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devices.[1–5] Despite the substantial 
improvement in performance of perov-
skite QDs over the past 5 years,[6–9] one 
major obstacle hindering their develop-
ment is Edisonian (trial and error)-based 
QD synthesis, discovery, and optimization 
methods.[10] Currently, flask-based and 
combinatorial experimental platforms are 
used to search over the vast chemical uni-
verse (i.e., reaction space) of metal halide 
perovskite QDs and their synthetic routes 
for applications in optoelectronic devices. 
Such strategies often fail to surpass the 
output of an expertly guided, albeit ad hoc, 
manual search, resulting in a time- and 
cost-intensive discovery of the optimal 
synthetic pathway.[11] These methods also 
fail to meet the challenges imposed by 
batch-to-batch precursor variability, which 
is prevalent in QD syntheses.[12] When 
moving between laboratories, source 
chemicals, reactors, or even replicates in a 
QD synthesis, it is difficult to attain a con-
sistent product. Colloidal semiconductor 
nanocrystals are highly complex and sensi-
tive materials, where two compositionally 

identical solutions may have entirely different optoelectronic 
properties (differently sized nanocrystals). The massive chemical 
universe of colloidal QDs and strong dependency of their opto-
electronic properties on environmental/synthesis conditions 
demonstrates a need for a high-efficiency autonomous robotic 
experimentation strategy, located in-house with the synthetic 
chemist, to rapidly mine the experimentally-obtained QD syn-
thesis data and intelligently select the next reaction conditions.

While in their infancy, self-optimizing devices have begun 
to unravel the challenges of these more complex chemical 
processes, with their existing applications spanning organic 
reactions to nanocrystal syntheses.[13–15] Recent advances in 
supervised and reinforcement machine learning (ML) tech-
niques, such as multi-output neural networks (NNs), ensemble 
methods, and Bayesian optimization, provide an exciting oppor-
tunity for reshaping the synthesis and optimization of QDs 
through the ML-based direction of a high-throughput QD synthe-
sizer.[16] Among the rapidly growing variety of ML applications, 
including expedited and enhanced analyses of complex reaction 
data sets,[17–19] deep reinforcement learning algorithms have 
recently been demonstrated to outperform highly trained human 
experts when utilized to predict the outcome, optimize the yield, 

The optimal synthesis of advanced nanomaterials with numerous reaction 
parameters, stages, and routes, poses one of the most complex challenges 
of modern colloidal science, and current strategies often fail to meet 
the demands of these combinatorially large systems. In response, an 
Artificial Chemist is presented: the integration of machine-learning-based 
experiment selection and high-efficiency autonomous flow chemistry. With 
the self-driving Artificial Chemist, made-to-measure inorganic perovskite 
quantum dots (QDs) in flow are autonomously synthesized, and their 
quantum yield and composition polydispersity at target bandgaps, spanning 
1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven 
precision-tailored QD synthesis compositions are obtained without any 
prior knowledge, within 30 h, using less than 210 mL of total starting QD 
solutions, and without user selection of experiments. Using the knowledge 
generated from these studies, the Artificial Chemist is pre-trained to use a 
new batch of precursors and further accelerate the synthetic path discovery 
of QD compositions, by at least twofold. The knowledge-transfer strategy 
further enhances the optoelectronic properties of the in-flow synthesized 
QDs (within the same resources as the no-prior-knowledge experiments) 
and mitigates the issues of batch-to-batch precursor variability, resulting 
in QDs averaging within 1 meV from their target peak emission energy.

Metal halide perovskite quantum dots (QDs) have recently 
emerged as an exciting class of semiconducting materials and 
hold the potential to outperform conventional I–VI, IV–VI, and 
III–V semiconductor nanocrystals in QD-based optoelectronic 
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and plan synthesis routes of various reactions in both supervised 
and self-optimizing systems. Such ML-accelerated strategies 
have been effectively applied to a large number of studies, which 
span organic synthesis planning and optimization[20–24] to the 
formation of advanced materials, including single-crystal perov-
skites,[25] metal–organic frameworks and nanocapsules,[26,27] 
gold nanoclusters,[16] and lead sulfide QDs.[28] Capitalizing on 
the recent progress of ML-enhanced optimization algorithms, a 
smart QD manufacturing strategy that relies on decision-making 
algorithms and NNs trained on experimentally-measured QD 
properties can significantly accelerate the synthetic path dis-
covery, optimization, and continuous manufacturing of colloidal 
QDs with precision-tailored optoelectronic properties.

In this work, we present a smart flow-based QD synthesis 
strategy (i.e., the Artificial Chemist), which utilizes plug-and-
play fluidic microreactors capable of autonomous synthesis and 
optimization of colloidal QDs across multiple target param-
eters simultaneously. The Artificial Chemist, shown in Figure 1, 
can rapidly and efficiently: i) explore the vast chemical universe 
of colloidal QDs, ii) learn the colloidal QD synthesis pathways, 
iii) identify the composition and relevant synthesis route(s) to 
achieve specific optoelectronic properties, iv) archive and transfer 
the in-house generated knowledge to the subsequent synthesis 
experiments, and v) continuously synthesize the rapidly opti-
mized QDs on-demand, all within a single enclosed system and 
at a fraction of the time and cost of batch techniques. The plug-
and-play intelligent QD synthesis technology utilizes a custom-
developed in situ UV–Vis absorption (A) and photolumines-
cence (PL) spectrum monitoring module in conjunction with a 
real-time ML-based Bayesian optimization algorithm to enable, 
for the first time, the simultaneous optimization of PL quantum 
yield (PLQY, Φ) and emission linewidth (EFWHM), of colloidal QDs 
for any desired peak emission energy (EP) in the visible range. 

Utilizing the developed Artificial Chemist, we studied over 1400 
reactions across eleven target Ep values and eight different reac-
tion optimization algorithms. Such smart/modular flow synthesis 
techniques can be readily adapted for on-demand synthesis, dis-
covery, and optimization of other classes of nanoparticles beyond 
perovskite QDs (e.g., metal or metal oxide).

Automated experimentation strategies often reduce the cost 
and time required to study and synthesize materials,[29] but 
the dependency on user-driven experiment selection undoubt-
edly limits their exploration and optimization efficiency. A fully 
closed-loop autonomous experiment selection and execution 
platform (i.e., the Artificial Chemist), would therefore, signifi-
cantly expedite the tedious process of colloidal synthetic path 
discovery and reaction optimization, at a fraction of the cost and 
material consumption of the current paradigm. The self-driving 
Artificial Chemist is comprised of a precursor formulation 
module (seven syringe pumps, two syringe refill systems, and 
two inline passive micromixers), a flow reactor module, and an 
in situ QD characterization module (a custom-developed flow 
cell for simultaneous A and PL monitoring). Flow is segmented 
into reactive solution and perfluorinated oil (PFO) phases. The 
PFO carrier phase enhances mass transfer in the reactive phase 
and minimizes fouling by separating the reactive solution from 
the tubing wall.[30] The operation sequence of each colloidal syn-
thesis reaction, including reagent refill, spectral sampling, and 
real-time processing are fully automated using a central com-
puter controller. To evaluate the performance of the developed 
Artificial Chemist, we studied the bandgap tuning of metal 
halide perovskite QDs through halide exchange reactions,[31–34] 
using flow-synthesized cesium lead bromide (CsPbBr3) QDs as 
the starting quantum dots (SQDs).[35,36]

Bandgap tuning of perovskite QDs through the halide 
exchange reactions occurs when the CsPbBr3 SQDs react with 
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Figure 1. Design and operation of the Artificial Chemist. A) Schematic of the developed smart modular fluidic microprocessor for autonomous synthetic 
path discovery and optimization of colloidal QDs and B) the process flow diagram detailing its operation.
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a mixed zinc halide precursor (zinc iodide [ZnI2], zinc chlo-
ride [ZnCl2], or zinc bromide [ZnBr2]) and a specified quan-
tity of oleic acid (OA) and oleylamine (OLA)—represented in 
their non-dimensional forms as XSQD, XZnX2

, XZnBr2
, XOA, and 

XOLA (see S3, Supporting Information). The developed Artifi-
cial Chemist is integrated with a central control system com-
prising an array of adaptive sampling algorithms, including 
an ensemble neural network (NNE)-based Bayesian optimi-
zation algorithm with an intelligent decision-making policy. 
The control system (Figure  1B) alternates between control-
ling the autonomous flow reactor with in situ QD sampling  
and selecting the next best set of reaction conditions based on 
the constantly updated NNE model and the decision-making 
policy.

While it is often overlooked in in situ studies of colloidal QDs, 
quantification of PLQY is a vital component in predicting the 
potential performance of as-synthesized QD samples in targeted 
optoelectronic device applications, such as solar cells and light 
emitting diodes.[37] Yet to date, accurate in situ measurement of 
PLQY has not been possible without substantial dilution of the 
reactive phase. The Artificial Chemist overcomes this key bot-
tleneck with the help of a novel reduced path length (≈0.2 mm) 
flow cell. This innovation allows us to achieve unprecedented 
accuracy for in situ PLQY measurements of high concentra-
tion QD samples synthesized in flow without disturbing flow 
uniformity. Utilizing this QD monitoring module, illustrated 

in Figure  2A,B, the PLQY of in-flow synthesized perovskite 
QDs is measured in situ and analyzed in real-time without 
dilution of the reactive phase, as further detailed in Figure S1, 
Supporting Information. The spectral monitoring module thus 
enables accurate in situ optical characterization of colloidal 
QDs at realistic synthetic conditions and concentrations for 
QDs deployed in optoelectronic devices.[38] The real-time pro-
cessing of in situ obtained A/PL spectra of halide-exchanged 
perovskite QDs (Figure 2C,D) enables rapid, precise, and order-
independent measurements of EP, EFWHM, and PLQY. Figure 2E 
and Figures S2 and S3, Supporting Information, illustrate 
the robustness and reproducibility of the developed Artificial 
Chemist in its ability to sample specific QD compositions for 
three specified input conditions, even when the experiments 
are partitioned by randomly selected synthetic conditions.

At the start of any experimentation, reaction space modeling 
algorithms may be applied using either no prior training—that 
is, uninformed—or pre-trained with a limited archived experi-
mental data set. Beginning a synthesis with prior training 
usually expedites convergence to optimal reaction conditions; 
however, the required training data is often unavailable for the 
specific reaction, incomplete, and/or simply not sufficiently 
consistent across research groups or synthesis platforms to 
apply with confidence. This is a common challenge in synthetic 
chemistry and one the Artificial Chemist must be able to over-
come. To do so, we compare variations of an NNE approach to 
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Figure 2. Sampling precision with the reduced path length flow cell. A–D) Illustrations of the compressed tubing cross-section at the sampling location 
before and after deformation (A) and the fully assembled flow cell (B) with corresponding inline collected photoluminescence (C) and absorption (D) 
spectra for a single reactive phase slug. E) Demonstration of independent and precise sampling, where three different flow compositions (blue, cyan, 
and purple) are alternated with randomized experiments (gray).
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other commonly used algorithms within a black box optimi-
zation environment, including “stable noisy optimization by 
branch and fit” (SNOBFIT)[39] and “covariance matrix adapta-
tion evolution strategy” (CMA-ES).[40,41] We apply this optimi-
zation method in a transfer learning system, that is, utilizing 
archived experimental data sets with a new batch of precursors 
to form higher quality QDs. This strategy encompasses the 
optimization of the reaction conditions for the target colloidal 
QDs as well as the mitigation of batch-to-batch precursor vari-
ation in current state-of-the-art manufacturing strategies. Full 
input-output profiles of all studied algorithms are included in 
Figure S4, Supporting Information.

Effective reaction optimization relies on a belief model 
that accurately predicts outcomes and their uncertainty 
and a decision-making policy that efficiently navigates the 
model space. Many prior studies have applied Gaussian pro-
cesses (GPs) to model these predictions and uncertainty esti-
mates.[10,42,43] However, it is difficult to impose complex structure 
on the GPs, which often simply encode continuity, smoothness, 
or periodicity. While many reaction systems are effectively mod-
eled under these assumptions,[44] this limitation inhibits GPs’ 
ability to sufficiently represent certain reaction spaces, including 
the complex space explored in this study (Figure 3A,B). Subse-
quently, we found GPs to underperform in our system when 
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Figure 3. The chemical universe exploration of the Artificial Chemist. A,B) Average model outputs when trained on 150 samples as a function of XZnI2 
and XZnBr2 (A) and XOA and XOLA (B) when all remaining input variables are kept at a constant value (XC). C) Input parameter space for ten condi-
tion sample set and D) corresponding output parameters used for model training where sampling order is indicated by the direction of the arrows. 
E) Model prediction average (Zn) with associated variance (σn

2) as a function of sample size and input parameter at the measured optimal condition 
for 2.3 eV setpoint emission (i.e., the panels show the predicted Z for each parameter while the remaining parameters are held at their optimal value).
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compared with other methods (Figure S4H, Supporting Infor-
mation). To overcome these issues without losing the statistical 
quantification that GPs provide, we trained an NNE simulta-
neously for EP, EFWHM, and PLQY figures of merit (shown in 
Figure  3C–E). Sample statistics calculated from the ensemble 
can then be used in place of the probabilistic quantification tra-
ditionally modeled by GPs. The model outputs of these three 
parameters are converted into a single quality metric–referenced 
as the objective function (Z). Demonstrated in Figure S5, Sup-
porting Information, we further enhanced the ensemble mod-
eling by applying a data and model boosting algorithm, Ada-
boost,[45,46] to train models in the ensemble. Adaboost assigns 
data weights iteratively between successively trained NNs as well 
as a model weight to each individual NN, thereby increasing 
the influence of higher performing members of the ensemble. 
Finally, a decision policy selected from four different methods 
was used on the boosted NNE model to choose the next set of 
optimized experimental conditions for a targeted QD bandgap.

Across different decision policies applied to the NNE model of 
the Artificial Chemist, a balance between exploration of the chem-
ical space and exploitation of the best predicted regions of the reac-
tion space—shown in Figure 4A—resulted in the lowest number 
of experiments (cost) required to achieve the desired optoelectronic 

properties of metal halide perovskite QDs.[47] Exploration-heavy 
optimization strategies such as NNE with maximum variance (MV) 
and SNOBFIT, all either failed to consistently move inwards from 
the input space bounds or converged onto an optimum synthetic 
condition at a far slower rate than other models. On the opposite 
end of this balance, NNE with pure exploitation (EPLT) also failed to 
converge onto an optimum within an acceptable number of experi-
ments (less than 25), due to the small incremental improvements 
with each round of experimentation. The colloidal synthesis opti-
mization methods with more balanced exploration/exploitation—
for example, NNE with upper confidence bound (UCB), NNE with 
expected improvement (EI), and CMA-ES—rapidly and consist-
ently reached the optimal synthesis conditions (see Figure 4B and 
Figure S6, Supporting Information). All three of these methods 
on average resulted in QDs within 10% of the lowest measured 
Z value after 25 experiments. Among the balanced exploration/
exploitation methods tested here and represented in Figure  4C, 
NNE-UCB showed the most consistent and greatest performance 
in the uninformed QD synthesis environment.

A noteworthy advantage of the objective function optimiza-
tion method over multi-parameter optimization techniques[48] is 
that it may easily be adapted towards precise bandgap selection, 
specifically after uninformed synthetic path discovery has taken 
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Figure 4. Intelligent decision-making of the Artificial Chemist. A) Isomap representation of the input space for a target emission of 2.2 eV across three 
different optimization methods ranging in exploration to exploitation ratios. NNE-EPLT: exploitation-heavy; NNE-UCB: balanced exploration versus 
exploitation; SNOBFIT: exploration-heavy. B) Sample output values for NNE-UCB and NNE-EPLT (yellow, orange, and red corresponding to 2.4, 2.2, 
and 2.0 eV, respectively). C) Mean of best three measured Z, averaged across six optimizations of different target emissions, as a function of sample 
number.
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place (knowledge transfer). In addition to the optimization runs 
performed without any prior information on the reaction space 
of metal halide perovskite QDs, we explored the pre-training 
of NNE models with prior optimization data sets to both fur-
ther push the limits of the objective function multi-parameter 
optima (i.e., Pareto front) and to accommodate batch-to-batch 
precursor variability in the starting reagents. An NNE model was 
trained with the data collected for the NNE-UCB optimizations 
(275 experiments) then passed through an EPLT policy. Despite 
the perovskite QD synthesis occurring with a new set of precur-
sors, the pre-trained optimization surpassed the performance of 
all other methods for 9 of the 11 target Ep values (5 with ZnI2 
and 4 with ZnCl2). Optimal conditions for the two exceptions 
(1.9 and 2.5  eV) were collected during the uninformed NNE-
UCB study and were located near the bounds of the available 

reaction space for each of the halides. After 25 runs, autono-
mously synthesized perovskite QDs with prior knowledge had 
Ep values, on average, within 1 meV of the target values, which 
is an improvement from the 3 meV of the uninformed NNE-
UCB experiments. Thus, the developed Artificial Chemist can 
rapidly and consistently find the optimal synthetic pathway of 
QDs using the knowledge obtained from prior experiments even 
when prior data is subject to batch-to-batch precursor variation.

The Artificial Chemist is capable of rapidly reaching favorable 
synthesis conditions for a desired set of optoelectronic properties 
of QDs with no prior reaction space data. Furthermore, it is able 
to use prior training to push the measured figures of merit (i.e., 
EP, EFWHM, and PLQY) past the reported results of less efficient 
methods within the same resources (as shown in Figure 5A,B). 
The approach of using NNE-UCB optimization followed by 
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Figure 5. Case study of the Artificial Chemist in the accelerated synthesis of metal halide perovskite QDs. A) PLQY as a function of EP and EFWHM for all 
1400 in-flow collected data points with the 11 optimal formulations highlighted. B) Sample output values for a pre-trained NNE-EPLT at three separate 
target emission values (yellow, orange, and red correspond to 2.4, 2.2, and 2.0 eV respectively). C) In situ photoluminescence and D) absorption spectra 
of 11 optimized nanocrystals, linearly scaled by the concentration of SQD in the reactive phase. E) PL spectra, scaled by the measured absorbance at 
365 nm, of best measured Z for six sample selection methods.
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pre-trained NNE-EPLT was able to produce high-quality metal 
halide perovskite QDs all within, on average, 1 meV of targeted 
EP values (Figure  5C,D). These methods demonstrated signifi-
cant improvements over all optimization strategies and decision 
policies evaluated in this study (Figure 5E). Further applications 
of the Artificial Chemist will enable facile manufacturing of 
made-to-measure colloidal nanocrystals with precise synthesis 
control across different precursor batches. Archived experi-
mental results facilitate rapid tuning of reaction parameters to 
achieve consistent nanocrystal batches and optoelectronic prop-
erties in a continuous flow production setting.

The Artificial Chemist, in addition to accelerated synthetic 
path discovery and optimization of colloidal QDs, can also rap-
idly synthesize a library of high-quality QDs on-demand, as 
shown in Figure  6A,B, utilizing the NNE-EPLT optimization 
algorithm with pre-training based on in-house generated QD 
synthesis data. That is, through knowledge transfer of prior 
experimental data sets, the Artificial Chemist can quickly attain 
high PLQY and low polydispersity (EFWHM) QDs for any tar-
geted emission color. The autonomously discovered optimal 
synthetic pathways (QD formulations) by the Artificial Chemist 
may then be utilized for a scaled-up (nano)manufacturing 
of the target perovskite QDs by continuously flowing reac-
tants through the same modular flow synthesis platform with  
a throughput of ≈220 g QD solids per day (Figure 6C).

In this work, we have developed the self-driving Artificial 
Chemist, that is, a single, self-contained system capable of 
autonomous data generation, learning, synthetic path discovery, 

knowledge transfer, and continuous on-demand manufacturing 
of solution-processed nanomaterials. We have integrated ML-
based experimental selection methods with a high-efficiency 
modular fluidic reactor to demonstrate a system capable of 
fully autonomous and intelligent materials chemistry explo-
ration, as well as efficient multivariate process optimization 
with knowledge transfer. We attained accurate in situ charac-
terization of PLQY, EFWHM, and EP of in-flow synthesized QDs. 
Our methods enabled the simultaneous optimization of three 
important, highly coupled parameters for QD quality and identi-
fied the synthetic routes to achieving the frontier properties of 
these materials. With this approach, we studied the efficacy of 
NNE modeling in the uninformed optimization of the halide 
exchange of CsPbBr3 QDs. By applying knowledge transfer from 
the uninformed studies, the intelligent system was then utilized 
to produce high-quality metal halide perovskite QDs within  
1 meV of 11 target peak emission energies.

The developed plug-and-play autonomous flow synthesis 
strategy may be quickly adapted to other reaction systems beyond 
colloidal QDs such as metal, metal oxide, and carbon-based 
nanoparticles. This approach can also be expanded to include 
downstream dispensing of colloidal suspensions and solutions 
directly into coating and printing platforms for the fabrication 
of optoelectronic devices. An additional implication of the Arti-
ficial Chemist is intensified, green, and more consistent manu-
facturing of advanced nanomaterials as compared to flask-based 
studies, which are limited by batch-to-batch precursor variations 
and inefficient/irreproducible heat and mass transfer rates. The 

Figure 6. QD synthesis on-demand enabled by the Artificial Chemist. A) Illustration of the UV-illuminated starting perovskite QDs and final halide-
exchanged synthesized in flow for all 11 target emission colors. B) Transmission electron microscopy (TEM) images with X-ray diffraction (XRD) spectra 
overlay of the purified halide-exchanged QDs obtained from (descending order) ZnCl2 exchange reactions with target emissions of 2.8 and 2.6 eV, the 
starting QDs, and ZnI2 reactions with target emissions of 2.4 and 2.2 eV. C) EP values continuously measured for a 1 h continuous collection of 2.7 eV 
(blue) and 2.0 eV (red) perovskite QDs with the corresponding UV illuminated products in 20 mL vials.
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autonomous robotic experimentation strategy embodied by the 
Artificial Chemist offers broad-reaching applications in rapidly 
advancing the synthesis of colloidal semiconductor nanocrystals 
and any other solution-processed nanomaterial.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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