experiment,

where the dataset is thankfully small, we resort to a brute-force

algorithm OPT and use it as a yardstick for comparison. OPT has

full knowledge of data dependency (i.e., the covariance matrix),

exhaustively considers all possible subsets of values to clean, and

returns the best subset satisfying the cost constraint. Optimum,

GreedyMinVar, GreedyNaive, and GreedyNaiveCostBlind are not

made aware of any dependency at all. In addition, we implement

a variant of GreedyMinVar called GreedyDep, which is given the

dependency knowledge and uses it for estimating cleaning benefits.

Figure 7a compares how effective these algorithms are in re-

ducing uncertainty in claim fairness, with parameter γ controlling

the degree of dependency set to 0.7. We see that Optimum and

GreedyMinVar always perform better than the simpler GreedyNaive

and GreedyNaiveCostBlind. Furthermore, in many cases Optimum

and GreedyMinVar have the same efficacy as OPT. For exam-

ple, using only 18% budget, Optimum and GreedyMinVar have

already reduced the uncertainty to less than half of the initial uncer-

2418

tainty, matching the performance of OPT. Of course, as expected,

having the knowledge of data dependency helps—there are cases

where Optimum or GreedyMinVar still fail to match the perfor-

mance of OPT. Interestingly, once given the knowledge of data

dependency, GreedyDep, despite still being greedy, almost always

matches the performance of OPT in this case. Overall, we observe

that knowing the dependencies is beneficial, and the same greedy

strategy is capable of reaping much of this benefit. Even if depen-

dencies exist but are not known, GreedyMinVar and Optimum are

still viable practical solutions for moderate degrees of dependency.

Figure 7b compares the effectiveness of algorithms when we

vary the degree of data dependency, while fixing budget at 30%.

If the dependency is weak enough, namely when γ ≤ 0.6, then

GreedyMinVar, even though it is not aware of any dependency,

performs optimally. As dependency grows stronger, however,

GreedyMinVar starts to fall behind OPT. Again, interestingly,

GreedyDep almost always matches the performance of OPT, ex-

cept for a small range of “middle” γ values, where intuitively the

problem is the hardest (in contrast, having either independent val-

ues or highly correlated values makes it easier to resolve uncer-

tainty). Overall, we conclude that even without any knowledge of

dependency, GreedyMinVar (and Optimum) are viable as long as

the degree of dependency is not too high. However, strong data

dependencies would require an algorithm aware of such dependen-

cies, but the greedy strategy is still effective.

4.6 Competing Objectives
Theorem 3.9 shows how the objectives of ascertaining claim fair-

ness and increasing the chance of finding counters can be aligned

if errors in data are normal and centered at 0. Here, we design

experiments to show how the two objectives lead to very different

outcomes when this assumption does not hold.

We return to the adoption scenario of Section 4.1, but simplify

the claim to be about the sum over a 4-year window and con-

sider perturbations with non-overlapping windows (same as in Sec-

tion 4.2). Recall that Theorem 3.9 applies if all distributions are

normal and centered around the current values. Here, we instead re-

assign the current values to random draws from these distributions,

so they can deviate from the mean of the respective distributions.

For ascertaining fairness, we use Optimum as described in Sec-

tion 4.1, which always finds the optimum solution. For maximiz-

ing the chance of finding counters, we use GreedyMaxPr. We run

these two algorithms, but we also measure how they perform with

respect to the objective that they are not optimizing for. Figure 8a

compares how the two algorithms achieve the objective of ascer-

taining claim fairness, while Figure 8b compares how they achieve

the objective of maximizing the chance of finding counters. The

vertical axes show the respective objective function values, which

are computed given the choices made by the algorithms.3

From Figure 8, as expected, each algorithm does well in terms of

its intended objective. What is more revealing is how poorly they

do with regard to the other objective. While Optimum quite effec-

tively reduces the uncertainty in claim fairness (Figure 8a), it does

not offer a good chance of finding counters even when given gener-

ous budgets (Figure 8b). On the other hand, GreedyMaxPr quickly

increases the chance of finding counters (Figure 8b), but it is much

less helpful in ascertaining claim fairness (Figure 8a). In fact, when

given a budget above 48% of the total cost of cleaning all data,

GreedyMaxPr simply refuses to clean any more values because

3
Note that the dataset’s current values do not affect uncertainty in claim

fairness, but do affect the chance of finding counters significantly. Hence,
for Figure 8b, we repeat each experiment 100 times with different random
draws of the current values, and report the average.

doing so would actually decrease the chance of finding a counter

(which explains why its achieved objective function values stay flat

beyond this point). This questionable behavior illustrates the dan-

ger of a utilitarian approach of cleaning data for fact-checking that

just seeks to maximize the chance of countering a claim.

5. RELATED WORK
The fact-checking aspect of this paper builds on the framework

in [43, 44]. However, that framework assumed an accurate database

and did not consider data cleaning.

There is a rich body of literature on data cleaning; see [16, 21]

for surveys. A number of papers have addressed the specific prob-

lem of cleaning data under a budget constraint, with the goal of

improving query quality. Cheng et al. [7] proposed a metric for

query result quality called PWS-quality, together with efficient al-

gorithms for handling range and max queries. Mo et al. [33] further

tackled top-k queries. The PWS-quality is based on entropy, and

has nice properties for filter and ranking queries that, together with

an independence assumption, result in modular optimization objec-

tives. In contrast, our measure of uncertainty is based on expected

variance; it is more suitable than entropy for numeric results, which

arise naturally in the application of fact-checking. Our query func-

tions are generally far more complex, which lead to non-modular,

more difficult optimization problems. We also consider the alterna-

tive objective of maximizing surprise.

There are other models of data cleaning with different goals. For

example, ActiveClean [29] proposed interactive data cleaning for

statistical modeling. Given a budget, its goal was to choose a sam-

ple of data to clean while preserving provable convergence prop-

erties of stochastic gradient descent. SampleClean [42] used sam-

pling to clean data in order to improve the quality of aggregate

results by minimizing the impact of dirty data. It focuses more on

improving estimation than on picking which value to clean. In [12]

the authors propose TARS, which is a label cleaning advisor that

provides valuable information when a model is trained or tested us-

ing noisy labels. While these approaches are also stochastic, their

goals and technical challenges are quite different from ours. Holo-

Clean [36] focuses on automatic repairing the whole dataset, given

both constraints and known statistical properties of the input data.

HoloClean is not directly applicable to our setting because our goal

is not automatic repair of the whole dataset, but instead, selective

cleaning of particular values to help fact-check a given claim.

There is also a large body of literature on approximation algo-

rithms for stochastic data [11, 20, 30, 34, 39]. Particularly related

is the line of work on sensing—how to place sensors or probe data

in order to maximize utility under a budget constraint [27, 28].

In contrast to our setting, their actions have diminishing returns

when taken later, and their direction of optimization is also differ-

ent (minimization vs. maximization).

6. CONCLUSION
In this paper, we have considered how to help fact-checkers com-

bat the issues of data quality and data fishing, by combining data

cleaning and perturbation analysis, and by solving the optimiza-

tion problem of choosing a subset of data to clean under a budget

constraint, with the goal of either minimizing uncertainty in claim

quality or maximizing the chance of find counters. We have demon-

strated through experiments that our proposed algorithms are effec-

tive and efficient in practice. In sum, our results provide practical

tools and guidelines that help fact-checkers clean data effectively

while avoiding the potential bias introduced by their eagerness to

counter claims.

2419

7. REFERENCES
[1] Nonfatal injury reports. https://webappa.cdc.gov/

sasweb/ncipc/nfirates.html. Accessed:

2019-07-15.

[2] C. Bentz and P. L. Bodic. A note on” approximation schemes

for a subclass of subset selection problems”, and a faster

fptas for the minimum knapsack problem. arXiv preprint

arXiv:1607.07950, 2016.

[3] C. Bialik. How to make sense of conflicting, confusing and

misleading crime statistics. FiveThirtyEight, Jan. 2016.

[4] R. Cavallo and M. Pittarelli. The theory of probabilistic

databases. In VLDB, volume 87, pages 1–4, 1987.

[5] K. Chang. Combination of opinions: The expert problem and

the group consensus problem. Dissertation Abstracts

International Part B: Science and Engineering[DISS. ABST.

INT. PT. B- SCI. & ENG.],, 47(3), 1986.

[6] J. Chen and R. Cheng. Quality-aware probing of uncertain

data with resource constraints. In International Conference

on Scientific and Statistical Database Management, pages

491–508. Springer, 2008.

[7] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with

quality guarantees. PVLDB, 1(1):722–735, 2008.

[8] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F.

Ilyas, M. Ouzzani, and N. Tang. Nadeef: a commodity data

cleaning system. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, pages

541–552. ACM, 2013.

[9] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases:

diamonds in the dirt. Communications of the ACM,

52(7):86–94, 2009.

[10] N. Dalvi and D. Suciu. Efficient query evaluation on

probabilistic databases. PVLDB, 16(4):523–544, 2007.

[11] B. C. Dean, M. X. Goemans, and J. Vondrdk. Approximating

the stochastic knapsack problem: The benefit of adaptivity. In

Foundations of Computer Science, 2004. Proceedings. 45th

Annual IEEE Symposium on, pages 208–217. IEEE, 2004.

[12] M. Dolatshah, M. Teoh, J. Wang, and J. Pei. Cleaning

crowdsourced labels using oracles for statistical

classification. PVLDB, 12(4):376–389, 2018.

[13] X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating

conflicting data: the role of source dependence. PVLDB,

2(1):550–561, 2009.

[14] S. French. Updating of belief in the light of someone else’s

opinion. Journal of the Royal Statistical Society. Series A

(General), pages 43–48, 1980.

[15] S. Fujishige. Submodular functions and optimization,

volume 58. Elsevier, 2005.

[16] V. Ganti and A. D. Sarma. Data Cleaning: A Practical

Perspective. Synthesis Lectures on Data Management.

Morgan & Claypool Publishers, 2013.

[17] A. Gathright. Darryl glenn: ’neighborhoods have become

more violent’ under obama’s watch. PolitiFact Colorado,

July 2016.

[18] A. Hayrapetyan, D. Kempe, M. Pál, and Z. Svitkina.

Unbalanced graph cuts. In European Symposium on

Algorithms, pages 191–202. Springer, 2005.

[19] O. H. Ibarra and C. E. Kim. Fast approximation algorithms

for the knapsack and sum of subset problems. Journal of the

ACM (JACM), 22(4):463–468, 1975.

[20] T. Ilhan, S. M. Iravani, and M. S. Daskin. Technical note-the

adaptive knapsack problem with stochastic rewards.

Operations research, 59(1):242–248, 2011.

[21] I. F. Ilyas and X. Chu. Trends in cleaning relational data:

Consistency and deduplication. Foundations and Trends in

Databases, 5(4):281–393, 2015.

[22] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial

strongly polynomial algorithm for minimizing submodular

functions. Journal of the ACM (JACM), 48(4):761–777,

2001.

[23] R. K. Iyer and J. A. Bilmes. Submodular optimization with

submodular cover and submodular knapsack constraints. In

Advances in Neural Information Processing Systems, pages

2436–2444, 2013.

[24] B. Jackson. Levitating numbers. FactCheck.org, May 2007.

[25] J. Kleinberg, Y. Rabani, and É. Tardos. Allocating bandwidth

for bursty connections. SIAM Journal on Computing,

30(1):191–217, 2000.

[26] J. M. Kleinberg. Authoritative sources in a hyperlinked

environment. Journal of the ACM (JACM), 46(5):604–632,

1999.

[27] A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta.

Robust submodular observation selection. Journal of

Machine Learning Research, 9(Dec):2761–2801, 2008.

[28] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor

placements in gaussian processes: Theory, efficient

algorithms and empirical studies. Journal of Machine

Learning Research, 9(Feb):235–284, 2008.

[29] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and

K. Goldberg. Activeclean: Interactive data cleaning for

statistical modeling. PVLDB, 9(12):948–959, 2016.

[30] J. Li and Y. Liu. Approximation algorithms for stochastic

combinatorial optimization problems. Journal of the

Operations Research Society of China, 4(1):1–47, 2015.

[31] Z. Liu, K. C. Sia, and J. Cho. Cost-efficient processing of

min/max queries over distributed sensors with uncertainty. In

Proceedings of the 2005 ACM symposium on Applied

computing, pages 634–641. ACM, 2005.

[32] M. D. Maltz. Bridging gaps in police crime data. U.S.

Department of Justice, Office of Justice Programs, Bureau of

Justice Statistics, sep 1999.

[33] L. Mo, R. Cheng, X. Li, D. W. Cheung, and X. S. Yang.

Cleaning uncertain data for top-k queries. In 2013 IEEE 29th

International Conference on Data Engineering (ICDE),

pages 134–145. IEEE, 2013.

[34] D. P. Morton and R. K. Wood. On a stochastic knapsack

problem and generalizations. In Advances in computational

and stochastic optimization, logic programming, and

heuristic search, pages 149–168. Springer, 1998.

[35] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An

analysis of approximations for maximizing submodular set

functionsi. Mathematical Programming, 14(1):265–294,

1978.

[36] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean:

Holistic data repairs with probabilistic inference. PVLDB,

10(11):1190–1201, 2017.

[37] L. Robertson. Dueling claims on crime trend. FactCheck.org,

July 2016.

[38] S. Sintos, P. Agarwal, and J. Yang. Data cleaning and fact

checking: Minimizing uncertainty versus maximizing

surprise. https://arxiv.org/abs/1909.05380.

[39] E. Steinberg and M. Parks. A preference order dynamic

program for a knapsack problem with stochastic rewards.

2420

Journal of the Operational Research Society, pages 141–147,

1979.

[40] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic

databases. Synthesis Lectures on Data Management,

3(2):1–180, 2011.

[41] Z. Svitkina and L. Fleischer. Submodular approximation:

Sampling-based algorithms and lower bounds. SIAM Journal

on Computing, 40(6):1715–1737, 2011.

[42] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska,

and T. Milo. A sample-and-clean framework for fast and

accurate query processing on dirty data. In Proceedings of

the 2014 ACM SIGMOD International Conference on

Management of Data, pages 469–480. ACM, 2014.

[43] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. Toward

computational fact-checking. PVLDB, 7(7):589–600, 2014.

[44] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu.

Computational fact checking through query perturbations.

ACM Transactions on Database Systems, 42(1), 2017.

2421

