
Learning to Sample: Counting with Complex Queries∗

Brett Walenz, Stavros Sintos, Sudeepa Roy, and Jun Yang
Duke University

Durham, NC, USA

{bwalenz, ssintos, sudeepa, junyang}@cs.duke.edu

ABSTRACT

We study the problem of efficiently estimating counts for queries

involving complex filters, such as user-defined functions, or pred-

icates involving self-joins and correlated subqueries. For such

queries, traditional sampling techniques may not be applicable due

to the complexity of the filter preventing sampling over joins, and

sampling after the join may not be feasible due to the cost of com-

puting the full join. The other natural approach of training and

using an inexpensive classifier to estimate the count instead of the

expensive predicate suffers from the difficulties in training a good

classifier and giving meaningful confidence intervals. In this paper

we propose a new method of learning to sample where we com-

bine the best of both worlds by using sampling in two phases. First,

we use samples to learn a probabilistic classifier, and then use the

classifier to design a stratified sampling method to obtain the fi-

nal estimates. We theoretically analyze algorithms for obtaining

an optimal stratification, and compare our approach with a suite of

natural alternatives like quantification learning, weighted and strat-

ified sampling, and other techniques from the literature. We also

provide extensive experiments in diverse use cases using multiple

real and synthetic datasets to evaluate the quality, efficiency, and

robustness of our approach.

PVLDB Reference Format:

Brett Walenz, Stavros Sintos, Sudeepa Roy, Jun Yang. Learning to Sample:
Counting with Complex Queries. PVLDB, 13(3): 389-401, 2019.
DOI: https://doi.org/10.14778/3368289.3368302

1. INTRODUCTION

Counting is a fundamental problem in query processing. Count-

ing queries can be expensive to evaluate, especially if it involves

testing a complex predicate to decide whether an object should be

counted towards the total. Consider the following example.

∗This work was supported by NSF grants CCF-1513816, CCF-1546392,
IIS-1408846, IIS-1552538, IIS-1703431, IIS-1718398, IIS-1814493, NIH
grant 1R01EB025021-01, ARO grant W911NF-15-1-0408, and a Google
Faculty Award. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3368289.3368302

EXAMPLE 1 (COUNTING POINTS WITH FEW NEIGHBORS).

Suppose table D(id, x, y) stores a set of 2d points, and we would

like to count how many points have fewer than k points within dis-

tance d from them. We can write the following SQL query:

SELECT COUNT (*) FROM
(SELECT o1.id FROM D o1, D o2
WHERE SQRT(POWER(o1.x-o2.x,2)+ POWER(o1.y-o2.y,2))<=d
GROUP BY o1.id HAVING COUNT (*) <= k);

Here, the objects to be counted are produced by a self-join with

a complex condition, followed by GROUP BY and HAVING. This

“neighborhood” query has been well studied, with specialized in-

dex structures and processing algorithms. Still, there is a good

chance that a typical database system will perform poorly, either

because it has no specialized support for this query type, or it sim-

ply fails to recognize this query type from the way the query is

written. Thus, making such queries run faster can require a lot of

effort and expertise. There are even more complex cases involv-

ing expensive user-defined functions commonly found in machine

learning workloads. The problem we tackle in this paper is how to

evaluate counting queries efficiently, and in a general way.

Approximate answers are widely accepted for such expensive

counting queries. Sampling is a powerful technique for producing

approximate answers with statistical guarantees, with a long tradi-

tion and active research of its applications in databases. Yet sam-

pling for complex queries remains a difficult problem. In general,

not all query operators “commute” with sampling. For instance, in

Example 1, if we only take a sample of D and evaluate the query

on this sample, it would be difficult to make sense of the result be-

cause even the neighbor counts produced by the inner aggregation

query would be off to begin with. Worse, if the predicate involves

a black-box function with table inputs, we cannot expect sampling

input tables to produce usable results.

Still, a viable approach is to conceptually treat the problem as

counting the number of objects satisfying a predicate, where the

objects can be enumerated or sampled efficiently, but the predicate

is complex and expensive (e.g., involving user-defined functions or

arbitrarily nested subqueries). We would sample some objects for

which we evaluate the predicate “in full,” and then use these results

to derive an estimate. For instance, in Example 1, given a point o1

from D, the predicate would be a query over (full) D parameterized

by the values of o1.x and o2.x. Of course, evaluating the predicate

in full for each sampled object can be expensive, but evaluating the

original query as a whole can be much worse—there may be no

better way for the database systems to process this query than a

nested-loop join. While this sampling-based approach is simple

and general, a question is whether we can make it more efficient.

Machine learning is another natural approach to this problem.

It has the potential of being more “sample-efficient” because of

390

its ability to generalize to unseen objects. One could draw some

samples, pay the cost to “label” them (i.e., evaluate the expensive

predicate), and use the labeled samples to learn a cheap classi-

fier that approximates the result of the expensive predicate. The

learned classifier can then be applied to objects to obtain an esti-

mated count. Beyond this naive approach, we can apply ideas from

quantification learning [6]. However, some difficulties remain: it is

hard to offer meaningful statistical guarantees (such as confidence

intervals provided by sampling), and training a good classifier can

be difficult and tricky itself (e.g., with challenges such as feature

and model selection as well as overfitting).

A natural question is whether we can combine learning and sam-

pling to get the “best of both worlds”: we want the ability to gener-

alize by learning, but at the same time we want the statistical guar-

antees offered by sampling. This paper answers this question in

positive. One idea is to use sampling to assess the errors produced

by the learned classifier and correct its estimated count. We also

provide a novel alternative that “learns to sample.” The key idea

here is not to rely directly on the learned classifier’s predictions,

but instead exploit the classifier’s knowledge in a more controlled

manner by using it to design a sampling scheme. Then, we apply

the sampling scheme to derive our estimates, complete with statis-

tical guarantees. A good classifier leads to an efficient sampling

scheme that uses few samples to get low-variance estimates; on the

other hand, a poor classifier can lead to a less efficient sampling

scheme that needs more samples to achieve the same accuracy, but

we will always have unbiased estimates with confidence intervals.

Specifically, we make use of the scores produced by classifiers

that reflect how confident they are in their predictions. Such scores

are readily available for popular classification methods in standard

libraries. A straightforward method is learned weighted sampling,

which assigns higher sampling probabilities to objects that are more

confidently predicted to contribute to the result count. This method

is still sensitive to the scores produced by the classifiers, and tends

to focus more on confidently positive objects instead of uncertain

objects—but arguably, uncertain objects intuitively provide more

information when labeled.

Hence, we further propose learned stratified sampling, which re-

lies even less on the quality of the classifier. Instead of using the

values of the scores, we use the scores only to induce an order-

ing among the objects. Based on this ordering, and with help from

some additional samples, we find the optimal stratified sampling

design that jointly considers the partitioning of objects into strata

and the allocation of additional samples across strata. The score-

induced ordering is useful because it brings together objects with

similar levels of uncertainty, and in particular encourages putting

the certainly positive objects and certainly negative objects into

separate strata with low within-stratum variances. The sampling

design problem is challenging because of joint consideration of

stratification and allocation; we propose algorithms for this opti-

mization problem with trade-offs between speed and optimality.

Our experiments show that our learn-to-sample approach gener-

ally outperforms approaches that are based on either sampling or

learning alone, or those that apply sampling only to error assess-

ment and correction. We achieve unbiased estimates with lower

variances than other approaches, and in practice, the overhead of

learning and sampling design is negligible compared with the to-

tal cost of evaluating expensive predicates on samples. Moreover,

learned stratified sampling delivers robust performance even with

poor classifiers. Finally, a key practical advantage of our learn-

to-sample approach is that it is easy to implement: its constituent

learning and sampling components are available off-the-shelf, so

we readily benefit from both the classic sampling literature and a

growing toolbox of classification algorithms. For example, for our

experiments, we were able to apply standard classification algo-

rithms out-of-box with very little tuning, thanks to the robustness

of the learn-to-sample approach.

2. PROBLEM DEFINITION
Consider a set of objects O, and a Boolean predicate q : O →

{0, 1}, where 1 denotes true. We say an object o is positive if

q(o) = 1, or negative if q(o) = 0. Our goal is to estimate C(O, q),
the number of positive objects in O; i.e., C(O, q) =

∑
o∈O q(o).

In general, each object o can have a complex structure (with mul-

tiple attributes including set-valued ones), and q(o) can be arbitrar-

ily complex (e.g., accessing related information beyond the con-

tents of o, comparing o with other objects in O, etc.).

We make two assumptions: 1) evaluation of q is costly; 2) mem-

bers of O can be efficiently enumerated. The terms “costly” and

“efficient,” of course, are relative. While the techniques in this pa-

per do not depend on these assumptions for correctness, our pro-

posed approach is intended for situations where these assumptions

hold. For example, a costly q would make it attractive to use sam-

pling to avoid evaluating q for all objects, or to use a learned model

that predicts the outcome of q at a lower cost.

It should be obvious that the problem formulation above han-

dles single-table selection queries whose conditions potentially in-

volve expensive user-defined functions. The problem formulation

is also general enough to capture more complex queries. The first

example below illustrates the case where q is a complex SQL con-

dition involving an aggregate subquery; the second illustrates the

case where q involves a black-box function.

EXAMPLE 2 (k-SKYBAND SIZE). Consider a set of 2d points

in table D(id, x, y). A point p1 dominates another point p2 if p1’s

x and y values are (resp.) no less than those of p2 (i.e., p1.x ≥
p2.x ∧ p1.y ≥ p2.y), and at least one of them is strictly greater

(i.e., p1.x > p2.x∨ p1.y > p2.y). The so-called k-skyband for the

point set D is the subset of points that are dominated by fewer than

k others. Given o ∈ D, we define q(o) to test its membership in the

k-skyband using the following SQL condition:

(SELECT COUNT (*) FROM D
WHERE x >= o.x AND y >= o.y AND (x>o.x OR y>o.y)) < k

Note that this predicate involves an aggregate subquery parame-

terized by o. The number of points in the k-skyband is then the

number of points satisfying q. Here, object enumeration is efficient

(just scan D), while predicate evaluation is costly in comparison

(without specialized indexes).

Alternatively, we can write the whole k-skyband size query using

a self-join and nested aggregation, without explicitly referring to q:

SELECT COUNT (*) FROM
(SELECT o1.id FROM D o1, D o2
WHERE o2.x >= o1.x AND o2y >= o1.y

AND (o2.x > o1.x OR o2.y > o1.y)
GROUP BY o1.id HAVING COUNT (*) < k);

EXAMPLE 3 (RELEVANT DOCUMENT COUNT). Consider a

set of documents in table D(id, text). Each document, based on

the content of its text, can be associated with zero or more labels

from a predefined set of labels of interest. For example, during elec-

tronic discovery for a legal proceeding, D can be a set of emails and

documents, and one such label may indicate whether a document is

in support of or against a particular action. Let labels(text) de-

note a function that examines a document and returns the subset of

labels that it is associated with. We mark a document as highly rel-

evant if it is associated with at least k labels. The following query

returns the number of highly relevant documents:

391

SELECT COUNT (*) FROM D o
WHERE len(labels(o.text)) >= k;

Here, q is the WHERE predicate, but it involves a complex black-

box function labels whose evaluation can be very expensive. For

example, if labels are highly specialized for a given proceeding,

there may not exist good automated labeling procedures and we

would have to evaluate labels manually. In general, the predicate

that determines whether a document is relevant can be even more

complicated than counting how many labels it is associated with,

but our problem formulation and solutions are designed to work

with arbitrarily complicated q.

Handling More General SQL Queries An observant reader will

notice the similarity between the last query in Example 2 and the

one counting points with few neighbors in Example 1. Despite the

latter query’s lack of an explicit per-object predicate, it is not hard

to see that we can define q(o) for o ∈ D as the following com-

plex SQL condition involving an aggregate subquery (analogous to

Example 2 above):

(SELECT COUNT (*) FROM D
WHERE SQRT(POWER(o.x-x,2)+ POWER(o.y-y,2)) <= d) <= k

More generally, suppose we are interested in counting the num-

ber of results for the following SQL aggregate query:

SELECT E FROM L,R -- (Q1)
WHERE θL AND θLR

GROUP BY GL HAVING φ;

In the above, GL is the list of group by columns, L denotes the list

of tables with columns in GL, and R denotes the list of other tables

in the join with no group-by columns; θL refers to the part of the

WHERE condition that be evaluated over L alone, θLR refers to the

remaining part of the WHERE condition, and φ refers to the HAVING

condition; finally, E is the list of output expressions for each group.

The problem of counting the number of results can be formulated

by defining the set O of objects as:

SELECT DISTINCT GL FROM L WHERE θL; -- (Q2)

and the predicate q(o) as:

EXISTS(SELECT GL FROM L, R -- (Q3)
WHERE θLR AND GL=o.*
GROUP BY GL HAVING φ)

Again, the key takeaway is that our problem formulation is general

enough to support complex queries involving joins and aggregates

(besides the final counting). Our approach works well as long as

the set of objects is cheap to enumerate (i.e., the local selection θL
in (Q2) is easy to evaluate), while the per-object predicate (Q3) is

relatively more expensive (which is usually the case because of join

and aggregation).

3. BASELINE METHODS
We present a number baseline methods for estimating C(O, q).

While these methods are not new, we note that some connections to

our problem (e.g., quantification learning and sampling-based data

cleaning) have never been made explicit or evaluated previously.

3.1 Sampling­Based Methods

Simple Random Sampling (SRS) The problem of estimating

C(O, q) using sampling has been studied extensively in the con-

text of estimating proportions [24]. A straightforward method is

simple random sampling (SRS). Let S ⊆ O denote the set of n
objects drawn randomly without replacement from the set O of all

N objects. For each o ∈ S, we evaluate q(o). Then, an unbi-

ased estimator of C(O, q) is p̂N , where the estimated proportion

p̂ = 1
n

∑
o∈S q(o). There are a number of ways to derive a confi-

dence interval for this estimation. The most popular one is the Wald

interval, which approximates the error distribution using a normal

distribution: the (1− α) confidence interval for p̂ in this case is

p̂± zα/2

√
p̂(1−p̂)

n
· N−n

N−1
.

The usual caveats apply: if q is highly selective or highly non-

selective, the Wald interval is unreliable because normal distribu-

tion approximation fails; one can use the more reliable Wilson in-

terval instead. See standard sampling literature [24] for details.

Stratified Sampling (SSP and SSN) Stratified sampling is a

method that works especially well when the overall population can

be divided into subpopulations (strata) where objects are homoge-

neous within each stratum. For example, if there is a way to divide

O into two strata where one contains mostly positive objects and

the other contains mostly negative objects, we can sample the two

strata independently and use much fewer samples overall than SRS

to achieve the same confidence interval. The problem, of course, is

that we do not know the outcome of each q(o) unless we first eval-

uate it. A practical solution is to choose some attributes of o whose

values are readily available and likely correlated with the outcome

of q(o); we can then stratify O according to these surrogates. In

our case, a natural choice for surrogates would be the attributes of

o used in computing q(o); e.g., for Example 1, we would choose x

and y and grid the 2d space into the desired number of strata.

Suppose we are given a partitioning of O into H strata O1,O2,
. . . ,OH , where Nh = |Oh| denotes the size of each stratum

h, and an allocation of samples n1, n2, . . . , nH , where nh is the

number of samples allotted to stratum h. Stratified sampling ran-

domly draws the allotted number of samples from each stratum;

denote these samples by S = ∪H
h=1Sh, where nh = |Sh|. For

each stratum h, using Sh, we can derive an unbiased estimator

for the proportion p̂h of positive objects therein (as described for

SRS above). Then, an unbiased estimator of C(O, q) is p̂N ,

where p̂ =
∑H

h=1 Whp̂h is the estimated overall proportion and

Wh = Nh/N is the weight of stratum h. The variance in p̂ is

Var(p̂) =
∑H

h=1

W2
hS2

h

nh
− 1

N

∑H
h=1 WhS

2
h, (1)

where Sh is the standard deviation of stratum h (i.e., of the mul-

tiset {q(o) | o ∈ Oh}). The (1 − α) confidence interval for p̂ is

p̂± tα/2

√
V̂ar(p̂),n where V̂ar(p̂) is an unbiased estimate of Var(p̂)

computed using (1) with S2
h substituted by an unbiased estimate

from Sh. See standard sampling literature [24] for details.

A simple strategy is proportional allocation, where the number

of samples allotted to each stratum is proportional to its size, i.e.,

nh ∝ Nh. We refer to stratified sampling with proportional alloca-

tion as SSP. A more sophisticated alternative, Neyman allocation,

optimally allocates samples according to nh ∝ NhSh, which min-

imizes Var(p̂). We refer to this alternative as SSN. In practice, as

we do not know Sh in advance, SSN proceeds in two stages:

1. Randomly draw a set SI of samples to evaluate q with, and

use them to derive an estimate of Sh for each stratum h. Then

calculate the Neyman allocation using these estimates.1

2. Randomly draw the allotted number of samples from each

stratum.

1Standard caveats apply: given the desired total number of samples, we
ensure that no stratum is allotted more samples than it contains, and that
no stratum is allotted fewer than a prescribed minimum number of sam-
ples (even if its estimated standard deviation is close to 0); we do so by
rebalancing the allocation after meeting these constraints.

392

3.2 Learning­Based Methods
Since q is expensive to evaluate, it is natural to consider learning

a binary classifier f : O → {0, 1} to approximate the behavior of

q. We can draw a random sample S from O, evaluate q on them to

obtain the ground truth, and then use the results to train the classi-

fier. The classic classification problem strives to classify each input

object correctly, but for our problem, we are concerned only with

the number of objects whose ground-truth labels are 1. The result-

ing problem is an instance of quantification learning [6], whose

goal is to estimate the class distribution as opposed to individual

labels. While specialized algorithms are possible, it is appealing to

adapt classic classification algorithms for quantification learning,

thereby leveraging a rich palette of mature techniques. In this sec-

tion, we first explore how, given a classifier f that approximates q,

we can use quantification learning to estimate C(O, q).
We will not delve into specific classification algorithms here, be-

cause they are not this paper’s focus; our methods can work with

any of them. For feature selection, we use a simple heuristic that

selects the attributes of o referenced in q, e.g., columns of L refer-

enced by θLR in (Q1) (Section 2). We also note that training can be

improved by active learning [6]; for additional discussion, please

see the full version of this paper [25].

Classify-and-Count (QLCC) A straightforward and natural ap-

proach is Classify-and-Count [6], which we refer to as QLCC.

Suppose we randomly select S ⊆ O as training data and let

CS = C(S, q) denote the count of positive objects therein. Af-

ter learning f from S, we evaluate f(o) for each “test object”

o ∈ O\S. Let Cobs =
∑

o∈O\S f(o) denote the “observed count”

of f over the test data. We simply return Cobs + CS as the esti-

mate for C(O, q). Should the classifier be accurate over the test

data, this estimate will be accurate as well. However, it should be

clear that QLCC is susceptible to classification errors and can pro-

duce wildly skewed estimates when false positive/negative counts

are imbalanced.

Adjusted Count (QLAC) To mitigate this problem, a recom-

mended approach is Adjusted Count [6], which we refer to as

QLAC. The basic idea is to further adjust Cobs using the rates of true

and false positives estimated empirically from the training data. In

more detail, we use k-fold cross validation on the samples S to

compute t̂pr and f̂pr , the estimated true and false positive rates,

respectively. Then, we obtain an “adjusted count” Cadj of f over

the test data by adjusting the observed count Cobs as follows2:

Cadj =
Cobs − f̂pr · |O\S|

t̂pr − f̂pr
. (2)

Finally, we return Cadj + CS as the estimate for C(O, q).

3.3 Learning with Sample­based Correction
One idea for combining learning and sampling is to follow

QLCC (Classify-and-Count) with another phase, where we ran-

domly sample additional objects, evaluate q on them, assess the

errors in the learned classifier f , and correct the result of Classify-

and-Count accordingly. We call this method QLSC, for “quantifi-

cation learning with SampleClean,” as it is inspired by the work

2To see why, note that the proportion p̂ of “observed positive” objects in the
test data can be computed by p̂ = p·tpr+(1−p)·fpr , where p denotes the
actual positive proportion, and tpr and fpr are the true and false positive
rates. We can solve for p, and note that multiplying p̂ and p by the size of
the test data yields the observed and actual counts. Replacing tpr and fpr
with their estimates then gives us (2).

of [26] on using sampling for data cleaning.3 More precisely, recall

that QLCC samples S ⊂ O, learns f , and estimates the positive

count over remaining objects as Cobs =
∑

o∈O\S f(o). QLSC

then proceeds with drawing (uniformly at random) another set S ′

of objects from O \ S, and for each o ∈ S ′ computes the error

f(o) − q(o). The average error ǫ̂ over S ′ gives an unbiased esti-

mator for the average error over O \S, so we can correct the count

over O \ S as Cobs − ǫ̂|O \ S|. Adding CS (positive count in S)

yields the overall estimate. Confidence intervals can be derived as

in Section 3.1 because the second phase of QLSC is basically SRS.

QLSC is similar to QLAC (Section 3.2) in that both seek to cor-

rect the result of QLCC by assessing its errors on labeled samples.

However, QLAC produces only a point estimate while QLSC can

provide confidence intervals.

4. LEARNING­TO­SAMPLE METHODS
In the previous section, we have seen how sampling and learning

can be applied to problem of estimating C(O, q). Learning is at-

tractive for its ability to “generalize” knowledge of q to unsampled

objects, but it does not offer the guarantees provided by sampling

(e.g., confidence intervals), and its accuracy depends heavily on

the quality of the classifier it learns. A natural question is whether

we can combine learning and sampling to get the “best of both

worlds.” QLSC (Section 3.3) represents a baseline approach to-

wards this goal: it uses sampling to correct the count predicted by

the classifier, but its sampling scheme does not take advantage of

the learned model in any way, and a poor classifier would result in

a poor starting point.

This section proposes two methods that combine learning and

sampling more effectively. Both methods proceed in two phases.

The first phase is learning, and is identical for the two methods:

we randomly sample objects, evaluate q on them, and train a binary

classifier, as we did in Section 3.2. However, we are not going to

use this classifier to get a count (as a starting point or otherwise).

Instead, we assume that the classifier provides a scoring function

g : O → [0, 1]: if g(o) = 1 (or 0), the classifier is totally confident

in predicting q(o) to be 1 (or 0, resp.); a value strictly between 0 and

1, on the other hand, indicates uncertainty (e.g., 0.5 means a toss-

up). For some classifiers (e.g., random forest), one can intuitively

interpret g(o) as the probability that q(o) = 1, but in general, g(o)
may not have a probabilistic interpretation. Regardless, the scoring

function g gives us a way to gauge the certainty in the predicted

labels. We assume that, compared with q, g is cheap to evaluate (in

practice it is often a byproduct of classification).

The second phase is sampling, but differs between the two meth-

ods. The first method, Learned Weighted Sampling (LWS), is the

more straightforward one of the two. Treating g(o) has a guess of

how much each object o contributes to C(O, q), LWS samples ob-

jects with higher g(o) with higher probability. The second method,

Learned Stratified Sampling (LSS), uses g to guide the partition-

ing of objects into strata, with the goal of reducing the variance of

estimates using stratified sampling.

3While SampleClean [26] deals with the different problem of evaluating
aggregates over dirty data, its techniques can be adapted to our quantifi-
cation learning setting by conceptually regarding the labels produced by
the learned classifier as dirty data; “cleaning” a dirty label involves sam-
pling the object and paying the cost of evaluating q. Specifically, QLSC

corresponds to their NormalizedSC technique, which corrects the aggregate
result computed over dirty data using the errors observed on data randomly
selected for cleaning. Their RawSC technique, which randomly cleans data
and estimates the result from only the cleaned labels, basically corresponds
to the sampling-based baseline methods in our Section 3.1.

393

The novelty of these two methods lies in their use of learning to

inform sampling. Thanks to sampling, we still get accuracy guar-

antees in the form of confidence intervals. At the same time, we get

the benefit of learning without relying on it for correctness. A good

classifier leads to more efficient sampling designs; on the other

hand, a poor classifier leads to a less efficient sampling design, but

we still have unbiased estimates with confidence intervals. As we

will see, between the two methods, LSS is even more robust and

less dependent on the quality of the learned classifier than LWS.

The remainder of this section describes the second phase for

these two methods in detail. Let SL denote the samples used in

the first phase for learning a classifier with scoring function g. We

now focus on estimating C(O \ SL, q) in the second phase. In the

following, we will abuse notation for simplicity: we shall refer to

O \ SL simply as O instead, and let N = |O|.

4.1 Learned Weighted Sampling
The second phase of LWS can be seen as a form of probability-

proportional-to-size (PPS). In general, PPS relies on a “size mea-

sure” that is believed to be correlated to the variable of interest.

Objects with large size measures are deemed more important in es-

timation; hence, objects are drawn with probabilities proportional

to their size measures. In our case, the variable of interest is the

result of q(o), so the learned g(o) can serve as the size measure.

However, to guard against an overconfident (and potentially inaccu-

rate) classifier, we adjust the sampling probabilities so every o has

some chance of being sampled (even if g(o) = 0). Specifically, we

assign each o an initial sampling probability π(o) ∝ max(g(o), ǫ),
where ǫ > 0 is a (small) prescribed threshold. We then sample

objects from O according to π without replacement, evaluate q on

the sampled objects, and estimate C(O, q).
There are a number of estimators available from the litera-

ture [14], including the popular Horvitz-Thompson estimator. We

use the Des Raj estimator, whose calculation is simpler and can

provide “ordered” estimates, i.e., running estimates of mean and

variance as samples are being drawn. Let o1, o2, o3 . . . denote the

sequence of objects drawn according to π without replacement.

We compute the following quantity after drawing each oi (with the

summations below yielding 0 in case of i = 1):

pi =
1
N

(∑i−1
j=1 q(oj) +

q(oi)
π(oi)

(
1−

∑i−1
j=1 π(oj)

))
. (3)

The estimate for C(O, q) after drawing the n-th sampled object

would be p̂(n)N , where the estimated proportion p̂(n) of positive

objects is simply the average of all pi’s so far:

p̂(n) = 1
n

∑n
i=1 pi.

And the variance in p̂(n) can be estimated as follows:

V̂ar(p̂(n)) = 1
n(n−1)

∑n
i=1(pi − p̂(n))2.

LWS is very efficient when the learned classifier is accurate and

confident. To see why, suppose the true proportion of positive ob-

jects in O is p. For an accurate and confident classifier, assum-

ing an arbitrarily small ǫ, π(o) would be arbitrarily close to 0 if

q(o) = 0, or 1
pN

otherwise. Therefore, each sampled object oi will

have q(oi) = 1 and π(oi) =
1

pN
. Plugging these into (3) and sim-

plifying the equation yields pi = p for all i, so the estimate p̂(i) at

every step will be perfectly accurate.

On the other hand, LWS’s efficiency can suffer with a poor clas-

sifier. Even though it still produces unbiased estimates (regardless

of the choices of π(o)’s), it may require many more samples to

achieve a tight confidence interval if it gets the priorities wrong.

Another indication that LWS may not be best for our setting is

its preference for objects with high g(o). Intuitively, focusing in-

stead on objects with g(o) in the toss-up range reveals more infor-

mation. Note that traditionally, PPS applies to the more general

setting where the variable of interest can be of any value; hence, it

is natural to focus on objects with potentially higher contribution

to the result. In our setting, however, the value of interest, q(o), is

either 0 or 1. This limited range makes our problem easier, as we

do not need to worry about cases where inclusion or exclusion of

objects with extremely high values can seriously impact the esti-

mates. At the same time, this more constrained setting also enables

the possibility for better sampling designs, which we explore next.

4.2 Learned Stratified Sampling
As discussed in Section 4.1, the quality of the learned classifier

can adversely impact the efficiency of LWS, because the values of

scoring function g directly control the sampling probabilities. We

now present LSS, which uses g more conservatively, and in a way

that naturally encourages exploration of uncertain outcomes (as op-

posed to certain positives).

Following the learning phase, LSS conceptually sorts the objects

in O by g (say, in increasing score order). At a high level, LSS

applies stratified sampling to O, where stratification is done ac-

cording to this ordering; i.e., each stratum covers objects whose g
scores fall into a consecutive range. More specifically, the second

phase of LSS proceeds in two stages:

1. Randomly draw SI ⊆ O to evaluate q, and use the results

to design a sampling scheme for the second stage—namely,

the partitioning of O into strata as well as an allocation of

second-stage samples among these strata.

2. Randomly draw SII ⊆ O \ SI to evaluate q, according to

the sampling scheme designed by the first stage, and use the

results to estimate C(O, q).
Several points are worth noting:

(Versus LWS) While LWS uses the actual g values in its sampling

design, LSS uses only the ordering of g values among ob-

jects. Hence, LSS relies less on the learned classifier. We

will validate this observation with experiments in Section 5.

On the other hand, the ordering induced by g is useful to

LSS because it intuitively brings together objects with simi-

lar levels of uncertainty, and in particular encourages putting

the confidently positive objects and confidently negative ob-

jects into separate strata with low within-stratum variances.

(Versus Basic Stratified Sampling) While the second phase of LSS

uses stratified sampling, this phase differs from the baseline

methods in Section 3.1 in important ways: (i) stratification

in LSS is based on the learned g instead of surrogate object

attributes; (ii) LSS uses SI to jointly design stratification and

allocation; in contrast, SSN only uses SI to design allocation

(given stratification), while SSP does not have a first stage.

(Samples in Learning and Sampling Phases) The samples we

draw in the sampling phase of LSS (SI ∪ SII above) are

separate from those drawn in the learning phase. Since the

samples from the learning phase already affect (through the

learned g) the ordering of O for stratification, we choose to

use new, independent samples (SI) for sampling design in

order to minimize reliance on the classifier quality.4

The remainder of this section discusses how we design the sam-

pling scheme for the second stage in detail. Formally, we de-

fine the design problem as follows. Consider an ordered set O
of objects o1, o2, . . . , oN ordered by g with ties broken arbitrarily,

4As future work, it would be interesting to investigate safe reuse of samples
from the learning phase in less conservative ways.

394

which can be efficiently computed as we assume that the classifier

is easy to execute. A stratification of O into H strata, specified

by (N1, N2, . . . , NH) where
∑H

h=1 Nh = N , defines the parti-

tioning of O into subsets O1,O2, . . . ,OH . Here O1 includes ob-

jects with indices ≤ N1, and Oh, h ≥ 2 denotes the subset of ob-

jects whose indices fall within the interval (
∑h−1

j=1 Nj ,
∑h

j=1 Nj].
Recall from Section 3.1 that (1) gives the variance in the esti-

mator of C(O, q)/N for stratified sampling, given the stratifica-

tion (N1, N2, . . . , NH) and a sample allocation (n1, n2, . . . , nH)
where we draw nh objects from Oh. However, we do not know the

Sh terms in (1) in advance, since they denote the standard deviation

of the actual q(oi) values of the objects oi ∈ Oh that are expen-

sive to compute, so LSS instead seeks to minimize the variance of

C(O, q) given by (1) estimated using the first-stage samples SI.

More precisely, suppose the first-stage sample SI consists of m
objects oı1 , oı2 , . . . , oım where 1 ≤ ı1 < ı2 < · · · < ım ≤
N . We aim to find a stratification (N1, N2, . . . , NH) to minimize

the objective given in (5) below that estimates the variance in the

estimator of C(O, q) using n samples in total in the second stage.

Here we assume SI
h = Oh ∩ SI, mh = |SI

h|, nh is number of

second-stage samples in Oh,
∑H

h=1 nh = n, and the variances S2
h

using the first-stage samples SI are estimated as

s2h = 1
mh−1

∑
o∈SI

h
(q(o)− C(SI

h, q)/mh)
2. (4)

Then the variance of the estimated C(O, q) obtained by simplify-

ing (1) is given by:

V (N1, N2, . . . , NH) =
∑H

h=1

N2
hs2h
nh

−
∑H

h=1 Nhs
2
h. (5)

The remainder of this section describes our algorithms for com-

puting the optimal stratification given SI. Note that the optimality

of stratification depends on the allocation strategy used. We first

present the case of using Neyman allocation, which minimizes the

variance for a given stratification. In this case, LSS gives the over-

all optimal sampling design that jointly considers stratification and

allocation. Then, we briefly discuss the case of proportional alloca-

tion, which is simpler but not optimal for a given stratification. In

this case, we would find the stratification that makes proportional

allocation most effective; the optimization problem is much easier

than the case of Neyman allocation.

Optimizing the Stratification

Recall from Section 3.1 that under Neyman allocation using SI,

nh = n(Nhsh)/(
∑H

h=1 Nhsh). Hence, we can further sim-

plify (5), the minimization objective, as follows:

V (N1, N2, . . . , NH) = 1
n

(∑H
h=1 Nhsh

)2

−
∑H

h=1 Nhs
2
h. (6)

A naive algorithm would compute V for all possible stratifications

(N1, N2, . . . , NH) and pick the best, but the number of possibili-

ties is Ω(NH), and computing V involves going over SI, which is

expensive even for small number of partitions (e.g., when H = 3).

Before presenting our algorithms, we describe some ideas useful

to combat these challenges. First, note that in the expression for V
in (6), from (4), the sh terms depend only on the subset of objects

SI
h sampled in SI in each stratum h, and the precise locations of

stratum boundaries between these sampled points only affect the

Nh terms. This observation suggests that we may be able to first

consider the partitioning of SI among strata, and then decide where

precisely the stratum boundaries lie among O. Later in this section,

we will start with an algorithm that uses this strategy, where given

the partitioning of SI, the optimal Nh’s can be solved directly and

(almost) exactly in the case of H = 3. Building on the insights re-

vealed in this simple case, we then present two general algorithms

for any H providing different trade-offs between speed and accu-

racy. Both of these algorithms tame complexity by restricting the

potential locations of the stratum boundaries.

Second, we can speed up the computation of V significantly us-

ing precomputation. By sorting the m objects in SI by g, we can

compute a prefix-sum index Γ, such that Γ(k) =
∑k

=1 q(oı) (for

1 ≤ k ≤ m) returns the number of positive objects among the first

k objects in SI. To obtain the indices of sampled objects within the

ordered O (i.e., ı1, . . . , ım), there is no need to sort all objects in

O by g. Instead, note that the m objects in SI divide the range of

g values into m+ 1 buckets; we can simply make one pass over O
and maintain the count of objects whose g values fall within each

bucket. After the pass over O completes, we scan the bucket counts

to determine ı1, . . . , ım.

• DirSol (an almost optimal stratification for H = 3H = 3H = 3): Here we

try all pairs of SI as possible rough boundaries. In particular,

for each pair of consecutive samples as per g, we assume that the

first element is the last sampled object in the first strata, while the

second element is the first sampled object in the third strata. In

order to find the exact boundaries in O, we formulate and solve

an optimization problem.

• LogBdr (an approximate stratification for any HHH , generaliz-

ing DirSol): It considers all possible ways of partitioning the m
sampled objects in SI among H strata generalizing the ideas in

DirSol. Unlike DirSol, however, for each such partitioning, we

do not attempt to solve directly for the actual stratum boundaries

within O; instead, we consider only a set of candidate boundary

indices, chosen judiciously to ensure that we can still find a rea-

sonably good solution. In particular, between two consecutive

objects oık and oık+1
in SI (with respect to g), we consider the

objects in O that are 2i apart from oık as boundary indices.

• DynPgm (a dynamic-programming-based algorithm for any

HHH , faster than LogBdr but with worse approximation guar-

antees): A straightforward application of dynamic programming

does not work since the objective in (6) is non-separable. To

overcome this difficulty, we isolate the non-separable term in

the objective function and solve a suite of dynamic programs

where each of them operates under a different upper bound on

the non-separable term. In order to improve the running time,

we only consider as possible boundaries the set SI and the addi-

tional boundary indices similar to DirSol. In the end, we return

the best result over the dynamic programs (details in [25]).

• DynPgmP (222-approximation for proportional allocation):

Recall from Section 3.1 that under proportional allocation,

nh = nNh/N . Hence, we can further simplify (5) to

V (N1, . . . , NH) = N−n
n

∑H
h=1 Nhs

2
h. The objective is much

simpler than the objective for Neyman allocation and the result-

ing optimization problem is indeed separable, so it can be solved

readily by dynamic programming. To improve the efficiency, we

use the same idea as in LogBdr and DynPgm with additional

boundary indices (details in [25]).

In addition to optimizing the objective in (6), we impose the fol-

lowing constraints for each stratum h: For two chosen thresholds

N⊔ and m⊔, (i) Nh ≥ N⊔, i.e., each stratum is large enough, and

(ii) mh ≥ m⊔, i.e., the stratum contains enough first-stage samples

such that sh is a reasonable variance estimate. In practice, we have

set m⊔ to be around 5 and N⊔ larger.

DirSol: We now give more details on DirSol. For H = 3, we

need to pick two boundaries separating strata O1, O2, O3. To this

end, suppose the last sampled object (with the largest g value) in

O1 is the i-th object in SI, and the first sampled object (with the

smallest g value) in O3 is the j-th object in SI. The algorithm

395

considers every possible (i, j) pair where m⊔ ≤ i < i+m⊔ < j ≤
m−m⊔ + 1.

Given oıi as the last sampled object in O1 and oıj as

the first sampled object in O3, we can readily compute

s1, s2, s3 in (6) using the precomputed index Γ: s21 =
Γ(i)
i−1

(
1− Γ(i)

i

)
, s22 = Γ(j−1)−Γ(i)

j−i−2

(
1−Γ(j−1)−Γ(i)

j−i−1

)
, and s23 =

Γ(m)−Γ(j−1)
m−j

(
1−Γ(m)−Γ(j−1)

m−j+1

)
.

Then, noting that N2 = N − N1 − N3, we can write

V (N1, N2, N3) as bivariate quadratic function f(N1, N3) of the

form a1N
2
1 +a2N

2
3 +a3N1N3+a4N1+a5N3+a6, where coeffi-

cients a1, . . . , a6 are computed from s1, s2, s3, n, and N (see [25]

for detailed derivation). Our goal is to minimize f(N1, N3) subject

to the following constraints:

• max{N⊔, ıi} ≤ N1 ≤ ıi+1 − 1; i.e., the last sampled object

in O1 is indeed the i-th one in SI, and |O1| ≥ N⊔.

• max{N⊔, N − ıj + 1} ≤ N3 ≤ N − ıj−1; i.e., the first

sampled object in O3 is the j-th in SI, and |O3| ≥ N⊔.

• N1 +N3 ≤ N −N⊔; i.e., |O2| ≥ N⊔.

These constrains define a 2-dimensional polygon R with at most

5 sides. We optimize the function f over R using a standard al-

gebraic method by considering (i) the critical points of f , and (ii)

the boundary of R. We repeat the above procedure for each pair

of sampled objects, and in the end return the stratification with the

overall minimum variance (see [25] for additional details and the

pseudocode). We call this algorithm DirSol (for direct solve). The

following theorem summarizes its time complexity and accuracy.

THEOREM 1. Given an ordered set O of N objects and a sam-

pled subset SI of m objects, let v∗ denote the minimum value of

estimated variance defined in (6) achievable using n samples un-

der stratified sampling with H = 3 strata where each stratum

contains at least N⊔ objects. Assuming N⊔ > n, DirSol runs in

O(N logm +m2) time and finds a stratification resulting in esti-

mated variance v ≤ (1 + 2
N⊔

+ 2
N⊔−n

+ 4
N⊔(N⊔−n)

)v∗.

Note the assumption of N⊔ > n above; without it, the approxi-

mation factor would be arbitrarily bad. In practice, however, this

assumption is weak and often holds in practice: e.g., if we take a

5% sample of O in the second stage, this assumption means that

each stratum in O contains at least 5% of O.

LogBdr: Given a partitioning of the sampled objects, consider

two consecutive sampled objects oık and oık+1
that are put into

different strata (there are H − 1 such pairs of objects). When de-

ciding where exactly to draw the boundary between oık and oık+1
,

the algorithm only considers the set Bk of candidate boundary in-

dices ık, ık + 20, ık + 21, ık + 22, . . . up to (but not including)

ık+1; we also add ık+1 − 1 if it is not already in Bk. Choosing a

particular index i from Bk means the stratum containing oık ends

with oi. Then we simply check all candidate stratifications formed

by choosing one index from each of the H − 1 sets of candidate

boundary indices. We call this algorithm LogBdr (for logarithmic

number of candidate boundary indices). Theorem 2 summarizes its

time complexity and accuracy (proof is in [25], the approximation

factor can be improved if we increase the running time).

THEOREM 2. Given an ordered set O of N objects and a sam-

pled subset SI of m objects, let v∗ denote the minimum value of

estimated variance defined in (6) achievable using n samples un-

der stratified sampling with H strata where each stratum contains

at least N⊔ objects. Let N∗
h denote the size of stratum h in this op-

timum solution. Assuming N⊔ > n, LogBdr runs in O(N logm +
HmH−1 logH−1 N) time and finds a stratification resulting in es-

timated variance v ≤ max{4, 2 + 2max1≤h≤H
N∗

h

N∗

h
−n

}v∗.

5. EXPERIMENTS
Most of our experiments are based on three scenarios, each with

its own real-world dataset and counting query template:

(Sports) The data contains yearly performance statistics for play-

ers in the Major League Baseball. We focus on pitching

statistics, which exclude a portion of the players. We con-

sider the k-skyband size query in Example 2, where each

point is a player-year combination (there are about 47,000 of

them), and x and y refer to runs and home runs.

(Neighbors) The data comes from KDD Cup 1999, where the goal

was to learn a predictive model that could distinguish legiti-

mate and illegitimate (intrusion attacks) connections to a ma-

chine. The original dataset contains 4.9 million records with

41 features and a binary label. We removed many sparse

rows, resulting in 73,000 points. We consider the query in

Example 1 that counts points with few neighbors.

(Text) We consider the relevant document count query in Ex-

ample 3. Since we do not want to manually evaluate

the predicate ourselves in experiments, we use the LSHTC

dataset [23], which provides ground-truth labels (Wikipedia

categorization) for 2.4M documents from Wikipedia. The

same dataset was used in [18]. In our experiments, each al-

gorithm is charged a cost for revealing the true label, which

in practice would be expensive.

To experiment with different selectivities of the predicate q, we ad-

just query parameter settings (k for Sports; k and d for Neighbors;

k for Text). We also create synthetic datasets based on Sports to

study how data distributions affect learned models and the perfor-

mance of various algorithms; for details see Section 5.2.

We compare the following algorithms:

• Sampling-based (Section 3.1): simple random sampling

(SRS) and stratified sampling (SSP, with proportional allo-

cation, and SSN, with Neyman allocation in two stages). For

stratified sampling (which applies to Neighbors and Sports

but not to Text), we use attributes x and y as surrogates; each

stratum is a rectangle in the 2d x-y space. Unless otherwise

specified, we stratify using a uniform
√
H ×

√
H grid over

the ranges of x and y values in the dataset. By default H = 4.

• Learning-based (Section 3.2): quantification learning

(QLCC, without adjustment, and QLAC, with adjustment).

• Learning with sampling-based correction (Section 3.3):

QLSC.

• Learning-to-sample (Section 4): learned weighted sampling

(LWS) and learned stratified sampling (LSS). Unless other-

wise specified, for LSS we implement a simplified version of

LogBdr, which considers candidate boundaries that map to

equally spaced ticks over [0, 1] (the range of g scores). By

default, H = 4 and the spacing between candidate bound-

aries is 0.05; for the distributions of g scores that arise in

practice, these boundaries already provide fine enough res-

olution for H = 4, so more sophisticated choices of candi-

dates in LogBdr are not needed.

For learning-based and learn-to-sample algorithms, we use stan-

dard implementations of classifiers from scikit-learn. For

Neighbors and Sports, we experiment with kNN (k-nearest neigh-

bors, where k is not to be confused with our query parameter), RF

(random forests), and NN (a simple two-layer neural network); by

default, we use RF with 100 estimators. For Text, we use a naive

Bayes classifier with standard full-text features. For QLSC, LWS,

and LSS, by default we devote 25% of their allotted samples to

training (and including design, if applicable).

Since the estimates of result counts are uncertain, for each exper-

imental setting, we run each algorithm 100 times, and record the

396

distribution of estimates it produces. Recall that unlike sampling-

based and learn-to-sample algorithms, those based on learning

alone provide no accuracy guarantees by themselves. Nonetheless,

the distributions of estimates they produce allow us to evaluate their

accuracy empirically. When appropriate, we show distributions us-

ing violin plots5. We would like our estimates to be unbiased, so

ideally the violin plots would be centered around the actual result

count. Furthermore, we would like the estimates to have low vari-

ance, which means narrower interquartile ranges as well as shorter

and wider plots. In some figures, we use MAE (mean absolute

error) as a single numeric measure to quantify and summarize an

error distribution, so we can report more results than violin plots.

For Neighbors and Sports, while our queries can be executed di-

rectly over a database system, they run slowly even if we construct

all appropriate standard indices and enable the maximum level of

optimization (on PostgreSQL and another commercial system). To

enable faster experiments, we implemented the evaluation of q in

Python in main memory. Since our experiments specify sampling

budgets in terms of numbers (or percentages) of samples, our re-

sults are platform-neutral and easy to translate into time savings on

different underlying platforms. The overhead of learning, as we

will show later with experiments, is small compared to the cost of

labeling samples (evaluating q), even for the in-memory Python im-

plementation; the overhead will be even smaller in the SQL setting.

5.1 Overall Comparison with Real Datasets
We begin with experiments that compare various algorithms us-

ing the three scenarios with real datasets, Neighbors, Sports. and

Text. Both LSS and LWS used a random forest classifier with esti-

mators and a 25%:75% training:sampling split. Figure 1 compares

the MAE of various algorithms when we vary the result size (via

query parameters) while keeping the sample size fixed. Figure 2

compares the MAE of various algorithms when we vary the sample

size while keeping the result size fixed.

As it turns out, the learned classifier performs pretty well for

Neighbors and Sports, but pretty poorly for Text, leading to very

different results. We shall focus on Neighbors and Sports first. F1

scores for the learned classifiers average higher than 0.8 in these

scenarios (with small result sizes being more difficult). We make

several observations. First, learning-based methods are very com-

petitive here thanks to high classifier quality. In fact, QLCC some-

times even delivers the smallest errors even without any adjustment

or correction. But to keep things in perspective, QLCC and QLAC

do not provide any guarantees; once QLSC uses sampling to pro-

vide correction and guarantees, MAE actually takes a small hit be-

cause of the extra overhead. Second, algorithms without any learn-

ing component, namely SRS and SSP are clearly not as competi-

tive here, with much higher MAE than others. Third, LSS (high-

lighted) has consistently low MAE; it is nearly always the leader

or not far from the leader, and bear in mind that it offers statisti-

cal guarantees, which QLCC does not. LSS also consistently leads

QLSC by a good margin. Fourth, the comparison between LWS

and LSS is difficult, as in some cases LWS leads LSS. The quality

of the learned classifier for Neighbors and Sports is the main factor

here. To better understand the situation, we take a closer look at

some data points with violin plots showing distributions.

In Figure 3, we get a more detailed sense of the variability in

estimates. LSS and LWS are consistently no worse and often better

than SRS and SSP. Between LSS and LWS, we make two observa-

tions. First, when selectivity is low, we expect all sampling-based

5A violin plot shows the probability density at different values; additionally,
a white dot marks the median of all data, a thick black line spans the lower
and upper quartiles.

methods to have some trouble as the particular number of posi-

tives that come up by chance in each run will have a large impact

on relative error. For Sports, LWS dodged this issue with a very

good classifier that allows it to draw in a very targeted fashion.

In contrast, LSS, as it places much less trust in the learned model

compared with LWS, misses the opportunity. Second, LWS is not

without its own problems. In Neighbors, where prediction becomes

slightly more challenging, we see LWS underestimating with XS

result size; as it turns out, the classifier at those points happens to

generate more false negatives. In other words, LWS depends far

more on model quality than LSS does—it can benefit more, but

also can get hurt more. This effect will be magnified for the Text

scenario, which we focus on next.

The Text tells a completely different story. In this case, classifica-

tion is hard. Therefore, QLCC, QLAC, and QLSC fare very poorly

here, because their performance is too dependent on starting point

produced by QLCC. Correction is also difficult. From one repre-

sentative run (with 857k resize size), true TPR and FPR are .53
and .85, while the estimated TPR and FPR are .35 and .95. Even

with sampling-based correction, QLSC still underperforms other

algorithms. In contrast, SRS, which does not use learning, actually

shines here. Finally, LSS tracks SRS closely. It actually underper-

forms SRS a bit, which is understandable because learning phase is

essentially not that useful, wasting 25% of the samples. However,

the impact on the sampling design is limited. Closer examination

reveals that it basically degenerates to SRS for the remaining 75%

of the samples. This experiment highlights the sensitivity of QLCC,

QLAC, and QLSC toward poor models, as well as the resiliency of

LSS against poor models.

5.2 Comparison with Synthetic Datasets
Results in Section 5.1 show just three data points along the spec-

trum of classifier quality: Neighbors and Sports have good classi-

fiers but Text has a bad one. What happens in between? To under-

stand how different algorithms are affected by varying degrees of

difficulty in using a learned model to approximate a predicate, we

design our next set of experiments by injecting additional “noise”

into the Sports scenario to adjust the difficulty of classification. Re-

call from Example 2 that for each object o, we compute a count

subquery with o.x and o.y, and compare the resulting count, say

c, with k. Now, we create an additional “noise” table keyed on

distinct (x, y) values, where each (x, y) is associated with a noise

count drawn randomly from another distribution. Instead of com-

paring c with k, we use another subquery to look up the noise count

c′ for (o.x, o.y), and have the predicate combine the original and

noise counts into (1− α)c+ αc′ to compare with k. By adjusting

α ∈ [0, 1], we control how much noise contributes to the outcome

of the predicate: α = 0 corresponds to the original Sports scenario,

where we know we can learn a good model; α = 1 means the

predicate is simply comparing independent random noise, which is

mostly challenging to predict.

We experiment with two noise distributions. One is a Gaussian

with standard deviation of 1 truncated and discretized. The other

is derived from a Zipf distribution with parameter s, where each

draw is used to index into a randomly permuted array of possible

noise counts derived from the real count values; large s means some

(random) noise count will be far more popular than others.

We compare SRS, QLSC, and LSS, representing sampling-

based, learning-based (but with sampling-based correction), and

learn-to-sample algorithms, respectively. Figure 4 shows how they

compare in terms of MAE when we vary α for synthetic datasets

generated using Gaussian noise. Note that when α increases, the

result size tends to decrease (but it is random depending on the

397

8. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,

and I. Stoica. Blinkdb: Queries with bounded errors and

bounded response times on very large data. In Proceedings of

the 8th ACM European Conference on Computer Systems,

EuroSys ’13, pages 29–42, New York, NY, USA, 2013.

ACM.

[2] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample

selection for approximate query processing. In Proceedings

of the 2003 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’03, pages 539–550, New

York, NY, USA, 2003. ACM.

[3] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. R.

Narasayya. Overcoming limitations of sampling for

aggregation queries. In Proceedings of the 17th International

Conference on Data Engineering, April 2-6, 2001,

Heidelberg, Germany, pages 534–542, 2001.

[4] S. Chaudhuri, R. Motwani, and V. Narasayya. On Random

Sampling over Joins. In Proceedings of the 1999 ACM

SIGMOD International Conference on Management of Data,

SIGMOD ’99, pages 263–274, New York, NY, USA, 1999.

ACM.

[5] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.

Synopses for massive data: Samples, histograms, wavelets,

sketches. Foundations and Trends R© in Databases,

4(1–3):1–294, 2011.

[6] P. Gonzlez, A. Castao, N. V. Chawla, and J. J. D. Coz. A

Review on Quantification Learning. ACM Comput. Surv.,

50(5):74:1–74:40, Sept. 2017.

[7] P. J. Haas and J. M. Hellerstein. Ripple Joins for Online

Aggregation. In Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data, SIGMOD

’99, pages 287–298, New York, NY, USA, 1999. ACM.

[8] P. J. Haas and A. N. Swami. Sequential sampling procedures

for query size estimation. In Proceedings of the 1992 ACM

SIGMOD International Conference on Management of Data,

SIGMOD ’92, pages 341–350, New York, NY, USA, 1992.

ACM.

[9] M. Halford, P. Saint-Pierre, and F. Morvan. An approach

based on bayesian networks for query selectivity estimation.

In DASFAA (2), volume 11447 of Lecture Notes in Computer

Science, pages 3–19. Springer, 2019.

[10] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online

aggregation. In Proceedings of the 1997 ACM SIGMOD

International Conference on Management of Data, SIGMOD

’97, pages 171–182, New York, NY, USA, 1997. ACM.

[11] M. Joglekar, H. Garcia-Molina, A. Parameswaran, and

C. Re. Exploiting Correlations for Expensive Predicate

Evaluation. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD

’15, pages 1183–1198, New York, NY, USA, 2015. ACM.

[12] S. Joshi and C. M. Jermaine. Robust stratified sampling plans

for low selectivity queries. In Proceedings of the 24th

International Conference on Data Engineering, ICDE 2008,

April 7-12, 2008, Cancún, Mexico, pages 199–208, 2008.

[13] S. Joshi and C. M. Jermaine. Sampling-based estimators for

subset-based queries. PVLDB, 18(1):181–202, 2009.

[14] G. Kalton, K. Graham, et al. Introduction to survey sampling,

volume 35. Sage, 1983.

[15] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and

A. Kemper. Learned cardinalities: Estimating correlated

joins with deep learning. In CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, Asilomar,

CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[16] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo,

G. Leclerc, S. Madden, H. Mao, and V. Nathan. Sagedb: A

learned database system. In CIDR 2019, 9th Biennial

Conference on Innovative Data Systems Research, Asilomar,

CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[17] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander Join: Online

Aggregation via Random Walks. In Proceedings of the 2016

International Conference on Management of Data, SIGMOD

’16, pages 615–629, New York, NY, USA, 2016. ACM.

[18] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri.

Accelerating Machine Learning Inference with Probabilistic

Predicates. In Proceedings of the 2018 International

Conference on Management of Data, SIGMOD ’18, pages

1493–1508, New York, NY, USA, 2018. ACM.

[19] T. D. Nguyen, M. Shih, D. Srivastava, S. Tirthapura, and

B. Xu. Stratified random sampling over streaming and stored

data. In Advances in Database Technology - 22nd

International Conference on Extending Database

Technology, EDBT 2019, Lisbon, Portugal, March 26-29,

2019, pages 25–36, 2019.

[20] F. Olken and F. Olken. Random sampling from databases.

Ph.D. thesis, U.C. Berkeley, 1993.

[21] F. Olken and D. Rotem. Simple Random Sampling from

Relational Databases. In Proceedings of the 12th

International Conference on Very Large Data Bases, VLDB,

pages 160–169, San Francisco, CA, USA, 1986. Morgan

Kaufmann Publishers Inc.

[22] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb:

Universalizing approximate query processing. In

Proceedings of the 2018 International Conference on

Management of Data, SIGMOD Conference 2018, Houston,

TX, USA, June 10-15, 2018, pages 1461–1476, 2018.

[23] I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artieres,

G. Paliouras, E. Gaussier, I. Androutsopoulos, M.-R. Amini,

and P. Galinari. Lshtc: A benchmark for large-scale text

classification, 2015.

[24] Y. Tillé. Sampling algorithms. In International Encyclopedia

of Statistical Science, pages 1273–1274. Springer, 2011.

[25] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to

sample: Counting with complex queries.

https://arxiv.org/abs/1906.09335.

[26] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska,

and T. Milo. A sample-and-clean framework for fast and

accurate query processing on dirty data. In International

Conference on Management of Data, SIGMOD 2014,

Snowbird, UT, USA, June 22-27, 2014, pages 469–480, 2014.

[27] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi. Random

sampling over joins revisited. In Proceedings of the 2018

International Conference on Management of Data, SIGMOD

’18, pages 1525–1539, New York, NY, USA, 2018. ACM.

402

