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Abstract—Orthogonal chirp division multiplexing (OCDM) is a
fairly new multi-carrier scheme that employs the discrete Fresnel
transform (DFnT) to digitally modulate data onto orthogonal
chirps. Most work surrounding OCDM has been done in the
context of optical networks and single user wireless systems.
Hence, there is no literature regarding multiple access in OCDM.
This paper introduces a novel data multiplexing technique
that leverages the properties of the DFnT to independently
process smaller sub-blocks, thus enabling multiple access and low
complexity equalization. Additionally, this paper employs a joint
multi-user processing technique and compares its performance
to the proposed scheme.

Index Terms—Orthogonal chirp division multiplexing, OFDM,
multiple-access, precoding, diversity.

I. INTRODUCTION

Wireless multicarrier techniques such as orthogonal fre-

quency domain multiplexing (OFDM) are vastly popular due

to low complexity, high spectral efficiency, robustness to

frequency selective channels, etc. Orthogonal chirp division

multiplexing (OCDM) is a relatively new scheme which mod-

ulates data onto orthogonal chirps [1]–[4].

Digital implementations of OCDM, introduced in [1]–[2],

employ the discrete Fresnel transform (DFnT) in the baseband,

much like OFDM employs the discrete Fourier transform

(DFT). In [1], it is shown that while having identical peak

to average power as OFDM, OCDM showed improved bit

error rate (BER) performance and greater resistance to inter-

ference caused by insufficient guard lengths. The study in [2]

analyzed the performance of OCDM in coherent optic fiber

networks, [3] experimentally showed optical data rates of up

to a 112 Gbps using OCDM and intensity modulation with

direct detection and [4] used a combination of experiments

and simulations to analyze the performance of OCDM for

millimeter wave fiber wireless systems. An orthogonal chirp

spread spectrum (CSS) technique is investigated in [5] and it

is shown that an arbitrary number of chirps can be multiplexed

to achieve the Nyquist rate. In [6], the performance of orthog-

onal frequency division multiple access (OFDMA) in doubly

selective uplink channels is analyzed and an iterative equalizer

is proposed to mitigate multiple access interference.

Linear constellation precoding (LCP) has been proposed

to exploit maximum diversity and coding gains in single

antenna OFDM systems [7]–[8], and for multi-antenna systems

in conjunction with space-time coding in [9]–[10]. In [7],
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grouped carrier LCP (GLCP) OFDM has been proposed to

get maximum diversity and coding gains while decreasing

equalization complexity. Precoding strategies for space-time

coded systems were outlined and analyzed in [9]–[10] with

the objective of exploiting both multipath and antenna diver-

sity, resulting in significant performance enhancement. The

diversity and coding gain performance of single carrier with

cyclic prefix (SC-CP) systems has been analyzed in [11] and

shown to be dependent on the block size, constellation and

the signal to noise ratio (SNR).

To the best of the authors knowledge, multi-user OCDM has

not been studied so far. Most work surrounding OCDM has

either focused on single user wireless links or optical networks.

Moreover, constellation precoding for OCDM has not been

investigated either. The primary goal of this paper is to propose

and develop a symbol multiplexing technique that applies

GLCP to OCDM as well as frequency domain equalization

for orthogonal chirp division multiple access (OCDMA). For

comparison, we also analyze the performance of the joint

detection technique in [6] for multi-user detection in OCDMA.

Common notations used in this study include upper case

bold letters, like A, and lower case bold letters, like a,

for matrices and vectors, respectively. A
H, A

T denote the

conjugate transpose and transpose of A, respectively and ‖a‖
denotes the l2 norm of a vector a. In general the P ×P DFT

matrix is given by [FP ]k,n = 1/
√
P e−j2πnk/P . However,

wherever the size of the DFT matrix is N × N , where N is

the block length, the subscript is omitted.

II. SYSTEM MODEL

Consider OCDM transmissions over frequency selective

fading channels. A serial stream of QAM symbols is grouped

into blocks of size N and the i-th block is given by u(i) =
[u(iN), u(iN+1)...u(iN+N−1)]T . The symbols are linearly

precoded to give s(i) = Λu(i), where Λ denotes the precoder

matrix. The symbols are then modulated onto orthogonal chirp

signals by computing the IDFnT. The DFnT matrix Φ is given

by

Φ(m,n) =
1√
N

e−j π
4 ×

{

ej
π
N

(m−n)2 N ≡ 0 (mod 2)

ej
π
N

(m+ 1

2
−n)2 N ≡ 1 (mod 2).

(1)

In order to facilitate low complexity implementation, the fast

Fourier transform (FFT) algorithm can be used in conjunction

with the decomposition Φ = Θ2FΘ1, as shown in [1]–[2]. A

cyclic prefix (CP) of length L is added to the block, before

being serialized, pulse shaped and transmitted.



For the purpose of this study, we assume that the CP

length is sufficient to avoid inter block interference (IBI).

Hence the channel is modeled as a length L + 1 FIR filter

h = [h(0), ..., h(L)]T with each tap being an independent

zero mean complex Gaussian random variable with variance

1/(L + 1). This corresponds to the assumption of Rayleigh

fading. Furthermore, we assume that the channel is quasi-

static, i.e., it does not vary over the period of one block but

changes in between blocks. For simplicity, we primarily use

notations consistent with single user scenario in this section.

However, the model can easily be extended to multi-user

systems.

At the receiver, the received symbols are amplified, fil-

tered and converted into blocks. Assuming perfect time and

frequency synchronization, the received symbol block, after

deleting the CP, is given by

x(i) = H̃Φ
H
s(i) + n(i), (2)

where n(i) represents the additive white Gaussian noise and

H̃ is a circulant matrix, whose first column is given by

[hT
0
T
N−L−1]

T , as is the case for any scheme that employs CP

[12]. Given that the system has no memory, i.e., the current

block is independent of previous blocks, we will drop the block

index i from this point on without losing generality. After

removing the CP, the symbols are demodulated, equalized and

sent for detection.

III. FREQUENCY SHIFT PRECODING

In this section we introduce frequency shift precoding

(FSP) as a method to multiplex symbols such that they can

be independently processed in the frequency domain at the

receiver. As will be shown in the following sections, this

allows for low complexity maximum likelihood equalization

(MLE) and multi-user processing in the frequency domain. It

is pertinent to note here that the technique itself is similar to

the one used in interleaved frequency division multiple access

(IFDMA), proposed in [14]. However, IFDMA is shown as an

alternative to frequency division multiple access (FDMA) for

single carrier systems, but this paper uses FSP to overcome

interference caused by the frequency selective channel in

OCDM.

Let us assume there are M blocks of K symbols, such that

the aggregated number of symbols is given by N = MK, that

need to be transmitted. In order to develop FSP, we rewrite

Eq. (2) to get

x = F
H
DhΓ

H
Fs+ n, (3)

where Dh and Γ are diagonal matrices with the channel

frequency response and the root Zadoff-Chu sequence, given

by Eq. (4), on the main diagonal, respectively.

Γ(k, k) =

{

e−j π
N

k2

N ≡ 0 (mod 2)

e−j π
N

(k2−k) N ≡ 1 (mod 2).
(4)

This follows from the eigenvalue decomposition Φ = F
H
ΓF.

Converting the input symbols to the frequency domain, and

multiplying with Γ, obtain

x̃ = ΓFx = ΓDhΓ
H
Fs+ ΓFn

(a)
= DhFs+ ΓFn, (5)

where the equality (a) follows from the commutative property

of two diagonal matrices and the definition of Γ. Eq. (5) shows

that in order to avoid interference among the M transmitted

blocks, the location of the zeros in the frequency domain

symbols Fs need to be controlled. In the subsequent lemma

we leverage the properties of the DFT to devise a method to

introduce these zeros.

Lemma 1: Given a length-K time domain sequence v(n)
with a K-point DFT given by V (k), where K = 2l and l ≥ 1,

the N -point DFT of the periodic extension of the signal ṽ(n),
created by repeating v, M times, is given by

Ṽ (k) =

{√
MV

(
k
M

)
if k

M ∈ Z
+

0 elsewhere,
(6)

where Z
+ denotes the set of non-negative integers.

Proof: The N point DFT of the extended signal is given

by

Ṽ (k) =
1√
N

N−1∑

n=0

ṽ(n)e−j 2πkn
N

=
1√
N

M−1∑

l=0

(l+1)K−1
∑

n=lK

v(n− lK)e−j 2πkn
N .

Introducing the substitutions n′ = n − lK and N = MK
gives us

Ṽ (k) =

(
1√
M

M−1∑

l=0

e−j 2πkl
M

)

︸ ︷︷ ︸

(a)

(
1√
K

K−1∑

n′=0

v(n′)e−j 2πn′

K
( k
M

)

)

.

(7)

It is well established that the expression (a) in Eq. (7) simpli-

fies to
√
M

∑K−1
i=0 δ(k − iM), where δ(.) is the Dirac-delta

function i.e., δ(0) = 1 and δ(k) = 0 for k 6= 0. Substituting

this into Eq. (7) gives us

Ṽ (k) =
√
M

K−1∑

i=0

δ(k − iM)

(
1√
K

K−1∑

n′=0

v(n′)e−j 2πn′

K
( k
M

)

)

=
√
M

K−1∑

i=0

δ(k − iM)V

(
k

M

)

, (8)

which completes the proof.

Lemma 1 shows that periodic extension of a length K signal

to a length N signal is equivalent to adding M − 1 zeros

between the original DFT samples. Subsequently, multiplexing

multiple blocks simply then becomes a question of shifting

each block by a variable amount in the frequency domain

which leads into the following theorem.



Fig. 1. FSP transmitter (a) and receiver (b). The time domain symbol estimates are given by ûm.

Theorem 1: Shifting the frequency domain sequences Ṽ (k)
by an integer m, where m = [0,M − 1] allows for the

multiplexing of a maximum of M length K sequences without

interference.

Proof: The proof for this is fairly trivial and can be directly

seen from the fact that
∑

n δ(n−m)δ(n− l) = 0, ∀ m 6= l.
It is well known that a frequency shift is equivalent to a

point-wise multiplication with a fixed frequency tone in the

time domain. Hence we represent the FSP for the mth sub-

block as the cascade of two precoders Λm = ∆mP, given

by

P =
1√
M

[IK IK ... IK
︸ ︷︷ ︸

M times

]T

∆m(n, k) =

{

ej
2πm
N

n when n = k

0 otherwise,
(9)

where P is an N×K matrix, with the scaling factor introduced

to maintain constant power, and ∆m is an N × N diagonal

matrix. Hence, given M length K symbols um, we can see

that

s =

M−1∑

m=0

s
′
m =

M−1∑

m=0

∆mPum. (10)

In order to develop the FSP receiver, we define a K × N
permutation matrix Ψm as

Ψm(i, l) =

{

1 for i = 1, ...,K and l = 1 +m+M(i− 1)

0 otherwise.

(11)

According to Theorem 1, the DFT of the transmitted sym-

bols can then be denoted by Fs = F
∑M−1

m=0 s
′
m =

∑M−1
m=0 Ψ

T
mFKum. Hence, the mth received sub-block is given

by

x̃m = ΨmDhFs+ΨmΓFñ. (12)

Noting that Fs =
∑M−1

l=0 Ψ
T
l FKul, and that for any N ×N

diagonal matrix D, ΨmDΨ
T
n = 0K×K ∀n 6= m, Eq. (12)

can be rewritten as

x̃m = ΨmDh

M−1∑

l=0

Ψ
T
l FKul + n̂m

= ΨmDhΨ
T
mFKul + n̂m

= Dh,mFKum + n̂m, (13)

where Dh,m = ΨmDhΨ
T
m = diag(H(m)...H(m + (K −

1)M)), H(k) denotes the frequency response in the kth bin,

and n̂m = ΨmΓFñ. For simplicity, we have assumed a

single channel Dh but in later sections, we show that multiple,

independent channels do not necessitate any changes in the

system. The block diagram for an FSP transceiver is shown

in Fig. 1.

IV. GROUPED CARRIER LINEAR CONSTELLATION

PRECODING

We have already seen that by using FSP, we are able to

partition OCDM symbols into non-intersecting sub-blocks of

length K < N in the frequency domain, as shown in Eq. (13).

This allows us to apply GLCP to OCDM to achieve maximum

coding and diversity gains while reducing MLE complexity.

Hence, in this section, we build on the analyses presented in

[7]–[11] to show that OCDM with FSP does indeed stand to

benefit from the application of GLCP. Prior to further analyses,

it is pertinent to note that we have not discussed how a length

N block is divided into length K sub-blocks prior to the

application of FSP. For the purpose of this study, we simply

assume that contiguous K symbols in the block form one sub-

block.

In order to apply an LCP, we alter Eq. (13) slightly to get

x̃m = Dh,mFKTum + n̂m, (14)



where T is the K×K precoder matrix and T = IK accounts

for the unprecoded case. In terms of the design, this precoder

precedes Λ. Hence, no changes need to be made to the FSP.

We use the bound on the conditional pairwise error probability

(PEP), given by

P(ũm −→ ũ
′
m|h) ≤ exp

[

− d2(x̃′
m, x̃m)

4N0

]

,

to analyze the performance of MLE, where d2(x̃′
m, x̃m) =

‖x̃′
m− x̃m‖2. Making use of the substitution from Eq. (14), it

is easy to see that d2(x̃′
m, x̃m) = ‖Dh,mêm‖2 = ‖Deh̃m‖2,

where êm = FKTem, em = u
′
m−um, De = diag(êm), and

h̃m = [H(m), H(m+M), ...H(m+(K−1)M)]T . A vector

of i.i.d. fading samples h̄ can be obtained using the relation

h = Bh̄, where BB
H = Rh and Rh is the channel correla-

tion matrix, which is positive definite. It subsequently follows

that h̃m = ΨmVNBh̄, where VN = [v(0), ..., v(N − 1)]T

is the truncated FFT matrix, v(n) = [1, ωn, ..., ωnL]T and

ω = exp(−j2π/N). For simplicity, we make the substitution

Um = ΨmVN , which becomes

Um =








1 ωm . . . ωmL

1 ω(m+M) . . . ω(m+M)L

...
...

. . .
...

1 ω(m+(K−1)M) . . . ω(m+(K−1)M)L







. (15)

Hence, making the appropriate substitutions, we get

‖Deh̃m‖2 = h̄
H
Ceh̄, where Ce = B

H
AeB, and Ae =

U
H
mD

H
e DeUm. It is well known that the average PEP, at high

SNR, is bounded by

P(ũm −→ ũ
′
m) ≤

(

Gc,e
1

N0

)−Gd,e

,

where Gd,e = R(Ce) is the multipath diversity gain and

Gc,e = (
∏R(Ce)−1

l=0 λl)
1/R(Ce) is the coding gain and λl is

the lth non-zero eigenvalue of Ce. Due to the fact that we

draw the input symbols from a finite alphabet, there are a

finite number of possible em. As a consequence, we define

the coding and diversity gains as

Gd = min
∀em 6=0

Gd,e and Gc = min
∀em 6=0

Gc,e, (16)

respectively. It is obvious that in order to exploit maximum

diversity, K ≥ L+1 to ensure that Ce is full rank. Recalling

that N = 2l and K = 2n, where l > n > 1 due to the design

of FSP, in order to get maximum diversity and coding gains,

the system must be designed so that K = ⌈L + 1⌉2, where

⌈.⌉2 denotes the closest exponent of 2 that is larger than the

argument.

A. Diversity Gain

It is easy to see, from Eq. (16), that Gd =
min∀em 6=0 R(Ce). The dimensions of Ce thus suggest that

the maximum diversity order is given by Gd,max = L + 1
when K ≥ L + 1, as shown in [7]–[8]. Let us define the

matrix T̂ = FKT, whose rows (columns) are given by

t̂i (̂̄ti) ∀i ∈ [1,K] and trace(T̂H
T̂) = K to preserve power.

In order to show that the proposed grouping scheme allows

for maximum diversity, we enforce the following condition on

our precoder

t̂i(u
′
m − um) 6= 0 ∀i ∈ [1,K] and ∀u′

m 6= um. (17)

Now recall Ce = B
H
AeB, and that B is always full rank.

From the condition in (17), it is easy to see that D
H
e De =

diag(|̂t1e|2, ..., |̂tKe|2) is positive definite. Hence, using

the definition of Um, it follows that Ae = U
H
mD

H
e DeUm

is positive definite and Gd,max = min(L+ 1,K).

When there is no precoding, i.e. T = IK , the diversity be-

comes a function of K due to the finite alphabet property [11].

Since, K ≪ N , we will observe a performance degradation in

uncoded and grouped transmissions as the probability of êm

having multiple zero entries increases.

B. Coding Gain

Assuming Ce is positive definite, the coding gain is given

by

Gc = det(Rh)
1/(L+1) min

∀em 6=0

det(UH
mD

H
e DeUm)

︸ ︷︷ ︸

(a)

1/(L+1).

(18)

Using Cauchy-Binet Theorem in [13], (a), in Eq. (18), can

be rearranged as min
∑

i |det(D̃
(i)
e Ũ

(i)
m )|2, where the sum

is taken over all matrices obtained by deleting K − L − 1
rows and K − L − 1 rows and columns from Um and De,

respectively. It is fairly simple to see that the above sum can

be bounded as Gc ≥
(∑

i |det(Ũm)|2
)
min |det(D̃e)|2 =

det(UH
mUm)min

∏

j∈I |̂tj(u′
m−um)|2, where I is the set of

(L+1) rows taken from T̂. Using the fact that det(UH
mUm) =

K(L+1), and min
∏

j∈I |̂tj(u′
m − um)|2 ≥ (d2min/K)(L+1)

[10], where dmin is the minimum Euclidean distance between

constellation points. Hence it follows that the maximum

coding gain is given by Gc,max = det(Rh)
1/(L+1)d2min. This

shows that the proposed grouping scheme when K ≥ (L+1)
allows for the same maximum coding gain as a full block size

precoder. A much more rigorous proof than the one provided

here has been shown in [8].

It is important to point out here, that so far we have not

specified the kind of precoder needed to achieve the maximum

diversity and coding gains. Such precoders have already been

designed in [7]–[10] and in order to apply them to OCDM, T

only needs to be a diagonal constellation rotation matrix.

V. MULTIPLE ACCESS

Downlink multiple access is fairly trivial and hence this pa-

per focuses solely on the uplink, in which frequency selective

channels cause the chirps to lose orthogonality resulting in

inter user interference (IUI). This paper employs two different

schemes to enable uplink multiple access and compares their

performance.



A. FSP

We have already shown that FSP multiplexes multiple

signals in the frequency domain while preserving the OCDM

transmitter. Hence, here we simply extend it to a multi-user

model and account for linear equalization.

Let us assume we have Nu users that are scheduled to

transmit in one block duration. Furthermore, let us assume

that each transmitter has M implemented branches, labeled in

Fig. 1 as ui ∀i ∈ [0,M − 1], such that M ≥ Nu. From this

point on, we refer to these branches as resource blocks (RB).

In order to simplify the analysis, we assume that the CP length

is sufficient for all users. Modifying Eq. (13) for multi-user

transmissions, the received signal at the mth RB is given by

x̂m = D
(u)
h,mFKum + n̂m. (19)

where D
(u)
h,m is a diagonal matrix with entries given by

[H(u)(m), H(u)(m + M), ..., H(u)(m + (K − 1)M)]. It

is easy to see that linear equalizers can be implemented for

each branch independently, denoted by G
(u)
m , using either the

zero forcing (ZF) or minimum mean squared error (MMSE)

criterion. Thus, the equalized symbols for the mth RB are given

by

ûm = F
H
KG

(u)
m D

(u)
h,mFKum + F

H
KG

(u)
m n̂m. (20)

It is clear that each RB is processed individually at the receiver.

Hence, there is no IUI and each RB can be independently

modulated, e.g. use different constellations etc.

B. Joint detection

We adopt the second method from [6], originally proposed

for multi-user detection and interference cancellation in doubly

selective channels for OFDMA. We assume that there are Nu

users that are scheduled to transmit such that Nu ≤ N . Each

user has been allocated a subset of chirps Ru, which it uses

to transmit data. Hence one example of an input sequence to

the DFnT is given by su = [u0, u1, ..., u|Ru|−1, 0
T
N−|Ru|

]T .

Modifying Eq. (2), the DFnT of a received block is given by

x̂ = Φ

( Nu∑

u=1

H̃
(u)

Φ
H
Juuu + n

)

=

Nu∑

u=1

H̃
(u)

Juuu +Φn,

(21)

where uu is the uth transmit block of size |Ru| and Ju

is a zero padding N × |Ru| matrix. Eq. (21) follows from

the circular convolution property of the DFnT. Stacking the

transmit vectors such that r = [uT
1 , ..., u

T
Nu

]T , we can form

the equivalent model as

x̂ =

( Nu∑

u=1

H̃
(u)

Mu

︸ ︷︷ ︸

Heq

)

r+Φn, (22)

where Mu is an N ×N matrix given by

Mu(m,n) =

{

1 if m = n and m,n ∈ Ru

0 elsewhere.
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Fig. 2. Uncoded OCDM for different K and uncoded OFDM.

Using Eq. (22), it is easy to see that the formulation of an

equivalent channel matrix Heq mandates multi-tap equaliza-

tion.

VI. NUMERICAL RESULTS

We simulate OCDM transmissions employing a QPSK con-

stellation with N = 8 and vary K. The channel is quasi-static

with a length of L + 1 = 3, the receiver has perfect channel

state information (CSI), uses an MLE implemented through

sphere decoding and the transmitter has no information about

the channel. Results for full diversity GLCP-OFDM are shown

for comparison. The constellation precoder for OCDM is given

by T = diag(1, α1, ..., αK−1
1 ), where α1 is defined in [7,

Table 1].

Figure 2 shows the performance of OCDM without precod-

ing for different values of K. The graph shows two important

trends: Firstly, the BER slope seems to decrease as the SNR

increases. This is more clear in the curve when K = 8 and

occurs because the impact of errors with only one non-zero

entry, i.e., the rank–1 blocks, is significantly larger at higher

SNRs. A similar trend is observed for SC-CP transmissions in

[11]. Secondly, decreasing K seems to adversely impact the

performance, even when K > L+1. Due to the finite alphabet

property, the probability of êm having only one non-zero entry

is an exponentially decreasing function of K. As a result,

decreasing the block size leads to performance deterioration.

However, it is pertinent to note that uncoded OCDM still

shows better performance than uncoded OFDM.

Figure 3 shows the performance of precoded OCDM for

different K. In agreement with the analysis in section IV, it can

be seen that precoded OCDM offers full diversity and coding

gains as long as K ≥ L + 1. It is pertinent to note that the

coded OFDM result shown for reference has been generated

for K = 4. When K < L+1, we can see a performance loss

as the sub-blocks are not able to take full advantage of the

channel. Combined with the constraint that K = 2l l ∈ Z
+,

this presents an interesting tradeoff between complexity and
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Fig. 3. LCP OCDM for different K and full diversity GLCP OFDM.

performance. The graph also shows a marginal improvement

for K = 8 in comparison to when K = 4. This trend was also

noted in [7]–[8], and can be explained by the fact that the

diversity and coding gains are just performance bounds and

that other factors, like the kissing number, also impact BER

performance.

Figure 4 compares the performance of the two multiple

access schemes to single user OCDM. In this simulation the

user block lengths |Ru| are kept equal to the total block length

N in the single user case to avoid bias and an interleaved

chirp allocation scheme is used in joint detection. It is clear

that FSP preserves the performance of single user OCDM as

the error rates for both are approximately the same. However,

joint detection is limited by the interference caused by the loss

of orthogonality in frequency selective channels. The RBs in

FSP are designed so that orthogonality is preserved. Thus the

performance of FSP is almost the same as that of the single

user case.

VII. CONCLUSION

This paper proposed a novel symbol multiplexing technique

to enable low complexity, high performance MLE and multiple

access for OCDM. Furthermore, it introduces an alternative

multiple access scheme for OCDM and compares the perfor-

mance. It has been shown that using FSP, OCDM is possible

to achieve the same performance as LCP OFDM. In addition,

FSP enables low complexity linear FDE at the receiver for

multi-user detection while maintaining the same performance

as that of single user OCDM. However, there is an inherent

trade-off between the implementation complexity and resource

flexibility, i.e., is it better to have a large number of available

RBs to allow for flexible allocation or is it better to limit this

to lower transmitter design complexity?

In the near future, we plan on extending this work to incor-

porate channel estimation and techniques to reduce PAPR.
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Fig. 4. Performance comparison of multi-user OCDM enabled through joint
detection and FSP with single-user OCDM. For single user, N = 64 and for
multiuser |Ru| = 64.
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