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Abstract

In this work we extend the well-known spectral cover construction first developed by Friedman, Mor-
gan, and Witten to describe more general vector bundles on elliptically fibered Calabi-Yau geometries. In 
particular, we consider the case in which the Calabi-Yau fibration is not in Weierstrass form, but can rather 
contain fibral divisors or multiple sections (i.e. a higher rank Mordell-Weil group). In these cases, general 
vector bundles defined over such Calabi-Yau manifolds cannot be described by ordinary spectral data. To 
accomplish this we employ well established tools from the mathematics literature of Fourier-Mukai func-
tors. We also generalize existing tools for explicitly computing Fourier-Mukai transforms of stable bundles 
on elliptic Calabi-Yau manifolds. As an example of these new tools we produce novel examples of chirality 
changing small instanton transitions. The goal of this work is to provide a geometric formalism that can 
substantially increase the understood regimes of heterotic/F-theory duality.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Heterotic/F-theory duality has proven to be a robust and useful tool in the determination of F-
theory effective physics as well as a remarkable window into the structure of the string landscape. 
The seminal work on F-theory [1–3] appealed to heterotic theories and ever since, many new 
developments and tools have been built on, or inspired by, the duality. Despite the important 
role that this duality has played however, it has remained at some level limited by the geometric 
assumptions that have been frequently placed on the background geometries in both the heterotic 
and F-theory compactifications.

In this work we aim to broaden the consideration of background geometry of manifolds/bun-
dles arising in heterotic compactifications with an aim towards extending the validity and un-
derstanding of heterotic/F-theory duality. In particular, we will focus on elliptically fibered 
Calabi-Yau geometries arising in heterotic theories in the context of the so-called Fourier Mukai
transforms of vector bundles on elliptically fibered manifolds (see e.g. [4] for a review).

To begin, it should be recalled that compactifications of the E8 × E8 heterotic theory on an 
elliptically fibered Calabi-Yau n-fold,
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πh : Xn
E−→ Bn−1 , (1.1)

will lead to the same effective physics as F-theory compactifications on a K3-fibered Calabi-Yau 
n + 1-fold,

πf : Yn+1
K3−→ Bn−1 . (1.2)

Here the base manifold Bn−1 appearing in (1.1) and (1.2) is the same Kähler manifold (thus in-
ducing a duality fiber by fiber over the base from the 8-dimensional correspondence of [5]). 
Within the heterotic theory, the geometry of the slope stable, holomorphic vector bundle,
π : V → Xn, must also be taken into account. In particular, to be understood in the context 
of the fiber-wise duality (induced from 8-dimensional correspondence), the data of the vector 
bundle must also be presented “fiber by fiber” in Xn over the base Bn−1.

To this end, the work of Friedman, Morgan and Witten [3] introduced the tools of Fourier-
Mukai Transforms into heterotic theories. In this context, the data of a rank N , holomorphic, 
slope-stable vector bundle π : V → X is presented by its so-called “spectral data”, loosely de-
scribed as a pair

(S,LS) (1.3)

consisting of an N -sheeted cover, S, of the base Bn−1 (the “spectral cover”) and a rank-1 sheaf 
LS over it. Very loosely, this encapsulates the restriction of the bundle to each fiber (given by 
the N points on the elliptic curve over each point in the base) and the data of a line bundle, LS

encapsulating the “twisting” of this decomposition over the manifold. More precisely a Fourier-
Mukai transform is a relative integral functor acting on the bounded derived category of coherent 
sheaves � : Db(X) → Db(X̂) (where X̂ is the Altman-Kleian compactification of the relative 
Jacobian of X). Let E ∈ Db(X) and define

X ×B X̂

X B X̂

π1 ρ
π2

E → �(E) := Rπ2∗(π∗
1 E ⊗P), (1.4)

with X×B X̂ is the fiber product and P is the “relative” Poincare sheaf and the so-called “kernel” 
of the Fourier-Mukai functor,

P := I� ⊗ π∗
1OX(σ) ⊗ π∗

2OX̂
(σ ) ⊗ ρ∗K∗

B, (1.5)

and where I� is the ideal sheaf of the relative diagonal divisor,

0 −→ I� −→O
X×BX̂

−→ δ∗OX −→ 0,

δ : X ↪→ X ×B X̂, (1.6)

and finally, KB is the canonical bundle of the base B . This functorial/category-theoretic view-
point will prove a powerful tool as we examine and define the concepts above more carefully in 
the Sections to come and consider their generalizations.

In the context of heterotic/F-theory duality, a range of possible geometries are possible in the 
elliptic and K3-fibered manifolds appearing in (1.1) and (1.2) (with many possible Hodge num-
bers, Picard groups, etc appearing). However, thanks to the work of Nakayama [6], the existence 
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of an elliptic fibration guarantees the existence of a particular minimal form for the dual CY 
geometries – the so-called Weierstrass form in which all reducible components of the fiber not 
intersecting the zero-section have been blown down.

It has been argued [5] that from the point of view of F-theory, Weierstrass models are the 
natural geometric point in which to consider/define the theory. In order to make sense of the axio-
dilaton from a type IIB perspective, we require the existence of a section to the elliptic fibration, 
and for all reducible components of fibers not intersecting this zero section to be blown-down 
to zero size. This choice provides a unique value of the axio-dilaton for every point in the base 
geometry. Once it is further demanded that the torus fibration admits a section, it is guaranteed 
that the Weierstrass models are available and obtainable form the originally chosen geometry via 
birational morphisms [7].

If the F-theory geometry also admits a K3-fibration then the choice of Weierstrass form de-
scribed above also imposes the expected form of the heterotic ellitpically fibered geometry in 
the stable degeneration limit [8–10]. As a result, in much of the literature to date, it has simply 
been assumed that the essential procedure of heterotic/F-theory duality must be to place both CY 
geometries, Xn and Yn+1 into Weierstrass form from the start.

However, this Weiestrass-centric procedure overlooks the fact that while the CY manifolds 
can be naturally transformed into Weierstrass form, the data of a vector bundle in a heterotic 
theory may crucially depend on the geometric features that are “washed out” in Weierstrass 
form. In particular, due to a theorem of Shioda, Tate and Wazir [11–13], it is known that the 
space of divisors of an elliptically fibered CY threefold may be decomposed into the following 
groups:

1) Pull-backs, π∗(Dα) of divisors, Dα , in the base Bn−1,
2) Rational sections to the elliptic fibration (i.e. elements of the Mordell-Weil group of Xn), and
3) So-called “fibral divisors” corresponding to reducible components of the fiber (i.e. vertical 
divisors not pulled back from the base).

As a result of the above decomposition, it is clear that the topology (i.e. Chern classes), coho-
mology (i.e. H ∗(X3, V )) and stability structure (i.e. stable regions within Kähler moduli space) 
of a stable, holomorphic bundle V on an elliptically fibered manifold can depend on these “extra” 
divisors (and elements of h1,1(X3)) which are not present in Weierstrass form. In addition, if Xn

contains either a higher rank Mordell-Weil group or fibral divisors, the associated Weierstrass 
model is singular, leading to natural questions as to how to interpret the data of gauge fields/vec-
tor bundles over such spaces. As a result, in the processing of attempting to map the heterotic 
CY manifold into Weierstrass form, important topological and quasi-topological information – 
and its ensuing physical consequences – could be lost.

It is the goal of this work to investigate Fourier-Mukai transforms of vector bundles over 
elliptically fibered manifolds not in Weierstrass form as a necessary first step in extending het-
erotic/F-theory duality beyond the form considered in [3].

The key results of this work include:

• A generalization of the topological formulae for bundles described by smooth spectral cov-
ers to the case of Calabi-Yau threefolds involving fibral divisors and multiple sections (i.e. 
a higher rank Mordell-Weil group associated to the elliptic fibration).

• We generalize the available computational tools to explicitly construct the Fourier-Mukai 
transforms of vector bundles on elliptically fibered geometries. That is, given an explicit 
vector bundle constructed on an elliptic threefold (for example built using the monad con-
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struction or as an extension bundle), we provide an algorithm to produce the spectral data (a 
key ingredient in determining an explicit F-theory dual of a chosen heterotic background). 
This extends/generalizes important prior work in this area [14–16].

• We apply the generalized results for spectral cover bundles to the particular application of 
so-called “small instanton transitions” in heterotic theories (i.e. M5-brane/fixed plane transi-
tions in the language of heterotic M-theory [17].). We find more general transitions possible 
than those previously cataloged in [18].

The outline of the paper is as follows. In Section 2 we review the basic tools and key results 
of Fourier-Mukai transforms and spectral cover bundles in the case of Weierstrass models. We 
then generalize these results to the case of elliptically fibered manifolds with fibral divisors in 
Section 3 and geometries with additional sections to the elliptic fibration in Sections 4 and 5. In 
Section 6 we provide explicit examples of Fourier-Mukai transforms by beginning with a bundle 
defined via some explicit construction (e.g. a monad or extension bundle) and then computing its 
spectral data directly. In Section 7 we apply our new results to the problem of chirality changing 
small instanton transitions. In Section 8 we illustrate the distinctions and obstructions that can 
arise between smooth and singular spectral covers. Finally in Section 9 we summarize this work 
and briefly discuss future directions. The Appendices contain a set of well-known but useful 
mathematical results on the topics of derived categories and Fourier-Mukai functors. Although 
the material contained there is well-established in the mathematics literature, it is less commonly 
used by physicists and we provide a small overview in the hope that readers unfamiliar with these 
tools might find a brief and self-contained summary of these results useful.

2. A review of vector bundles over Weierstrass elliptic fibrations and Fourier-Mukai 
transforms

In this section we provide a brief review of some of the necessary existing tools and standard 
results of Fourier-Mukai transforms arising in elliptically fibered Calabi-Yau geometry. Since 
the literature on this topic is vast (see for example [3,8]) and applications [19–33], we make no 
attempt at a comprehensive review, but instead aim for a curated survey of some of the tools that 
will prove most useful in later Sections. Moreover, we hope that this review is of use in making 
the present paper somewhat self-contained. However, the reader familiar with this literature could 
skip straight on to Section 3. For more information about the applications of Fourier-Mukai 
functors in studying the moduli space of stable sheaves over elliptically fibered manifolds, the 
interested reader is referred to [34].

2.1. Irreducible smooth elliptic curve

To set notation and introduce the necessary tools let us begin by considering the case of n = 1
in (1.1), a one (complex) dimensional Calabi-Yau manifold – that is X is a smooth elliptic curve, 
E. In the case of a smooth elliptic curve, there is a classical result due to Atiyah [35] (which can 
generalized to abelian varieties [34]) which states that any (semi)stable coherent sheaf, E , of rank 
N and degree zero over E is S-equivalent1 to a direct sum of general degree zero line bundles,

1 For any semistable vector bundle (or torsion free) V with slope μ(V ), there is a filteration – the Jordan-Holder 
filteration [36]) of the form 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ Fk−1 ⊂ Fk = V , where F i/F i−1 is stable torsion free with 
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E ∼
⊕

i

L⊕Ni

i , 
iNi = N, deg(Li ) = 0. (2.1)

In the context then of the moduli space of semi-stable sheaves on an elliptic curve, one can 
introduce an integral functor

�P
E→E : Db(E) −→ Db(E) (2.2)

(note that here Ê the Jacobian of E is simply isomorphic to E and thus we do not make the 
distinction). This functor admits a canonical kernel, P , the so-called Poincare sheaf,

P := I� ⊗ π∗
1OE(p0) ⊗ π∗

2OE(p0) (2.3)

where π1, π2 are the projection of E × E to the first and second factor respectively, p0 is the 
divisor corresponding to the zero element of the abelian group on the elliptic curves, and � is 
the diagonal divisor in E × E (and also δ is the diagonal morphism). It is not hard to prove that 
P satisfies the conditions due to Orlov and Bondal ([34], see Appendix B) that guarantee that 
�P

E→E is indeed a Fourier-Mukai transform (i.e. it is an equivalence of derived categories).
To illustrate how this specific Fourier-Mukai functor acts on coherent sheaves of degree zero, 

it is useful to highlight its specific behavior in several explicit cases. To begin, consider the 
simplest possible case of E =OE(p − p0), i.e. a generic degree zero line bundle over E. Here,

�P
E (OE(p − p0)) = Rπ2∗(π∗

1OE(p − p0) ⊗P)

To compute this explicitly, consider the following short exact sequence induced by the mor-
phism δ : E −→ E × E,

0−→ P −→ π∗
1OE(p0) ⊗ π∗

2OE(p0) −→ δ∗OE(2p0) −→ 0. (2.4)

Twistin the sequence above with OE(p − p0), and then applying the (left exact) functor Rπ∗ to 
that yields the following long exact sequence (to see the properties of derived functors refer to 
Appendix A),

0 �0(OE(p − p0)) (R0π2∗π∗
1OE(p)) ⊗OE(p0) OE(p0) ⊗OE(p)

�1(OE(p − p0)) (R1π2∗π∗
1OE(p)) ⊗OE(p0) 0.

(2.5)

To determine the FM transform, it is necessary to understand the sheaves appearing in the 
middle column, and to that end, it is possible to apply the base change formula for flat morphisms,

E × E E

E p

π1

π2

P

P

Rπ2∗π∗
1 	 P ∗RP∗, (2.6)

where P is just a projection to a point. Therefore,

Rπ2∗π∗
1OE(p) = P ∗R�(E,OE(p)) =OE. (2.7)

μ(F i/F i−1) = μ(V ). Associated with this filteration there is a graded object gr(V ) = ⊕k
i=0F

i/F i−1, and V and 
gr(V ) are said to be S-equivalent.
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Consequently, it follows that OE(p − p0) must be a WIT1, and it is supported2 on p,

�P (OE(p − p0)) =Op[−1]. (2.8)

In summary, the Fourier-Mukai transform of any direct sum degree zero line bundles on an 
elliptic curve, is a direct sum of torsion sheaves supported on the corresponding points of the 
Jacobian.

As another simple example, consider the non-trivial extension of two trivial line bundles,

0 −→ OE −→ E2 −→ OE −→ 0. (2.9)

Applying � on this short exact sequence yields

0 �0(OE) �0(E2) �0(OE)

�1(OE) �1(E2) �1(OE) 0.

(2.10)

From the previous discussion we have reviewed that �P(OE) = Op0 [−1], so the first row must 
be zero (i.e. �0(E2) = 0), and

0 −→ Op0 −→ �1(E2) −→ Op0 −→ 0, (2.11)

but this cannot be a non-trivial extension of the torsion sheaves, and one concludes,

�P (E2) = (Op0 ⊕Op0)[−1]. (2.12)

Note that E2 is S-equivalent to O⊕2
E but not equal, however, Fourier-Mukai of both of them is the 

same.

2.2. Weierstrass elliptic fibration

With the results above in hand for a single elliptic curve, they can now be extended fiber-by-
fiber for a smooth elliptic fibration. We begin with the simplest case, that of a smooth Weierstrass 
elliptic fibration π : X −→ B . This fibration admits a holomorphic section σ : B → X and every 
fiber Xb = π−1(b) is integral, and generically smooth for b ∈ B . Note that from here onward 
we will mainly work with smooth Calabi-Yau threefolds and since there exists an isomorphism, 
X̂ 	 X, we will ignore the distinction between X and its relative Jacobian.

In general, on a fibered space, it is possible to define a relative integral functor � in almost the 
same way it was defined for a trivial fibration (i.e. E × B , see Appendix B for more information 
on integral functors). So for any E• ∈ Db(X) there exists the following:

X ×B X

X B X

π1 ρ π2

�(E•) := Rπ2∗(π∗
1 E• ⊗L K•), (2.13)

2 Note that there is a more intuitive way of getting the same result. The presheaf of the Fourier-Mukai transform of 
OE(p − p0) over any point q is related to Hi(E, OE(p − q)), and for i = 0, 1 it is zero unless p = q , so naively, both 
�0(OE(p − p0)) and �1(OE(p − p0)) are some torsion sheaves supported over the point p. However, note that since 
OE(p − p0) is a locally free sheaf, and the projections are flat morphisms, �0(OE(p − p0)) cannot be a torsion sheaf, 
so only �1(OE(p − p0)) is non-zero, and the only possibility is the skyscraper sheaf Op .
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with X ×B X is the fiber product and the kernel is chosen as K• ∈ Db(X ×B X). In the case at 
hand, the kernel is required to be the “relative” Poincare sheaf,

P := I� ⊗ π∗
1OX(σ) ⊗ π∗

2OX(σ) ⊗ ρ∗K∗
B, (2.14)

where I� is the ideal sheaf of the relative diagonal divisor,

0−→ I� −→OX×BX −→ δ∗OX −→ 0,

δ : X ↪→ X ×B X, (2.15)

and KB is the canonical bundle of the base B (which is chosen to make the restriction P|π∗
1 σ1 	

OX , and similarly for σ2).
From this relative integral functor, it is possible to define “absolute” integral functor with ker-

nel j∗P , where j : X ×B X ↪→ X ×X is a closed immersion. Note that �(E•) 	 �
j∗P
X→X(E•) for 

any E•. It can be proved [34] that this kernel is indeed strongly simple, so the corresponding inte-
gral functor is fully faithful. Moreover, since X is a smooth Calabi-Yau manifold, it follows that 
this integral functor is indeed an equivalence, i.e. a Fourier-Mukai functor. Look at Appendix B, 
references there.

It should also be noted that there exist simple formulas for base change compatibility (see 
Appendix B), and it can be readily verified that the restriction of this Fourier Mukai functor over 
a generic smooth elliptic fiber is the same as the absolute integral functor that was reviewed 
briefly in the last Subsection with p0 being the point chosen by the section.

2.3. Spectral cover

It is proved in [37] that the restriction of a stable coherent sheaf on a generic fiber is (semi)sta-
ble. As we have seen, the relative Fourier-Mukai transform defined in the last subsection, is 
compatible with base change, and hence its restriction on generic fibers, is the same as the 
Fourier-Mukai transform on elliptic curves defined in Section 2.1. On the other hand, the Fourier-
Mukai transform of a (semi)stable degree zero sheaves of rank N over the elliptic curves is a 
torsion sheaf of length N (roughly speaking, the support of a torsion sheaf is a set of N points, 
these points can be infinitesimally close).

These set of N points over generic fibers define a surface S ⊂ X and a finite morphism, 
πS : S −→ B , of degree N . This surface S is called a spectral cover,3 and is the support4 of 
�1(E).

On the other hand, the restriction of the torsion sheaf �1(E) over its support (which is S), is a 
rank one coherent sheaf. This can be seen from the fiberwise treatment (note that ch0(�1(E)) =
0, and ch1(�1(E)) = N = Rank (E) when restricted over a generic fiber, since S is actually an 
N -sheeted cover of the base). As a result, the rank of the torsion sheaf over its support must be 
one (for the cases the support is a non reduced scheme this argument should be modified a little, 

3 Depending on the choice of gauge group, there are constraints on the position of the points. For example for SU(n)

bundles (to which we will restrict our focus in this paper) the sum of these points under the group law of the elliptic curve 
must be zero. This implies that the spectral cover must be given by a holomorphic function on that torus. For other gauge 
groups refer to [3], and [38].
4 Note that spectral cover can wrap around some elliptic fibers. This is a symptom of the fact that the restriction of 

the vector bundle over those elliptic fibers is unstable. The restricted Fourier-Mukai transform on these fibers returns 
non-WIT objects (see Appendix B for definitions), and yet, if E is a vector bundle, the global Fourier-Mukai still returns 
a WIT1 object. This is due the flatness of the morphisms and the kernel involved in defining the integral functor.
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and it is possible to show that the numerical rank of the spectral sheaf is one, see [34]). The rank 
one sheaf L := �1(E)|S is referred to as the spectral sheaf, and the doublet (L, S) is called the 
spectral data.

If in addition, if the spectral cover is smooth, the spectral sheaf L is in fact, a line bundle. In 
the seminal paper [3] some restrictions on the topology of L are derived, with the assumption that 
spectral cover S is an integral scheme (reduced and irreducible). We turn to these now, before 
generalizing them in later sections.

2.4. Topological data

A goal of this work is to generalize the results of [3] and [39] for the topology of a vector 
bundle associated to a smooth spectral cover in the following sections. As a result, it is useful to 
briefly review the derivation of constraints on the topological data (i.e. the relations between the 
topology of L and ch(E)). In the following we will assume that the spectral cover is an integral 
scheme, E is a WIT1, locally free sheaf (vector bundle) of rank N with vanishing first Chern 
class, c1(E) = 0, and that the Chern character of E can be written generally as,

ch(E) = N − c2(E) + 1

2
c3(E),

c2(E) = ση + ω[f ],
where η is the pullback of a base divisor, [f ] is the fiber class (ω is an integer).

We will derive the form of the Chern classes of a smooth spectral cover bundle using a slightly 
different method than that employed in [3,39], using tools that are well known in mathematics 
literature (see for example, [40]) and generalize more readily to the geometries studied in later 
sections.

Recall that �(E) = Rπ2∗(π∗
1 E ⊗P). Thus, we can begin by computing the Chern characters 

of �(E), using the (singular5) Grothendieck-Riemann-Roch theorem [40] for π2:

ch(�(E)) = π2∗
(
π∗
1 ch(E)ch(P)td(TX/B)

)
, (2.16)

where td(TX/B) is the Todd class of the virtual relative tangent bundle of π : X −→ B . In addi-
tion, it is also necessary to compute the Chern character of the relative Poincare sheaf, and for 
that, one needs to compute ch(I�). This latter is straightforward to find by applying GRR to the 
diagonal morphism δ,

0 −→ I� −→OX×BX −→ δ∗OX −→ 0,

ch(I�) = 1− δ∗(
1

td(TX/B)
). (2.17)

With these results in place, it remains simply to compute the pullback and push forward of 
cycles by using the following identities:

π2∗π∗
1D = 0, D ∈ Div(B), (2.18)

π2∗π∗
1 f = 0, f fiber class, (2.19)

π2∗(π∗
1 c · δ∗d) = c · d, c, d ∈ A•(X), (2.20)

π2∗(π∗
1 (σ ) · b) = b, b ∈ A•(B). (2.21)

5 Note that X ×B X is singular over the discriminant of X, even though X is smooth.
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The first two identities are the result of the fact that if the dimension of the image of a cycle has a 
lower dimension the corresponding push forward will be zero as a homomorphism between the 
cycles in the Chow group. The last two follow from the definition of the diagonal morphism and 
the section (together with projection formula for cycles).

After putting all of these together, the result is as follows,

ch0(�(E)) = 0, (2.22)

ch1(�(E)) = −(Nσ + η), (2.23)

ch2(�(E)) = Nnσ + η)

(
c1(B)

2

)
+ 1

2
c3(E)f, (2.24)

ch3(�(E)) = −1

6
Nc1(B)2 + ω. (2.25)

On the other hand, it should be recalled that E is WIT1, i.e. �(E) = iS∗L[−1], where iS :
S ↪→ X, is the closed immersion of S into X, and L is the spectral sheaf (or spectral line bundle 
in this case). Therefore one can write,

ch(�(E)) = −ch(iS∗L), (2.26)

ch(iS∗L) = iS∗
(

ec1(L) T d(T S)

T d(T X)

)

= [S] + [S] ·
(

c1(L) − 1

2
[S]

)
+ [S] ·

(
c1(L)

2
− 1

2
c1(L) · [S] + 1

6
[S]2

)
,

(2.27)

where in the second line, the GRR theorem can be applied for the morphism iS∗. Importantly, in 
the third line it is assumed c1(L) can be written in terms of the divisors of X, restricted to S, by 
writing [S] · c1(L) instead of iS∗L (we’ll return to this point in Section 3.)

In summary then, by comparing these two ways of calculating the Chern character of the 
Fourier-Mukai transform, it is possible to obtain the constraints originally calculated in [3,39]. 
The first equation (2.22) yields simply that Rank(�0(E)) − Rank(�1(E)) = 0, and since we 
have restricted ourselves to WIT1 sheaves, �0(E) = 0 (see Appendix B for definitions), so this 
means that Rank(�1(E)) = 0 i.e. �1(E)) is a torsion sheaf (which is not surprising). From the 
first Chern character, the divisor class of the spectral cover can be read (noting the relative minus 
sign),

[S] = Nσ + η. (2.28)

The next comparison puts non-trivial constraints on c1(L),

−[S] · (c1(L) − 1

2
[S]) = (Nσ + η)

(
c1(B)

2

)
+ 1

2
c3(E)f. (2.29)

Therefore the general form of the first Chern class must be of the form,

c1(L) = 1

2
(−c1(B) + [S]) + γ, (2.30)

[S] · γ = −1

2
c3(E)f. (2.31)

The only solution for the second equation above is
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γ = λ(Nσ − η + Nc1(B)), (2.32)

where λ is a constant which can be half integer or integer. So the general solutions for the c1(L)

and c3(E) are,

c1(L) = 1

2
(−c1(B) + [S]) + λ(Nσ − η + nc1(B)), (2.33)

c3(E) = 2λη(η − Nc1(B)), (2.34)

where in general, λ must satisfy constraints (i.e. be either integer or half integer) in order for 
c1(L) to be integeral [3]. Note that there is sign difference between (2.33), and the similar formula 
in [3]. This arises because either P∨ or P may be used as the kernel of the Fourier-Mukai functor. 
Finally it is possible to obtain ω from (2.25),

−1

6
Nc1(B)2 + ω = −[S] ·

(
c1(L)

2
− 1

2
c1(L) · [S] + 1

6
[S]2

)
. (2.35)

By plugging (2.33) and (2.28) into this one gets,

ω = −c1(B)2N3

24
+ c1(B)2N

24
+ 1

8
c1(B)ηN2 − η2N

8
− 1

2
c1(B)ηλ2N2 + 1

2
η2λ2N. (2.36)

As a result, we arrive finally at the following well-known formulas for the Chern classes of a 
bundle corresponding to a smooth spectral cover within a Weierstrass CY 3-fold:

c1(E) = 0 (2.37)

c2(E) = ησ − N3 − N

24
c1(B2)

2 + N

2

(
λ2 − 1

4

)
η · (η − Nc1(B2)) (2.38)

c3(E) = 2λση · (η − Nc1(B2)) (2.39)

This is identical with the result of [3]. Having reproduced this classic result, we turn in the 
next section to our first generalization: Fourier-Mukai transforms and spectral cover bundles for 
elliptically fibered CY 3-folds exhibiting reducible fibers over co-dimension 1 loci in the base 
(i.e. the 3-folds contain so-called “fibral” divisors).

3. Elliptically fibered manifolds with fibral divisors

In this section we extend the classic results of Section 2.4 and consider the Fourier-Mukai 
transform of a vector bundle over a smooth elliptically fibered Calabi-Yau threefold π : X −→ B

with a (holomorphic) section σ and so-called fibral divisors – divisors DI , I = 1, . . .m, which 
project to a curve in the base B2. In the absence of any additional sections to the elliptic fibration, 
we have a simple decomposition of the Picard group of X into a) a holomorphic section b) 
Divisors pulled back from the base, B , and c) fibral divisors. Hence, h1,1(X3) = 1 + h1,1(B2) +
m. Moreover, as a result of the fibral divisors, it is clear that there will be new contributions to 
the Picard group of S, P ic(S) compared to a Weierstrass model. These new geometric integers 
clearly affect the heterotic theory (and could potentially change the G4 flux present in an F-theory 
dual geometry).

Our first effort will be to derive topological formulas for the topology of a bundle over an 
X3 of the form described above and compare these to the standard case (i.e. (2.4) in Section 2). 
We will demonstrate that although the new divisors in X3 do in general affect the topology of 
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possible smooth spectral cover bundles defined over X3, they do not contribute to the chiral 
index.

In general, the form of the fibral divisors (at co-dimension 1 in B2) will be of the form expected 
by Kodaira-Tate [41,42] and a rich array of possibilities is possible. For simplicity, here we will 
consider the case of In-type reducible fibers only. It should be noted that even in this simple 
case, it is clear that the intersection numbers of divisors in X3 and the topology of a spectral 
cover bundle π : E → X3 will be more complicated than in the simple case of Weierstrass models 
considered in Section 2. For instance, although some triple intersection numbers of X3 can be 
simply parameterized in terms of the intersection structure of B2, not all can (see e.g. [43] for 
a list of the triple intersection numbers of an elliptic manifold which are currently known in 
general). For instance, it is not currently known how to generally parameterize triple intersection 
numbers involving only fibral divisors in a base-independent way.

Since generic fibers in X3 are still irreducible smooth elliptic curves, we will begin by briefly 
considering what happens over fibers with “exceptional curves”, taking the case of I2 fibers for 
simplicity. For more details the interested reader is referred to [44–46].

3.1. (Semi) stable vector bundles over I2 elliptic curves

The I2 degeneration of an elliptic fiber is a union of two rational curves C1 ∪ C2 with two 
intersection points. We assume the section of the elliptic fibration intersects transversely with C1
at a point p0. In general any locally free sheaf E of rank N over such a reducible fiber can be 
characterized by its restriction over the components [47],

0−→ E −→ EC1 ⊕ EC2 −→ T −→ 0, (3.1)

where T is a torsion sheaf supported over the intersection points of I2. Now consider a torsion 
free rank one sheaf L of degree zero (it is useful to recall that here the notions of degree and rank 
are defined by the Hilbert polynomial). If L is strictly semistable, the restrictions LC1 and LC2

are OC1(−1) and OC2(+1) or the other way around. In any case the graded object (defined by 
the Jordan-Holder filteration) is [47],

Gr(L) =OC1(−1) ⊕OC2(−1). (3.2)

On the other hand the graded object of the stable ones are,

Gr(L) =OC1(p − p0) ⊕OC2 . (3.3)

Therefore the graded object of any semi stable bundle over I2 is a direct sum of the cases men-
tioned above. One can also note that the compactified Jacobian of I2 is a nodal elliptic curve in 
which all of the semistable line bundles (3.2), map to the singular node, and the line bundles map 
uniquely to the smooth points as in the smooth elliptic curve [46,47].

It is proved in [44,45] that the integral functor �P0
I2→I2

defined by the usual Poincare sheaf 
P0 = I� ⊗ π∗

1OI2(p0), satisfies the criteria mentioned in Appendix B, and therefore it is a 
Fourier-Mukai functor. The action of this functor over the stable line bundles (3.3) is the same as 
that defined in Section 2,

�
P0
I2→I2

(L) =Op[−1]. (3.4)

It remains, then, to compute the other case. Assume L =OC1(−1). As before, by using the exact 
sequence for I� and base change formula, one can compute,
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0 −→ �
P00
I2→I2

(OC1(−1)) −→ π∗π∗OC1 −→OC1 →
→ �

P01
I2→I2

(OC1(−1)) −→ π∗R1π∗OC1 −→ 0, (3.5)

since π∗Rπ∗OC1 =OI2 , and the third map in the first row is surjective, we conclude,

�
P0
I2→I2

(OC1(−1)) = IC1 . (3.6)

In the same way one finds,

�
P0
I2→I2

(OC2(−1)) =OC2(−1)[−1]. (3.7)

Therefore, the Fourier-Mukai transform of a strictly semistable rank one torsion free sheaf (3.2)
is,

�
P0
I2→I2

(L) = IC1 ⊕OC2(−1)[−1]. (3.8)

In contrast to the stable line bundles, we see the Fourier-Mukai of (3.2) is non-WIT. However as 
mentioned before, in the case of elliptic fibration, the Fourier-Mukai transform of a vector bundle 
can be WIT1 as long as it is stable (and of course flat over the base).

Note that contrary to the case in Section 2, the “Fourier transform” of stable degree zero 
sheaves over an elliptic fibration X with fibral divisors cannot live in the Jacobian J (X) of X. 
This is because J (X) is indeed a singular variety, and as reviewed in Appendix B, Fourier-Mukai 
functors are sensitive to singularities, i.e. a singular and a smooth variety cannot be Fourier-
Mukai partners. This means if someone tries to “parameterize” the stable degree zero vector 
bundles over X by some “spectral data” in J (X) some important information will be lost. We 
will return to this in Section 3.3. However, as we will see, it is possible to uniquely “parameterize” 
the stable degree zero vector bundle moduli in terms of the resolution of J (X), i.e. X itself.

3.2. Topological data

The results of the previous section give us the tools to extend the Fourier-Mukai transform 
discussed in previous Sections to the singular/reducible fibers present in the case of an elliptic 
threefold with In reducible fibers. In this subsection, the same tools used for Weierstrass models 
are employed to determine the topology (i.e. Chern classes) of smooth spectral cover bundles 
on elliptic Calabi-Yau manifolds with fibral divisors. As in Section 2 we define the an integral 
functor with Poincare sheaf as the kernel, and as discussed above, it will be Fourier-Mukai again. 
So it is still possible to use (2.16) to derive some topological constraints.

The only geometric difference within the CY 3-fold is the existence of new fibral divisors 
DI ∈ Div(X) (I = 1, . . . r) which in general will not intersect the holomorphic zero section, and 
in every “slice” π∗D (with D a divisor pulled back from the base) in the intersection DI · π∗D
is a (−2)-curve.6

With these information, the essential non-zero intersections of divisors are,

σ 2 = −c1 · σ, (3.9)

σ · DI = 0, f or I = 1, . . . , r, (3.10)

hαβ := σ · Dα · Dβ hαβ is a symmetric, invertible, integral matrix, (3.11)

6 From now on, in this section, we define the base divisor D as D := 1
S·S S , where S is the “image” of the fibral 

divisors in the base.
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Dα · DI · DJ = −CIJS · Dα, (3.12)

For In: CI,I = 2, CI,I+1 = −1. (3.13)

With the above constraints we can write the second Chern class of the tangent bundle as,

c2(X) = 12σ · c1 + c2 + 11c21 +
∑

ξIDI . (3.14)

Let us turn now to the computation of the topology of a smooth spectral cover bundle. The 
general form of the Chern character of a bundle π : E → X can be expanded as

ch(E) = N − (ση + ωf +
∑

ζIDI ) + 1

2
c3(E) (3.15)

where ζ and η are Q-Cartier divisors pulled back from the base B . Similar to the Weierstrass 
case, we can compute the Chern character of �P

X→X(E),

ch0(�(E)) = 0, (3.16)

ch1(�(E)) = −(Nσ + η), (3.17)

ch2(�(E)) = (Nσ + η)
c1(B)

2
+ 1

2
c3(E)f +

∑
ζIDI (3.18)

ch3(�(E)) = ω − 1

6
nc1(B)2. (3.19)

As explained before, since E is locally free, �(E) must be WIT1. If, as in [3], we assume the 
support of �1(E), which is the spectral cover S, is a generic integral scheme, then

�(E) = iS∗L[−1], (3.20)

iS∗ : S ↪→ X, (3.21)

where L must be a line bundle over S as long as E is given by a smooth spectral cover. After 
using GRR for the surface S, the following results obtained,

[S] = nσ + η, (3.22)

c1(L) = 1

2
(−c1 + [S]) + γ +

∑
βiI eiI , (3.23)

[S] · γ = −1

2
c3(E)f, (3.24)

where eiI ’s are the fibral (-2)-curves intersecting the spectral cover. I labels the generator of the 
algebra, i labels the number of the isolated curves (determined by η). Note that the number of 
such curves with the spectral cover can be determined by computing the intersection number 
[S] · D2

I and dividing by −2. Furthermore, these (-2)-curves intersect as,

eiI · ejJ = −δijCIJ . (3.25)

After proceeding as before, we obtain the following solutions,

γ = λ(nσ − η + nc1(B)), (3.26)

c3(V ) = 2λη(η − nc1(B)), (3.27)

ω = ωstd − (−
∑

β2
iI +

∑
βiI βi,I+1), (3.28)
i,I i,I
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where ωstd is the same as (2.36). However not all parameters βiI are free, instead they should 
satisfy the following equations,

k∑
i

βiID · DI = −ζI · DI , for each I, (3.29)

where k is the number of the “sets” of (−2)-curves inside the spectral cover,

k = η · S. (3.30)

Therefore the only contribution of the (−2)-curves will appear in c2(E) via the correction to 
(2.36) (note that similar results were derived in [22,24]).

Unlike in the case of Weierstrass models explored in the previous subsection, here it is difficult 
to write a fully general expression for the Chern classes of E due to the incomplete knowledge 
of triple intersection numbers within the CY geometry. In order to make this explicit, we turn to 
the case of a single fibral divisor here – that is a CY 3-fold with resolved SU(2) singular fibers.

In this case I = 1 and the correction to the second Chern class is of the form,

ω = ωstd +
k∑
i

β2
i . (3.31)

The condition on βi is,

(

k∑
i=1

βi)
S

S · S · D1 = −ζ1D1. (3.32)

This is equivalent to (by multiplying with D1),

k∑
i=1

βi = −ζ1 · S. (3.33)

Therefore the correction would be,

ω = ωstd + (ζ1 · S +
k∑

i=2

βi)
2 +

k∑
i=2

β2
i . (3.34)

It should be noted that this correction term will contribute to anomaly cancellation in the heterotic 
theory and to the G-flux in the dual F-theory geometry. We’ll return to this point in later sections. 
In summary then,

c2(E) = σ · η + ωstd + (ζ1 · S +
k∑

i=2

βi)
2 +

k∑
i=2

β2
i + ζ1 · D1, (3.35)

c3(E) = 2λη(η − nc1(B)), (3.36)

and λ is subject to the same integrality conditions as [3].
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Fig. 1. Branch locus and singularity locus near the singularity of the spectral cover.

3.3. What is missing in the singular limit

There is a “common belief” in the literature that if one need to find the F-theory dual of a 
perturbative heterotic model on a non Weierstrass elliptically Calabi-Yau with fibral divisors, 
then one should shrink the exceptional divisors first, and try to find the F-theory dual by working 
with spectral data in the singular Weierstrass limit. Here we will comment on this from the 
heterotic string point of view, and explain what will be missed if one uses the naive spectral data 
in the singular limit.

As it should be clear by now, the naive spectral data in the singular limit are not in a one to 
one correspondence with the bundles in the smooth limit where the exceptional divisors have 
non zero size i.e. the integral functor is not going to be an equivalence. Hence, if one use the 
“singular spectral data” to find the F-theory dual, some information will be lost.

More concretely, as mentioned before, the actual spectral cover in the smooth elliptic fibration 
will generically wrap around a finite number of (−2)-curves, and the spectral sheaf may or may 
not be dependent on them. So in the blow down limit, the (−2)-curves shrink into double point 
singularities. These singularities are located at the points where the double points of the branch 
curve intersect with singularity locus of the Weierstrass model i.e. if we look at their image on 
the base, Fig. 1, they correspond to the points where the double point singularity of the branch 
curve hits the singularity locus of the elliptic fibration on the base. On the other hand, locally 
near these singularities, two sheets of the spectral cover meet each other, and one can use a local 
model in C3 as,

S = z2 − xy = 0, (3.37)

where x, y, z are the coordinates of the C3. Here S is a cone, and can be viewed as the double 
cover of the x − y plane with branch locus on the lines x = 0 and y = 0. The double point 
singularity is located on the vertex of the coin i.e. x = y = 0. Now, as it is well known (see for 
example [48] example 6.5.2), the generator of the curve will be a Weil divisor. So instead of the 
original Cartier (−2)-curves on the smooth spectral cover, one gets Weil divisors in the singular 
limit, and any line bundles on the singular spectral cover will be independent of them.

Now lets look at the situation the other way around. Suppose we naively choose a generic n-
sheeted cover of B2 in the singular Weierstrass limit, and a line bundle over that, and use these to 
find the F-theory dual or study the moduli space of the heterotic string. First of all, for any choice 
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of complex structure of this generic spectral cover, it contains a finite number of double point 
singularities. To see this, restrict the elliptic fibration over a singular locus where the Weierstrass 
equation factors as (in the patch Z = 1),

Y 2 = (X − b0)
2(X − b1), (3.38)

where b0 and b1 are suitable polynomials. In addition a generic n-sheeted cover can be written 
as,

S = gn−4(Y )X2 + gn−2(Y )X + gn(Y ), (3.39)

where gn−4, gn−2 and gn are polynomial in terms of Y and appropriate local coordinates on base, 
and the subscripts determine the degree in terms of Y .7 After eliminating X in these to equation 
we get the following interesting degree n polynomial in terms of Y ,(

b20gn−4 + b0gn−2 + gn

)2 (
b21gn−4 + b1gn−2 + gn

)
+ Y 2Gn−2(Y ), (3.40)

where Gn−2 is polynomial in terms Y (of degree n − 2) and base coordinates which we don’t 
need to know the details. Zeros of this polynomial (with multiplicity) are the points where the 
n-sheeted cover hits the (singular) elliptic curve. Now, note that if

b21gn−4(Y = 0) + b1gn−2(Y = 0) + gn(Y = 0) = 0, (3.41)

or

b20gn−4(Y = 0) + b0gn−2(Y = 0) + gn(Y = 0) = 0. (3.42)

However from the above equation it is clear that the zeros of (3.42) are order two, this means 
the over these points the n-sheeted cover is locally like (3.37) (for suitable x, y, z) i.e. a double 
point singularity. The conclusion from the above calculations that we want to emphasize, is that 
the ubiquitous double point singularities of the n-sheeted covers in the singular Weierstrass limit, 
signals the necessity of working in the blown up limit.

The second problem with “parameterizing” the vector bundle moduli with the singular data 
is that since the line bundle in the singular limit doesn’t depend on the (−2)-curves, the vector 
bundle that is constructed will not land on some specific components of the moduli space. In 
particular, physically, at least one consequence of this is missing some new possibilities for the 
small instanton transitions through exchanging 5 branes in the Heterotic M-Theory picture. In 
the context of heterotic/F-theory duality, we expect that (−2)-curves inside the spectral cover 
correspond to new G4-fluxes in the F-theory dual, consistent with the Fourier-Mukai calculations 
above, and if one considers only the singular spectral cover such possibilities could be missed.

4. Non trivial Mordell Weil group with a holomorphic zero section

In this section we continue our generalization away from Weierstrass elliptic fibrations by 
considering a Fourier-Mukai transform of vector bundles on elliptically fibered geometries in 
which the fibration admits more than one section – that is a higher rank Mordell-Weil group 
(the group of rational sections to the elliptic fibration [49,50]). In the case that the zero section 

7 For example Y itself is of degree 3.
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is strictly holomorphic (rather than rational) the definition of the Fourier-Mukai transform intro-
duced in [3,8] can actually be applied directly. In this case there are also isolated reducible fibers, 
but as we saw before one can still define a Poincare sheaf, and the corresponding integral functor 
will be a Fourier-Mukai transform.8 Therefore, the new Fourier-Mukai functor required for this 
case is the same as that introduced for fibral divisors in Section 2. We defer to later the more 
generic case of geometries with higher-rank Mordell-Weil group and only rational sections (see 
Section 5).

In the case of a holomorphic section and additional (possibly rational) sections, it is clear 
that the CY 3-fold X3 contains new elements in its Picard group and as a result, their restric-
tion to the spectral cover and P ic(S) will lead to generalizations of the formulas, (2.4), derived 
in Weierstrass form. We will compute these generalized Chern character formulas directly in 
the following subsections and independently compare these results to those found in explicit 
examples in Section 2 (the latter will be obtained by direct computation of the Fourier-Mukai 
transforms of a set of simple bundles).

To set notation, note that we will consider the case of multiple sections to the elliptic fibration 
and consider the case where the zero section (denoted σ ) is holomorphic. In addition, there are 
σm with m = 1, . . . rk(MW) (in general rational) sections present. Here we take P ic(X) of the 
CY 3-fold to be generated by ,

σ the zero section, (4.1)

Sm = σm − σ − π∗π∗σmσ − c1(B), (4.2)

Dα, α = 1, . . . h1,1(B), (4.3)

where Sm is the Shioda map of the rational section. Since σ , there exists a general relation of the 
form,

σ · Sp =
r∑

m=1

Dm,pSm, (4.4)

where Dm,p are specific divisors in Pic(B). This is because,

σ 2 · Sm = −c1(B) · σSm = 0, (4.5)

σ · Db · Sm = 0. (4.6)

4.1. Topological data

As in the case of Weierstrass models considered in Section 2, we begin by asking what 
topological formulas can be derived (in as much generality as possible) for a bundle, E on the 
manifold above, defined by a smooth spectral cover.

On an elliptic CY 3-fold as described above, the general form of the Chern character of a 
degree zero vector bundle can be written as

ch(E) = N − (ση + ∑r
i=1 Siηi + ωf ) + 1

2c3(E), (4.7)

8 Note that if there exists more than one holomorphic section, there is a redundancy in the choice of the “zero section”. 
The Fourier Mukai functors defined by different choices will be equivalent to each other, and can be written in terms of 
each other, so we fix the zero section throughout the calculations in this section.
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where N is the rank of the bundle, Si are the image of the Shioda map [11,12] of the generators 
of the Mordell-Weil group, r is the rank of the Mordell Weil group, and σ is the zero section we 
chose. With the help of GRR theorem, one gets the topology of the Fourier-Mukai transform of 
this bundle.

ch(�(E)) = −(Nσ + η) + (Nσ + η)
c1(B)

2
+

r∑
i=1

Siηi + 1

2
c3(E)f + (ω − 1

6
Nc1(B)2).

(4.8)

Since E is locally free, it must be WIT1 and �1(E) will be a torsion sheaf. If the support of 
this torsion sheaf is a generic smooth surface, then,

�1(E) = iS∗L,

where L is line bundle.9 So by applying GRR to iS , topological constraints we are looking for 
can be obtained,

[S] = Nσ + η, (4.9)

c1(L) = 1

2
(−c1(B) + [S]) +

r∑
i

βiSi + λ(Nσ − η + Nc1(B)), (4.10)

r∑
i,j=1

Sj (βi(ηδi,j + NDj,i) + ηj δi,j ) = 0. = 0, (4.11)

c3(E) = 2λη(η − Nc1(B)), (4.12)

ω = ωstd − 1

2

∑
m,n,p

βmβn(ηδp,m + NDp,n)SkSj , (4.13)

where the third equation is a constraint on the βm’s, and clearly they contribute in Chern char-
acters of E only through the corrections in ω, and there is not any correction in c3(E), i.e. the 
chirality of the effective theory is unchanged.

4.2. Rank one Mordell-Weil group

In this section, we derive explicit correction to the formulas in Section 2.4 in the case 
rk(MW) = 1. The formulas above can be rewritten as,

c1(L) = 1

2
(−c1(B) + [S]) + β1S1 + λ(Nσ − η + Nc1(B)), (4.14)

σ · S1 = D11 · S1, D11 is a specific base divisor, (4.15)

ω = ωstd − 1

2
β2(η + ND11)S

2
1 , (4.16)

β1(η + ND11)S1 + η1 · S1 = 0. (4.17)

Note that σ1 induces an integral divisor in S, so the coefficient of σ1 in c1(L), i.e. β1 must be 
integer,

β ∈Z. (4.18)

9 Recall that smoothness of E implies the smoothness of L on S.
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This condition fixes η1 in terms of η. More precisely, if one expand η and η1 in terms of the base 
divisor,

η = ηαDα, (4.19)

η1 = ηα
1Dα, (4.20)

then we get the following,

ηα
1 = −β1(η

α + NDα
11), (4.21)

where β1 is an integer. Therefore the Chern classes of E in this case is given by,

c2(E) = σ · η − β1(η + ND11) · S1 +
(

ωstd − 1

2
β2
1 (η + ND11)S

2
1

)
f, (4.22)

c3(E) = 2λη(η − Nc1(B)). (4.23)

5. Non trivial Mordell Weil group with rational generators

In this section we consider the last piece that will allow us to compute the Fourier-Mukai 
transform of vector bundles (or even any coherent sheaf) over any smooth elliptically fibered 
Calabi Yau variety π : X −→ B . In the previous Section we considered the case in which the 
elliptic threefold with a non-trivial Mordell-Weil Group and (importantly) the zero section was 
holomorphic. But this is far from the general case, in which all sections to the fibration are 
birational (i.e. the locus σ = 0 for such a section is birational to B2 rather than equal to it).

Here we will consider the moduli space of vector bundles over these more general elliptic 
fibrations. We emphasize again that such information is potentially very important to the study 
of both the heterotic theory and its F-theory dual. Below, we demonstrate that it is possible 
in principle for the chirality of the effective theory to change compared to the computation in 
Weierstrass form. So this case is distinct from those studied in previous Sections.

What makes this situation a little more complicated is that to define a Poincare sheaf one needs 
a “true” section (i.e. an inclusion iB : B ↪→ X such that πoiB = idB ). In that case the section is 
holomorphic. The key property is that a holomorphic section intersects every fiber at exactly one 
point. However if the section is rational, this is not satisfied for finitely many fibers containing 
reducible curves. As a result, the Poincare sheaf will not be a good kernel for the Fourier-Mukai 
functor. It is not clear at this moment how to deal with this in general, but there are cases which 
after a flop transition, the zero rational section becomes holomorphic. We restrict ourselves to 
this in the following, and general case will be studied in a future work.

The key point is that one can see that derived categories stay “invariant” under flop transitions 
(This is the theorem by Bondal and Orlov (see [4] Theorem 11.23, and the references therein). 
So if after a finite number of flop transition one of the sections becomes holomorphic, then it 
is possible to reduce the problem to one of the cases described before. The disadvantage to this 
approach is that it is not guaranteed that such flops exists generally.

5.1. Flop transitions

Suppose C ⊂ X be a rational curve in the Calabi-Yau threefold X, and NCX is the correspond-
ing normal bundle (obviously, with rank 2) over C. In general one can always blow up X around 
this curve p : X̃ −→ X, and the corresponding exceptional divisor E ∈ Div(X̃) will be isomor-
phic to P (NCX), which is therefore a P 1 bundle over C 	 P 1. If NCX 	 OC(−1) ⊕ OC(−1), 
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then one can show that the exceptional divisor is just a trivial P 1 bundle over another P 1, i.e. 
e 	 P 1 × P 1 (see e.g. [4]). In any case, after blowing X up, one can decide to blow the rational 
curve C down to get another threefold variety q : X̃ −→ X′. Such geometric birational transfor-
mations are called standard flip transitions, and depending on the normal bundle NCX, they can 
change the canonical bundle of the variety. So in general X′ is not a Calabi-Yau variety. However 
in the special case which is described above, NCX 	 OC(−1) ⊕OC(−1), the canonical bundle 
will remain unchanged (X′ will be Calabi-Yau), this is called the standard flop transition.

For a general flip transition, the functor Rq∗Lp∗ : Db(X) −→ Db(X′), is a fully faithful 
functor, and its image can be characterized by using the semi-orthogonal decomposition [4]. But 
here we restrict ourselves to the standard flop transitions, and in this case Rq∗Lp∗ will be an 
equivalence. To be more clear, consider the following diagram,

X̃

X X′
p

q (5.1)

To compute the topological data, we start with a bundle with most general Chern character as 
before,

ch(E) = N − (ση +
∑

i

Siηi + ωf ) + 1

2
c3(E),

where σ is the rational zero section of X, and the Chern character of the object F• := Rp∗q∗E
is needed,

ch(Rp∗q∗E) = p∗(ch(q∗E)
T d(X̃)

T d(X′)
), (5.2)

then, since the zero section is holomorphic in X′, we will be able to compute the Chern characters 
of F• in X′ as in the last section. To compute (5.2), we can find the relations between the Chern 
characters of T X̃ and T X. To see this, consider the following diagram,

E := P (NcX) X̃

c X

g

j

p

i

(5.3)

One can prove [40] the following short exact functors,

I. 0 Og(−1) g∗NCX G 0,

I I. 0 T E j∗T X̃ Og(−1) 0,

I II. 0 T X̃ p∗T X j∗G 0,

(5.4)
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where the first one is the relative version of the famous Euler sequence,10 the second one is the 
adjunction, and the third sequence is proved by noting that T X̃ and T X are isomorphic almost 
everywhere (for details see [40], Chapter 15). In addition if the divisor in the fiber of g is t , and 
we denote the hyperplane in C as d then one can show,

t2 = 2, t · d = 1 (5.5)

By using these information, and GRR theorem, one can compute the Chern classes of X̃. The 
result is the following,

c1(X̃) = −E, (5.6)

c2(X̃) = p∗c2(X′) + j∗(t − g∗c1(P 1)). (5.7)

Using these data we can get the Chern characters in X′,

ch(Rp∗q∗E) = N − (σ ′η +
∑

i

S′
iηi + ωf ) + 1

2
c3(E). (5.8)

The next part of the calculations will be the same as the previous section, but with intersection 
numbers in X′ not X. So it is possible to employ the same formulas in Section 4.1, but the 
intersection formulas are in X′ rather than X.

5.1.1. Carrying out the flops explicitly
The discussion above is somewhat abstract in nature, and as a result, it’s helpful to illustrate 

these geometric transitions in an explicit Calabi-Yau geometry.
We can illustrate the results stated above with the following simple rank 2 bundle defined by 

extension:

0 OX(−σ1 + Db) V2 OX(σ1 − Db) 0 . (5.9)

For the Calabi-Yau threefold, we will take the anti-canonical hypersurface of the following 
toric variety,

x1 x2 x3 e u1 v1 u2 v2 −K

0 0 0 0 1 0 1 0 2
0 0 0 0 0 1 1 1 3
1 1 1 0 0 2 3 0 8
1 1 0 1 0 1 2 0 6

(5.10)

In this manifold, the flop transition described above (which converts a rational section to a 
holomorphic one) corresponds simply to a different triangulation of the toric polytope. Each 
triangulation corresponds to a specific Stanley Reisner ideal,

ISR1 = {u1u2, x3v1, v1v2, ev2, x1x2x3, x1x2e} , (5.11)

ISR2 = {eu1, u1u2, v1v2, ev2, x1x2x3, x1x2e, x3v1u2} . (5.12)

In both cases the sections are,

10 Therefore, G is the relative tangent bundle times O(−1), i.e. Tg ⊗O(−1).



L.B. Anderson et al. / Nuclear Physics B 956 (2020) 115003 23
σ1 = (1,0,0,0), (5.13)

σ2 = (−1,1,2,2). (5.14)

However, in the first triangulation, both section are rational, and in particular, σ1 wraps around 
two (−1)-curves. After the flop transition, in the second triangulation, the section σ1 becomes 
holomorphic, and the section σ2 remains rational, but it wraps around two more (−1)-curves 
(which are the flop transition of the initial ones).

To fix notation, we denote the sections in the initial geometry as σ1, σ2 and the sections in the 
second geometry as σ ′

1, σ
′
2 respectively.

11 To find out the corresponding cycles the that σ1 wraps 
around them, we should compute the intersection formulas. So for the first geometry,

σ 2
1 = −c1(B) · σ1 + σ1 · E, (5.15)

σ1 · E = D · E − 1

4
D · S − 2f, (5.16)

σ 2
2 = −c1(B) · σ2 + 19

4
D · S + D · e + 38f. (5.17)

The corresponding intersection formulas after the flop transition are,

σ ′
1
2 = −c1(B) · σ ′

1, (5.18)

σ ′
1 · E = 0, (5.19)

σ ′
2
2 = −c1(B) · σ ′

2 + 5D · S′ + 40f. (5.20)

It is clear that the codimension two cycle that is disappearing from the first geometry in the flop 
transition is,

[C] = D · e − 1

4
D · S − 2f, (5.21)

and the codimension two cycle appearing in the new geometry is,

[C′] = −D · e + 1

4
D · S′ + 2f. (5.22)

In particular, note that σ ′
1 · [C′] = +2.

It is also possible to compute the explicit Fourier-Mukai transform of the vector bundle given 
in (5.9). The details of such a computation are outlined in Section 6. Here we simply state the 
following result to illustrate the general arguments above.

The Chern characters before and after the flop transition are given by

Ch(V ) = 2− ((2Db + c1(B))σ1 + 1

4
D · S − D · e − (D2

b − 2f )), (5.23)

Ch(Rp∗q∗V2) = 2− ((2Db + c1(B))σ ′
1 − D2

b + [c′]). (5.24)

By substituting the formula for the codimension two class [C′] we see V2 and p∗q∗V2 have “the 
same” Chern class in accordance with the general result of the previous subsection.

11 Also note that both geometries contain an exceptional divisor E, and D as the hyperplane in the base P2, which are 
common to both geometries.
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5.2. Comment on the chirality of the effective theory

Here we want to study the effect of the (−1)-curves in the rational zero section in the spectrum 
of the effective theory. We will fix notation as,

F• := Rp∗q∗E,

L• := �P
X′→X′(F•). (5.25)

The goal then is to compute the zero-mode spectrum (i.e. bundle-valued cohomology groups) of 
E in X. Suppose the support of L• takes the most general form,12 this task reduces to computation 
of R1π∗E by using Leray spectral sequence. To find this, first notice that inverse functor of 
Rq∗Lp∗ is given by,13

E = Rp∗(Lq∗F• ⊗O
X̃
(e)). (5.26)

Therefore we get,

Rπ∗E = Rπ ′∗(F• ⊗ Rq∗OX̃
(e))

= Rπ ′∗(F•), (5.27)

where we used Rq∗OX̃
(e) = OX′ . Next, one can use the same techniques as before to compute 

the Rπ ′∗F• in terms of the “spectral data” in X′,

Rπ∗E = Rπ ′∗F• = Rπ ′∗(L• ⊗Oσ ′). (5.28)

Naively the above result is the same as in the standard cases. But notice that L• is the Fourier-
Mukai transform of a (may be non-WIT or singular) object F• in Db(X′), and it may receive new 
contributions from the original (−1)-curve in X. In the example computed before, the component 
[C′

2] doesn’t intersect with the zero section, so the only contribution to the spectrum of the 
effective theory is through the line bundle over the component S.

6. Examples of explicit Fourier-Mukai transforms

The power of a Fourier-Mukai transform (and its inverse) is that in principle we can move 
freely between descriptions of stable vector bundles on elliptically fibered manifolds and the 
spectral data that we have been studying in Sections 2, 3, and 4. In this section we now uti-
lize this potential to explicitly compute FM transforms of stable bundles defined by the monad 
construction or by extension (see e.g. [51]). Several explicit realizations of this type have been 
accomplished before in the literature [14] and we will provide some generalizations. In particular, 
we will develop general tools that are applicable away from Weierstrass 3-folds.

In these examples, we shall also observe that although we have derived general formulas for 
bundles defined via smooth spectral covers, this proves to be too limited to describe the explicit 
bundles we consider in the majority of cases. We will return to this point – namely that there 
remain important gaps in our description of general points in the moduli space of bundles – in 
Section 6.2.

Beginning with the simplest possible elliptic CY 3-fold geometry – i.e. Weierstrass form, 
we will illustrate the ideas that can be generalized to compute the Fourier-Mukai transform of 
sheaves which are defined by extension sequences or monads.

12 The restriction of the support on the generic irreducible fiber is a set of points such that none of them are coincident.
13 Remember that this is Fourier-Mukai functor so it has an inverse.
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6.1. Bundles defined by extension on Weierstrass CY threefolds

To illustrate the techniques of taking explicit FM transforms, we begin with the simplest 
possible extension bundle – a rank two vector bundle defined by extension of two line bundles:

0 −→ L1 −→ V2 −→ L∨
1 −→ 0. (6.1)

We require V2 to be stable, and c1(V2) = 0. Note that a necessary (though not sufficient) con-
straint on the line bundles appearing in this sequence is that L1 must not be effective (i.e. have 
global sections). For such a stable bundle the restriction of V2 over Et = π−1(t) for a generic 
t ∈ B is one of the following cases [35],

V2|Et =OEt ⊕OEt ,

V2|Et = E2 ⊗F, deg(F) = 0, (6.2)

V2|Et =OEt (−p − p0) ⊕OEt (p − p0).

In the first case, the support of the Fourier-Mukai sheaf (i.e. spectral cover), will be a non-reduced 
scheme (supported over the section σ ). In the second case E2 is the unique non trivial extension 
of trivial line bundles, and F = OEt (p − p0) for some p (here p0 is the point on Et chosen by 
the section), but for Weierstrass fibration, p = p0 for generic fibers, and V2|Et = E2. So again 
the spectral cover will be non-reduced and supported over the zero section. In the final case, the 
spectral cover can be non-singular. So it is clear that in the majority of cases, we do not expect 
the FM transform of V2 to be in the same component of moduli space as a smooth spectral cover 
of the form described in Section 2. We will illustrate this effect with two choices of L1 below.

Applying the Fourier-Mukai functor to (6.1) produces a long exact sequence involving the 
FM transform of the line bundles defining V2. Thus, we can compute �(V2) if we can compute 
�(L1). To begin, the definition of the Poincare sheaf, (2.14) and (2.15), allows us to write the 
following short exact sequence:

0 −→ π∗
1L1 ⊗P −→ π∗

1 (L1 ⊗OX(σ)) ⊗ π∗
2 (OX(σ) ⊗ π∗K∗

B)

−→ δ∗(L1 ⊗OX(2σ) ⊗ π∗K∗
B) −→ 0. (6.3)

Now, by applying, Rπ2∗ to the above sequence, we can compute �(L1),

0 −→ �0(L1) −→ R0π2∗π∗
1 (L1 ⊗OX(σ)) ⊗ (OX(σ) ⊗ π∗K∗

B)

−→ (L1 ⊗OX(2σ) ⊗ π∗K∗
B) →

−→ �1(L1) −→ R1π2∗π∗
1 (L1 ⊗OX(σ)) ⊗ (OX(σ) ⊗ π∗K∗

B) −→ 0. (6.4)

With these general observations in hand, we will first consider the case where L1 = OX(Db)

with Db a divisor pulled back from the base, B2. To use (6.4), in this case, Rπ2∗π∗
1 (L1⊗OX(σ))

must be computed. To accomplish this, we can use the base change formula (see Appendix B), 
which relates the following push-forwards,

X ×B X X

X B

π1

π2 π

π

Rπ2∗π∗ 	 π∗Rπ∗ (6.5)
1
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therefore Rπ2∗π∗
1 (L1 ⊗ OX(σ)) = (π∗Rπ∗OX(σ)) ⊗ OX(Db). On the other hand, by Koszul 

sequence for the section (σ ) we have,

0−→ OX −→ OX(σ) −→Oσ (KB) −→ 0. (6.6)

It is well-known for Weierstrass CY elliptic fibration π : X −→ B , R0π∗OX = OB, R1π∗OX =
KB (see e.g. [52]). So the above sequence implies Rπ∗OX(σ) = OB and hence Rπ2∗π∗

1 (L1 ⊗
OX(σ)) = OX . Plugging this into (6.4), we see that this sequence is just Koszul sequence again 
which is twisted OX(σ) ⊗ π∗K∗

B ,

�(L1) =Oσ (Db)[−1]. (6.7)

We can apply this result then to obtain the FM transform of V2 for this chosen line bundle to 
find

0−→ Oσ (Db) −→ �1(V2) −→ Oσ (−Db) −→ 0 . (6.8)

In this case by the arguments given above, �1(V2) is supported over the section14 and its rank 
(when restricted over the support) is two (the rank is one when restricted to the modified support). 
As a result, from the arguments above, we do not expect the topology of this bundle to match the 
formulas given in (2.16) (and indeed they do not though we will not yet make this comparison 
explicitly).

Let us not contrast this with another (non-generic) choice of line bundle,

L1 =OX(−σ + Db). (6.9)

In this case

�(OX(σ + Db)) =OX(−σ + KB + Db), (6.10)

�(OX(−σ + Db)) =OX(σ + Db)[−1]. (6.11)

For the choice of line bundle in (6.9), the extension bundle V2 is defined by a non-trivial 
element of the following space of extensions:

Ext1(L∨
1 ,L1) = H 1(X,L2

1) = H 0(B,OB(2Db + c1(B)) ⊕OB(2Db − c1(B))), (6.12)

(note that the last equality follows from a Leray spectral sequence on the elliptic threefold (see 
(A.26)), and Rπ∗OX(−2σ) = Kb ⊕ K−1

b . As a brief aside, we remark here that the form of this 
space of extensions gives us some information about the form of the possible FM dual spectral 
cover.

It is clear from the expression above that if 2Db + c1(B) is not effective, then there exists no 
non-trivial extension, and the vector bundle is simply a direct sum L1 ⊕ L∨

1 (and therefore not 
strictly stable). If 2Db + c1(B) = 0 there is only one non-zero extension. On the other hand, if 
the degree of Db is large enough to make 2Db − c1(B) effective then for any generic choice of 
extension there are (2db + c1(B)) · (2Db − c1(B)) isolated curves that the spectral cover must 
wrap.

Returning to our primary goal of computing the FM transform of V2, it can be observed that 
there is enough information in (6.10) and (6.11) to compute �(V2) explicitly.

0−→ �0(V2) −→ OX(−σ + KB − Db)
F−→OX(σ + Db) −→ �1(V2) −→ 0. (6.13)

14 It is also possible to have vertical components, depending on the degree of the divisor Db .
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By fully faithfulness of Fourier-Mukai functor, one can show F ∈ Ext0(OX(−σ + KB −
Db), OX(σ + Db)) 	 Ext1(L∨

1 , L1). Therefore it is necessary 2Db − c1(B) be effective to have 
a non zero F , and �0(V2) = 0 (and hence stability of V2). Assuming that this is satisfied, we can 
find the Fourier-Mukai transform of V2 as

�(V2) =O2σ+2Db−KB
(σ + Db). (6.14)

At last we are in a position to compute the topological data, and directly compare the bundle 
constructed here with what would be expected from the formulas derived in [3,39] and reviewed 
in Section 2. The Chern character of V2 is,

ch(V2) = 2− (σ (2Db + c1(B)) + D2
b). (6.15)

Therefore from (2.28), the divisor class of spectral cover must be

[S] = 2σ + 2Db + c1(B). (6.16)

This is the same as the divisor class of the support of the torsion sheaf in (6.14). In addition, since 
we require [S] to be the divisor class of our algebraic surface it must be the case that 2Db +c1(B)

is effective. This was exactly the requirement for the non trivial extension discussed above.
For this example, the general algebraic formula for S takes the form

S = f1x + f2z
2, (6.17)

div(f1) = 2Db − c1(B),

div(f2) = 2Db + c1(B).

So we see if 2Db + c1(B) is effective, but 2Db − c1(B) is not effective, then the coefficient 
f1 vanishes, and the locus f2 = 0 is the position of the vertical components mentioned above. 
Moreover, when 2Db − c1(B) is effective then the position of those vertical fibers is given by the 
points where f1 = f2 = 0, again as discussed before. Comparing this with the sequence before 
(6.14), we see the map F is indeed given by S, and therefore S uniquely determines an element 
in the extension group.

Now from the equation (2.33), c1(L) = σ + Db + λ(2σ + 2Db + c1(B)). This is compatible 
with (6.14) if we choose λ = 0. With λ = 0 and N = 2, the equation (2.36) produces

ω = D2
b, (6.18)

and also from (2.34) it follows that c3(v2) = 0, in agreement with the Chern character computed 
directly above. Also note that the divisor class of the matter curve must be σ · [S] = 2Db − c1(B)

[3]. So the FM transform of this vector bundle is indeed a smooth spectral cover and agrees with 
the topological formulas found in [3,39] as expected.

6.2. FM transforms of monad bundles over Weierstrass 3-folds

In the following section we will provide an explicit construction of the spectral data a bundle 
defined via a monad. This construction is somewhat lengthy, but is useful to present in detail to 
demonstrate that FM transforms can be explicitly constructed for bundles that appear frequently 
in the heterotic literature.

Over a Weierstrass CY 3-fold of the form studied in Section 2 consider a bundle defined as a 
so-called “monad” (i.e. as the kernel of a morphism between two sums of line bundles over X3):
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0−→ V −→ ⊕l
i=1OX(niσ + Di)

F−→ ⊕k
j=1OX(mjσ + Dj) −→ 0, (6.19)

where Rank(V ) = N = l −k, and the divisors Di are pulled back from the base, B2. To compute 
the Fourier-Mukai transform V we will see that it is necessary to begin with the transform of line 
bundles of the form OX(niσ + Di), as well as the morphism �(F). With that information, we 
can compute �(V ). We should point out that for the geometry in question, none of the ni’s nor 
mj ’s are allowed to be negative. This is necessary for stability of the bundle.15 Upon applying 
the FM functor to (6.19), we get a sequence of the following form,

0 �0(V ) ⊕′ l
i=1�

0(OX(niσ + Di)) ⊕′k
j=1�

0(OX(mjσ + Dj))

�1(V ) ⊕′′ l
i=1�

1(OX(niσ + Di)) ⊕′′k
j=1�

1(OX(mjσ + Dj))

0.

�(F0)

(6.20)

In the diagram above we employ the sign ⊕′ to refer to the direct sum over the line bundles with 
positive definite relative degree, and use ⊕′′ to mean the direct sum over the line bundles with
relative degree zero (i.e. pull back of line bundles in the base). So to compute the Fourier-Mukai 
transform of V we need to compute the Fourier-Mukai transform of the line bundles in (6.19). To 
do this, one can simply use the defining sequence of the diagonal divisor in Section 2. Combining 
this with the sequence above, give the following diagram,

0 0

. . . ⊕′ l
i=1�

0(OX(niσ + Di)) ⊕′k
j=1�

0(OX(mj σ + Dj )) . . .

0 K1 A⊗OX(σ + c1(B)) N ⊗OX(σ + c1(B)) Q1 0

0 K2 ⊕′ l
i=1OX((ni + 1)σ + Di) ⊗OX(σ + c1(B)) ⊕′k

j=1OX((mj + 1)σ + Dj ) ⊗OX(σ + c1(B)) Q2 0

0 0

�(F0)

ev

F0

ev

F0

(6.21)

Each column in the diagram defines the Fourier-Mukai transform of the (direct sum of) line 
bundles by means of the resolution of the Poincare sheaf. Therefore in the second row A and N
are the sheaves generated by the “fiberwise” global sections of the sheaves ⊕′OX((nj + 1)σ +
Dj) and ⊕′OX((mj + 1)σ + Dj), respectively. The evaluation maps simply takes the global 
section, and evaluates the sheaf at each point. Finally, the map F0 is simply the map induced by 
the monad map F itself (from (6.19)) on the line bundles with positive definite relative degree 
(which also acts on the “fiberwise” global sections too).

15 Actually if we naively compute the Fourier-Mukai of such sheaves (with some ni ’s being negative), the result is 
either non-WIT1 or �1(V ) is not a torsion sheaf. But we know V is stable if and only if it is WIT1 respect to �, and 
�1(V ) is a torsion sheaf. In practice, this is a way to check the stability of a degree zero vector bundle over elliptically 
fibered manifolds.
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The most important parts of this diagram are the induced maps between the kernels and co-
kernels, K1, Q1 and K2, Q2, respectively. The kernel and co-kernel of these maps give a rather 
explicit presentation of the spectral data, so we will give them specific names,

0 −→ L̄ −→ K1 −→ K2 −→ L −→ 0, (6.22)

0 −→ M −→ Q1 −→ Q2 −→ 0, (6.23)

(note that the final map in the second line above must be surjective, otherwise it will be in 
contradiction with the commutativity of the middle two columns in (6.21)).

Now, by careful diagram chasing, one can prove that the Fourier-Mukai transform of V can 
be given by the following (more concise) diagram,

0

L

0 J �1(V ) ⊕′′ l
i=1�

1(OX(niσ + Di)) ⊕′′k
j=1�

1(OX(mjσ + Dj)) 0

M

0

(6.24)

This construction is similar in spirit to the spectral data derived for monads in [16] and we will 
return to this in Section 6.2.1.

To make this abstract formalism more concrete, it is helpful to consider an explicit example. 
Let us take X3 to be a Weierstrass elliptically fibered threefold over P 2, realized as a hypersurface 
in a toric variety, given by the following “charge data” (i.e. in GLSM notation):

y x z x0 x1 x2 p
3 2 1 0 0 0 6
9 6 0 1 1 1 18

Here the holomorphic zero section is determined by the divisor z = 0. As an explicit monad 
bundle over this manifold, consider the following short exact sequence:

0 −→ V −→ OX(2,3) ⊕OX(1,6) ⊕OX(0,1)⊕3 F−→ OX(3,12) −→ 0. (6.25)

We first need to find the Fourier-Mukai of the line bundles. This can be done using the tools 
outlined in before and we simply summarize the results here:

�(OX(D)) =Oσ (KB + D)[−1], (6.26)

0 −→ �0(OX(2σ − KB)) −→ OX(σ − 2KB) ⊕OX(σ) ⊕OX(σ + KB)
ev−→ OX(4σ − 2KB) −→ 0, (6.27)

0 ←− �0(OX(σ − 2KB)) −→ OX(σ − 3KB) ⊕OX(σ − KB)
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−→ OX(3σ − 3KB) −→ 0, (6.28)

0−→ �0(OX(3σ − 4KB)) −→ OX(σ − 5KB) ⊕ · · · ⊕OX(σ − KB)
ev−→ OX(5σ − 5KB) −→ 0, (6.29)

where the middle bundles in the each of the short exact sequences above are the “fiberwise” 
global section of the line bundles in (6.19) denoted as A and N (twisted with O(σ + c1(B))). 
With this we have determined the columns of (6.21). By explicitly performing the fiber restric-
tions it can also be verified that

⊕′′ l
i=1�

1(OX(niσ + Di)) =Oσ (−2)⊕3,

⊕′′ l
i=1�

1(OX(miσ + Di)) = 0,

and the map F0 is a “part” of the monad map F ,

OX(2,3) ⊕OX(1,6) OX(3,12)
F0

,

F0 =
(

zf9
x + f6z

2

)
. (6.30)

Obviously F0 is singular on {f9 = 0} ∩ {
x + f6z

2 = 0
}
.

The final task will be determining the explicit kernels and co-kernels: K1, K2, Q1 and Q2. 
This is local question, so we can assume we are in a affine patch with y �= 0 and x1 �= 0 for 
example. Then it is not too hard to show that free part of K1 is generated by

K1 ∼ αz

(
x + f6z

2

−f9z

)
. (6.31)

Naively, it may look like that over f9 = 0, the kernel K1 jumps, but this is at the presheaf level, 
one can actually show that

K1 	 π∗OP 2(−3). (6.32)

Similarly, one can compute the K2,

K2 =
(

(x + f6z
2) 1

l3,3

−zf9
1

l2,6

)
(6.33)

Where 1
l3,3

and 1
l2,6

are the local generators of the line bundles OX(3, 3) and OX(2, 6). By check-
ing the degrees, K2 is fixed to be the line bundle OX(1, −3). Again naively it might appear that 
K2 jumps over {f9 = 0} ∩ {

x + f6z
2 = 0

}
, but this is at the presheaf level as before, and K2 is 

indeed free.
With this information in hand, we can determine L and L̄ in (6.21),

0 L̄ OX(0,−3) ⊗OX(1,3) OX(1,−3) ⊗OX(1,3) L 0.
�0

(6.34)

By computing the induced map �0, one finds

L̄ = 0, (6.35)

L =Oσ (−6). (6.36)
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As the next step, it remains to determine Q1 and Q2. For the former, one should note that the 

morphism on the “fiberwise” global sections i.e. A 
F0−→N is generically rank 4, so it is surjective 

unless f9 = 0. Over this locus, we obtain the following “defining” sequence for Q1,

0 −→ (OX ⊕OX(0,6))|f9 ⊗OX(1,3) → . . .

−→ (OX ⊕OX(0,3) ⊕OX(0,6) ⊕OX(0,12))|f9 ⊗OX(1,3) −→ Q1 −→ 0. (6.37)

Which turns out to be,

Q1 	 (OX(0,12) ⊕OX(0,3))f9=0 ⊗OX(1,3). (6.38)

On the other hand, Q2 can be identified easily with OX(4, 12)|{f9=0}∩{x+f6z
2=0} ⊗OX(1, 3). So 

M will be given by,

0 −→ M −→ (OX(0,12) ⊕OX(0,3))f9=0 ⊗OX(1,3)

−→ OX(4,12)|{f9=0}∩{x+f6z
2=0} ⊗OX(1,3) −→ 0. (6.39)

Therefore, M will be a torsion sheaf supported on f9 = 0 with rank 2 when restricted on the 
support. So J in (6.21) can be given explicitly as,

0 −→ Oσ (−6) −→ J −→ M −→ 0, (6.40)

and we can see the support of J is in the divisor class σ + 18D where the 18D is the support of 
the sheaf M. Finally the support of the �1(V ), i.e. the spectral cover, is in the class

[S] = 4σ + 18D. (6.41)

Explicitly we find that the spectral cover is reducible and non-reduced and given by the algebraic 
expression

S : (f9)2z4 = 0 (6.42)

With this spectral data in hand we are now in a position to compare to the well-known results 
for the topology of smooth spectral cover bundles derived in Section 2. Before beginning this 
computation we must first observe that from the definition of the monad in (6.25), the Chern 
class of V is given by,

c(V ) = 1+ 18σD + 48f − 162w, (6.43)

where f is the fiber class, and w is the class of a point. Now if one compares this to the topolog-
ical constraints reviewed in (2.16), it follows that η = 18D and hence

[S] = 4σ + 18D, (6.44)

c3(V ) = 2λη(η − 4c1(B)). (6.45)

The first one is always true whether or not the spectral cover is degenerate or what spectral sheaf 
we choose, so it is not surprising to get a correct answer. The second equation however implies 
that λ = − 3

4 . If we then insert this value into the formula for the c2(V ) given in (2.16), it yields

c2(V )expected = 18σD + 45f (6.46)

which is obviously wrong. This discrepancy has arisen because the chosen monad bundle man-
ifestly does not correspond to a smooth spectral cover (and must correspond to a different 
component of the moduli space of bundles over X3).
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6.2.1. A comparison to existing techniques for FM transforms of monad bundles
It should be noted that several existing papers in the literature [14,16] have laid out useful 

algorithms for explicitly computing the FM transforms of monad bundles of the form

0 V F N 0,F (6.47)

where F and N are direct sum of line bundles as mentioned before.
In particular, [14] utilizes the simple and useful observation that the “fiberwise” global sec-

tions of the twisted vector bundle V ⊗ OX(σ) contain information about the spectral cover. 
Specifically, the zeros of these sections along the fiber are coincident with the points where the 
spectral cover intersects the fibers. So one can consider the kernel of the map F in the following 
sequence,

0 π∗π∗(V ⊗OX(σ)) π∗π∗(F ⊗OX(σ)) π∗π∗(N ⊗OX(σ)) 0,F

(6.48)

where the morphism π is the usual projection of the elliptic fibrations.16 Therefore wherever the 
rank of the kernel drops, must be the position of the spectral cover.

This approach, though explicit and computationally tractable, has some drawbacks. The ob-
vious one is that it cannot immediately provide information about the spectral sheaf. The other 
problem is that it is possible and quite common that the spectral cover may wrap components 
of some non-generic elliptic fibers (i.e. when the restriction of the vector bundle on those non-
generic fibers is unstable). In such cases it is possible that the number of global sections of the 
twisted vector bundle on these fibers jump instead of dropping, and since the algorithm sketched 
above is designed to detect where the kernel drops, it cannot find these vertical components of 
the spectral cover.17

To solve the first problem in [16], it was conjectured that the cokernel, L, of the following 
evaluation map can provide a defining relation for the spectral sheaf,

0 π∗π∗(V ⊗OX(σ)) V ⊗OX(σ) L 0.ev (6.49)

However, although L is supported over the spectral cover, it is not the spectral sheaf generally 
(in particular when some of the line bundles in the monad have zero relative degree zero).

In our approach, we simply use the resolution of the Poincare sheaf to compute the Fourier-
Mukai transforms directly, and is clear from (6.21) that this yields something very similar in 
spirit to the approaches mentioned above.

6.3. An extension bundle defined on an elliptic fibration with fibral divisors

In a similar spirit to the previous sections, it should be noted that a generic bundle chosen 
over an elliptic threefold with fibral divisors will unfortunately not necessarily correspond to a 
smooth spectral cover with the topology we derived in Section 3. However, we can verify that in 
some simple cases the explicit examples we construct do produce smooth spectral covers with 

16 To derive this sequence the flatness of π and stability of V are necessary.
17 As long as one wants to find the spectral cover only, it is still possible to use this algorithm, but with other twists to 
find the missing components. We have employed this technique in recent work [53], but in practice it can be very slow 
for Calabi-Yau threefolds.
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the expected form. Moreover, the techniques outlined in the previous subsections for explicitly 
computing FM transforms carry over smoothly into this new geometric setting.

For simplicity, we will fix the Calabi-Yau geometry explicitly from the start to be given by an 
anticanconical hypersurface in the following toric variety:

X Y Z E x1 x2 x3 p

3 2 1 0 0 0 0 6
9 6 0 0 1 1 1 18
8 5 0 1 0 1 1 16

(6.50)

Note that here we denote the single exceptional (i.e. fibral) divisor in this geometry as E and 
the divisor class of x1 is D − E with D being the hyperplane divisor in the base, B2 = P 2. The 
image of E on the base is a line homologous to the hyperplane, here denoted D. Over D all of 
the fibers are degenerate of the Kodaira type I2. Also one can show that E satisfies

E2 = −2σ · D + 7D · E − 6f. (6.51)

To illustrate a Fourier-Mukai transform here we can begin by choosing the simple rank two 
bundle defined by an extension of two line bundles chosen in (6.9) (there in the case of a Weier-
strass threefold)

0 −→ OX(−σ + Db) −→ V2 −→OX(σ − Db) −→ 0.

The calculation follows along exactly the same lines as outlined in previous sections, the only 
interesting point here is the existence of the (-2) curves. As we saw in the Weierstrass case, 
requiring a non degenerate spectral cover, implies that 2Db − c1(B) must be effective. So in the 
present case, the Fourier-Mukai transform of V2 is given by,

�(V2) =O2σ+2Db+c1(B)(σ + Db).

In this case, the number of (−2)-curves in the spectral cover induced by the exceptional divisor 
is κ := D ·B2 (2Db + c1(B)). So clearly the line bundle over the spectral cover is trivial with 
respect to the (−2)-curves, since c1(L) = σ + Db .

From this starting point though, it is clear that we choose a new spectral sheaf with some of 
these exceptional divisors “turned on”, and apply the inverse Fourier-Mukai transform. This will 
allow us to see how to modify a simple vector bundles line the one above so that its Fourier-
Mukai transform will have some non-trivial dependence on the fibral (−2)-curves.

To this end, recall that the Fourier-Mukai transform above is given by a short exact sequence,

0 −→ OX(−σ + Kb − Db) −→ OX(σ + Db) −→ �(V2) −→ 0.

Now if we twist the above sequence with the OX(E), then we obtain a Fourier-Mukai transform 
of a new stable rank two bundle Ṽ2 with spectral line bundle,

c1(L) = σ + Db +
κ∑

i=1

ei . (6.52)

So twisting with OX(E) turns on all of the exceptional divisors with multiplicity one.
Now it is possible to apply an inverse Fourier-Mukai transform. We will omit the details here 

from brevity and simply state the result, namely a defining sequence for a new bundle Ṽ2,

0 −→ OX(−σ + Db) −→ Ṽ2 −→ OX(σ − Db + D − E) −→
OD−E(−σ + Db + D + KB) −→ 0. (6.53)
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Note that D − E is an effective divisor. We can easily compute the Chern character of Ṽ2 from 
the exact sequence above (and using GRR),

ch(Ṽ2) = 2− σ(2Db + c1(B)) + E · (2Db + c1(B)) − D2
b + D · (KB − 2Db). (6.54)

This is in agreement with the topological equations derived above with βi = 1, κ = D · (2Db +
c1(B)) and ζ = −(2Db + c1(B)).

6.4. A bundle defined via extension on a CY threefold with rk(MW) = 1

Once again in the case of an elliptic manifold with more than one section (and a holomorphic 
zero-section) we can illustrate the techniques of an FM transform via a simple rank two vector 
bundle defined via an extension,

0−→ OX(−σ − S1 + Db) −→ V2 −→OX(σ + S1 − Db) −→ 0, (6.55)

where here S1 is the Shioda map (see Section 4) associated to the second section to the elliptic 
fibration.

Following the same pattern as in the Weierstrass case, we first compute the extension group,

Ext1(OX(σ + S1 − Db),OX(−σ − S1 + Db)) = H 1(X,OX(−2σ − 2S1 + 2Db)).

(6.56)

To use Leray spectral sequence we need to know the derived direct images of OX(−2σ1). With 
the help of Koszul sequence for σ1 one obtains

Rπ∗OX(−2σ1) = (KB ⊕ K−1
B )[−1]. (6.57)

So we see that the extension group decomposes into two subgroups,

Ext1(OX(σ + S1 − Db),OX(−σ − S1 + Db)) =
H 0(B,OB(2Db + c1(B)) ⊕OB(2Db + 3c1(B))). (6.58)

We expect that these two subgroups determine the complex structure of the spectral cover, and 
if we choose a generic element (assuming 2Db + 3c1(B) is effective), the spectral cover must be 
smooth, and the topological formulas derived in Section 4 must be valid.

Before computing the Fourier-Mukai transform of this bundle, it is useful to consider the 
Chern character of the bundle given in (6.55),

ch(V2) = 2− (3c1(B) + 2Db)σ − (3c1(B) + 2Db)S1 + D2
b − 2c1(B)2. (6.59)

From this form, we expect that if the topological formulas given in Section 4 are satisfied, the 
divisor class of S must be 2σ + 2Db + 3c1(B), and c1(L) = σ − S1 + c1(B) + Db .

Now we can compute the Fourier-Mukai explicitly (along the same lines as in previous sec-
tions) and obtain

�(OX(σ + S1 − Db)) =OX(−σ − S1 − 2c1(B) − Db), (6.60)

�(OX(−σ − S1 + Db)) =OX(σ − S1 + c1(B) + Db)[−1]. (6.61)

Therefore the Fourier Mukai transform of V2 is simply given by the following torsion sheaf,

�(V2) =O2σ+2Db+3c1(B)(−σ − S1 + c1(B) + Db)[−1]. (6.62)

In this carefully engineered example then, we are once again able to confirm the results derived 
in Section 4, but we emphasize again that the topological formulas derived will not generally 
satisfied by a randomly chosen bundle on the elliptic threefold.
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7. Small instanton transitions and spectral covers

An application of the tools we have developed in Sections 3 is to consider small instanton 
transitions [18] (i.e. M5-brane/Fixed plane transitions in the language of heterotic M-theory [17]) 
involving spectral cover bundles. This subject was first explored in depth in [18,54] and there a 
simple form for such transitions was found for smooth spectral covers within Weierstrass mod-
els. Within that geometric setting, the authors categorized possible small instanton transitions 
involving spectral covers as a) Gauge group changing or b) Chirality changing depending on 
which components of the effective curve class

W = WBσ + af f (7.1)

(wrapped by the 5-brane) are “absorbed” into the bundle on the boundary brane. Here σ is the 
holomorphic section of the Weierstrass 3-fold, WB is a curve within the base B2 and f the fiber 
class. The authors concluded that in the case that a part of the 5-brane wrapping the fiber class is 
absorbed into the bundle this can result in case a) above while if a curve in the base is involved 
(i.e. WB above) then the transition will induce a chirality change in the heterotic effective theory, 
while in the case of purely “vertical” transitions (involving detaching a part of af above) the 
chirality is unchanged.

In the following section we will demonstrate that the generalized geometric setting for ellip-
tically fibered CY 3-folds and spectral covers that we have found in Sections 3 provides new 
possibilities for such 5-brane transitions. In particular, we will illustrate these possibilities in the 
case of a transition involving a 5-brane wrapping a curve that is part of a fibral divisor (in the 
geometric setting of Section 3)

7.1. New chirality changing small instanton transitions

Consider for simplicity the case that X3 contains a single fibral divisor class, D1. Suppose 
that the small instanton is localized on a component of the I2 fibers, C1 (as defined in Section 3) 
with class,

[C1] = (D − D1) · D (7.2)

where D is a divisor pulled back from the base, B2 and D1 is the fibral divisor. Recall that in 
the case of a CY 3-fold of the type described in Section 3 we can parameterize the topology of a 
general bundle V as

ch(E) = N − (ση + ωf +
∑

ζD1) + 1

2
c3(V ) . (7.3)

As described in [18], if the 5-brane is moved to touch the E8 fixed plane in a small instanton 
transition, this geometrically results first in a torsion sheaf VC1 supported over C1, which can be 
combined with the initial smooth SU(N) bundle V to make a torsion free sheaf Ṽ :

0 Ṽ V iC1∗F 0, (7.4)

where iC1 : C1 ↪→ X is the inclusion of the curve mentioned above, and F is the sheaf supported 
over the curve C1, wrapped by the 5-brane. The specific order of the sheaves in (7.4) is chosen 
to describe the absorption of the 5-brane.

The final step in the process of the small instanton transition is to consider, for specific choices 
for F , whether it is possible to “smooth out” Ṽ , to a final smooth/stable vector bundle, V̂ as 
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in [18]. To this end, we consider choices of sheaf F above (corresponding to parts of the 5-
brane class which can be “detached” and absorbed into Ṽ ) and ask whether the resulting bundle 
can be smoothed. In the case of the single fibral divisor we are considering (i.e. I2 fibers as in 
Section 3), the curve being wrapped by the 5-branes is topologically a P 1 and we can take the 
sheaf supported over the 5-brane to be simply a line bundle. Below we explore two choices of 
this line bundle.

Case 1: F =OC1(−1)
From (7.4), the total Chen character of Ṽ is,

ch(Ṽ ) = ch(V ) − [C1] = ch(V ) + D · D1 − f. (7.5)

In addition, recall that the Fourier-Mukai transform of OC1(−1) is IC1 = OC2(−2). So one can 
apply the Fourier-Mukai functor to (7.4) to obtain,

0 iC2∗O(−2) i
S̃
L̃ iSL 0, (7.6)

where �(V ) = iSL[−1] and �(Ṽ ) = L̃ are Fourier-Mukai transforms of V and Ṽ which are 
torsion sheaves supported over the N-sheeted covers of the base, S and S̃ respectively. Taking 
the case that S is integral, and C2 is one of the (−2)-curves which S wraps, then S̃ = S, and we 
get,

c1(L̃) = c1(L) + e1. (7.7)

Note that L̃ is singular over C2 (= e1), as may be expected,18 however, in the process of de-
forming Ṽ to a smooth bundle, L̃ may also be smoothed out to a line bundle L̂ with the same 
topology. In this case we can say from the topological data derived earlier in this section that the 
corresponding (hypothetically) smooth vector bundle V̂ must have the following topology (see 
(7.3) above)

ζ(V̂ ) = ζ(V ) − D, (7.8)

ω(V̂ ) = ω(V ) + f, (7.9)

ch(V̂ ) = ch(V ) + D · D1 − f. (7.10)

For these choices, ch(V̂ ) is the same as ch(Ṽ ). So we conclude this transition is topologically 
unobstructed. In this case we can see that the third Chern character doesn’t change in this tran-
sition (also γ remains unchanged), therefore neither the chiral index or zero-mode spectrum are 
changed.

Case 2: F =Oc1(−2)
As above, from (7.4) we compute the Chern character of Ṽ as

ch(Ṽ ) = ch(V ) − [C1] + 1w, (7.11)

where w is dual to the zero cycles. Note that if Ṽ can be smoothed, we expect ch(Ṽ ) = ch(V̂ ) for 
the final smooth bundle after the small instanton transition. Thus it is clear that both the second 
Chern class and chirality can change in this case,

18 Due to the flatness of the projection and the Poincare bundle in the definition of the FM functor we use here, singu-
larity of the “vector bundle” and the spectral sheaf are closely correlated.
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c2(V̂ ) = c2(V ) + D · (D − D1), (7.12)
1

2
c3(V̂ ) = 1

2
c3(V ) + 1. (7.13)

To address the question of smoothing, we simply apply the Fourier Mukai functor to (7.4) for the 
chosen iC1∗F and assume V is already WIT1,

0 i
S̃∗L̃ iS∗L iC1∗OC1 0, (7.14)

and we noted that �(iC1∗OC1(−2)) = iC1∗OC1[−1].
Now it must be observed that as long as the above short exact sequence can exist, the sheaf Ṽ

is indeed WIT1. Note that since an irreducible spectral cover never wraps C1, then the existence 
of this sequence forces both S and S̃ to have vertical components that contain C1. As a result 
then, we can choose to consider a small instanton transition in which the spectral cover of the 
initial bundle V is reducible with vertical (i.e. fiber-directions) and horizontal components,

S = SV ∪ SH , (7.15)

where SV contains C1. For simplicity, we will illustrate this transition below in the case that the 
divisor class SV is simply D, and LV is a line bundle.

Note that although we are choosing the spectral cover to be reducible, it is not the case that V
itself must be a reducible bundle. As a next step, we can consider what topological constraints 
must be in place for a stable degree zero vector bundle such that its Fourier Mukai transform 
iS∗L is made of a vertical and horizontal piece:

0 iSH ∗LV iS∗L iSV ∗LH 0. (7.16)

Following the same procedure as before we can derive the topological data,

[SH ] = Nσ + η − D, (7.17)

[SH ] ·
(

c1(LH ) − 1

2
[SH ]

)
+ D ·

(
c1(LV ) − 1

2
D

)

= (Nσ + η)

(
−1

2
c1(B)

)
− 1

2
c3(V )f − ζe1. (7.18)

A solution for this equation can be given as,

c1(LH ) = −1

2
(c1(B) − [SH ]) + γH , (7.19)

γH = λH (Nσ − η + D + Nc1(B)) + δσ, (7.20)

c1(LV ) = −ζe + λV D − δσ, (7.21)
1

2
c3(V ) = λH η(η − Nc1(B)) − λV + 1

2
D · (D − c1(B)). (7.22)

After a tedious algebraic calculation, one can derive a formula for ω, but it is not necessary 
here. Finally if we require both V and Ṽ have the same spectral cover,19 then (7.14) implies the 
following relation between the vertical parts of the spectral sheaves,

L̃
Ṽ

= LV ⊗OSV
(−D + E). (7.23)

19 Note for simplicity we assumed LH is independent of the (−2)-curves on the horizontal components SH .
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Therefore we easily get the following relations between the parameters of Ṽ and V ,

λ
Ṽ

= λV − 1, (7.24)

ζ
V̂

= ζV − 1. (7.25)

Moreover if we put δV = δ
V̂

= 0, we can see by the above arguments that,

ω
V̂

= ωV + 1 (7.26)

Finally, we arrive at a point where we can compare the above conditions on V and Ṽ with the 
relations (7.12) derived before and observe that they are exactly the same. Thus, the transition 
is unobstructed and we have provided an example of a complete (i.e. smooth-able) chirality 
changing transition involving fibral curves.

We should emphasize that the above geometry is by no means general and many choices were 
made for simplicity of computation. None-the-less, it serves to illustrate that the existence of 
fibral divisors in the elliptically fibered CY 3-fold will make new forms of small instantons pos-
sible. In particular, the example above is a chirality changing transition that is unique compared 
to those classified in [18] for Weierstrass form (in which “vertical” transitions changed only the 
gauge group and “horizontal” curves led to chirality change). In this example we find chirality 
change from new vertical curves for the 5-brane to wrap and the gauge group remains unchanged 
even though C1 is a vertical curve.

8. Reducible spectral covers and obstructions to smoothing

As illustrated by the examples in Section 6, there are many limitations to the analysis that 
we completed in Sections 2 to 4. First, the Picard number of the spectral cover maybe larger 
1 +h1,1(B2) generically. This corresponds to spectral surfaces in which there exist more divisors 
than those inherited from the ambient Calabi-Yau threefold. Moreover, it is known that at higher 
co-dimensional loci in moduli space, this Picard group can in fact jump [55]. Second, as seen in 
the examples in previous sections, the spectral cover can be singular, and therefore one cannot 
predict the general form of ch(iS∗L).

In these cases it may be possible to choose special sheaves L that “obstruct” the deformation 
of the spectral cover to a smooth one. In other words, the corresponding vector bundles lands on 
a different component20 than the one that is analyzed in [3,8]. In this section we briefly outline 
how such a situation might be realized in the case that spectral cover is reducible but reduced. 
This analysis bears some similarity to examples analyzed in [56].

We begin with the spectral data (L, S) of a bundle V defined over a Weierstrass CY threefold 
π : X → B , where

S := S1 ∪
 S2, (8.1)

0−→ L1 −→ L −→ L2 −→ 0. (8.2)

As usual

20 Note that this cannot happen for a vector bundle over an elliptically fibered K3 surface. This phenomenon only 
appears for CY manifolds of complex dimension 3 or higher.
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ch(V ) = N − (ση + ω) + 1

2
c3(V ), (8.3)

−ch(�(V )) = ch(L) = (Nσ + η) + (Nσ + η)(−c1(B)

2
) +

(
1

6
nc1(B)2 − ω

)
. (8.4)

Now we assume that

[S1] = n1σ + η1, (8.5)

[S2] = n2σ + η2, (8.6)

N = N1 + N2, (8.7)

η = η1 + η2. (8.8)

With these assumptions, the general for c1(L1) and c1(L2) are given below,

c1(L1) = 1

2
(−c1(B) + [S1]) + γ1 + α1[S2], (8.9)

c1(L2) = 1

2
(−c1(B) + [S2]) + γ2 + α2[S1], (8.10)

γi = λi(Niσ − ηi + Nic1(B)), (8.11)
1

2
c3(V ) =

∑
i

Niλiηi(ηi − Nic1(B)). (8.12)

The main difference of the equations above with the standard one is the existence of the terms 
α1[S2] and α2[S1]. For consistency we demand,

α1 + α2 = 0. (8.13)

Note the existence of such terms implies (Li , Si) are spectral data of vector bundles Vi with first 
Chern class,

c1(Vi) = αi(N1η2 + N2η1 − N1N2c1(B)). (8.14)

It is next possible to compute ω as before,

1

6
Nc1(B)2 − ω =

Nc1(B)2

8
+ c1(B)2

24
(N3

1 + N3
2 ) + 1

8
(N1η1(η1 − N1c1(B)) + N2η2(η2 − N2c1(B)))

+ 1

2
π1∗γ 2

1 + 1

2
π2∗γ 2

2

+ 1

2

 ·

(
α2
1[S2] + α2

2[S1] + 2α1γ1 + 2α2γ2

)
. (8.15)

After some algebra it can be shown that only for α1 = −α2 = ± 1
2 can the above equation be 

simplified to,

1

6
Nc1(B)2 − ω =

Nc1(B)2

8
+ c1(B)2

24
N3 + 1

8
Nη(η − Nc1(B))

+ 1

2
π1∗γ 2

1 + 1

2
π2∗γ 2

2

+ 
 · (α1γ1 + α2γ2) . (8.16)
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This is almost the same as the standard formula expected from Section 2 if there exists a λ such 
that

1

2
π∗γ 2 =

1

2
π1∗γ 2

1 + 1

2
π2∗γ 2

2 +

 · (α1γ1 + α2γ2) . (8.17)

We come now to our central claim in this section:

If the restriction of L on 
 is a trivial line bundle, then it is always possible to deform the 
“singular” spectral data to a “smooth” spectral data, such that it satisfies the generic formulae 
expected in (2.37) – (2.39). Otherwise it is impossible (generically). In particular if the restriction 
is a non-trivial degree zero line bundle, the deformation is obstructed.

First note that if L is defined as

0−→ L1 −→ L −→ L2 −→ 0, (8.18)

the restriction of L on S1 and S2 are

L1 ⊗ KS2 |S1 ,
L2, (8.19)

respectively. Therefore the line bundle induced over 
 lives in

Hom
(L2,L1 ⊗ KS2 |S1) 	 Ext1X(iS2∗L2, iS1∗L1), (8.20)

corresponding to extensions. Conversely, if we define L as,

0−→ L2 −→ L −→ L1 −→ 0, (8.21)

the restriction of L on S1 and S2 are

L2 ⊗ KS1 |S2 ,
L1, (8.22)

respectively. Therefore the line bundle induced over 
 lives in

Hom
(L1,L2 ⊗ KS1 |S2) 	 Ext1X(iS1∗L1, iS2∗L2), (8.23)

corresponding to the opposite extensions. If we rewrite the left hand side of (8.20) as,

H 0(
,F),

F := L1 ⊗L∗
2 ⊗ KS2 |S1 , (8.24)

then (8.23) can be written as,

H 0(
,F∗ ⊗ K
). (8.25)

Therefore we see21 if F 	O
, then both extensions are possible, and we can deform the spectral 
data to generic “smooth” one described in [3].

21 We could also choose F∗ ⊗ K
 	 O
. But since the analysis would run along very similar lines, we choose to just 
focus on the first case.
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We can indeed check that in this case there is a λ that satisfy (8.17). To show that we choose,

α1 = −α2 = −1

2
(8.26)

(the other choice corresponds to F ⊗ K
 	O
). Notice in this case if γ1 = γ2 as a divisor in X
then F 	O
. This constraint is equivalent to,

N1λ1 = N2λ2, (8.27)

η1λ1 = η2λ2. (8.28)

Let us look at (8.17) more closely,

1

2
λ2Nη(η − Nc1(B)) =

1

2
λ21N1η1(η1 − N1c1(B)) − 1

2
λ1N2η1(η1 − N1c1(B)) +

1

2
λ22N2η2(η2 − N2c1(B)) + 1

2
λ2N1η2(η2 − N2c1(B)). (8.29)

The second terms in the 2nd and 3rd line cancel. To find λ we choose an ansatz λ = αλ1λ2, and 
use the constraints above, we can see the solution is,

λ = λ1λ2

λ1 + λ2
. (8.30)

On the other hand if we request γ1 = γ2 only over 
, i.e.

S1 · S2 · γ1 = γ1|
 = γ2|
 = S1 · S2 · γ2, (8.31)

then it means F is an element of J (
) but it is not necessarily a trivial line bundle (as g(
) ≥ 1
generally). In this case there is no solution for � generally.

In summary then, we have seen in this section that the properties of reducible spectral covers 
may indeed be quite distinct from their smooth cousins.

9. Conclusions and future directions

In this work we have generalized the famous spectral cover construction of Friedman, Morgan 
and Witten [3,8,39] to the case of elliptic Calabi-Yau threefolds with higher rank Picard group 
(i.e. containing either fibral divisors or multiple sections to the elliptic fibration). In particular, 
the well-established work of [3,39] provided a simple formula for the Chern classes of bundles 
associated to smooth (i.e. reduced and irreducible) spectral covers in Weierstrass CY 3-folds:

c1(E) = 0 (9.1)

c2(E) = ησ − N3 − N

24
c1(B2)

2 + N

2

(
λ2 − 1

4

)
η · (η − Nc1(B2)) (9.2)

c3(E) = 2λση · (η − Nc1(B2)) (9.3)

In this work we have utilized the techniques of Fourier-Mukai functors to generalize these for-
mula to bundles defined over geometries with fibral divisors and higher rank Mordell-Weil. In 
the case of In type singular fibers we find that c1(E) and c3(E) are unchanged and in the case of 
I2 fibers we find a correction to the second Chern class of the form
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c2(E) = σ · η + ωstd + (ζ1 · S +
k∑

i=2

βi)
2 +

k∑
i=2

β2
i + ζ1 · D1 (9.4)

where D1 is the new fibral divisor, ζ1 is an effective class pulled back from the base, B2, βi are 
integers and the divisor S is a component of the discriminant locus of the fibration (supporting 
the I2 fibers) in the base. Here

ωstd = −N3 − N

24
c1(B2)

2 + N

2

(
λ2 − 1

4

)
η · (η − Nc1(B2)) (9.5)

Similarly, in the case of an additional, holomorphic zero section we find

c2(E) = σ · η − β1(η + ND11) · S1 +
(

ωstd − 1

2
β2
1 (η + ND11)S

2
1

)
f (9.6)

where β1 is integer, S1 is the Shioda map of the new section and D11 is a divisor in B2 determined 
by the triple intersection numbers involving the sections.

In the case that the additional sections are rational rather than holomorphic (and hence can 
wrap reducible components of fibers over higher-codimensional loci in the base), there remain 
open questions about how best to define a Fourier-Mukai functor that can accommodate the sin-
gular fibers (and a section which wraps some of them). As a result, we cannot yet determine how 
these topological formula will change. However, we are able to see in this case that interesting 
new results are possible since we expect not only the second Chern class, but the chiral index to 
change as well. We have outlined in this work several ways forward on this important problem 
and we hope to return to it in future work.

Within heterotic/F-theory duality, the constrained geometric arena –i.e. Weierstrass from for 
both the heterotic and F-theory Calabi-Yau backgrounds – has long been a frustrating obstacle to 
studying new phenomena. Within heterotic effective theories for example, there are a number of 
interesting effects that are believed to have interesting F-theory duals, including perhaps novel 
mechanisms for moduli stabilization such as the linking of bundle and complex structure moduli 
in the heterotic theory through the condition of holomorphy [57–60] and potentially new 4-
dimensional N = 1 dualities including heterotic threefolds admitting multiple elliptic fibrations 
(and hence leading to multiple, related dual F-theory fourfolds) [61–63], the F-theory duals of 
heterotic target space duality [53] or F-theory duals [64,65] of known “standard model like” 
heterotic compactifications (including [66]). However in all cases, these theories have crucially 
involved decidedly non-Weierstrass geometry on the heterotic side. These questions have formed 
the motivation for the present work. We believe that here we have taken important first steps 
towards extending the geometries for which explicit heterotic/F-theory duals can be constructed.

There remain however, important open questions. First, as mentioned above, we require new 
and more robust tools to address the general case of a higher rank Mordell-Weil group with ratio-
nal generators studied in Section 5. In addition, as illustrated in the explicit examples constructed 
in Section 6 all the formulas we have derived in this work have been limited by the restriction 
of smoothness of the spectral cover. In general many examples in the literature (see e.g. [67]) 
have demonstrated that smooth vector bundles do not necessarily correspond to smooth spectral 
covers. Indeed, this observation has been a powerful tool in determining the effective physics of 
T-brane solutions in F-theory [68–71]. By placing the constraint of smoothness on the spectral 
data, we are clearly loosing information about general components of the bundle moduli space 
(as illustrated in Section 8). Finally, there remain interesting open questions about how to deter-
mine the full Picard groups of spectral covers (since these are surfaces of general type, this is a 



L.B. Anderson et al. / Nuclear Physics B 956 (2020) 115003 43
notoriously hard problem in algebraic geometry, see e.g. [72]) and a number of interesting possi-
bilities remaining to be explored related to higher co-dimensional behavior in moduli spaces (i.e. 
so-called “jumping” phenomena or Noether-Lefschetz problems [73]).

One approach to the problem of singular covers above might arise through a recursive ap-
proach. As noted above, the only general topological formulas derived (here and in the literature 
overall) are for vector bundles realized (modulo the Picard number problem) by smooth spectral 
covers. In the case that the spectral cover is a union of several components which can be smooth, 
or non reduced or vertical the main obstacle is providing a general form for the Chern charac-
ter of the spectral sheaf (which is clearly a hard problem in the algebraic geometry of singular 
surfaces). However, we might hope to avoid this difficult question by deriving a “recursive” al-
gorithm to resolve the singularities of the spectral cover that could work in general. For example, 
if the spectral cover is degenerate, it is still possible to find a locally free resolution (with length 
one) of the spectral sheaf. We might hope to use Fourier-Mukai transforms to study the vector 
bundles associated to this resolution. If one can argue that the “degree of the degeneracy” drops 
in each step, then this process will terminate at some point.

All of these problems deserve further attention and are necessary for a general study of het-
erotic/F-theory duality. We hope to continue to explore them in future work.
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Appendix A. Basics about derived category

Since the Fourier-Mukai functor, which we use a lot in this paper, is a special integral trans-
form, we devote this appendix on reviewing some key points about them. For more details, look 
at [4,34].

HomA First of all note that any functor between two categories F : A → B induces a map 
between the space of morphisms,

HomA(A,B) → HomB(F (A),F (B)), (A.1)

where A, B are arbitrary objects of the category A (i.e. the map is “functorial”). In case 
the categories are additive the set of morphisms form an abelian group, and in the cases 
we are concerned in this paper they are actually C-vector spaces. Abelian categories are 
particular additive categories that for any functor one can define kernel and cokernel. 
The specific category we need in this paper is Coh(X), i.e. the category of coherent 
sheaves over a variety X, and the categories derived from that.
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Fully faithful functor A functor F : A → B is called full if the map (A.1) is surjective and it 
is called faithful if it is injective. So a fully faithful functor induces an isomorphism in 
(A.1).

Left and right adjoint A functor G : B →A is a right adjoint of F :A → B, written as F � G

if

HomB(F (A),B) ∼ HomA(A,G(B)), (A.2)

where A ∈A and B ∈ B are any arbitrary object. In particular one can see

HomB(F (A),F (B)) ∼ HomA(A,GoF(B)).

Equivalence of categories A functor F : A → B is called equivalence if there are functors 
G, H : B → A such that they satisfy the functor isomorphisms GoF ∼ idA and 
FoH ∼ idB .

It is now easy to see [4] that if a functor is fully faithful and have both left and right 
adjoint then it is an equivalence.

Category of complexes Suppose A is an abelian category. Then one defines the category of 
complex C(A), which it’s objects are complexes of objects inA,

A• := · · · −→ Ai−1 di−1−→ Ai di−→ Ai+1 −→ . . . (A.3)

such that di ◦ di−1 = 0. The morphisms in C(A) between two objects h : A• → B• are 
defined by a collection of morphisms {hi} in A as,

. . . Ai−1 Ai . . .

. . . Bi−1 Bi . . .

hi−1

di−1
A

hi

di−1
B

(A.4)

which must be commutative. There are several remarks that must be mentioned,
i) One can define the shift functor, T : C(A) → C(A), naturally in this category as,

A•[1] := T (A•),
(A•[1])i = Ai+1, di

A•[1] = −di+1
A• . (A.5)

ii) As usual one can define cohomology for complexes,

Hi (A•) = Ker(di)

Im(di−1)
. (A.6)

Two complexes A•, B• are said to be Quasi Isomorphic if all of their cohomologies are 
isomorphic.

Derived category Roughly speaking, derived category is “derived” from the homotopy cate-
gory22 by localizing with the “ideal of quasi isomorphisms”. In other words Ob(D(A))

:= Ob(C(A)), and morphisms in D(A) between two objects A•, B• are like,

22 Homotopy Category is derived from category of complexes by taking quotient relative to the homotopy equivalence 
relation.
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C•

A• B•

qis f (A.7)

In general f is a general morphism in homotopy category. As a result if f is also 
a quasi isomorphism, then the corresponding morphism in the derived category is iso-
morphism. So in A, if cohomology of two complex is isomorphic, then the complexes 
themselves are isomorphic.

Note: From now on we restrict ourselves to bounded derived categories, Db(A), which 
it’s objects are isomorphic to complexes with bounded cohomology complexes.

Derived functor If a functor F : K(A) → K(B) between homotopy categories is compatible 
with quasi isomorphisms, i.e. it sends quasi isomorphisms to quasi isomorphisms (pr 
equivalently it sends acyclic complexes to acyclic complexes), then it naturally induces 
a functor on derived categories. But generally it may not happen, so one need to ‘derive’ 
a functor from F such that it is compatible with ‘localization’ of morphisms with quasi 
isomorphisms. This functor is called derived functor RF . Here we briefly describe the 
derived functors that we are going to use them in this paper. For general discussions the 
reader can consult with [34].

From now on, we restrict ourselves with categories of coherent sheaves Coh(X) and 
quasi coherent sheaves Qcoh(X) over a variety X. In particular it is possible to show 
[34]

Db
Coh(X)(Qcoh(X)) ∼ Db(Coh(X)), (A.8)

where the left hand side corresponds to the derived category of complexes of quasi co-
herent sheaves which their cohomologies are coherent sheaves. One define the bounded 
derived category of X as Db(X) := Db(Coh(X)).

Derived direct image Here the goal is to find the derived functor of f∗ : Coh(X) −→ Coh(Y )

induced from a projective (or at least proper) morphism of varieties f : X −→ Y .
If we have proper morphism of varieties f : X −→ Y , then the (right) direct image 

Rf∗ : Db(X) −→ Db(Y ) is defined in the following way,
1) For any complex of coherent sheaves A• with bounded cohomology, we have an 
injective resolution A• −→ I (A•).
2) Define

Rf∗(A•) := f∗(I (A•)),
Rif∗(A•) := Hi (f∗(I (A•))). (A.9)

Derived Hom functor and Ext groups Lets start by the following definition,

Definition A.1. A complex in I• ∈ C(Mod(X)) is called injective COMPLEX if the 
right exact functor Hom•

C(Mod(X))
(. . . , I•) : C(Mod(X)) −→ Ab maps any acyclic 

complex to another acyclic complex (or equivalently map any quasi isomorphism to 
another quasi isomorphism).

Now it can be proved a bounded bellow complex of injective sheaves is actually 
an injective complex. So as before for a complex A• one can define a resolution by 
injective objects B• → I•, and define



46 L.B. Anderson et al. / Nuclear Physics B 956 (2020) 115003
RHom•
C(Mod(X))(A

•, . . . ) : Db(X) −→ Db(Ab), (A.10)

RHomi
C(Mod(X))(A

•,B•) := Hi (HomC(Mod(X))(A
•,I•)). (A.11)

Without getting into more details, we state that relative to the first “variable” (i.e. A•), 
the functor defined above is consistent with the quasi isomorphisms. So if we consider 
RHom as a functor on the first variable, it naturally induces a well defied functor in the 
derived category. Therefore,

RHom : D0(X) × Db(X) −→ D(Ab), (A.12)

where D0(X) is the opposite category of D(X).

Definition A.2. ExtiD(X)(A
•, B•) := RiHom(A•, B•).

So far we only considered the global Hom functor, but in the case of sheaves one 
can define a local version [48]Hom,

RHomOX
: D0(X) × Db(X) −→ Db(X), (A.13)

and similar to the global version one has local “ext” sheaves,

ExtiOX
(A•,B•) := RiHomOX

(A•,B•). (A.14)

Derived tensor product Lets start by reviewing some standard facts,

i) For any sheaf A, the functor A ⊗ . . . is right exact, and A is flat if A ⊗ . . . is exact.
ii) For any coherent sheaf A, there is a flat resolution of finite length

· · · −→ F1 −→F0 −→ A −→ 0, (A.15)

where Fi ’s are flat sheaves.
iii) One can define the tensor product of two complexes A• ⊗ B• as a double complex.
iv) A flat complex is defined as complex P•, which the functor P• ⊗ . . . , maps acyclic 
complexes to acyclic complexes (or equivalently quasi isomorphism to quasi isomor-
phism).
v) A bounded above (in particular bounded) complex of flat sheaves is a flat complex. 
For a bounded complex of coherent sheaves, B•, then (using point (ii)) one can find a 
quasi isomorphism P• −→ B•. If P• is both flat and acyclic, then B• ⊗ P• is again 
acyclic for any complex B•.

As before one can define the derived tensor product as,

RFA• := A• ⊗L · · · : Db(X) −→ Db(X), (A.16)

RF i
A•(B•) =Hi (A• ⊗P•). (A.17)

Note that the process of defining derived tensor product is symmetric, and one could 

define it using the first variable. Also if there is a quasi isomorphism A• qis−→ B•, then 
we have a functor isomorphism FA• ∼ FB• . So naturally the derived tensor product 
descends to a well defined functor in derived category relative to the first variable,

· · · ⊗L · · · : Db(X) × Db(X) −→ Db(X). (A.18)
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Definition A.3.

T ori(A
•,B•) := H−i (A• ⊗L B•). (A.19)

Derived pullback Finally we are at the position to review the definition the left derived functor 
for the pullback of a morphism f : (X, OX) −→ (Y, OY ). As before, we recall some 
basic facts and then compare with the general definition.
i) Recall that the pull back of a sheaf under f is defined as,

f ∗(F) := OX ⊗f −1OY
f −1F . (A.20)

ii) There is a projective resolution for every coherent sheaf,

· · · −→ P1 −→ P0 −→F −→ 0. (A.21)

This induces a quasi isomorphism for any bounded complex of coherent sheaves (at 

least bounded above) one gets a quasi isomorphism P• qis−→ F•.

So by combining these facts and what we learned for derived tensor product we can 
write,

Lf ∗(F•) := OX ⊗L
f −1OY

f −1F•,

Lif
∗(F•) := H−i (f ∗(P•)). (A.22)

Important identities Here we collect the identities that are going to be useful in the calculations 
throughout this paper.

Lets start with following general theorem,

Theorem A.4. Suppose F : A −→ B and G : B −→ C be functors between abelian 
categories such that G(KF ) ⊂ KG (look at the definition of derived functors). Then one 
gets the following identity,

R(G ◦ F) = RG ◦ RF. (A.23)

This theorem looks pretty simple, but it allows us to combine derived functors. Ba-
sically it says there is a spectral sequence,

E
p,q

2 := RpG(Rq(F )) =⇒ E
p+q∞ := Rp+qG ◦ F. (A.24)

Here we review some of the applications. First lets consider the direct image of a 
bounded complex,

Rif∗(Hj (F•)) ⇒ Ri+j f∗F•. (A.25)

Obviously one can write a similar spectral sequence formula to compute the derived 
functor of complexes. Another example is the global section functor over a variety X, � :
Coh(X) −→ Ab. The direct images of this functor are just the cohomology of sheaves 
[48], i.e. Ri�(F) = Hi(X, F). Now let combine this with the direct image functor 
induced by a proper morphism f : X −→ Y ,
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�Y : Coh(Y ) :−→ point, �X = �Y ◦ f∗ : Coh(X) −→ point,

R�X(F) = R�Y ◦ Rf∗(F),

E
p,q
2 = Hp(Y,Rqf∗F) ⇒ E

p+q∞ = Hp+q(X,F). (A.26)

Last line is nothing but Leray spectral sequence. As the final example consider the 
relation between local extension Ext , and the global extension Ext ,

R� ◦ RHomOX
(F•,G•) = RHomDb(X)(F•,G•). (A.27)

In particular if we apply this to concentrated complexes at zero position (i.e. a single 
coherent sheaf), we get the following famous result,

Hi(X,Ext
j

OX
(F,G)) ⇒ Ext

i+j
X (F,G) (A.28)

Theorem A.5 (Base change formula). Consider the following commutative diagram of 
proper morphisms,

X X′

Y Y ′
f

g

f ′

g′

Then, in general, there is a morphism of functors,

Lf ′ ∗Rg′∗ −→ Rf∗Lg∗. (A.29)

In particular if f (g) is flat, then f ′ (g′) is flat, and the above morphism is actually 
isomorphism of functor.

One of the main properties of Fourier Mukai functor is its compatibility with the base 
change, and therefore the theorem above will be very useful.

Definition A.6 (Dualizing complex). Consider a proper morphism fX −→ Y , it’s dual-
izing complex is defined as,

HomDb(Y )(Rf∗F•,G•) = HomDb(X)(F•, f !G•). (A.30)

In particular it satisfies the identities,

f !G• = Lf ∗G ⊗L f !OY , (A.31)

X Y

Z

h

f

g s.t. h = g ◦ f =⇒ h! = f ! ◦ g!. (A.32)

So by the first identity one only needs to know the dualizing complex of morphism 
relative to the structure sheaf.

Definition A.7. A morphism is called Gorenstein if the dualizing complex is a concen-
trated complex, i.e. f !OY = �[k] for some k ∈Z.
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There two specific cases that will be useful for us in this paper,

Flat Fibration In this case f !OY = ωX/Y [n], where n is the relative dimension (i.e. 
the dimension of the fibers), and ωX/Y = ωX ⊗ f ∗ωY .

Complete intersection This is an inclusion morphism f : X ↪→ Y where X is a com-
plete intersection of varieties in Y . In this case f !OY = det (N )[−d], where 
N is the normal bundle, and d is the codimension of X is Y .

The definition above is called Grothendieck-Verdier duality, and it is a general form of 
Serre duality. There is also a local version of this duality,

RHomOY
(Rf∗F•,G•) = Rf∗RHomOX

(F•,Lf ∗G• ⊗L f !OY ). (A.33)

Definition A.8. One can define derived dual of a complex F• ∈ Db(X) as,

F•∨ := RHomOX
(F•,OX). (A.34)

Theorem A.9.

RHom(F•,G•) 	 RHom(OX,F•∨ ⊗L G•) 	F•∨ ⊗L G• (A.35)

Theorem A.10. Rf∗ � Lf ∗,

RHomDb(Y )(F•,Rf∗G•) 	 RHomDb(X)(Lf ∗F•,G•), (A.36)

RHomOY
(F•,Rf∗G•) 	 Rf∗RHomOX

(Lf ∗F•,G•). (A.37)

Theorem A.11 (Projection formula).

Rf∗(Lf ∗F• ⊗L G•) =F• ⊗L Rf∗G•. (A.38)

Theorem A.12. From A.5, and the commutative diagram bellow for a projective mor-
phism f ,

f −1(p) X

p Y

fp

if

f

i

(A.39)

we get the following results when F ∈ Coh(X). They will be very useful in many cases, 
and also give a rather clear intuitive picture about the direct images,

Li∗Rf∗F −→ Rfp∗(Li∗fF),

φj : (Li∗Rf∗F)j = T or
i−1OY−j (Rf∗F,Op) = Rjf∗F ⊗Op

−→ Hj(f −1
p (p), i∗fF). (A.40)

It is proved in [48] III.12.10 that φj is isomorphism if and only of it is surjective, and 
Rjf∗F is locally free if and only if φj−1 is surjective.
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Appendix B. Integral functors

In this section we briefly review the main features of integral functors, specially the Fourier 
Mukai functors which are the important special cases. (For more details, the interested reader 
can look at [34] and [4])

Definition B.1. Let Db(X) and Db(Y ) be the derived category of varieties X and Y . Consider 
the following morphisms,

X × Y

X Y

πX πY (B.1)

Then the integral functor �P•
X→Y is defined in the following way,

�P•
X→Y : Db(X) −→ Db(Y ),

�P•
X→Y (. . . ) := RπY∗(π∗

X(. . . ) ⊗L P•), (B.2)

where πX and πY are projections to the corresponding factors, and P• is the kernel of the trans-
form. Note that πX is a flat morphism, so Lπ∗

X = π∗
X .

23 In particular if the integral transform of 
a sheaf E (consider it as complex which is only non-zero at the zero entry, i.e. concentrated on 
the zero position) is concentrated on the ith position, it is called a WITi sheaf.

Note that any integral functor is a composition of three exact functors in derived categories, 
derived inverse image, derived tensor product and derived direct image. So �P•

X→Y is also an 
exact functor. In particular, to any short exact sequence there is an associated long exact sequence 
induced by that integral functor.

We are particularly interested in “relative” integral transforms. Suppose �K
X→Y : Db(X) −→

Db(Y ) be an integral transform, for any variety T , the corresponding relative integral functor 

(relative to T ) �
K•

T

X×T →Y×T is defined as

X × Y × T

X × T X × Y Y × T

πX×T πY×T
πX×Y

�
K•

T

T (. . . ) := RπY×T∗(π
∗
X×T (. . . ) ⊗L K•

T ),

K•
T := π∗

X×YK•. (B.3)

Now consider a morphism of varieties f : S −→ T , and the induced relative morphisms: 
fX : S × X −→ T × X and fY : S × Y −→ T × Y , then one can prove the following functorial 
isomorphism,

23 Such functors are quite similar to the familiar integral transform of functions. Remember that to find the integral 
transform of f (x) with x ∈ R1 we first consider it as a function in a product space R1 ×R1. This is similar to the pull 
back π∗

X
above. Then we multiply f (x) with a kernel K(x, y) which is the function in R1 ×R1, this part is similar to 

the tensor product in the formula above, finally we integrate over x, g(y) = ∫
dxf (x)K(x, y), which is analogues to the 

push forward RπY∗ .
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Lf ∗
Y �T (E•) 	 �S(Lf ∗

XE•), (B.4)

with E• ∈ Db(X × T ). In particular if jt : t −→ T be the inclusion of a point t , then the identity 
above gives,

Lj∗
t �T (E•) = �t(Lj∗

t E•). (B.5)

This has important consequences: first of all if E is a sheaf, one can prove (by checking the 
spectral sequences of the combined functors),

�
nm
t (j∗

t E) 	 j∗
t �

nm

T (E), (B.6)

where nm is the maximal integer that either �nm
t or �nm

T is non zero. Moreover, if both E and 
�i

T (E) are flat over T , then Et is WITi relative to �t if and only if E is WITi relative to �T . 
This is an important point, and when we want to describe the Fourier-Mukai transform of vector 
bundles which are unstable over some non generic elliptic fibers, or when we need to deal with 
general coherent sheaves, it is going to help us.

Finally we mention that there are similar result for non trivial fibration, which we discuss 
briefly later. For now, let’s move on to review Fourier-Mukai functors briefly.

Definition B.2. A Fourier Mukai functor is an integral functor which is also an exact equivalence.

Probably the first important point about Fourier-Mukai functors is that any equivalence can 
be written as Fourier-Mukai,

Theorem B.3 (Orlov’s representability theorem). Let X and Y be two smooth projective vari-
eties, and let

F : Db(X) −→ Db(Y )

be a fully faithful exact functor. If F admits right and left adjoint functors, then there exists an 
object P• ∈ Db(X ×Y) unique up to isomorphism such that F is isomorphic to a Fourier Mukai 
functor �P

X→Y .

There is a partial inverse to this theorem, due to Bondal and Orlov [34], which states when an 
integral functor is indeed fully faithful, i.e. it puts constraints over the kernel of the transform,

Theorem B.4. Let X and Y be smooth projective varieties. Consider �P•
X→Y : Db(X) −→ Db(Y )

with P• in Db(X×Y). Then �P•
X→Y is a fully faithful functor if and only if P• is a strongly simple 

object over X, i.e.

Homi
Db(Y )

(Lj∗
x1
P•,Lj∗

x2
P•) = 0 unless x1 = x2 and 0≤ i ≤ dimX; (B.7)

Hom0
Db(Y )

(Lj∗
xP•,Lj∗

xP•) =C. (B.8)

In addition, if Lj∗
xP• is a special object of Db(Y ), i.e. Lj∗

xP• ⊗KY 	 Lj∗
xP•, then �P•

X→Y is an 
equivalence.

In particular if both X and Y are both smooth Calabi-Yau varieties, and the kernel is a strongly 
simple object, then the corresponding integral functor is a Fourier-Mukai functor.
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It is worth to mention another very important property of Fourier-Mukai functors, and that is 
these kind of integral functors are sensitive to smoothness and “Calabi-Yau ness”, and dimension. 
In other words, if tow varieties X and Y are Fourier-Mukai partners (their derived category 
are equivalent), then X is smooth if and only if Y is smooth (this proved by Serre’s criterion 
on regular local rings of finite homological dimension), and X is Calabi-Yau if and only if Y
is Calabi-Yau (this is proved by using Grothendieck-Verdier duality), and both of them must 
have the same dimension. There are also other geometrical constraints which are induced by the 
equivalence condition, but we ignore them here.

We finish this section by quickly deriving the inverse transform of a Fourier-Mukai functor 
�P•

X→Y . Since for an equivalence of categories, the adjoint functor is actually the inverse functor, 
one can find it easily for the Fourier Mukai functor as follows,

RHomDb(Y )(�
P•
X→Y (F•),G•) = RHomDb(X×Y)(π

∗
XF•,π∗

YG• ⊗L P•∨ ⊗ π∗
XωX[n])

= RHomDb(X)(F•,RπX∗(π∗
YF• ⊗L P•∨ ⊗ π∗

XωX[n]))
= RHomDb(X)(F•,�P•∨⊗π∗

XωX[n]
Y→X (G•)), (B.9)

where F• and G• are generic objects of the derived category of varieties X and Y , n is the dimen-
sion of both X and Y ,24 and ωX is the canonical sheaf of X. Therefor the “inverse transform” is 
itself a Fourier Mukai functor,

�
P•∨⊗π∗

XωX[n]
Y→X . (B.10)
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