
 

Heterotic/heterotic and heterotic/F-theory duality

Lara B. Anderson,1,2,* He Feng,1,† Xin Gao,3,4,‡ and Mohsen Karkheiran1,2,§
1Department of Physics, Robeson Hall, Virginia Tech, Blacksburg, Virginia 24061, USA

2Simons Center for Geometry and Physics, Stony Brook, New York 11794, USA
3Dipartimento di Fisica, Universita di Roma “Tor Vergata”, Rome 00133, Italy

4INFN Sezione di Roma “Tor Vergata”, Rome 00133, Italy

(Received 23 July 2019; published 12 December 2019)

We consider heterotic target space dual (0,2) gauged linear sigma models on elliptically fibered Calabi-
Yau manifolds. In this context, each half of the “dual” heterotic theories must in turn have an F-theory dual.
Moreover, the apparent relationship between two heterotic compactifications seen in (0,2) heterotic target
space dual pairs should, in principle, induce some putative correspondence between the dual F-theory
geometries. It has previously been conjectured in the literature that (0,2) target space duality might manifest
in F-theory as multiple K3 fibrations of the same elliptically fibered Calabi-Yau manifold. We investigate
this conjecture in the context of both six-dimensional and four-dimensional effective theories and
demonstrate that, in general, (0,2) target space duality cannot be explained by such a simple phenomenon
alone. In all cases, we provide evidence that nongeometric data in F-theory must play at least some role in
the induced F-theory correspondence while leaving the full determination of the putative new F-theory
duality to future work.

DOI: 10.1103/PhysRevD.100.126014

I. INTRODUCTION

Heterotic target space duality was first observed in [1]
and further explored in [2–6]. The basic premise is simple
to state: Two distinct (0, 2) gauged linear sigma model
(GLSMs) sharing a nongeometric (i.e., Landau-Ginzburg
or hybrid) phase can be found to have apparently identical
four-dimensional, N ¼ 1 target space theories. In these
cases, the GLSMs are distinct and the geometric phases of
the two theories lead to manifestly different Calabi-Yau
manifolds and vector bundles over them. However, the
ensuing four-dimensional theories, arising as large volume
compactifications of the E8 × E8 heterotic string, contain at
least the same gauge symmetry and four-dimensional
massless particle spectrum. Although not yet understood
as a true string duality, this phenomenon has been referred
to as (0, 2) target space duality (TSD) [1]. A more recent
“landscape” survey of such theories [3,6] showed that it is
not just in special cases that such dualities can occur; rather
it is the vast majority of (0, 2) GLSMs containing

nongeometric phases that can be linked to other (0, 2)
GLSMs in this way. Moreover, recent work [2] demon-
strated that in some cases TSD also seems to preserve the
form of nontrivial D- and F-term potentials of the four-
dimensional theory to a remarkable degree.
In thiswork,we aim to further explore the consequences of

target spaceduality in the context of yet another duality—that
between heterotic string compactifications and F-theory. As
has been observed since the first investigations into TSD
[4,7], this nontrivial duality of distinct heterotic backgrounds
could potentially also lead to an entirely newduality structure
within F-theory. Since heterotic and F-theory vacua consist
of two of the most promising frameworks for string model
building within four-dimensional string compactifications, it
make sense to search for such novel and unexplored dualities
to better understand redundancies within the space of such
theories. In addition, if new dualities exist, they could also
provide deep insight into the structure of the effective
physics, or perhaps even new computational tools (as has
manifestly proved to be the case with mirror symmetry in
type II compactifications of string theory; see, e.g., [8]).
Compactifications of the heterotic string and F-theory can

lead to identical effective theories in the situation inwhich the
background geometries of the two theories both exhibit
fibration structures [9]. Namely, heterotic string theory
compactified on aCalabi-Yaun-foldwith an elliptic fibration

πh∶ Xn→
E
Bn−1 ð1:1Þ

*lara.anderson@vt.edu
†fenghe@vt.edu
‡xingao@roma2.infn.it
§mohsenka@vt.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 126014 (2019)

2470-0010=2019=100(12)=126014(28) 126014-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.126014&domain=pdf&date_stamp=2019-12-12
https://doi.org/10.1103/PhysRevD.100.126014
https://doi.org/10.1103/PhysRevD.100.126014
https://doi.org/10.1103/PhysRevD.100.126014
https://doi.org/10.1103/PhysRevD.100.126014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


over a base manifold Bn−1 leads to the same effective
physics as F-theory compactified on a Calabi-Yau (nþ 1)-
fold with a K3 fibration over the same base manifold, Bn−1:

πf∶ Ynþ1→
K3
Bn−1: ð1:2Þ

In order to have a well-defined F-theory background, the
(nþ 1)-fold Ynþ1 must also be elliptically fibered, with
compatible elliptic=K3 fibrations [9,10].
In the context of (potential) heterotic/heterotic dualities

and heterotic/F-theory duality then, there are a number of
natural questions that arise. Suppose that ðX3; π∶V → X3Þ
and ðX̃3; π∶Ṽ → X̃3Þ are the requisite background
geometries (i.e., manifolds, vector bundles) defining two
TSD heterotic theories. Then these questions include the
following.
(a) Can target space dual pairs be found in which both X

and X̃ are elliptically fibered as in Eq. (1.1)? In
principle, these two fibrations need not be related in
any obvious way, for example, two topologically
distinct Calabi-Yau (CY) threefolds π∶X3 → B2 and
π̃∶X̃3 → B̃2, with distinct (complex) two-dimensional
base manifolds B2, B̃2 to their fibrations.

(b) If such elliptically fibered CY threefold geometries
can be found within a TSD pair, this will, in principle,
lead to two CY fourfolds, Y4 and Ỹ4, as dual back-
grounds for F-theory. It should follow by construction
that these two geometries lead to the same four-
dimensional effective theory (or at least the same
massless spectrum). How can this apparent duality be
understood in the context of F-theory? How are Y4 and
Ỹ4 related?

For the first point, to our knowledge, no explicit pairs of
elliptically fibered TSD heterotic geometries have yet
appeared in the literature. However, at least one proposal
for the latter point has been posited. In [3], it was proposed
that if fibered heterotic TSD pairs could be found, one
possibility for the induced duality in F-theory would be the
existence of a CY fourfold with a single elliptic fibration
but more than one K3 fibration,

where each fibration can be seen as the F-theory dual of one
of the heterotic vacua [associated with (X; V) or ðX̃; ṼÞ,
respectively]. Since, by its very definition, F-theory
requires that Y4 is also elliptically fibered, this would
imply that each K3 fiber appearing above is itself also
elliptically fibered. Moreover, since the elliptic fibration of
F-theory that determines the effective physics (i.e., gauge
symmetry, matter spectrum, etc.), in order for the two K3

fibrations to lead to identical effective theories, it would be
expected that in fact in this scenario, Y4 has only one
elliptic fibration, but that it is compatible with two distinct
K3 fibrations. If these compatible fibration structures were
to exist, it must be that the base of the elliptic fibration,
ρ∶Y4 → B3, must have two different P1 fibrations:

The scenario above is one obvious way in which a
“duality” of sorts could arise in F-theory. Of course, in
this case, the essential F-theory geometry is not changing,
only the K3 fibrations which determine the heterotic
dual. This is clearly not the only possibility. As one
alternative, it could prove that the F-theory duals of
heterotic TSD pairs are in fact two distinct CY fourfolds,
Y4 and Ỹ4, whose gauge symmetries, massless spectra, and
effective N ¼ 1 potentials are ultimately the same through
nontrivial G-flux in the background geometry. We can
summarize these two options for the induced duality in
F-theory as follows.
(1) (Possibility 1) Heterotic TSD ⇔ multiple K3 fibra-

tions in a single F-theory geometry (and hence
manifestly leading to the same effective physics).

(2) (Possibility 2) Heterotic TSD⇔ two distinct pairs of
manifolds and G-flux, ðY4; G4Þ and ðỸ4; G̃4Þ, which
lead to the same effective physics in F-theory.

In this work, we investigate the two questions listed
above and provide explicit examples of heterotic target
space dual pairs with the requisite fibration structures to
lead to F-theory dual theories. As we will outline in the
following sections, substantial technical difficulties arise in
explicitly computing the full F-theory duals of these
heterotic theories. In this work, we do not attempt to fully
determine these dual F-theories and instead provide
evidence for our primary conclusion:Multiple fibrations in
F-theory cannot, in general, explain the dual physics of
(0, 2) TSD.

To overcome some of the technical obstacles of heterotic/
F-theory duality, we begin our analysis by actually con-
sidering heterotic/F-theory dual pairs in six-dimensional
effective theories rather than in four dimensions. In this
context, the heterotic duality is a trivial one—TSD pairs
simply generate two bundles over K3 with the same second
Chern class and are thus trivially guaranteed to give rise to
the same massless spectrum (see, e.g., [11]). However, this
very simple framework for heterotic TSD pairs allows us to
explicitly perform Fourier-Mukai transforms to render the
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data of a holomorphic, stable vector bundle over K3 into its
spectral cover [12]. With this data, we are able to explicitly
construct examples of F-theory duals and verify that in fact
they cannot arise as multiple K3 fibrations of a CY
threefold, Y3, determining an F-theory background. The
results of this study are presented in Sec. V.
Turning once more to our primary area of interest in

N ¼ 1 and heterotic compactifications on CY threefolds,
we outline the essential ingredients determining the dual
F-theory geometry. We find that, in general, a number of
technical tools are missing for fully determining the F-
theory physics. Some of these we have developed and will
appear separately [13,14], while others we leave to future
work. However, we are able to indicate that, in general, the
intermediate Jacobians of the dual F-theory geometries
must play some role in the new “F-theory duality”, what-
ever it may prove to be. This leads to the presence of
essential data associated not with the complex structure of
the CY fourfold alone, but with G-flux as well. In the
singular limit, such fluxes are well known to have the
potential to dramatically change the effective physics
through so-called T-brane solutions [15–17] and other
possibilities.
In the following sections, we will explore these ideas in

detail. The paper is organized in the following way. In
Sec. II, we review briefly the essential aspects of (0,2)
target space duality. In Sec. III, we provide the first
nontrivial examples to appear in the literature of heterotic
TSD pairs in which both CY threefolds, X and X̃, are
elliptically fibered. In these cases, the heterotic geometries
are smooth [consisting of smooth so-called complete
intersection Calabi-Yau (CICY) threefolds [18] and stable,
holomorphic vector bundles defined via the monad con-
struction [19] over them] and lead to well controlled,
perturbative heterotic theories. However, we will demon-
strate in this and subsequent sections that existing tech-
niques in the literature to determine dual F-theory
geometries, as outlined in Sec. VI, are insufficient to
determine the geometry of Y4 and Ỹ4 in these cases.
However, we nonetheless still find some evidence indicat-
ing that multiple fibrations of Y4 cannot be the
F-theory manifestation of (0,2) TSD.
To make concrete the dual F-theory geometry, we move

to six-dimensional examples in Sec. V. More precisely, we
consider heterotic TSD theories consisting of pairs of
bundles over K3 in which the second Chern class of both
V and Ṽ is taken to be 12. In this case, it is possible that the
F-theory geometry Y3 is multiply fibered as described
above. However, after finding the spectral data (i.e., the
Fourier-Mukai transform) of these bundles, we can
explicitly construct the dual F-theory geometry and find
that it does not, in general, agree with what can be
obtained by multiple fibrations. We will argue further
that the F-theory “image” of target space duality under the

heterotic/F-theory map should not be purely geometric,
even in six dimensions, but rather it can be related to
the intermediate Jacobian of the CY threefold. With these
tools and observations in hand, we return to the F-theory
duals of four-dimensional, N ¼ 1 heterotic theories
in Sec. VI.
Finally, in the Appendixes, we consider a handful of

examples illustrating both the range of possibilities arising
in heterotic TSD dual geometries and potential pitfalls that
can arise in constructing dual pairs.

II. A BRIEF REVIEW OF (0,2) TARGET
SPACE DUALITY

Heterotic target space duality is best understood in the
context of heterotic string compactifications associated
with (0,2) GLSMs. It was first observed by Distler and
Kachru in 1995 [1], and further studied by Blumenhagen
[4,5] with a later landscape study [3]. The GLSM provides
a description of the complexified compact stringy Kähler
moduli space which is divided into various phases [20]. The
freedom to vary a Fayet-Iliopolos parameter links a variety
of distinct phases including the geometric phases (asso-
ciated with target space geometries like Calabi-Yau three-
folds X and holomorphic vector bundles V), nongeometric
phase (commonly a Landau-Ginzburg phase), and a rich
variety of hybrid phases. Described in the (0,2) GLSM
language, target space duality is realized by exchanging
two certain types of charges in theory, which is defined by
(X; V) in the geometric phase, to give a different configu-
ration ðX̃; ṼÞ from the original one while leaving the
superpotential invariant and sharing a common Landau-
Ginzburg phase. Meanwhile, in the geometric phases, this
pair of theories, (X; V) and ðX̃; ṼÞ, preserve the net number
of moduli and the complete charged and singlet particle
spectra.
In an Abelian GLSM, there exist multiple Uð1Þ gauge

fields AðαÞ with α ¼ 1;…; r, two sets of chiral superfields

as fXiji ¼ 1;…; dg with Uð1Þ charges QðαÞ
i , and fPljl ¼

1;…; γg with Uð1Þ charges −MðαÞ
l . Furthermore, there are

two sets of Fermi superfields: fΛaja ¼ 1;…; δg with

charges NðαÞ
a , and fΓjjj ¼ 1;…; cg with charges −SðαÞj .

These charges are given in order to realize the Calabi-Yau
manifolds as complete intersection hypersurfaces in ambi-
ent space (CICY) and stable, holomorphic vector bundles
over them in some geometric phase. As a result, we will

require the charges QðαÞ
i ≥ 0, and for each i, there exists at

least one r such that QðαÞ
i > 0. A similar assumption of

(semi)positivity will also hold for the charges SðαÞj andMðαÞ
l .

However, in some cases, we will consider solutions in

which charges NðαÞ
a may be negative. Then the field content

and charges of GLSM can be summarized in the following
“charge matrix”:
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xi
������ Γj

Qð1Þ
1 Qð1Þ

2 … Qð1Þ
d

Qð2Þ
1 Qð2Þ

2 … Qð2Þ
d

..

. ..
. . .

. ..
.

QðrÞ
1 QðrÞ

2 … QðrÞ
d

���������������

���������������

−Sð1Þ1 −Sð1Þ2 … Sð1Þc

−Sð2Þ1 −Sð2Þ2 … Sð2Þc

..

. ..
. . .

. ..
.

−SðrÞ1 −SðrÞ2 … SðrÞc

Λa
������ pl

Nð1Þ
1 Nð1Þ

2 … Nð1Þ
δ

Nð2Þ
1 Nð2Þ

2 … Nð2Þ
δ

..

. ..
. . .

. ..
.

NðrÞ
1 NðrÞ

2 … NðrÞ
δ

���������������

���������������

−Mð1Þ
1 −Mð1Þ

2 … −Mð1Þ
γ

−Mð2Þ
1 −Mð2Þ

2 … −Mð2Þ
γ

..

. ..
. . .

. ..
.

−MðrÞ
1 −MðrÞ

2 … −MðrÞ
γ

ð2:1Þ

We can denote such a starting point in the geometric
phase as

VN1;…;Nδ
½M1;…;Mγ� → PQ1;…Qd

½S1;…; Sc�: ð2:2Þ

Here the anomaly cancellation condition requires the
following linear and quadratic constraints for all
α; β ¼ 1;…; r:

Xδ

a¼1

NðαÞ
a ¼

Xγ
l¼1

MðαÞ
l ;

Xd
i¼1

QðαÞ
i ¼

Xc
j¼1

SðαÞj ;

Xγ
l¼1

MðαÞ
l MðβÞ

l −
Xδ
a¼1

NðαÞ
a NðβÞ

a ¼
Xc
j¼1

SðαÞj SðβÞj −
Xd
i¼1

QðαÞ
i QðβÞ

i :

ð2:3Þ

GLSM is further described by a superpotential and a scalar
potential, while the scalar potential has contributions from
the F-term and D-term,

S ¼
Z

d2zdθ
�X

j

ΓjGjðxiÞ þ
X
l;a

PlΛaFl
aðxiÞ

�
;

VF ¼
X
j

jGjðxiÞj2 þ
X
a

j
X
l

plFl
aðxiÞj2;

VD ¼
Xr
α¼1

�Xd
i¼1

QðαÞ
i jxij2 −

Xγ
l¼1

MðαÞ
l jplj2 − ξðαÞ

�
2

; ð2:4Þ

where the functions Gj and Fl
a are quasihomogeneous

polynomials with degrees shown in the following matrix:

Gj

S1 S2 … Sc

Fa
l

M1 −N1 M1 −N2 … M1 −Nδ

M2 −N1 M2 −N2 … M2 −Nδ

..

. ..
. . .

. ..
.

Mγ −N1 Mγ −N2 … Mγ −Nδ

ð2:5Þ

Furthermore, the function Fl
a will be chosen to satisfy a

transversality condition such that Fl
aðxÞ ¼ 0 only when

xi ¼ 0 for i ¼ 1;…; d.
The ξðαÞ ∈ R in the D-term potential is the Fayet-

Iliopoulos parameter which determines the structure of the
vacuum. From Witten’s original paper [20], consider the
simple case with only one Uð1Þ so there is only one ξ: If
ξ > 0, then it is the geometric phase, described by a vector
bundle over a Calabi-Yaumanifold,VN1;…;Nδ

½M1;…;Mγ� →
X ≡ PQ1;…;Qd

½S1;…; Sc�, where the Calabi-Yau manifold is
defined by complete intersection hypersurfaces in weighted
projective space, i.e., CICY X ¼ ∩c

j¼1 Gj with GjðxiÞ ¼ 0,
and the vector bundle is defined by

V ¼ kerðFl
aÞ

imðEa
i Þ

; ð2:6Þ

with rank rkðVÞ ¼ ðδ − γ − rVÞ through the monad on X:

0 → O⊕rV
X !E

a
i ⨁

δ

a¼1

OXðNaÞ!F
l
a ⨁

γ

l¼1

OXðMlÞ → 0: ð2:7Þ

If ξ < 0, then it is the Landau-Ginzburg phase described
by a superpotential,

Wðxi;Λa;ΓiÞ ¼
X
j

ΓjGjðxiÞ þ
X
a

ΛaFaðxiÞ; ð2:8Þ

where it would be a hybrid-type nongeometric phases if
there are multiple Uð1Þ’s.
Now let us move to the target space duality. The first

observation is that an exchange/relabeling of Gj ’s and Fa’s
will leave the superpotential (2.8) invariant. This observa-
tion indicates that two distinct GLSMs could “share” a
nongeometric phase in which the original role ofGj and Fa

is obscured. So the full procedure of a target space dual
would be starting from a geometric phase, going to a
Landau-Ginzburg phase, doing a rescaling/relabeling of the
fields, and going back to the geometric phase to get a new
Calabi-Yau/vector bundle configuration.
If the Landau-Ginzburg phase exists, then the rescaling

procedure is as follows, for a nonvanishing pl and all
i ¼ 1;…; k:
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Λ̃ai ≔
Γji

hpli
; Γ̃ji ¼ hpliΛai ; ð2:9Þ

kΛ̃aik¼kΓjik−kPlk; kΓ̃jik¼kΛaikþkPlk; ð2:10Þ

with
P

i kGjik ¼ P
i kFai

lk for anomaly cancellation. One
thing to notice is that exchanging only one F with one G
does nothing. So in all examples, two or more Fa’s are
exchanged with two or more Gj’s. It is clear that the
“relabeling” of fields at the shared Landau-Ginzburg point
can mix the degrees of freedom (d.o.f.) in h2;1ðXÞ and
h1ðX;End0ðVÞÞ in the target space dual. In the landscape
[3], the dual sides match in the number of charged matter,
and the total number of massless gauge singlets, where the
individual number of complex, Kähler, and bundle moduli
are interchanged as

h�ðX;∧k VÞ ¼ h�ðX̃;∧k ṼÞ; k ¼ 1; 2;…; rkðVÞ;
h2;1ðXÞ þ h1;1ðXÞ þ h1XðEnd0ðVÞÞ

¼ h2;1ðX̃Þ þ h1;1ðX̃Þ þ h1XðEnd0ðṼÞÞ: ð2:11Þ

Furthermore, more general target space duality are
possible such that it can also change the dimension of
h1;1ðX̃Þ. For example, if there is only one column in G,
which is not enough to make the exchange, then a blowup
of P1 on the manifold will help. This procedure leads to a
dual model with an additionalUð1Þ action. In this case, it is
necessary to rewrite the initial GLSM in an equivalent/
redundant way. It is always possible to introduce into the
GLSM a new coordinate (i.e., a new Fermi superfield) y1
with multidegree B and a new hypersurface (i.e., a chiral
superfield with an opposite charge of the new Fermi
superfield) GB corresponding to a homogeneous polyno-
mial of multidegree B. Similar to Eq. (2.2), the above
addition can be written

VN1;…;Nδ
½M1;…;Mγ� → PQ1;…;Qd;B½S1;…; Sc;B�; ð2:12Þ

and the matrix form of such an intermediate step should be

x1 … xd y1 y2
������ Γ1 … Γc ΓB

0 … 0 1 1
������ 0 … 0 −1

Q1 … Qd B 0
������ −S1 … −Sc −B

Λ1 Λ1 … Λδ
������ p1 p2 … pγ

0 0 … 0
������ −1 0 … 0

N1 N2 … Nδ

������ −M1 −M2 … −Mγ

ð2:13Þ

Suppose that in an example there are two chosen map
elements F1

1 and F1
2 that have been chosen to be

interchanged with a defining relation S1. In this case, we
can choose the redundant new coordinate, y1, to have
charge

kBk ¼ kF1
1k þ kF1

2k − S1: ð2:14Þ

For the initial configuration, kG1kþkG2k¼kF1
1kþkF1

2k,
where G1, G2 are S1, B. Under the relabelings required in
Eq. (2.9), one can choose

Ñ1 ¼ M1 − S1; Ñ2 ¼ M1 − B;

S̃1 ¼ kF1
1k; B̃ ¼ kF1

2k: ð2:15Þ

Applying the field redefinitions in Eq. (2.15), we arrive at
last at the new configuration,

x1 … xd y1 y2
������ Γ̃1 … Γc Γ̃B

0 … 0 1 1
������ −1 … 0 −1

Q1 … Qd B 0
������ −ðM1−N1Þ … −Sc −ðM1−N2Þ

Λ̃1 Λ̃1 … Λδ
������ p1 p2 … pγ

1 0 … 0
������ −1 0 … 0

M1−S1 M1−B … Nδ

������ −M1 −M2 … −Mγ

ð2:16Þ

In subsequent sections, we will primarily consider
examples of the latter kind in which all three types of
singlet moduli—Kähler, complex structure, and bundle
moduli—are interchanged in the target space duality
procedure. We next turn to such an example in which
both X and X̃ are elliptically fibered.

III. A TARGET SPACE DUAL PAIR
WITH ELLIPTICALLY FIBERED
CALABI-YAU THREEFOLDS

Before we can begin investigating the consequences of
(0,2) target space duality for F-theory, a nontrivial first step
is to establish whether examples exist in which both halves
of a TSD pair in turn lead to F-theory dual geometries. In
this section, we explicitly provide a first example of such
a pair.
In the following example, we will find that the CY

manifolds, X and X̃, consist of two CICY threefolds
[18,21], each of which is fibered over (a different) complex
surface B2. These two CICY threefolds are related by a
conifold transition [21] and can be constructed via the
target space duality algorithm in which an additional Uð1Þ
symmetry is added to the dual GLSM as in Sec. II.
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A. A tangent bundle deformation

To investigate these results, a simple starting point is
given below—a dual pair for which the Calabi-Yau mani-
folds, X and X̃, are related by a conifold transition.
Consider the following CICY threefold, described by a
so-called configuration matrix [21]:

X ¼

2
664
P1 1 1

P2 1 2

P2 1 2

3
775: ð3:1Þ

Here the columns indicate the ambient space (a product
of complex projective spaces) and the degrees of the
defining equations in that space. The Hodge numbers
are h1;1ðXÞ ¼ 3 and h2;1ðXÞ ¼ 60. Over this manifold,

we choose a simple vector bundle built as a deformation of
the holomorphic tangent bundle to X. In this case, we will
choose this bundle to be a rank 6 smoothing deformation of
the reducible bundle,

Vred ¼ O⊕3 ⊕ TX: ð3:2Þ

The smooth, indecomposable bundle will be defined1 as a
kernel V ≡ kerðFl

aÞ via the short exact sequence

0 → V → ⨁
δ

a¼1

OMðNaÞ!F
l
a ⨁

γ

l¼1

OMðMlÞ → 0; ð3:3Þ

which is the simple case of Eq. (2.7) when Ea
i ¼ 0.

In the language of GLSM charge matrices, the manifold
and rank 6 monad bundle (X; V) are given by the following
charge matrix:

xi
��� Γj

������ Λa
��� pl

1 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 1 1 1

��������
−1 −1
−1 −2
−1 −2

��������

��������
1 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 1 1 1

��������
−1 −1
−1 −2
−1 −2

ð3:4Þ

The reason that this rank 6 bundle makes for a particularly
simple choice of gauge bundle is that in this case the GLSM
charges associated with the manifold and the bundle are
identical (as can be seen above). As a result, anomaly
cancellation conditions such as the requirement that

c2ðTXÞ ¼ c2ðVÞ ð3:5Þ

[realized as Eq. (2.3) in the GLSM] are automatically
satisfied.
Expanding the second Chern class of the manifold in a

basis of f1; 1g forms Jr, r ¼ 1;…; h1;1, we have

c2ðTXÞ ¼ 3J1J2 þ J22 þ 3J1J3 þ 5J2J3 þ J23: ð3:6Þ

Following the standard (0,2) target space duality pro-
cedure, it is easy to produce the TSD geometry (X̃, Ṽ). In
this case, the duals we consider mix all three types of
heterotic geometry moduli and induce an additional Uð1Þ
gauge symmetry in the GLSM. As an intermediate step,
we form the equivalent GLSM charge matrix with an
additional Uð1Þ outlined in Sec. II (choosing B ¼ 0)
and introduce a repeated entry in the monad bundle
charges which does not change either the geometry of
GLSM field theory.2 This leads us to the following charge
matrix with a new P1 row and a new column ΓB as
in Eq. (2.13):

xi
��� Γj

������ Λa
��� pl

1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1

���������

0 −1 −1
0 −1 −2
0 −1 −2
−1 0 0

���������

���������

1 1 0 0 0 0 0 0 1

0 0 1 1 1 0 0 0 2

0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0

���������

−1 −1 −1
−1 −2 −2
−1 −2 −1
0 −1 0

ð3:7Þ

1See [22] for discussions of this deformation problem and local moduli space.
2See [3] for details of this argument.
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Finally, we can perform the field redefinitions in this
intermediate geometry to obtain the final TSD. Here we
choose two map elements—in this case, F2

8 and F2
9—to be

interchanged with a defining relation G2 with degree
kS2k ¼ f1; 2; 2g. Such a choice satisfies the linear anomaly
cancellation (2.14) since kS2k þ 0 ¼ kF2

8k þ kF2
9k. In the

intermediate configuration, applying the field redefinitions
(2.15) gives

Ñ8 ¼ M2 − S2 ¼ 0; Ñ9 ¼ M2;

S̃2 ≔ F2
9; B̃ ≔ F2

8: ð3:8Þ

This leads us at last to the dual charge matrix associated
with (X̃, Ṽ) with h1;1ðX̃Þ ¼ 4 and h2;1ðX̃Þ ¼ 60:

xi
��� Γj

������ Λa
��� pl

1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1

���������

0 −1 −1
0 −1 −2
−1 −1 −1
−1 0 −1

���������

���������

1 1 0 0 0 0 0 0 1

0 0 1 1 1 0 0 0 2

0 0 0 0 0 1 1 0 2

0 0 0 0 0 0 0 1 0

���������

−1 −1 −1
−1 −2 −2
−1 −2 −1
0 −1 0

ð3:9Þ

Again, in the new configurations, the anomaly cancellation
condition is satisfied (as was proved, in general, to happen
in [3]). To make sure they are true target space duals, we
will show that these two different geometric phases
preserve the net multiplicities of charged matter, and the
total number of massless gauge singlets, while the indi-
vidual number of complex, Kähler, and bundle moduli is
changed. First, it is clear that the low-energy gauge groupG
in the four-dimensional gauge theory is given by the
commutant of the structure group, H in E8 × E8 of the
bundles defined over the CY manifold. Here there is only
one bundle [saturating the anomaly cancellation condition
on c2ðVÞ]. We choose to embed this structure group in one
of the two E8 factors and when considering the other E8

factor as an unbroken, hidden sector gauge symmetry.
In order to find the matter field representations, the

adjoint 248 of E8 must be decomposed under the subgroup
G ×H. In this case, the rank 6 bundles with c1 ¼ 0
indicates that the structure group H ¼ SUð6Þ, which leads
to the charged matter spectrum, can be determined by the
decomposition of E8 into representations of the maximal
subgroup SUð2Þ × SUð3Þ × SUð6Þ:

248E8
→ ½ð3; 1; 1Þ ⊕ ð1; 8; 1Þ ⊕ ð1; 1; 35Þ ⊕ ð1; 3; 15Þ
⊕ ð1; 3̄; 15Þ ⊕ ð2; 3; 6Þ ⊕ ð2̄; 3̄; 6̄Þ ⊕ ð2; 1; 20Þ�:

ð3:10Þ

As a result, the multiplicity of fields in the four-dimensional
theory transforming in representations of SUð2Þ × SUð3Þ is
counted by those transforming in an SUð6Þ representation
over the CY. The latter are counted by the dimension of
bundle valued cohomology groups, H�ðX;∧k VÞ, for
assorted values of k (see [23,24] for details).

It is helpful to note that, for a vector bundle V on a
Calabi-Yau threefold X, the cohomology groups of the

bundle and its dual are related by Serre duality as
HiðX; VÞ ¼ H3−iðX; V�Þ� and when H ¼ SUðnÞ,
H�ðX;∧k VÞ ≃H�ðX;∧n−k V�Þ. Finally, a necessary con-
dition for μ stability of the vector bundle V is h0ðX; VÞ ¼ 0,
which is satisfied for tangent bundle deformations consid-
ered here (by direct computation).
With these observations in hand, the multiplicity of the

charged chiral matter spectrumof these dual pair theories can
be determined by computing corresponding vector bundle
valued cohomology classes on the Calabi-Yau threefold:

ð2; 3Þ’s∶ h1ðVÞ ¼ 57; h1ðṼÞ ¼ 57;

ð2̄; 3̄Þ’s∶ h1ðV�Þ ¼ 0; h1ðṼ�Þ ¼ 0;

ð1; 3Þ’s∶ h1ð∧2 VÞ ¼ 115; h1ð∧2 ṼÞ ¼ 115;

ð1; 3̄Þ’s∶ h1ð∧2 V�Þ ¼ 1; h1ð∧2 Ṽ�Þ ¼ 1;

ð2; 1Þ’s∶ h1ð∧3 VÞ ¼ 2; h1ð∧3 ṼÞ ¼ 2: ð3:11Þ

Furthermore, the low-energy theory has massless gauge
singlets, (1,1), which are counted by h1ðV ⊗ V�Þ ¼
h1ðEnd0ðVÞÞ. There are additional singlets, beyond those
related to the complex structure and Kähler deformations of
the Calabi-Yau threefold, which are counted by h2;1ðXÞ and
h1;1ðXÞ. The total number of singlet moduli are counted by

h1;1ðXÞþh2;1ðXÞþh1ðEnd0ðVÞÞ¼ 3þ60þ292¼ 355;

h1;1ðX̃Þþh2;1ðX̃Þþh1ðEnd0ðṼÞÞ¼ 4þ53þ298¼ 355:

ð3:12Þ

From the point of view of the massless heterotic spectrum,
it is clear that in the theories associated with the TSD
geometries, (X;V) and ðX̃; ṼÞ, all of the d.o.f. appear
to match.
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Moreover, we have chosen this pair of geometries to
have a further special property. Each CY threefold appear-
ing in the dual pair exhibits an elliptic fibration structure.
As a result, by the arguments laid out in Sec. II, we expect
each heterotic background in the pair to lead to its own
F-theory dual.
A closer inspection yields the following elliptic fibration

structures:

πh∶ X→
E
P2 and π̃h∶ X̃→

E
dP1: ð3:13Þ

The fibrations of X and X̃ can be seen very explicitly in the
form of the complete intersection descriptions of the
manifolds (so-called obvious fibrations [25]). Below we
use dotted lines to separate the “base” and “fiber” of the
manifold:

X ¼

2
664
P1 1 1

P2 1 2

P2 1 2

3
775; X̃ ¼

2
666664

P1 0 1 1

P2 0 1 2

P2 1 1 1

P1 1 0 1

3
777775; ð3:14Þ

where the base for the elliptically fibered X is B2 ¼ P2 (the
bottom row of the configuration matrix), while the dP1

base for X̃ is given as B̃2 ¼
hP2j1
P1j1

i
.

Employing the techniques of [26,27], we find that the
fibrations in both X and X̃ in fact admit rational sections
and, as a result, are elliptically fibered (as opposed to
genus-1 fibered only). Moreover, each fibration contains
two rational sections (i.e., a higher rank Mordell-Weil
group). In an abuse of notation, we will use σi to denote
both sections of the elliptic fibrations of X and X̃ and
the associated Kähler forms dual to the divisors. In terms of
the basis of the Kähler (1,1)-forms Jr inherited from the
ambient space factors Pn

r of each CICY threefold,

σ1ðXÞ ¼ −J1 þ J2 þ J3; σ2ðXÞ ¼ 2J1 − J2 þ 5J3

σ1ðX̃Þ ¼ −J1 þ J2 þ J3; σ2ðX̃Þ ¼ 2J1 − J2 þ 4J3 þ J4;

ð3:15Þ

with a choice of zero section for each manifold from the set
above, the CY threefold can, in principle, be put into
Weierstrass form [28,29]. For explicit techniques to carry
out this process, we refer the reader to [26].
In summary then, we have produced an explicit example

of a TSD pair in which both sides are elliptically fibered
manifolds, admitting four-dimensional, N ¼ 1 F-theory
duals in principle. This is an important point of principle,
since we have demonstrated that some F-theory correspon-
dence should exist for the dual F-theory effective field
theories (EFTs). In practice, however, it should be noted
that explicitly determining the F-theory duals for the
geometries given above is difficult. We will begin untan-
gling this process explicitly in Sec. IV.
For now, we close this example by observing an

interesting feature of the TSD pair above: Since we began
with a deformation of the tangent bundle, the associated
(0,2) GLSM admits a (2,2) locus. However, in the TSD
geometry, the bundle we obtain is no longer manifestly a
holomorphic deformation of the tangent bundle on X̃. It
remains an open question whether this second theory
admits a (2,2) locus in some subtle way. For the moment,
we will turn to one further TSD pair in which neither vector
bundle is related to the tangent bundle.

B. More general vector bundles

Here we present a second example in which the same CY
manifolds appear, but with different vector bundles. Once
again, we start with the GLSM charge matrix determining
the pair (X,V) as in Eq. (3.16), where in this time we have a
rank 4 bundle with structure group SUð4Þ:

xi
��� Γj

������ Λa
��� pl

1 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 1 1 1

��������
−1 −1
−1 −2
−1 −2

��������

��������
1 0 0 0 0 1

0 1 1 0 0 2

0 0 0 1 1 1

��������
−1 −1
−2 −2
−2 −1

ð3:16Þ

In this case, the second Chern class of (X; V) is different
than Eq. (3.6):

c2ðVÞ ¼ 2J1J2 þ J22 þ 2J1J3 þ 4J2J3 þ J23: ð3:17Þ

However, in this case, c2ðVÞ ≤ c2ðTXÞ, and thus it is
expected that this bundle could be embedded in one
factor of the E8 × E8 heterotic string, where another

bundle V 0 is embedded in the second factor. By completing
the geometry in this way, with c2ðVÞ þ c2ðV 0Þ ¼
c2ðTXÞ, the anomaly cancellation conditions can be
satisfied (alternatively, NS5-/M5- branes might be
considered).
Following the standard procedure described above, the

target space duality data is given by (X̃, Ṽ) with the
following charge matrix:
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xi
��� Γj

������ Λa
��� pl

1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1

���������

0 −1 −1
0 −1 −2
−1 −1 −1
−1 0 −1

���������

���������

1 0 0 0 0 1

0 1 1 0 0 2

0 0 0 1 0 2

0 0 0 0 1 0

���������

−1 −1
−2 −2
−2 −1
−1 0

ð3:18Þ

Here the second Chern classes of the tangent bundle and the
monad vector bundle are, respectively,

c2ðTXÞ ¼ 3J1J2 þ J22 þ 2J1J3 þ 3J2J3 þ J1J4

þ 2J2J4 þ 2J3J4;

c2ðVÞ ¼ 2J1J2 þ J22 þ J1J3 þ 2J2J3 þ J1J4

þ 2J2J4 þ 2J3J4; ð3:19Þ

which could also satisfy the c2 matching condition with the
addition of a hidden sector bundle.
In this background, the bundle structure group of H ¼

SUð4Þ breaks E8 to SOð10Þ. As above, the charged matter
content can be determined by the decomposition under
SOð10Þ × SUð4Þ:

248E8
→ ð1; 15Þ ⊕ ð10; 6Þ ⊕ ð16; 4̄Þ ⊕ ð16; 4Þ ⊕ ð45; 1Þ:

ð3:20Þ

The multiplicity of the spectrum is then determined via
bundle valued cohomology as

16’s∶ h1ðVÞ ¼ 48; h1ðṼÞ ¼ 48;

16’s∶ h1ðV�Þ ¼ 0; h1ðṼ�Þ ¼ 0;

10’s∶ h1ð∧2 VÞ ¼ 0; h1ð∧2 ṼÞ ¼ 0: ð3:21Þ

Furthermore, the counting of the gauge singlets appearing
in this TSD pair match as well:

h1;1ðXÞ þ h2;1ðXÞ þ h1ðEnd0ðVÞÞ ¼ 3þ 60þ 159 ¼ 222;

h1;1ðX̃Þ þ h2;1ðX̃Þ þ h1ðEnd0ðṼÞÞ ¼ 4þ 53þ 165 ¼ 222:

ð3:22Þ

With these two examples in hand, it is clear that at least
the first question outlined in Sec. I can be answered in the
positive. Heterotic TSD pairs can indeed be found in which
both halves of the dual pair exhibit elliptic fibrations.
However, it is clear that the manifolds in our examples
above are not in simple Weierstrass form (and exhibit a
higher rank Mordell-Weil group); as a result, their F-theory
dual geometries may be difficult to determine using
standard tools. We review some of these tools in the

subsequent sections before returning to the two examples
above in Sec. VI.

IV. INDUCING A DUALITY IN F-THEORY

A. Essential tools for heterotic/F-theory duality

In type IIB superstring theory, the axion-dilaton trans-
forms under SLð2; ZÞ while leaving the action invariant.
However, it is frequently assumed that the string coupling
gs vanishes and the backreaction from 7-branes is ignored.
As a result, many important nonperturbative aspects of the
string compactification which are crucial both conceptually
and phenomenologically are missing. This is exactly where
F-theory arises as a proper description of orientifold IIB
theory with (p; q) 7-branes and varying finite string
coupling (i.e., axion-dilaton). The classical SLð2; ZÞ
self-dual symmetry of type IIB theory acting on the
axion-dilaton is identified as the modular group of a one-
dimensional complex torus T2 and as the complex structure
of a fictitious elliptic curve. In this way, we formally attach
an elliptic curve at each point of the type IIB spacetime and
promote the ten-dimensional IIB theory to auxiliary 12-
dimensional F-theory. This structure defines a genus-1 or
elliptic fibration. The locus where the fiber degenerates is
where the 7-brane is wrapped in the internal CY. F-theory
realizes a remarkable synthesis of geometry and field
theory in that the structure of the 7-branes/gauge sector,
the matter content, and the Yukawa couplings are all
encoded in the geometry of the fibration structure, and
the backreaction of these branes is taken into account.
There is no description of F-theory as a fundamental

theory, but rather as duals to other theories. A concrete
example would be an eight-dimensional duality [10], i.e.,
F-theory compactified on K3 is dual to type IIB on S2 with
24 7-branes turned on, which is also dual to the heterotic on
T2. The duality between F-theory and the heterotic is
described further as F-theory compactified on K3 fibered
Calabi-Yau (nþ 1)-fold is dual to the E8 × E8 heterotic
string compactified on the Calabi-Yau n-fold which is
elliptically fibered on the same (n − 1)-fold base:

(i) Heterotic: πh∶Xn→
E
Bn−1 elliptic fibration,

(ii) F-theory: πf∶Ynþ1→
K3
Bn−1, where ρf∶Ynþ1→

E
Bn,

σf∶Bn→
P1

Bn−1.

The paired heterotic/F-theory geometries given above
involves both elliptic and K3 fibered manifolds. In
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particular, the F-theory geometry Ynþ1 must be compatibly
K3 and elliptically fibered. The requirement of these two
fibrations implies that Ynþ1 should also be elliptically
fibered over a complex n-dimensional base Bn which is
in turn rationally fibered. The existence of a section in any
two of the fibration structures is enough to guarantee the
existence of a section in the third fibration (i.e., if ρf and σf
both admit sections, then so does the fibration πf).
With different numbers of n’s, there are theories in

different dimensions. Specifically, n ¼ 1, 2, 3 will lead to
8D, 6D, and 4D respectively. When n ¼ 1, the (n − 1)-fold
base Bn−1 is a point; when n ¼ 2, it is a P1. In the 4D case,
the duality can be written as

ð4:1Þ

By the fibration structure of the CY fourfold (4.1), the base
B3 must be P1 fibered. As in [12], such a P1 bundle can be
defined as the projectivization of two line bundles,

B3 ¼ PðO ⊕ LÞ; ð4:2Þ

where O is the trivial bundle and L is a general line bundle
on B2. In this case, the topology of B3 is completely fixed
by the choice of line bundle L, and we can define a (1,1)-
form on B2 as T ¼ c1ðLÞ. A special case would be
R ¼ c1ðOð1ÞÞ, where Oð1Þ is a bundle that restricts to
the usual Oð1Þ on each P1 fiber. They satisfy the relation
RðRþ TÞ ¼ 0 in cohomology class, which indicates that
the two corresponding sections do not intersect with each
other. This kind of twist allows us to matching the d.o.f. in
the four-dimensional heterotic/F-theory dual pairs.
On the E8 × E8 heterotic side, the vector bundle can be

decomposed as V ¼ V1 ⊕ V2, and the curvature splits as

c2ðVÞ ¼
1

30
TrF2

i ¼ ηi ∧ σ þ ξi; ð4:3Þ

where ηi, ξi are pullbacks of 2-forms and 4-forms on B2, σ
is the Poincaré dual to the section of the elliptic fibration

πh∶X3→
E
B2. For any CY threefold in Weierstrass form as

described above, c2ðTX3Þ ¼ 12c1ðB2Þ ∧ ω0̂ þ ðc2ðB2Þ þ
11c1ðB2Þ2Þ [30]. The heterotic Bianchi identity requires
η1 þ η2 ¼ 12c1ðB2Þ, which enables us to parametrize a
solution as

η1;2 ¼ 6c1ðB2Þ � T 0; ð4:4Þ

where T 0 is a (1, 1)-form on B2. By studying the 4D
effective theories of these dual heterotic/F-theory compac-
tifications, it is straightforward to determine that the
defining (1, 1)-forms T, T 0 are identical to each other

T ¼ T 0. Then the (1, 1)-form T is referred to as the so-called
twist of theP1 fibration and is the crucial defining data of the
simplest classes of heterotic/F-theory dual pairs. Moreover,
this duality maps dependences on a particular method of
constructing Mumford polystable vector bundles, the spec-
tral cover construction.

B. Spectral cover construction

To find the dual F-theory model of a specific heterotic
model, we need a description of the moduli space of stable
degree zero vector bundles over elliptically fibered mani-
folds (the standard formulation works for Weierstrass
fibration, but it can be generalized to other types of elliptic
fibrations) in terms of two “pieces”, which are called
spectral data. This can be done by Fourier-Mukai trans-
form, and we briefly review it in the following. (Fourier-
Mukai is an important type of functor between derived
categories, but to avoid unnecessary technicalities, we
restrict ourselves to the following special type defined
by Poincaré bundle, and we ignore general discussions. The
interested reader can refer to [31,32].3)
The Fourier-Mukai transform takes the stable bundles of

degree zero and rank n over X and gives a torsion sheaf
(rank 0) degree n over the (compactified) Jacobian fibration
X̃ ∼ X. More precisely, considering the following fiber
product and the natural projections,

the Fourier-Mukai (FM) transform is defined as4

FM1ðVÞ ¼ R1π2�ðπ1�V ⊗ P�Þ: ð4:5Þ

We emphasize again that (compactified) Jacobians of
irreducible elliptic curves are isomorphic to the elliptic
curve; therefore in the Weierstrass fibration we have X ∼ X̃.
In Eq. (4.5), P is the Poincaré bundle,

P ¼ OðΔ − σ1 × X̃ − X × σ2Þ ⊗ ρ�KB; ð4:6Þ

where Δ is the diagonal divisor in X ×B X̃, and σ1 and σ2
are sections of the first and second factors, respectively.
R1π� is the first derived pushforward. Roughly speaking,
the presheaf corresponding to Rπ�F over an open set U is

3Please note that we restrict ourselves to SUðNÞ (degree zero,
and stable) vector bundles over a Weierstrass elliptic fibration.

4In some sense, it is similar to the Fourier transform. In that
case, one starts with a function fðxÞ defined in a space X, then we
pull back the function into a larger space X × Y, multiply by a
kernel eix·y, and integrate over x to get a function in Y. The
pushforward action is similar to the integration over the fibers.
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isomorphic to H1ðπ−1U;F Þ (look at Sec. III. 1 of [33] and
[34]). Note that the restriction of stable and degree zero
vector bundles over generic fibers will be a semistable
bundle with degree zero and the same rank [35]. Then a
well-known theorem proved by Atiyah5 [36] tells us the
general form of restriction of the vector bundle over a
generic smooth elliptic curve E,6

VjE ¼ ⨁
i
Ei ⊗ OEðpi − σÞ;

X
i

rankðEiÞ × pi ¼ 0: ð4:7Þ

The second condition is imposed because of the “S” of
the SUðNÞ gauge group (note that the sum is over the group
law of the elliptic curve), and Ei is constructed inductively
by extending it with a trivial bundle,

0 → OE → Ei → Ei−1 → 0: ð4:8Þ

Therefore using Eq. (4.7), it is easy to show that the stalk of
the Fourier-Mukai transform of V over some generic point
p ∈ X̃ takes the following form (the isomorphism can be
proved by the final theorem in Sec. III. 12 of [33]):

FM1ðVÞp ∼H1ðEp;⨁
i
Ei ⊗ OEðpi − pÞÞ: ð4:9Þ

It is clear that Eq. (4.9) is nonzero only at point p that are
coincident with one of the points pi. To see this, consider
the E2. By definition, we have

0 → OE → E2 → OE → 0: ð4:10Þ

If we multiply the whole sequence with OEðpi − pÞ, the
first cohomology of E2 ⊗ Oðpi − pÞ will be zero, since
Oðpi − pÞ is a line bundle over the elliptic curve corre-
sponding to a degree zero, but noneffective, divisor (so it
does not have a global section, and by Riemann-Roch, has a
trivial first cohomology). By induction, we can get similar
conclusions for a general Ei in Eq. (4.7).
Therefore the Fourier-Mukai sheaf FM1ðVÞ is supported

on an n-sheeted cover, S, of the base (possibly a non-
reduced and/or reducible scheme), which is called a
spectral cover. To be more clear, consider a special case
of Eq. (4.7),

VjE ¼ ⨁
n

i¼1

Oðpi − σÞ;

such that the points pi are all different. In fact, every
semistable bundle over E is S equivalent to the direct sum
written above. In this situation, S is a nondegenerate
surface (i.e., nonreduced as a scheme), and by Eq. (4.9),
the rank of the Fourier-Mukai sheaf when restricted over S
is 1. Therefore the Fourier-Mukai transform of the vector
bundle is described by an n-sheeted cover of the base S,
and a sheaf (called a spectral sheaf) over that, where, if S is
nondegenerate, the restriction of the spectral sheaf will be a
line bundle L over S.7

The next question is how the vector bundle can be
reconstructed from the spectral data described above. This
can be done by using the inverse “functor”, which simply is

V ¼ π1�ðπ2�FM1ðVÞ ⊗ PÞ: ð4:11Þ
The final point is that, technically, Fourier-Mukai is the

equivalence of the derived category of coherent sheaves on
X and the derived category coherent sheaves on X̃ (at least
when X and X̃ are smooth). It roughly means that the
Fourier-Mukai transform gives a “one-to-one” relation
between the “space of stable vector bundles V” and the
“space of spectral data (S;L).” The logic is that the latter
seems easier to study than the original bundles.
In principle, it is possible to find the F-theory dual by

using the spectral data. We review this briefly in the
following. Suppose that we have two vector bundles
(V1, V2) over a Weierstrass elliptically fibered manifold
X (suppose that there are no NS5-branes). Then heterotic
anomaly cancellation requires

c2ðV1Þ þ c2ðV2Þ ¼ c2ðXÞ:
Then the second Chern classes (which can be computed
using the Grothendieck-Riemann-Roch theorem if we have
the spectral data [12]) can generally be written as

c2ðViÞ ¼ σηi þ ωi;

ηi ¼ 6C1ðBHÞ � T; ð4:12Þ
where ηi is a divisor in the base (BH), and ωi is the
intersection of two divisors in BH. Also by using the same
method, it is not too hard to show that the divisor class of
the spectral cover of Vi is given by

½S� ¼ niσ þ ηi: ð4:13Þ
Now the first statement about the heterotic and F-theory
duality is that the topology of the base manifold of

5Intuitively, one can argue that to construct a nontrivial flat
bundle over a torus, the only way is to embed the fundamental
group of the torus in the Lie group, i.e., turn on the Wilson
lines [12].

6Note that
P

i rankðEiÞ ¼ rankðVÞ.

7More precisely, the rank of the spectral sheaf over the
modified support (a scheme defined by 0th Fitting ideal [31])
is 1. If, for example, the support is defined as z2 ¼ 0, the rank of
the spectral sheaf over the topological support, z ¼ 0 locus, is 2,
but over the modified support, which roughly looks like two
copies of z ¼ 0 infinitesimally close to each other, the rank of the
sheaf is 1.
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the F-theory Calabi-Yau is fixed by the “twist” T in
Eq. (4.12) as

BF ¼ PðOBH
⊕ OBH

ðTÞÞ: ð4:14Þ
The second statement is that the complex structure of S
(partially) fixes the complex structure of the Calabi-Yau on
the F-theory side. It is easier to describe this with an
example. Suppose that we have an SUð2Þ bundle V and that
its spectral cover is nondegenerate,

S ¼ a0z2 þ a2x: ð4:15Þ
Since one of the E8 factors breaks down to E7, we should
have an E7 singularity in the F-theory geometry, which is
described by the following Weierstrass equation,

Y2 ¼ X3 þ Fðu; zÞxþ Gðu; zÞ;
F ¼ Σ8

i¼1FiðzÞui;
G ¼ Σ12

i¼1GiðzÞui: ð4:16Þ

where u is the affine coordinate of the P1 fiber of
Eq. (4.14), and z is the “collective” coordinate for BH.
Now the conjectured duality tells us that the corresponding
E7 singularity should be located near u ¼ 0; therefore F0 ¼
F1 ¼ F2 ¼ 0 andG0 ¼ � � � ¼ G4 ¼ 0. Also a0 is identified
with G5, and a2 with F3.
The other vector bundle (which is embedded in the other

E8 factor) determines the singularity near u → ∞, and
higher polynomials (F5;… and G7;…) are determined by
the spectral cover of that vector bundle (which we did not
write here). The middle polynomials F4 and G6 are
determined by the heterotic Weierstrass equation.
The last piece of data which remains is the spectral sheaf

L, which is an element of the Picard group PicðSÞ. The
“space of line bundles” itself is made up of two pieces, the
“discrete” partH1;1ðSÞ, and the “continuous” part, which is
JðSÞ [the space of degree zero (flat) line bundles],

0 → JðSÞ → PicðSÞ → H1;1
Z ðSÞ → 0: ð4:17Þ

In 6D theories, the discrete part can be fixed uniquely by
using the Fourier-Mukai transform, and the Jacobian of the
curve is mapped to the intermediate Jacobian of the Calabi-
Yau threefold in F-theory. In type IIA or M-theory language,
the “space of three forms”,H3ðX;RÞ=H3ðX;ZÞ, is described
by the intermediate Jacobian [12,37,38].
The situation in 4D theories is even more complicated. In

such cases, it is possible to have nontrivial 4-form fluxes
which can be introduced in various (equivalent) ways. One
way is to define is as 4-form induced by the field strength of
the 3-form in the M-theory limit. Another way is to define
as a (1,1)-form flux over the 7-branes wrapping the divisors
in the base times another (1,1)-form localized around the
7-brane locus [39,40]. In general, the 4-flux data is

parametrized by the Deligne cohomology (see the lectures
[41] and references therein)

0 → J2ðX̂4Þ → H4
DðX̂4;Zð2ÞÞ → H2;2

Z ðX̂4Þ → 0; ð4:18Þ

where X̂4 is the resolved geometry in the M-theory limit,
and J2 is the intermediate Jacobian,

J2ðX̂4Þ ¼ H3ðX̂4;CÞ=ðH3;0ðX̂Þ ⊕ H2;1ðX̂4ÞÞ; ð4:19Þ

which corresponds to the space of flat 3-forms in M-theory.
The third, and most difficult, part of the heterotic F-theory
duality is that the continuous part of the spectral sheaf data
JðSÞ maps to J2ðX4Þ, and the discrete part H1;1ðSÞ [which
is determined by the divisor class (the first Chern class) of
the spectral line bundle] maps to the discrete part of the
4-flux data H2;2ðX̂4Þ.

V. WARM-UP: HETEROTIC/F-THEORY
DUALITY IN SIX DIMENSIONS

In this section, we will begin in earnest the process of
attempting to determine the induced duality in F-theory
given by TSD and whether the multiple fibration conjecture
outlined in previous sections could be a viable realization.
In this simpler context, both the geometry of the F-theory
compactification and the process of reparametrizing (i.e.,
performing a FM transform) of the heterotic data are more
readily accomplished.
To begin, it should be noted that, in the context of

heterotic target space duals, we will consider smooth
geometries (i.e., smooth bundles over K3 manifolds) in
the large volume, perturbative limit of the theory. We will
consider solutions without NS5-branes so that the six-
dimensional theory exhibits a single tensor multiple (asso-
ciated with the heterotic dilaton) (see [42] for a review).
Within the context of six-dimensional F-theory EFTs with a
single tensor and a heterotic dual, it is clear that we must
restrict ourselves to CY threefolds that are elliptically
fibered over Hirzebruch surfaces:

πf∶ Y3 → Fn ð5:1Þ

with n ≤ 12 [9,43].
It is our goal in this section to test the multiple fibration

conjecture in the context of target space duality. At the level
of GLSMs, TSD in heterotic compactifications on K3
works mechanically exactly as in the case of CY threefolds.
However, the associated geometry is dramatically simpler.
It is clear that the two TSD GLSMs will parametrize at best
two different descriptions of a K3 surface, and that the
process must by construction preserve the second Chern
class of the vector bundle V over K3 (see [3] for a proof
valid either for CY two- or threefolds). Since the massless
spectrum of the six-dimensional heterotic theory compac-
tified on a smooth K3 is entirely determined by the rank
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and the second Chern class of V (see, e.g., [11]),8 it is clear
that TSD is only a simple rewriting of the same geometry
and six-dimensional EFT.
However, there remains something interesting to com-

pare to in that it can still be asked: Does the concrete
process of heterotic TSD duality in six dimensions corre-
spond to exchanging K3 fibrations in the dual F-theory
geometry? In the context of F-theory threefolds that are
elliptically fibered over a Hirzebruch surface as described
above, there is in fact only one geometry where multipleK3
fibrations can arise. It was established in the very first
papers on F-theory [9,43] that, in order to have differentK3
fibrations within a CY threefold with a perturbative
heterotic dual, the base twofold must be F0. Indeed, the
remarkable observation of Morrison and Vafa was that the
existence of two K3 fibrations in πf∶Y3 → F0 (only a
simple relabeling in F-theory) was dual to a highly non-
perturbative heterotic/heterotic duality discovered by Duff
et al. [44].
With these observations in mind, we can immediately

make several observations. To begin, we must recall that a
base manifold for the F-theory fibration of Fn in this
context is correlated to bundles with c2 ¼ 12� n in the
E8 × E8 heterotic dual. Thus, we have as follows.
(a) For any purely perturbative heterotic TSD pair in six

dimensions with c2ðVÞ ¼ c2ðṼÞ ≠ 12, (0,2) TSD
cannot correspond to multiple fibrations in F-theory
(since as described above, such multiple K3 fibrations
arise only for n ¼ 0).

(b) With the point above, we have established that, in
general, the multiple fibration conjecture outlined in
the Introductionmust be false in general, at least in the
six-dimensional heterotic theories.

(c) This demonstrates that not all TSD pairs can be
described by F-theory multiple fibrations, but the
converse question—namely, can multiple fibrations
in F-theory give rise to dual heterotic TSD pairs?—in
principle remains open.

Thus, in this section we chose to look at the last point in
closer detail by considering an example of a TSD pair over
K3 in which c2ðVÞ ¼ c2ðṼÞ ¼ 12 (the so-called symmetric
embedding), corresponding to an Fn ¼ P1 × P1 base in F-
theory. This will make it possible, at least in principle, for
us to consider the two duals.

A. Spectral cover of monads

To begin, we observe that since the vector bundles
defined by GLSMs (in their geometric phases) are usually
presented as monads [19], we must deal with how to
convert this description of a bundle into one compatible
with heterotic/F-theory duality. As discussed in Sec. IV, it is
necessary to perform an FM transform to compute the

spectral cover in this case. As a result, here we briefly
review the method first introduced in [45].
Suppose we are given a general monad such as

0 → V → H→
F
N → 0; ð5:2Þ

where H and F are direct sums of line bundles of
appropriate degree. If we assume that V is stable and of
degree zero, then from the previous subsection we know
that its restriction over a generic elliptic fiber will look
like ⊕i Oðpi − σÞ. So if we twist the whole monad by
OðσÞ,

Ṽ ≔ V ⊗ OðσÞjE ¼ ⨁
i
OðpiÞ: ð5:3Þ

Each factor has only one global section over the fiber, and it
becomes zero exactly at the point pi, which is the
intersection of the spectral cover with the fiber. So the
idea is to try to find the global section of the twisted vector
bundle over elliptic fibers, then check at what points the
dimension of the vector space generated by the global
sections drops. To illustrate how this can be done
explicitly, first consider twisting the full monad sequence
by OðσÞ,

0 → Ṽ → H̃→
F
Ñ → 0; ð5:4Þ

and follow this by next taking the action of the left exact
functor π� on the above sequence (F̄ is the induced map,
corresponding to F):

0 → π�Ṽ → π�H̃→
F̄
π�Ñ → R1π�Ṽ → …: ð5:5Þ

If we assume that the vector bundle is semistable over
every elliptic fiber (this need not always be true, as we will
see; it is necessary only that the vector bundle be semistable
over generic elliptic fibers), then R1π�Ṽ is identically zero
because its presheaf is locally of the form H1ðE;OðpiÞÞ.
Now consider the action of the right exact functor π� over
the last sequence. Since the elliptic fibration map π is a flat
morphism, it does not have higher left derived functors.
[We have Tor1SðM;RÞ ¼ 0 due to the flatness, where S is
the ring that corresponds to OB, R corresponds to OX, and
M is the free module corresponding to V (see, e.g., Chap. 3
in [34]).] So we get

0 → π�π�Ṽ → π�π�H̃→
F̄
π�π�Ñ → 0: ð5:6Þ

Note that π�π�Ṽ is a vector bundle whose fibers over a
point p are generated by the global sections of Ṽ over
elliptic curve Eb, where b ¼ πðpÞ. So Eq. (5.6) tells us that

8And the moduli space of stable sheaves over K3 with fixed
Chern character has only one component.
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if we find the global sections of H̃ and Ñ , then the kernel of
the induced map F is isomorphic to π�π�Ṽ. So the locus is
where the rank of the kernel drop coincides with the
spectral cover. To clarify these rather abstract ideas, in
the following subsection, we explicitly compute the spec-
tral cover of two examples which will be used in the final
subsection.

B. Examples

To begin, we assume that the K3manifold can be written
in the following simple toric form,

xi
��� Γj

3 2 1 0 0

6 4 0 1 1

����
−6
−12

ð5:7Þ

Example 1: The first example is the following SUð2Þ
monad,

Λ
��� p

1 1 2 3

1 5 3 7

���� −3 −4
−9 −7

ð5:8Þ

The second Chern class of this monad is 12. The map F
of the monad is given by the following generic matrix,

F∼
�

xf4þ z2f8 axþ z2g4 zf6 f2
byþxzg2þ z3g6 z3h2 cxþ z2h4 dz

�
; ð5:9Þ

where subscripts indicate the degree of homogeneous
polynomials over P1. With this choice, it can be verified
that the kernel of F̄ in Eq. (5.6) takes the following
generic form,

2
666664

x − z2 −f2h4þdf6
cf2

0

0 x cf2
f2h4−df6

þ z2

− b
c y − xz f2g2−bf4

cf2
− z3 f2g6−df8

cf2
−z3 f2h2−dg4

f2h4−df6
þ −xz ad

df6−f2h4

−x2 f4
f2
þ yz bf6

cf2
− xz2 cf8þf4h4−g2f6

cf2
− z4 f8h4−f6g6

cf2
x2 ac

df6−f2h4
− xz2 cg4þah4

f2h4−df6
− z4 −f6h2þg4h4

f2h4−df6

3
777775; ð5:10Þ

where fi, gi, hi are polynomials in terms of base coor-
dinates with degree i, and a, b, c, d are constants. The
common factor of the minors of Eq. (5.10) is

cf2xþ ðf2h4 − df6Þz2: ð5:11Þ

From the previous discussion, we might naively conclude
that Eq. (5.11) must be the spectral cover. However, in the
Fourier-Mukai discussion, it was noted that the divisor
class of the spectral cover should be 2σ þ 12D. So in the
expression above, we are clearly missing a degree 6
polynomial in Eq. (5.11). The correct spectral cover
should be

S ¼ F6ðcf2xþ ðf2h4 − df6Þz2Þ: ð5:12Þ

But why then is F6 missing? The reason is that, in the
previous subsection, we assumed that the vector bundles
are semistable over every fiber. This not necessarily true. It
is possible to start from a stable bundle and modify it in a
way that it becomes semistable over every fiber [46].
To see clearly what happens, let us first find the elliptic

fibers such that the vector bundle over them is unstable.
Note that from Eq. (5.11) it can be seen that the spectral
cover is a nondegenerate two-sheeted surface and that,
for a generic E, VjE ¼ Oðp − σÞ ⊕ Oðq − σÞ, where
pþ q ¼ 2σ. So VjE does not have a global section over

almost any fiber except when p ¼ q ¼ σ. These points are
on the intersection of z ¼ 0 and the spectral cover, which
are the zeros of f2F6. The idea then is to see if we can find
the elliptic fibers which, over the vector bundle (not its
twisted descendant), can have a global section. So all we
need to do to find F6 is to study the kernel of the induced
map in the following sequence:

0 → π�V → π�H→
Find

π�N → R1π�V → …; ð5:13Þ

where the induced map Find in the above case is a 7 × 7
matrix in terms of the base coordinates. Generically its
rank is 7 except over the zeros of f2F6, so we can read the
missing polynomial from this form. Please note that
the above computations are local, globally π�V ¼ 0.
Because V is locally free and π is a flat morphism, the
pushforward of V should also be torsion-free (see
Chap. III. 9. 2 of [33]).
Interestingly, when we repeat the same analysis after

twisting with OðσÞ and Oð2σÞ, the rank of the correspond-
ing induced map drops over F6 and nowhere, respectively.
This means that the bundle over those fibers takes the
following form,

VjEmissing
¼ OðpÞ ⊕ Oð−pÞ; ð5:14Þ
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therefore h0ðE;V ⊗ OðσÞÞ ≥ 2, and the rank of the kernel
in (5.6) (which generically is the same as the rank of the
bundle—in this case, 2) does not drop over the points of
these fibers. So the algorithm suggested in [45] does not
find them. But it can be seen from Eq. (4.5) that these
(whole) elliptic fibers are in support of the spectral sheaf. In
summary, a detailed analysis along the lines sketched above
shows that the missing component is given by

F6 ¼ h2cf22 − cdf2g4 þ adf2h4 − ad2f6: ð5:15Þ

where each element in the expression polynomial above is
defined using the monad map in Eq. (5.9).
Example 2: The second example is interesting because

its spectral cover is degenerate (in this case, a nonreduced
scheme):

Λ
��� p

0 1 2 3

2 1 3 7

����
−2 −4
−6 −7

ð5:16Þ

The second Chern class of this monad is c2ðVÞ ¼ 6, so
from the previous discussion, it is clear that the divisor class
of its spectral cover must be 2σ þ 6D. The number
of global sections of H and N is 7 and 6, respectively,
which tells us that the kernel of Find is at least one
dimensional over almost every elliptic fiber. Since V is a
stable, rank 2 bundle with c1ðVÞ ¼ 0, we conclude that
either VjE ¼ O ⊕ O or VjE ¼ ϵ2.

9 In both cases, the
spectral cover must have the following general form,

S ¼ F6z2: ð5:17Þ

In fact, by computing the Find directly, we can see the
rank of the kernel is always 1, so VjE ¼ ϵ2. As before, we
can compute the kernel of Eq. (5.6), to generate the spectral
cover,

2
6664

z 0

0 z2

− xz
f3
− z3 f4

f3
z3 f5

f3

a x2
f3
þ xz2 f4

f3
þ z4 f8

f3
byzþ xz2 g5

f3
þ z4 f9

f3

3
7775: ð5:18Þ

Then we look at the minors, and the common factor
should be spectral cover. However, as in the previous
examples, the algorithm in [45] misses the polynomial F6.
The reason is similar to the previous example: The bundle
is unstable over the zeros of F6. It can be shown that the
correct spectral cover is indeed

S ¼ ðF3Þ2z2; ð5:19Þ

where F3 is the entry (1,3) of the monad’s map [i.e., the
map between the line bundles OXð2; 3Þ and OXð2; 6Þ].10

C. Counterexamples of the conjecture

Here we return to the main goal of this section. Suppose
that we have two target space dual GLSMs that describe
different stable bundles over elliptic K3 surfaces. The goal
is to check whether their F-theory dual geometries can be
related via a change in K3 fibrations (i.e., a change in P1

fibrations in the twofold base of the CY threefold).
Generally the base of the F-theory threefold will be a
Hirzebruch surface Fn, where n is given by the twist in
Eq. (4.12). The only situation that can accommodate such
multiple fibration structures is when n ¼ 0. So here we
focus on this case and demand that the second Chern class
of both heterotic vector bundles be 12.
We assume that one of the target space dual geometries is

given by monads on the toric K3 (5.7). We also write the
elliptically fibered K3 in Weierstrass form,

y2 ¼ x3 þ f8ðx1; x2Þxz4 þ f12ðx1; x2Þz6; ð5:20Þ

where x1 and x2 are the coordinates of the base P1. To find
explicit examples for target space duality, recall there are
several constraints that must be met. First, it is necessary to
have a well-defined GLSM. This means that the first Chern
class of both bundles should be zero, and the second Chern
class of both bundles (or sheaves) should be 12.
In addition, we must make sure that the hybrid phase in

which we do the TSD “exchange” of G and F actually
exists. In the process of generating the TSD pairs, it may
happen that singularities arise in the bundle or manifold
(we expect that crepant resolutions should exist for the
manifold and that the singularities in the “bundle” should
be codimension 2 in the base so that the sheaf is torsion-
free). In addition to these constraints for the GLSM, there is
another practical requirement for finding the F-theory
geometry: We prefer to work with SUðNÞ bundles which
have a nondegenerate spectral cover. If this requirement is
not satisfied, it is still possible to find the F-theory dual, but
we should remember that the form of the spectral sheaves
can be vastly more rich/complex in these cases. This
enhanced data in the Picard group will not be manifest
in the spectral cover, or in the complex structure moduli of
the dual F-theory geometry. Instead, it will be related in the

9By VjE ¼ ϵ2, we mean the unique nontrivial extension of the
trivial bundles over the elliptic curve.

10After a thorough computation, we can show that

0 → J → FM1ðVÞ → Oσ → 0;

where J is a torsion sheaf supported over fz ¼ 0g ∪ fF3 ¼ 0g,
and its rank over fF3 ¼ 0g is 2. J can be computed explicitly,
but doing so is outside of the scope of this paper.
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dual F-theory to nilpotent Higgs bundles over singular
curves [16,47–49].

It is straightforward to find many GLSMs where at least
one of the bundles (say, V1) has SUðNÞ structure, and
where spectral cover is nondegenerate; for example, con-
sider Eq. (5.8) once again,

Λ
��� p

1 1 2 3

1 5 3 7

����
−3 −4
−9 −7

with Chern class

C2ðV1Þ ¼ 5σ2 þ 22σDþ 23D2 ¼ 12: ð5:21Þ

It should be noted that the algorithm for determining the
spectral cover, using the methods of [45], was sketched
above, but when the spectral cover becomes reducible
(which can still be reduced), it is not guaranteed that those
methods would find the full spectral cover [i.e., usually
some (vertical) components will be missed]. One can find
these components by closer examination of the morphisms
that define the bundle and elliptic fibration, as we saw in the
last subsection. The spectral cover (schematically) is then
given by Eq. (5.12),

S ¼ F6ðf2xþ f6z2Þ:

Note that Eq. (5.8) by itself is not a well-defined linear
sigma model; therefore we need another bundle such that its
structure group is embedded in the other E8 factor. This
second bundle must also have a GLSM description over the
same K3, and its second Chern class should be

C2ðV2Þ ¼ 6σ2 þ 24σDþ 21D2 ¼ 12: ð5:22Þ

Since the existence of this bundle with above properties
may not be quite obvious, we turn now to constructing
appropriate examples explicitly.

D. Example 1

We can construct an example V2 (though not the most
general such bundle) as a direct sum of two bundles, each
defined by the monad in Eq. (5.16) (which we denote here
by V0), with c2ðV0Þ ¼ 6:

V2 ¼ V0 ⊕ V0: ð5:23Þ

For this monad bundle, the spectral cover was found to be
of the form given in Eq. (5.19). In addition, the rank 1 sheaf
on the spectral cover can be readily constrained. Here
FM0ðV0Þ is zero by results in [33] (see Sec. III. 12, the final
theorem). So we actually have the following short exact
sequence,

FM1ðV2Þ ¼ FM1ðV0Þ ⊕ FM1ðV0Þ; ð5:24Þ

where the support of FM1ðV2Þ, which is the spectral cover
of V2, is the union of the spectral covers associated with the
two copies of V0. The resulting spectral cover is a non-
reduced scheme, which can be realized using the following
polynomial11:

SðV2Þ ¼ ðF3Þ2ðG3Þ2z4: ð5:25Þ

Before turning to the F-theory dual of this geometry, let
us first construct a target space dual model for the above
GLSM. To do that we add new chiral fields in a way that,
after integrating them out, we return to the initial model.
This can done by adding “repeated entries” to the charge
matrix of the K3, and it can lead to multiple TSD
geometries (all still of the same topological type of
manifold and bundle, of course). One possibility is

x
��� Γ

��� Λ1

��� p1

��� Λ2

��� p2

3 2 1 0 0 0

3 2 0 1 1 1

����
−6 0

−6 −2

���� 1 1 2 3 2

0 4 1 5 6

���� −3 −4 −2
−6 −3 −7

���� 0 1 2 3

2 0 1 4

���� −2 −4
−4 −3

ð5:26Þ

This heterotic geometry (K3 manifold and bundle) has
pointlike singularities in the would-be bundle—that is, it is
a rank 2 torsion-free sheaf rather that a vector bundle [50].

With this pair of TSD bundles over K3 in hand,
we are now in a position to consider the dual F-theory
geometry. In this case, we will ask the key question:
Are the two GLSMs/geometries, i.e., those defined
by V1 and V2 and its TSD dual in Eq. (5.26),
realized as different fibrations of a single F-theory
geometry?

11Generally the two V0’s in the above construction can be
related by a continuous deformation, so we consider F3 and G3 to
be different generic degree 3 polynomials.
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By the results of the previous subsection, the complex
structure of the Calabi-Yau threefold can be readily
determined:

Y2 ¼ X3 þ Fðu1; u2; x1; x2ÞXZ4

þ Gðu1; u2; x1; x2Þz6;
Fðu1; u2; x1; x2Þ ¼ u41u

4
2f8ðx1; x2Þ

þ u31u
5
2F6ðx1; x2Þf2ðx1; x2Þ;

Gðu1; u2; x1; x2Þ ¼ u71u
5
2ðF3ðx1; x2ÞÞ2ðG3ðx1; x2ÞÞ2

þ u61u
6
2f12ðx1; x2Þ

þ u51u
7
2F6ðx1; x2Þf6ðx1; x2Þ: ð5:27Þ

As frequently happens with degenerate spectral data, we
find that the apparent F-theory gauge symmetry seems to be
in contradiction with what is expected from the heterotic
theory we have engineered. By inspection of the discrimi-
nant of Eq. (5.27), it is straightforward to see that there
appears to be an E7 symmetry on u1 → 0, and an apparent
E8 singularity above the curve u1 → ∞. This might seem to
be in contradiction with the expected gauge symmetry of
SOð12Þ in the hidden sector [determined as the commutant
of the SUð2Þ × SUð2Þ structure group defined by the
reducible bundle in Eq. (5.23)]. However, in the case of
degenerate spectral covers, we naturally expect that
T-brane-type solutions [16,47] may well arise in the dual
F-theory geometry. That is, we expect a nilpotent
SUð2Þ × SUð2Þ Higgs bundle over the 7-brane which
wraps around this curve (u2 ¼ 0) and breaks the spacetime
gauge group to SOð12Þ as expected (see [17] for a similar
construction).
Next, as demonstrated in [43], changing the K3 (and P1,

respectively) fibration in the F-theory geometry simply
amounts to exchanging the vertical P1 (whose coordinates
are u1 and u2) with the horizontalP1, which is the base in the
initial heterotic K3 surface in Eq. (5.7). This means that the
vertical P1 becomes the base of a dual heteroticK3 surface.
To determine gauge groups in the dual heterotic theory, the
discriminant curve must be considered. This is shown in
Fig. 1. The figure on the right-hand side shows the
discriminant of the F-theory Calabi-Yau threefold. The line
at the top is the locus of theE7 singularity, and the one at the

bottom corresponds to E8. The curve is the locus of the I1
singularities. It intersects eight times with the III� curve,
where on six of them it has triple point singularities. These
six points are exactly the zeros ofF6 in Fig. 1, which naively
correspond to pointlike instantons that are responsible for
the vertical components in spectral cover of V1 (not taking
into account the spectral sheaf/T-brane data). Similarly, the
I1 curve intersects with II� at two sets of three points, which
are the zeros ofF3 andG3 in Eq. (5.25), and over all of them,
the curve has double point singularities.
We can expand the polynomials in Eq. (5.27) in terms of

x1 and x2 and read the dual heterotic complex structure
from there. Clearly we see that the elliptic K3 in the new
heterotic dual must be singular. In particular, it exhibits
singular E8 and E7 located at u1 ¼ 0 and u1 → ∞,
respectively (with an expected instanton number of 12
on each locus). This is a highly nonperturbative limit of the
string theory. This exchange of gauge symmetry with
singularities in the base K3 surface arising in the heterotic
theory seems to be a generic feature of exchanging F-theory
fibrations [27]. As a result, it seems impossible to get
something which is purely smooth/perturbative on both
sides like Eq. (5.26) from such a change of fibration. This
shows that at least some of the TSD dual pairs cannot be
seen simply as different fibrations of the F-theory geom-
etry. We explore these possibilities a little more in one
further example.

E. Example 2

In this example, the starting geometry/bundles are the
same as before, but here we present another TSD geometry
that can also be described easily by spectral cover. So once
again we take as our starting point the manifold/bundle

xi
��� Γj

������ Λa
��� pl

3 2 1 0 0

6 4 0 1 1

���� −6
−12

����
���� 1 1 2 3

1 5 3 7

���� −3 −4
−9 −7

ð5:28Þ

and embed it into a larger GLSM by adding a new gauge
field, and fermionic and chiral fields:

xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0 0

6 4 0 1 1 0 0 1

0 0 0 0 0 1 1 0

��������
−6 0 0

−12 0 −1
0 −1 0

��������

��������
1 1 2 3 3 3

1 5 3 7 8 9

0 0 0 0 0 0

��������
−3 −4 −3 −3
−9 −7 −8 −9
−1 0 0 0

ð5:29Þ

After performing the combinatoric exchange (i.e., the usual TSD procedure), this yields the new TSD geometry
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xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0 0

6 4 0 1 1 0 0 1

0 0 0 0 0 1 1 0

��������
−6 0 0

−12 −1 0

0 −1 −1

��������

��������
1 1 2 3 3

1 5 3 7 8

0 0 0 0 1

��������
−3 −4 −3
−9 −7 −8
−1 0 0

ð5:30Þ

The advantage of this new example is that it is possible
to compute the spectral cover of both sides easily,12 and
they are both reducible but still reduced:

S1 ¼ F6ðf2X þ f6Z2Þ; ð5:31Þ

S2 ¼ F7ðf1X þ f5Z2Þ: ð5:32Þ

As in the previous example, we can readily construct
the F-theory geometry of both sides and check whether or
not they are related by exchanging the fibration. The
Weierstrass polynomials, F and G, of the dual F-theories
is given by

F1 ¼ Oðu51Þ þ u41u
4
2f

8
1ðv1; v2Þ þ u31u

5
2F6ðv1; v2Þf2ðv1; v2Þ;

ð5:33Þ

G1 ¼Oðu71Þ þ u61u
6
2g

12
1 ðv1; v2Þ þ u51u

7
2F6ðv1; v2Þf6ðv1; v2Þ;

ð5:34Þ

F2 ¼ Oðv51Þ þ v41v
4
2f

8
2ðu1; u2Þ þ v31v

5
2F7ðu1; u2Þf1ðu1; u2Þ;

ð5:35Þ

G2 ¼Oðv71Þ þ v61v
6
2g

12
2 ðu1; u2Þ þ v51v

7
2F7ðu1; u2Þf5ðu1; u2Þ:

ð5:36Þ

As in the previous example, the change in fibration can
be realized in F1 and G1 by reexpanding these polynomials
in terms of v1 and v2. Then if the dual (F-theory)
geometries are related through changing the fibration, after
this rearrangement, F1 and G1 must be equal to F2 and G2.

FIG. 1. The vertical dotted line on the right-hand side is the “vertical P1”. After change of fibration on the left-hand side, the same P1

will be the base of the dual heterotic K3.

12In the previous example, the base P1 was defined as a conic
inside P2. However, the spectral cover equations would be in
terms of the ambient space coordinates, and imposing nonlinear
relations between the coordinates to define the P1 makes the
situation somewhat obscure.
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But since F2 and G2 have an order 3 zero at v1 ¼ 0, it
means that f81ðv1; v2Þ and g121 ðv1; v2Þ must have an order 3
zero at v1 ¼ 0. Recall that these two polynomials are the f
and g of the dual heterotic K3 surface, so the above
argument tells us if the TSD geometries are related to
different fibrations of the same geometry in F-theory, both
TSD Calabi-Yau twofolds must have an E7 singularity at
some point on the base. Thus, once again, we see that the
exchange of fibration leads to a perturbative/nonperturba-
tive duality in heterotic theories [43] and not the apparent
correspondence arising from TSD.
In summary, if we start with two perfectly smooth TSD

geometries, they cannot be related through different K3
fibrations of a single F-theory threefold. But if we allow
both K3 surfaces to be singular and at the same time put
bundles/small instantons over them, they might be dual to a
single geometry in F-theory.13

Having determined that the multiple fibrations are not
describing the TSD exchange in six dimensions, we can
take a step back and ask, what F-theory correspondence is
induced by TSD in six dimensions? Since the spectral
covers in Eqs. (5.31) and (5.32) are relatively simple, we
can try to roughly figure out some generalities about the F-
theory duals of each of them. Let us start with the first one.
The topology of the vector bundle fixes the dimension of
the moduli space of the bundle,

h1ðV1 ⊗ V�
1Þ ¼ 42: ð5:37Þ

We can describe them in terms of the spectral data as
follows,

dimðMVÞ ¼ dimðcplxðCÞÞ þ dimðJacðCÞÞ þ 6pts

þ 6 × dimðJacðEÞÞ þ gluing; ð5:38Þ

where C is the irreducible smooth curve defined by
f2X þ f6Z2. By “6pts” we mean the d.o.f. in choosing
the location of the six points defined by the zero set of
F6 ¼ 0, and over them we have six elliptic curves (whose
Jacobians must also be taken into account), and finally,
“gluing” denotes the d.o.f. associated with the choice of
spectral sheaf at the intersection of the six vertical fibers
with C. The genus of C can be computed easily,

gðCÞ ¼ 9: ð5:39Þ

Therefore the dimension of the Jacobian and the complex
structure of C must be 9. On the other hand, obviously,
Jacobian of E is one dimensional, and the contribution of
the gluing is 12 dimensional (each vertical fiber intersectsC

at two points). Therefore the total dimension of the Moduli
space is

dimðMVÞ ¼ 9þ 9þ 6þ 6þ 12 ¼ 42: ð5:40Þ

Now to obtain the F-theory EFT, we must use the
spectral data as explained before and infer the form of
the complex structure of the CY threefold. From this
procedure, it can be seen that there are 6 (4, 6, 12) points
in the F-theory geometry. Since the heterotic dual is a
perturbative model, we should consider these singularities
as the singular limit of the following deformations,

F1 ¼ Oðu51Þ þ u41u
4
2f

8
1ðv1; v2Þ

þ u31u
5
2ðF6ðv1; v2Þf2ðv1; v2Þ þ ϵF8ðv1; v2ÞÞ; ð5:41Þ

G1 ¼Oðu71Þþu61u
6
2g

12
1 ðv1;v2Þ

þu51u
7
2ðF6ðv1;v2Þf6ðv1;v2ÞþλF12ðv1;v2ÞÞ; ð5:42Þ

where ϵ and λ correspond to deforming the Higgs field over
the 7-branes [16,51]. Therefore we can deform these two
theories into each other by continuously deforming the
Higgs bundle. This reflects the fact that the moduli space of
the vector bundles on K3 is connected. Phrased differently,
the existence of apparent (4,6,12) points in the putative dual
F-theory indicates that such solutions can only be dual to
the expected perturbative heterotic theories in the case that
T-brane solutions arise. This has been seen before in [47]
and is a substantial hint that G-flux must play an important
role in the nontrivial F-theory correspondence expected in
four-dimensional compactifications.
It is worth commenting briefly also on another branch of

the theory visible from this singular limit. We can increase
the number of tensor multiplets in the six-dimensional
Yang-Mills (YM) theory by performing small instanton
transitions (i.e., moving NS5-/M5- branes off the E8 fixed
plane in the language of heterotic M-theory). For bundles
described as spectral covers, this small instanton limit is
visible with the spectral cover becoming reducible and
vertical components (corresponding to small instantons)
appearing (note that this limit must also set all gluing data
to zero). Naively, it seems that this limit appears to be
different for the TSD pair of bundles defined by Eqs. (5.31)
and (5.32) since they exhibit different degree polynomials
defining their vertical components (i.e., F6 vs F7).
However, this is simply a statement that the mapping of
moduli in this case may exchange what are spectral cover
deformations in one description with data associated with
the Jacobian of the spectral cover (i.e., gluing data in this
singular case). To really obtain the same point in moduli
space, we must consider a scenario in which both halves of
the TSD gain the same number of tensor multiplets (i.e., we
pull either six or seven 5-branes into the bulk). In this case,
it would be intriguing to analyze the dual F-theory

13But we should recall that the GLSM is only a perturbative
formulation and clearly lacks information on the full string theory
in such a context.
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geometry—which would correspond to blowing up the
base of the elliptic fibration. We expect in this case that the
F-theory threefold will still be K3 fibered but no longer of
such a simple form. In particular, the elliptic fibration over a
Hirzebruch surface would be modified to become a more
general conic bundle [27]. We will return to questions of a
similar geometric nature in the following section.
Let us briefly summarize the results of our six-

dimensional investigation. We have seen that after exchang-
ing K3 fibrations within the F-theory geometry, the dual
heterotic K3 surface must become singular, and therefore
perturbative smooth heterotic geometries arising in TSD
pairs cannot, in general, be realized as different fibrations
within F-theory. On the other hand, we saw that the dual
F-theory EFTs arising from the chosen TSD pairs must
crucially rely on data from the intermediate Jacobian of the
CY threefold—so-called T-brane solutions—in order to
give rise to the same physical theories. Starting from such
points, we can deform back to smooth points in the CY
threefold moduli space and identify the theories. Any
possible correspondences within the tensor branch of the
six-dimensional theories must involve more complicated
K3 fibrations (i.e., conic bundles), and we leave this
exploration to future work.

VI. F-THEORY DUALS OF FOUR-DIMENSIONAL
HETEROTIC TSD PAIRS

In Sec. III, we provided a nontrivial example of a
heterotic TSD pair in which both X and X̃ were elliptically
fibered. It is now natural to ask,what are the F-theory duals
of these heterotic theories? As we will explain below, this
example (and others like it that we have found) seem to
force beyond the arena of “standard” heterotic/F-theory
duality (as in the canonical reference [12]) by including
several important features in the dual geometries. In this
section, we will not try to solve all of the obstacles that arise
at once. Instead, we will outline what can be determined
about the dual F-theory geometries and where new tools
will be needed to fully probe this correspondence. Many of
these we are currently developing [13,14], and we hope to
definitively answer these questions in future work.
As a first step toward determining the dual F-theory

geometry, the data of the heterotic bundle must be taken
through a Fourier-Mukai transform to be presented as
spectral data (see the discussion in Sec. V). However, in
this, we immediately encounter several problems. The first
of these is that, unlike in the case of heterotic/F-theory dual
pairs studied in the literature to date, neither of these
heterotic CY elliptic threefolds is in Weierstrass form.
To be specific, we focus on the examples in Sec. III

(though similar obstacles will arise, in general, in this
context). Recall that each of the CY threefolds listed in
Eq. (3.14) admitted two rational sections. Those for X in
Eq. (3.14) lie in the following classes,

½σ1ðXÞ� ¼−D1þD2þD3; ½σ2ðXÞ� ¼ 2D1 −D2þ 5D3:

where Di represent a basis of divisors on X (inherited
from the ambient space hyperplanes by restriction). By
“rational”, it is meant that these divisors are isomorphic to
blowups of the base manifold (in this case, P2). The first
difficulty with this example is that the standard Fourier-
Mukai transformation with Poincaré bundle is not appli-
cable here. The reason for this is that we need the zero
section to intersect at exactly one point on every fiber, but
both of the sections described above wrap around a finite
number of rational curves (which are components of
reducible fibers). We have shown [13] that in specific
situations one can use flop transitions to make one of the
sections holomorphic, and since derived categories are
invariant under the flop transitions (i.e., there is a specific
Fourier-Mukai functor for flops), it is still possible to define
the spectral data in the “flopped” geometry. However, the
example given in Eq. (3.14) proves to be too complicated to
be analyzed in this manner since σ1 and σ2 wrap around 27
and 127 rational curves, respectively, rendering the neces-
sary birational transformations (i.e., flops) impractical.
In principle, one might hope to bypass this difficulty by

transitioning X directly to its Weierstrass form (by blowing
down the reducible components of fibers), following the
Deligne procedure outlined in [26,27]. However, this poses
difficulties in a heterotic theory in that it is unclear how the
heterotic bundle data should be appropriately mapped to
this singular limit of X.
Nonetheless, if we choose σ1 as the zero section, it can be

demonstrated that the spectral cover in the singular
Weierstrass limit has the same divisor class as before (this
is seen by taking the FM transform before blowing down
the reducible fiber components). In other words, if we write
the second Chern class as

c2ðVÞ ¼ 36σ1H þ 14SshH þ 156f; ð6:1Þ

where H is the (pullback of the) hyperplane divisor in the
base, Ssh is the divisor corresponding to the Shioda map
[52–54] for nontrivial Mordell-Weil group

Ssh ¼ σ2 − σ1 − 18H; ð6:2Þ

and f is the fiber class. In terms of these divisors, the class
of the spectral cover S in the singular limit will be

½S� ¼ 6σ1 þ 36H: ð6:3Þ

We might hope to get some information about the
F-theory geometry from the spectral cover alone.
Naively, we may write the algebraic formula for the spectral
cover whose class is given in Eq. (6.3) as

S ¼ f36z3 þ f30xzþ f27y; ð6:4Þ
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where fi are generic polynomials of degree i over P2.
A generic deformation of the spectral cover of the form
(6.4) can be obtained by counting the d.o.f. in the
polynomials f36, f30, f27, which contain 703, 496, and
406 parameters, respectively. Immediately we see that these
numbers are much higher than the dimension of the vector
bundle moduli space in our example, which is 292 dimen-
sional. Thus, we can see that the FM transform of the
monad in Eq. (3.4) is certainly not a generic spectral cover.
This is not too surprising. We saw examples of the spectral
cover of monads in Sec. V, and there it was clear that the
polynomials are not generic; rather they are dictated by the
monad’s map (see also [45,49]). In principle, a similar story
happens in the current case. We expect that the spectral
cover may also be nonreduced/reducible [45]. However,
regardless of its explicit form, the question arises, why is
the spectral cover forbidden from assuming a generic form?
That is, given an explicit starting point [in which the
polynomials are determined by the monad map as in
Eq. (3.4)], why is the deformation space restricted?
We expect that the answer to this lies with the other half

of the spectral data of this monad, that is, the rank 1 sheaf
[12] supported over the spectral cover in Eqs. (6.3) and
(6.4). It has been observed previously [55] that the Picard
group of S may “jump” at higher codimensional loci in
moduli space—i.e., so-called Noether-Lefschetz loci. This
phenomenon could “freeze” the moduli of the spectral
cover to a subspace compatible with the form of the monad
map (see also [56]). In terms of the four-dimensional,
N ¼ 1 EFT, the reduction in the apparent number of
singlets (i.e., the nongeneric form of the spectral cover)
is a symptom of existence of a specific superpotential—
arising from the Gukov-Vafa-Witten form [57]:

W ∼
Z
X
H ∧ Ω; ð6:5Þ

where H ∼ dBþ ωYM
3 − ωLorentz

3 , ω3 ¼F∧A− 1
3
A∧A∧A

is the Chern-Simons 3-form (and the associated Lorentz
quantity built from the spin connection in ωLorentz

3 , and Ω is
the holomorphic (0,3)-form on X. The existence of this
superpotential arises from the presence of the gauge bundle
(rather than from quantized flux) (see [55,58,59] for related
discussions) but nonetheless stabilizes vector bundle
moduli.
As a result, in the dual F-theory EFT, we also expect the

existence of a superpotential. Geometrically, since the
spectral cover determines part of the complex structure
moduli of the Calabi-Yau fourfold, it is clear that the dual of
the bundle data given in Eq. (3.4) should include a specific
G-flux that stabilizes the moduli through the Gukov-Vafa-
Witten superpotential. It should be noted that there is
another way to see the requirement for this flux: Since there
are no D3-branes in the F-theory dual [since we have

chosen c2ðXÞ ¼ c2ðVÞ in the heterotic theory], G-flux is
also necessary for anomaly cancellation.
We have not yet explicitly calculated the FM transform

of the heterotic bundle or determined the dual F-theory
geometry. The arguments above show that whatever the
F-theory geometry, G-flux must play a prominent role, and
therefore it cannot be ignored. A similar set of arguments
can also be made about the F-theory dual of the heterotic
TSD geometry ðX̃; ṼÞ. In this case as well, the naive
deformations of the spectral cover are much larger than the
dimension of the vector bundle moduli space, and therefore
we conclude that Noether-Lefschetz loci/G-flux should be
in play.
Despite the fact that flux must be involved in the putative

F-theory duality, it still remains to be asked whether the
dual F-theory fourfolds might still exhibit multiple fibration
structure. That is, could the geometric scenario described in
the Introduction with these compatible elliptic=P1 (and
hence K3) fibrations exist?

On this front, once again, we see that we must quickly leave
behind the standard geometry of heterotic/F-theory duality.
As reviewed in Sec. IV, if the heterotic CY threefold is in
Weierstrass form, the construction of [12] generates a
threefold base B3 [see Eq. (4.2)] for the CY fourfold that
is a P1 bundle over the base B2 (which is the base of the
dual elliptically fibered CY threefold and K3-fibered
fourfold). The topology of this bundle (i.e., B3 itself) is
determined by the second Chern class of the heterotic
bundle c2ðVÞ. In this context then, we can ask whether or
not such a base could admit two different descriptions as a
P1 bundle. While multiply fibered P1 bundles certainly
exist (for example, the “generalized Hirzebruch” toric
threefold defined as the zero twist over Fn or the n twist
over F0 [27,60]), it is easy to demonstrate that

h1;1ðB3Þ ¼ 1þ h1;1ðB2Þ ð6:6Þ

for any P1 bundle. As a result, it is clear that there exists no
multiply fibered P1 bundles compatible with the B2 and B̃2

arising in Sec. III since for those manifolds B2 ¼ P2 and
B̃2 ¼ dP1. Hence h1;1ðB2Þ < h1;1ðB̃2Þ and h1;1ðB3Þ ≠
h1;1ðB̃3Þ for threefold bases constructed as P1 bundles.
From the results above, we would be tempted to

conclude that the hypothesis we set out to test in the
literature (i.e., is heterotic TSD dual to multiply fibered
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geometries in F-theory?) is manifestly false. However, we
must first recall that the construction of K3 fibrations in
terms of P1-bundle bases B3 as commonly used in the
literature is not the only possible structure. More general
threefold bases B3 are possible which are P1 fibrations but
not P1 bundles. These fibrations degenerate (as multiple
P1s) over higher codimensional loci in the base B2 and are
known as “conic bundles” in the literature (see, e.g., [61]).
If we consider this more general class of bases for CY

fourfolds, it seems that some possibilities remain. For
example, the following threefold,

B3 ¼

2
664
P2 0 1

P1 1 0

P2 1 1

3
775; ð6:7Þ

is manifestly fibered over both P2 and dP1, as required.
However, it is unclear that the generic twist of such a
fibration is compatible with the topology of the bundles
defined in Sec. III. It is possible to generalize simple
constructions like the one above to accommodate more
general twists by choosing more general toric ambient
spaces. However, in each case, we hit a new problem in that
the stable degeneration limits of P1 bundles such as that in
Eq. (6.7) are not yet understood in the literature (though we
are considering such geometries in separate work [14]). As
a result, it is a nontrivial task to determine whether such a
geometry might arise in the F-theory duals of the examples
outlined in Sec. III. To check this, we need precise spectral
data. But as explained before, finding the Fourier-Mukai
transforms of the heterotic bundles, while possible in
principle, is beyond our current computational limits for
the bundles in Sec. III.
For now, though, we can conclude that whatever the

F-theory correspondence induced from (0,2) target space
duality may be, it must expand the current understanding of
heterotic/F-theory duality both via the crucial inclusion of
G-fluxes (possibly including limits and T-brane solutions)
and via more general geometry—in particular, K3=P1

fibrations—than has previously been considered.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have taken a first step toward exploring
the consequences of (0,2) target space duality for heterotic/
F-theory duality. In an important proof of principle, we
have illustrated that heterotic TSD pairs exist in which both
halves of the geometry exhibit Calabi-Yau threefolds with
elliptic fibrations. As a result, it is clear that some F-theory
correspondence should be induced in these cases. We take
several steps to explore the properties of this putative
duality. First, we consider the conjecture made previously
in the literature that the F-theory realization of TSD could
be multiple K3 fibrations of the same elliptically fibered

Calabi-Yau fourfold background of F-theory. To explore
this possibility in earnest, we begin in six-dimensional
compactifications of heterotic string theory/F-theory and
demonstrate that, in general, multiple fibrations within F-
theory CY backgrounds cannot correspond to the (topo-
logically trivial) TSD realizable for bundles onK3 surfaces.
Finally, we provide a sketch of the open questions that arise
when attempting to directly compute the F-theory duals of
four-dimensional heterotic TSD geometries. In particular,
we demonstrate that multiple K3 fibrations in F-theory
cannot account for (0,2) TSD in the case in which the
threefold base B3 of the F-theory elliptic fibration takes the
form normally assumed—that of a P1 bundle over a
(complex) two-dimensional surface B2.
There are a number of future directions that naturally

lead on from this study, most importantly to explicitly
determine the F-theory mechanism that generates dual
theories from potentially disparate fourfold geometries.
We hope to understand this correspondence in future work.
This study has shed light on these questions, however, and
has highlighted areas where the current state of the art in the
literature is insufficient to determine the dual heterotic/
F-theory geometries.
As noted in Sec. VI, it is clear that new tools will be

needed to fully determine this duality. The new geometric
features that must be understood in heterotic/F-theory
duality in this context clearly extend beyond the canonical
assumptions made in [12], and new tools must be devel-
oped. These include the following open problems in
heterotic/F-theory duality:
(a) Heterotic compactifications on elliptic threefolds with

higher rank Mordell-Weil group (as in the examples in
Sec. III).

(b) F-theory compactifications on threefold bases that are
P1 fibered, but not P1 bundles, i.e., F-theory on elliptic
fibrations with conic bundle (see, e.g., [61]) bases.

(c) F-theory duals of degenerate (i.e., nonreduced and
reducible) heterotic spectral covers. These seem to be a
ubiquitous feature in the context of (0,2) target space
duality since the spectral data of monad bundles
appear to be generically singular [45].

(d) Four-dimensional T-brane solutions of F-theory (ex-
pected to arise in the context of degenerate spectral
covers above [16,17,62]).

This last point seems to be an essential part of the story
for four-dimensional heterotic/F-theory pairs since degen-
erate spectral data naturally arise for monad bundles [and
hence geometries arising from (0,2) GLSMs]. Moreover,
the arguments in Sec. VI make it clear that the d.o.f. of an
expected dual F-theory fourfold must be constrained by
flux in order to match the moduli count of the heterotic
theory. Several of these “missing ingredients” are currently
being studied (see [13] for generalizations of heterotic
geometries in heterotic/F-theory duality, and [14] for a
study of F-theory on conic bundles). We hope that this
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work illustrates the need for these new tools and demon-
strates that there remain many interesting open questions
within the context of four-dimensional heterotic/F-theory
duality. We will return to these open questions in future
work.
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APPENDIX A: FURTHER EXAMPLES

In this Appendix, we present some of the exotic cases that
we encountered during the search for finding “good exam-
ples” of stable, smooth vector bundles over bases that are
Weierstrass elliptic fibrations. All of these examples pass the
usual necessary conditions for stability such as h0ðVÞ ¼ 0
and Bogomolov topological constraint, but either the spec-
trumcharged hypermultiplets of the 4Deffective theories are
different or the total moduli is not conserved. By using
careful Fourier-Mukai analysis, we can show that the first
example is indeed unstable, so it explains the discrepancy,
but the other two are perfectly stable vector bundles, and we
are unable to explain the reason. In the third example in
which the spectra match on both sides, one may suggest that
the existence of the flux (which must exist due to the
generically nonreduced spectral cover) may stabilize the
moduli space,

xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0

0 0 −2 1 1 0 0

0 0 −2 0 0 1 1

��������
−6
0

0

��������

��������
1 0 1 1 1

1 3 −2 2 1

0 3 −2 3 0

��������
−1 −3
−1 −4
−1 −3

ðA1Þ

with the second Chern classes as

c2ðXÞ ¼ 11σ2 þ 2σD1 þ 2σD2 − 3D2
1 − 4D1D2 − 3D2

2 ¼ 24σD1 þ 24σD2 − 4D1D2;

c2ðVÞ ¼ 3σ2 þ 11σD1 þ 9σD2 −D2
1 − 6D1D2 − 6D2

2 ¼ 17σD1 þ 15σD2 − 6D1D2;

where σ,D1, andD2 are the section and base divisors, respectively, withD2
1 ¼ D2

2 ¼ 0, andD1D2 ¼ f being the class of the
generic fiber f. The anomaly cancellation is not satisfied in the strong sense, but we can still make sense of it at least as
heterotic string theory (maybe not GLSM, but well defined as heterotic string theory). Again, we embed this GLSM in a
larger one,

xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0 1 0

0 0 −2 1 1 0 0 −3 1

0 0 −2 0 0 1 1 −2 1

��������
−6 −1 0

0 3 −1
0 2 −1

��������

��������
1 0 1 1 1

1 3 −2 2 1

0 3 −2 3 0

��������
−1 −3
−1 −4
−1 −3

ðA2Þ

with the degrees of the monad maps being as follows:

F1

0 1 0 0 0

0 −2 3 −1 0

1 −2 3 −2 1

���������

F2

2 3 2 2 2

3 1 6 2 3

3 0 5 0 3

ðA3Þ

After exchanging Γ2, Γ3 (degrees kG2k, kG3k, respectively) with F1
1, F

1
2, respectively, and integrating out the repeated

entries, the dual ðX̃; ṼÞ can be written as follows:
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xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0

0 0 −3 1 1 1 0

0 0 −2 0 0 1 1

��������
−6
0

0

��������

��������
1 0 1 1 1

0 4 −2 2 1

0 3 −2 3 0

��������
−1 −3
−1 −4
−1 −3

ðA4Þ

The dual geometry is perfectly smooth and the anomaly
cancellation condition can also make sense as before.
However, the spectrum of charged scalers are not the same,
i.e., h1ðVÞ ¼ 121 while h1ðṼÞ ¼ 101. So there should be a
problem. We can argue that this is related to the stability.
After a detailed calculation of the Fourier-Mukai trans-

form of V, it becomes clear that FM1ðVÞ is of relative rank
1 and degree 2. On the other hand, FM0ðVÞ is also nonzero
with relative rank and degree 1 and −1. It is well known
that the Fourier-Mukai transformation of a sheaf of relative
rank and degree (n; d) is complex of relative rank and
degree ðd;−nÞ. So it is clear from the above data that the
restriction of V on a generic elliptic fiber E is roughly of the
form OEðσÞ ⊕ V2, where V2 is a rank 2 irreducible bundle
of degree −1 on E. Obviously it tells us that the bundle
must be unstable because it is unstable on generic fibers
[even though it seems h0ðVÞ ¼ 0]. As a sanity check, we
can compute the rank of π�V and π�ðV ⊗ OXðσÞÞ, and they
are 1 and 3, respectively. This is consistent because
h�ðV2Þ ¼ ð0; 1Þ.14 A similar statement can be made about
the TSD setup.

APPENDIX B: HIDDEN ISOMORPHISMS

In this Appendix, we present an example of a TSD pair in
which the geometries (X; V) and ðX̃; ṼÞ are actually
equivalent geometries, even though they are described
by different algebraic descriptions (of manifolds and
monad bundles). Another interesting feature in this case
is that both sides of this “trivial” correspondence are
elliptically fibered; however, the base manifolds are two

different Hirzebruch surfaces, F0 and F2. These base
surfaces are distinct as complex manifolds but identical
as real (and the elliptic CY threefold over these different
surfaces is the same complex manifold). This demonstrates
that even trivial TSD correspondences may involve inter-
esting geometric structures.
In the following example, the bundle Ṽ on X̃ is a

nontrivial rewriting of bundle V on X. Both of the CY
threefolds are weighted projective space P2½123� fibered
Calabi-Yau threefolds. For X, the base is Hirzebruch
surface F0, i.e., B2 ¼ P3½2�, while for X̃ the base is

fB2 ¼
�
P3 1 1

P1 1 1

�
;

which is generically F 0, but at special complex structure
moduli it jumps to become F2 [21]. A (0,2) target
space map can be found that takes X to X̃ [this can be
achieved by adding a P1 to the configuration as usual
for a Uð1Þ-changing TSD pair]. On this manifold, both
a tangent bundle and a nontangent bundle will be
studied.

1. Nontrivial rewriting with tangent bundle

Let us first consider the case of a deformation of the
tangent bundle. The GLSM charge matrix is a general
deformation of ðX; V ¼ TX þO⊕2Þ and can be written as
follows:

xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0
0 0 −2 1 1 1 1

���� −6 0

0 −2

����
���� 3 2 1 0 0 0 0

0 0 −2 1 1 1 1

���� −6 0

0 −2

ðB1Þ

Following the procedure described in the previous section, we will end up with the new charge matrix of the target space
dual ðX̃; ṼÞ:

14One can also get the same numbers from semistable bundles with rank 3 and degree zero, so they are just necessary conditions.
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xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0 0 0

0 0 −2 1 1 1 1 0 0

0 0 0 0 0 0 0 1 1

������
−6 0 0

0 −1 −1
0 −1 −1

������
������

3 2 1 0 0 0 0

0 0 −2 1 1 0 2

0 0 0 0 0 1 0

������
−6 0

0 −2
0 −1

ðB2Þ

The number of both charged and uncharged geometric moduli of the theories on these two manifolds is the same, which
suggests that they are indeed target space dual to each other. Such a d.o.f. counting is given by

h�ðVÞ ¼ ð0; 241; 1; 0Þ h1;1ðXÞ þ h2;1ðXÞ þ h1ðEnd0ðVÞÞ ¼ 3þ 243þ 1074 ¼ 1320;

h�ðṼÞ ¼ ð0; 241; 1; 0Þ h1;1ðX̃Þ þ h2;1ðX̃Þ þ h1ðEnd0ðṼÞÞ ¼ 3þ 243þ 1074 ¼ 1320: ðB3Þ

a. Calculate twist of V and Ṽ

Starting with heterotic theory, without loss of generality,
the second Chern class can be split as Eq. (4.3), and the
heterotic Bianchi identity will imply further that η can be
parametrized as Eq. (4.4) with the twist of the theory
T 0 ¼ T. In order to get the twist in our example, one can
first calculate the second Chern class of V and Ṽ as

c2ðVÞ ¼ c2ðTXÞ ¼ 11J21 þ 2J1J2 − 2J22;

c2ðṼÞ ¼ c2ðfTXÞ ¼ 11J21 þ 2J1J2 − 3J22 þ 2J2J3: ðB4Þ

For both X and X̃, the section can be parametrized as
σ ¼ J1 − 2J2, and the section satisfies the birational con-
dition σ2 ¼ −c1ðBÞσ. Then, by applying Eqs. (4.3) and
(4.4), we get

η ¼ 24J2; T ¼ 12J2 ¼ 6c1ðBÞ ðB5Þ

for both V and Ṽ. This indicates that if we start from a
deformation of the tangent bundle, after target space dual
we will at least end up with a TSD bundle over the same
manifold that is topologically equivalent.

b. Complex deformation of bundle moduli

We can further compare V and Ṽ by analyzing the
deformation of these vector bundles. Consider the differ-
ence of V and Ṽ defined on B2 and B̃2 in the sequence
separately. They are

0→ V →Oð0;1Þ⊕2 →Oð0;2Þ→ 0;

0→ Ṽ →Oð0;0;1Þ⊕Oð0;2;0Þ→Oð0;2;1Þ→ 0; ðB6Þ

where V is the kernel of map with two degree k1k
polynomial on B2 ¼ ½P3j2 �, Ṽ is kernel of map F with
degree k0; 1k and k2; 0k on

fB2 ¼
�
P3 1 1

P1 1 1

�
:

However, for ðB̃2; ṼÞ, if we first solve the polynomial of
degree k0; 1k and put the constraint on the second map with
degree k2; 0k, the second map will exactly reduce to a

degree k2k polynomial on the manifold ½P3 1 1 �. So it

seems that the bundle moduli in ðB̃2; ṼÞ are transformed to
the complex moduli in ðB2; VÞ. Then it would be interest-
ing to ask whether it is possible that the complex structure
and bundle moduli exchange in (X; V) and ðX̃; ṼÞ.
Before answering this question, there is an important

observation thatfB2 is generically F0, but at a special point it
jumps to become F2. Write down the defining equations for

fB2 ¼
�
P3 1 1

P1 1 1

�

as

z0w0 þ z1w1 ¼ 0;

z2w0 þ
�X2

i¼0

aizi þ ϵz3

�
w1 ¼ 0; ðB7Þ

with ½z0; z1; z2; z3� ∈ P3 and ½w0; w1� ∈ P1. If ϵ ≠ 0, this
system defines F0. When ϵ ¼ 0, a P1 blows up at
ð0; 0; 0; 1Þ ∈ P3, which makes it become F2. So the
question about whether the complex structure and bundle
moduli exchange in ðB2; VÞ and ðB̃2; ṼÞ changes to a
question about what happens for the geometric moduli of
ðB̃2; ṼÞ when B̃2 becomes F2, and the same for tuning the
map of the bundle in the ðB2; VÞ system.
So in calculating the line bundle cohomology in the new

system ðB̃2; ṼÞ, we will not only count the dimension of the
cohomology group appearing in the sequence but also their
polynomial representations and the explicit map. More
specifically, we will set z3 ∈ P3 in our calculation to
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zero to deform the B̃2 to F2 and see what happens. In this
case, the line bundle cohomology are h�ðOð0; 1ÞÞ ¼
f2;0; 0g; h�ðOð2; 0ÞÞ ¼ f9;0; 0g; h�ðOð1; 1ÞÞ ¼ f12; 0; 0g
with and without turning the base manifold. Furthermore,
we can check that the cohomology of bundle h�ðB̃2; ṼÞ ¼
f4; 5; 0g will not be affected by the tuning. On the other
hand, we can also tune the complex structure of the map
(x7 ¼ 0 in F) in defining the map of V in the ðB2; VÞ

system. Again, the deformation of the map does not change
the bundle valued cohomology h�ðB2; VÞ ¼ f1; 2; 0g.

2. Nontrivial rewriting with general vector bundle

Similarly, we can consider another example with the
same manifolds but different bundles. Again, we start from
the following manifold with charge matrix of the form
(X,V):

xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0
0 0 −2 1 1 1 1

���� −6 0

0 −2

����
���� 4 2 0 0 0

0 −2 2 2 1

���� −6 0

0 −3

ðB8Þ

The second Chern class of ðX; TXÞ and (X; V) is given by

c2ðTXÞ ¼ 11J21 þ 2J1J2 − 2J22; c2ðVÞ ¼ 8J21 þ 4J1J2 − 2J22; ðB9Þ

which satisfy the c2 condition c2ðVÞ ≤ c2ðTXÞ. The target space dual of this theory is given by the form of ðX̃; ṼÞ,

xi
��� Γj

������ Λa
��� pl

3 2 1 0 0 0 0 0 0

0 0 −2 1 1 1 1 0 0

0 0 0 0 0 0 0 1 1

��������
−6 0 0

0 −1 −1
0 −1 −1

��������

��������
4 2 0 0 0

0 −2 1 3 1

0 0 1 0 0

��������
−6 0

0 −3
0 −1

ðB10Þ

with the second Chern class

c2ðfTXÞ ¼ 11J21 þ 2J1J2 − 3J22 þ 2J2J3; c2ðṼÞ ¼ 8J21 þ 4J1J2 − 3J22 þ 2J2J3: ðB11Þ

Once again, we get their twists of the base to be the same,

η ¼ 20J2; T ¼ 8J2;

for both V and Ṽ. These result indicates that this target space dual is just a kind of rewriting of the origin (X; V).
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