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A recent experiment by Kim’s group from the University

of Nevada, Las Vegas has shown the possibility of actuat-

ing ionomer cilia in salt solution. When these actuators are

placed between two external electrodes, across which a small

voltage is applied, they move toward the cathode. This is in

stark contrast with ionic polymer metal composites, where

the same ionomers are plated by metal electrodes but bend-

ing occurs toward the anode. Here, we seek to unravel the

factors underlying the motion of ionomer cilia in salt solu-

tion through a physically-based model of actuation. In our

model, electrochemistry is described through the Poisson-

Nernst-Planck system in terms of concentrations of cations

and anions and voltage. Through finite element analysis, we

establish that Maxwell stress is the main driving force for the

motion of the cilia. This study constitutes a first effort toward

understanding the motion of ionomer cilia in salt solution,

which, in turn, may help elucidate the physical underpinnings

of actuation in ionic polymer metal composites.

1 Introduction

The range of applications of ionic polymer metal com-

posites (IPMCs) has been recently expanding due to the ad-

vances in freeform fabrication of ionic membranes [1, 2],

which allows for tailoring the performance and geometry of

IPMCs. This new class of electroactive materials has been

considered for applications as actuators, sensors, and energy

harvesters [3–5]. In particular, their large compliance, ability

to operate underwater, and small driving voltages have fos-

tered their use in underwater robotics, from robotic fish to

jelly fish and manta rays [6].

IPMCs are composite materials that comprise a core

ionomer layer and two metal electrodes [4, 5]. Anions

are fixed to the backbone of the ionomer, while positively

charged counterions can freely move. When a voltage is
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applied across the IPMC electrodes, the counterions redis-

tribute through the thickness. Their motion generates large

osmotic pressure and Maxwell stress [7] in boundary lay-

ers near the electrodes, where counterions pile-up (anode) or

deplete (cathode). These two physical phenomena (osmotic

pressure and Maxwell stress) elicit the macroscopic deforma-

tions observed in IPMCs.

Inspired by cilia and flagella in cells, Kim’s group from

the University of Nevada, Las Vegas recently demonstrated

the possibility of actuating ionomer fibers without plated elec-

trodes [8]. (Equivalent predictions have been later confirmed

by our group [9].) When placed between two external elec-

trodes in a salt solution, these actuators exhibit consistent mo-

tion toward the cathode in response to the applied electric

field. This configuration allows to overcome difficulties in

material processing encountered with IPMCs, namely, elec-

trode patterning and wiring that could complicate manufac-

turing and control.

Here, we put forward a modeling framework to describe

the actuation of these ionomer fibers. Grounded in physically-

based models of electrochemistry, our approach does not re-

quire any fictitious constant, but relies only on physical prop-

erties of the material. Due to the difference in time scales and

the limited extent of the elastic deformation, the electrochem-

istry and the mechanical bending are decoupled, whereby the

former acts as an input for the latter [10]. The electrochemi-

cal model is based on the Poisson-Nernst-Planck (PNP) sys-

tem [11], which has been widely used for describing elec-

trolytes [12] and ionomer membranes [13]. The field vari-

ables of the problem are the concentration of cations, the con-

centration of anions, and the voltage. As a result of charge

imbalance, internal stresses due to ion mixing and polariza-

tion (osmotic pressure and Maxwell stress) are generated in-

side the ionomer. This model is implemented, in a two-

dimensional setting, in the finite element software COMSOL

Multiphysics R©. From the simulation, we integrate the inter-

nal stresses to estimate the internal bending moments, thereby





The electrochemistry is described by the PNP system.

Due to the nonlinear form of the electromigration term,

closed-form analytical solutions of this system are, in gen-

eral, not available for arbitrary geometries and high values of

the applied voltage. For this reason, we rely on a numerical

solution, which is detailed in the following section.

Mass conservation of cations and anions and the Poisson

equation are expressed as [12]

∂C±

∂t
+∇ ·J±sol = 0, (1a)

∇ ·Dsol = Qsol, (1b)

where C+, C−, J
+
sol, J

−
sol, Dsol, and Qsol indicate the concen-

trations of cations and anions per unit volume of the solution,

the fluxes of cations and anions, the electric displacement,

and the net charge in the solution, respectively. In addition,
∂
∂t
(·) and ∇(·) represent partial derivative with respect to time

and nabla operator, respectively.

We assume that the ionic fluxes are governed by the

Nernst-Planck equation, modified with a steric coefficient ν
that accounts for ion packing at high electric fields [14, 15].

Within this formulation, the concentration of ions in the so-

lution cannot exceed
C0sol

ν , where C0sol
is the initial concen-

tration. In addition, we suppose that the solution behaves as a

dielectric material, and that there is no Faradaic reaction at the

electrodes. The latter assumption is unlikely verified in [8],

as the applied voltage is above the electrolysis standard po-

tential of water. To address this issue, we focus on the highest

excitation frequency of 1 Hz, for which we expect the ions

in the solution to be the main current carriers. Under these

hypotheses, the constitutive equations for the solution are

J±sol =−Dsol

[

∇C±±
F C±

R T
∇ψ

+
νC±

C0sol
−ν(C++C−)

∇(C++C−)

]

,

(2a)

Dsol =−εsol∇ψ, (2b)

Qsol = F (C+−C−). (2c)

Here, ψ is the electric potential; Dsol is the diffusivity of ions

in solution (assumed equal for cations and anions); and F , R ,

and T are the Faraday constant, the universal gas constant,

and the absolute temperature, respectively.

In the ionomer, the anions are fixed, so that their concen-

tration does not vary in time. We assume that such a concen-

tration is also uniform and equal to C0ion
. Under this hypoth-

esis, the PNP system for the ionomer reduces to [13]

∂C+

∂t
+∇ ·J+ion = 0, (3a)

∇ ·Dion = Qion. (3b)

Note that C+, in this case, is the concentration per total

volume of the ionomer. Since we expect the concentration

of counterions not to grow, we neglect steric effects in the

ionomer. By supposing that the ionomer also behaves as a di-

electric, and considering that anions are fixed, we obtain the

following constitutive laws:

J
+
ion =−Dion

(

∇C++
F C+

R T
∇ψ

)

, (4a)

Dion =−εion∇ψ, (4b)

Qion = F (C+−C0ion
), (4c)

where the diffusivity Dion and the dielectric constant εion of

the ionomer can be different from the solution.

At the anode (San) and at the cathode (Scat), we impose a

time-varying voltage

ψsol|Scat
=−

ψ̄

2
(t), (5a)

ψsol|San
=

ψ̄

2
(t), (5b)

thereby neglecting the effect of the potential drop across the

Stern layer [12]. On the lateral walls, instead, we require that

the normal component of the electric displacement is zero,

that is,

Dsol ·n|Sw
= 0. (6)

This boundary condition implies that charges do not accumu-

late at the lateral walls, which is tenable for the setup of [8].

In addition, we set the ionic fluxes to zero on all the bound-

aries, consistent with our hypothesis of no Faradaic reactions,

through the following conditions:

J
± ·n

∣

∣

Scat
= J

± ·n
∣

∣

San
= J

± ·n
∣

∣

Sw
= 0. (7)

To close the problem, matching conditions at the inter-

face S between the ionomer and the solution are imposed.

We require that the concentration and flux of counterions are

matched per unit volume of water, whereby we rescale the

values in the ionomer by its porosity φ, estimated from [16],

C+
sol

∣

∣

Sint
=

C+
ion

φ

∣

∣

∣

∣

Sint

, (8a)

J
+
sol ·n

∣

∣

Sint
=

J
+
ion

φ
·n

∣

∣

∣

∣

Sint

. (8b)

As the ionomer is selectively permeable, we require that the

flux of anions is zero at the interface

J
−
sol ·n

∣

∣

Sint
= 0. (9)



Finally, we match the electric potential and the normal com-

ponent of the electric displacement across the interface

ψsol|Sint
= ψion|Sint

, (10a)

Dsol ·n|Sint
= Dion ·n|Sint

. (10b)

The latter condition ensures that no surface charge is gener-

ated at the interface.

The actuator is considered as a beam, forced by osmotic

pressure and Maxwell stress that generate two internal bend-

ing moments Mionic and Mpol, respectively, given by

Mionic =−R T

∫
Ωion

(C+−C0)x dΩion, (11a)

Mpol =
εion

2

∫
Ωion

‖E‖2
x dΩion, (11b)

where E =−∇ψ is the electric field, ‖·‖ is the norm of a vec-

tor, and Ωion is the two-dimensional domain of the ionomer.

4 Finite element solution

We solve the electrochemical problem in the commercial

finite element software COMSOL Multiphysics R©. We ex-

ploit symmetry with respect to the vertical plane perpendic-

ular to the electrodes and passing through the middle of the

cylinder to simulate only half of the domain (Fig. 4), toward

reducing the computational cost. The presence of thin bound-

ary layers at the electrodes and at the interface between the

ionomer and the solution, in fact, requires very fine meshes,

implying expensive and ill-conditioned computations. In ad-

dition, we decrease the dimension of the domain by reducing

the width of the electrodes, while assuring that no interaction

between the wall and the ionomer takes place.

We do not seek for quantitative agreement with exper-

iments, as we do not have access to unknown material pa-

rameters, but we attempt at gathering qualitative information

about the physics of the problem. To facilitate convergence

of the simulation, we substitute the 5V square-wave from [8]

with a sinusoidal input of the same amplitude and frequency.

This choice yields reduced values of the bending moments.

Furthermore, we use a slightly higher value of the dielectric

constant of Nafion membranes in salt solution than literature

values [17], further reducing the computational cost by in-

creasing the thickness of the boundary layers. The dielectric

constant of the water is multiplied by the same factor to main-

tain the same ratio between the two dielectric constants. The

parameters of the simulation are listed in Table 1.

At the beginning of the simulation, the steady-state solu-

tion for no external electric field applied is determined, cor-

responding to electrochemical equilibrium [18]. With the

steady-state condition as the initial state of our system, we

simulate the response over a half period to evaluate the time-

varying internal bending moments in the membrane.

The time steps in the simulation are advanced through a

backward differentiation formula (BDF). The standard multi-

Fig. 4. Detailed view of the mesh used in the simulation, highlighting

the refining of the mesh near the interface between the ionomer and

the solution to properly capture boundary layers. Axes x′ and y′ are

parallel to x and y axes in Figure 3, respectively.

Table 1. Model parameters.

Parameter Value

T [K] 300

C0 [mol m−3] 1070

C0s [mol m−3] 100

Di [m2 s−1] 3.84×10−10

Ds [m2 s−1] 1×10−9

εi [F m−1] 8.854×10−7

εs [F m−1] 7.083×10−9

φ 0.3837

ν 0.0033

frontal massively parallel sparse direct solver (MUMPS) im-

plemented in COMSOL is used for the solution of the sparse

finite element system.

5 Results

Figure 5 shows the simulated evolution in time of the

bending moments due to ion mixing and polarization. In-

terestingly, we find that the contribution of Maxwell stress

dominates osmotic pressure, consistent with the actuators’ de-

flection toward the cathode. This is in line with our previous

work [19], where we proposed an alternative explanation of

back-relaxation in IPMCs based on Maxwell stress.

A possible explanation for the large Maxwell stress is

given by the profile of the ions’ concentration in the solution






