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Abstract Ionic polymer metal composites (IPMCs) are soft electroactive materials that are

finding increasing use as actuators in several engineering domains, where there is a need of

large compliance and low activation voltage. Similar to traditional sandwich structures, an

IPMC comprises a hydrated ionomer core that is sandwiched by two stiffer electrodes. The

application of a voltage across the electrodes drives charge migration within the ionomer,

which, in turn, contributes to the development of an eigenstress, associated with osmotic

pressure and Maxwell stress. Critical to IPMC actuation is the variation of the eigenstress

through the thickness of the ionomer, which is responsible for strain localization at the

ionomer-electrode interfaces. Despite considerable progress in the development of reliable

continuum theories and finite element tools, accurate structural theories that could beget

physical insight into the inner workings of IPMC actuation are lacking. Here, we seek to

bridge this gap by contributing a principled methodology to structural modeling of IPMC

actuation. Our approach begins with the study of the IPMC electrochemistry through the

method of matched asymptotic expansions, which yields a semi-analytical expression for the

eigenstress as a function of the applied voltage. Hence, we establish a total potential energy

that accounts for the strain energy of the ionomer, the strain energy of the electrodes, and the

work performed by the eigenstress. By projecting the IPMC kinematics on select beam-like

representation and imposing the stationarity of the total potential energy, we formulate rigor-

ous structural theories for IPMC actuation. Not only do we examine classical low-order and

higher-order beam theories, but we also propose enriched theories that account for strain

localization near the electrodes. The accuracy of these theories is assessed through com-
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parison with finite element simulations on a plane-strain problem of non-uniform bending.

Our results indicate that an enriched Euler-Bernoulli beam theory, with three independent

field variables, is successful in capturing the main features of IPMC actuation at a limited

computational cost.

Keywords Eigenstress · Higher-order theories · Multiaxial deformations · Sandwich

structures · Through-the-thickness strains

1 Introduction

Since their invention more than two decades ago [1], ionic polymer metal composites (IPMCs)

[2, 3] have attracted increasing consideration from scientists and engineers. Their relatively

low driving voltage and large compliance compared to other electroactive materials are po-

tential advantages for application as artificial muscles, in soft robotics [4, 5] and biomedical

engineering [6]. The possibility of employing IPMCs in wet environments is another critical

advantage, which has promoted enticing concepts in underwater robotics [7]. Recent devel-

opments in additive manufacturing of ionomer membranes [4, 8, 9] are expected to further

extend the reach of these materials, allowing engineers to tailor IPMCs toward desired per-

formance and motion patterns.

The most basic incarnation of IPMCs [1] consists of a sandwich-like structure, where

a soft ionomer core is sandwiched by two stiffer electrodes [2, 3]. The ionomer core is

typically a cation-exchange membrane, in which anions are fixed to the polymeric back-

bone, while cations are mobile within the solution that saturates the membrane. Different

membrane types have been considered over the years, including NafionTM, FlemionTM, and

Aquivion R©, along with a range of imbuing solutions, from salt solutions to ionic liquids

[10]. Due to their low resistivity, noble metals are commonly utilized as electrode materials

[2, 3], although recent studies have explored the use of alternative solutions to reduce costs

and improve durability and biological compatibility [11, 12, 13, 14].

The application of a voltage across the electrodes elicits the macroscopic bending of

the actuator, mediated by complex microscopic electrochemical phenomena. Through the

past two decades, several theories have been proposed to describe IPMC actuation [2, 3].

Since the seminal efforts in de Gennes et al. [15] and Nemat-Nasser and Li [16], charge

redistribution in the ionomer has been identified as the main driver of actuation. Accompa-

nying the migration of cations toward the cathode is the motion of the solvent molecules

that is needed to maintain the electrochemical equilibrium. This motion generates a differ-

ential osmotic pressure near the electrodes, thereby causing a net bending moment toward

the anode. This actuation mechanism is incorporated in most of the models of IPMC ac-

tuation, including cluster-based approaches tailored to IPMC physics [16] and continuum

theories, grounded in linear irreversible thermodynamics [15], Poisson-Nernst-Planck equa-

tions [17, 18, 19, 20, 21, 22], mixtures [23], and porous media [24].

Despite the complexity of these modeling approaches, some peculiar IPMC phenomena

have remained elusive for long. Particularly challenging was to explain the phenomenon

of back-relaxation, which entails the surprising change in the direction of bending of an

IPMC actuator under a constant applied voltage [25]. Several authors have attributed back-

relaxation to the so-called added mass effect, whereby solvent molecules dragged during the

counterions’ migration will ultimately diffuse back to their original configuration, causing

back-relaxation [26]. Due to some limitations of this hypothesis, our group has proposed an

alternative explanation based on the nonlinear interplay of osmotic pressure and Maxwell
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stress [27], showing qualitative agreement with experimental observations [28]. These pre-

dictions are anchored in a continuum theory of IPMC physics, encompassing both ion mix-

ing and polarization effects [29]. This framework offers a powerful lens to study the inner

workings of IPMCs, starting from first principles of thermodynamics, following the line of

work by Hong et al. [30] for the study of polyelectrolytes.

Toward the simulation of the complete model in Cha and Porfiri [29], we have recently

established a finite element (FE) solution for plane-strain deformations of IPMCs with zero-

thickness electrodes [31]. Specifically, we formulated a user-defined element (UEL) in the

commercial FE software ABAQUSTM. Through FE simulations, we discovered that the two

charged electrodes of an IPMC attract each other due to Maxwell stress like a capacitor,

thereby causing a contraction along the thickness and a localized through-the-thickness

strain in the vicinity of the electrodes. This strain component, absent in low-order struc-

tural models, modifies the effective axial stress of the ionomer, thereby drastically affecting

its mechanical response. Building on these numerical results, we also derived a closed-form

solution for uniform bending using the method of matched asymptotic expansions [32],

which helps shed light on some of the numerical observations. However, this semi-analytical

derivation [31] is limited to uniform bending, thereby preventing its use for general boundary

conditions that may elicit a non-zero shear strain in the IPMC. FE simulations can address

most boundary conditions with accuracy, but their computational cost is too high for design

and optimization purposes. In addition to the hypothesis of uniform bending, the solution by

Boldini and Porfiri [31] does not account for the presence of the electrodes, whose role on

IPMC actuation is yet to be fully understood. Several studies in the field of composite struc-

tures have pointed at the critical role of stiff skins on bending of sandwich structures [33, 34].

Shear deformability in sandwich structures may play a significant role on shaping the overall

mechanical deformation of the composite during non-uniform bending [33, 34, 35, 36, 37],

and the presence of a soft core, where transverse deformations are significant, further exac-

erbates the complexity of the problem [38, 39, 40]. Within these structures, components of

the in- and out-of-plane stress can display nontrivial profiles in the vicinity of the core-skin

interfaces, with stress concentrations that depend on the ratios between the skins’ and core

Young moduli and thicknesses [37].

One possibility to bridge the versatility of FE simulations and the reduced computational

cost of semi-analytical solutions is offered by structural theories. There is a long history

of beam- and plate-like models for IPMC actuators [16, 26, 27, 29, 41]. Commonly used

structural models rely on several assumptions, such as infinite rigidity of the cross-sections,

which is in stark contrast with numerical simulations from our previous work [31]. Also,

they assume independence between bending and extension, which is also in disagreement

with our numerical observations that support a shift in the neutral axis during actuation.

We should also mention that most of these models neglect the role of the electrodes on the

deformation, beyond the mere scaling of the bending stiffness. Whether this assumption is

accurate or not is presently unclear, whereby our numerical investigations were conducted

under the premise of electrodes with zero thickness.

Several structural theories have been proposed in the literature to model sandwich struc-

tures. The simplest theories employ variants of Euler-Bernoulli or Timoshenko beam theo-

ries with rigidities homogenized over the entire cross-section [33, 42]. Higher-order shear

deformation theories introduce warping to better capture deformability, for example through

a “zig-zag” profile along the sandwich thickness [34, 36, 37]. To deal with transverse de-

formability of soft cores, more refined structural theories account for the through-the-thickness

deformations in the core albeit retaining Euler-Bernoulli kinematics for thin skins [38, 43].
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Alternative approaches have been recently proposed to study arbitrary material and geomet-

ric properties, combining key features of zig-zag and soft-core theories [39, 40].

While the theoretical framework of sandwich structures has never been applied to study

IPMC actuation, a recent endeavor [44] has investigated how electrodes affect IPMC me-

chanics during sensing. Therein, the Krajcinovic sandwich theory [34], which relies on a

zig-zag warping, was coupled with the theory in Cha and Porfiri [29] to examine the effect

of IPMC shear deformation on sensing. This extension of Krajcinovic theory to IPMC sens-

ing suggests that warping might be inherently coupled with IPMC electrochemistry. Hence,

out-of-plane cross-section distortions should be expected in IPMC actuation as well, but,

unlikely, existing theories will be able to capture the complexity of the nonlinear response

underpinning IPMC actuation.

Here, we put forward a variational formulation to support the development of accurate

structural theories of IPMC actuation. Toward this aim, we decouple electrochemistry from

mechanics, such that IPMC actuation is summarized in an eigenstress that is computed once

for all from the applied voltage. Following Boldini and Porfiri [31], this computation is car-

ried out based upon the method of matched asymptotic expansions [17, 32]. To describe the

mechanics of the IPMC, we introduce a total potential energy (TPE) [45], encompassing

the strain energy of ionomer and electrodes, and work performed by the eigenstress. We

specialize the approach to Euler-Bernoulli beam theory [46] and an enhanced high-order

sandwich panel theory (EHOSPT) [43], accounting for the through-the-thickness deforma-

bility of the ionomer. To include the effect of localized, through-the-thickness strain in the

vicinity of the ionomer-electrode interface, we enrich these theories with the through-the-

thickness contraction associated with uniform bending, modulated by a function of the axial

coordinate.

The stationarity of the total potential energy with kinematic constraints imposed by each

model leads to a linear system of two-point boundary value problems (BVPs) with essential

and natural boundary conditions. For the original and enriched Euler-Bernoulli beam the-

ory, we present an exact derivation of the solution. On the other hand, for the original and

enriched EHOSPT, we pursue a Fourier-series approach, similar to the classical approach

of Pagano [47] in linear elasticity to find plane-strain solutions in composite plates with

an arbitrary number of layers. The analysis of EHOSPT-based models is computationally

more expensive than Euler-Bernoulli-based theories, since the former requires the solution

of a large number of elementary linear systems (one for each harmonic), compared to the

calculation of a few salient integrals associated with the eigenstress for the latter.

We compare the results of these structural models with nonlinear FE simulations in

ABAQUSTM, utilizing a UEL to describe the mechanics and electrochemistry of the ionomer

[31], with inert, linear elastic electrodes. In agreement with our expectations, the original

Euler-Bernoulli beam theory has poor performance, whereby it fails to even capture the

deflection profile. The original EHOSPT provides a better description of IPMC multiax-

ial deformations, as it is partially able to resolve the strain localization near the electrodes.

However, its inability to accurately capture the localized thickness contraction significantly

affects the reconstruction of displacements away from the IPMC mid-axis. On the other

hand, the enriched versions of Euler-Bernoulli beam theory and EHOSPT afford the accu-

rate resolution of the overall displacement, providing almost equivalent results in terms of

deflections. The enriched EHOSPT displays a slightly better performance in the prediction

of the through-the-thickness contraction of the IPMC, especially in the core of the ionomer,

although it comes at a considerably larger computational cost. With respect to stresses, the

enriched Euler-Bernoulli beam theory and enriched EHOSPT provide similar results, by

accurately reproducing FE simulations.
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The paper is organized as follows. Section 2 provides a review of the continuum model

in Cha and Porfiri [29], under the hypothesis of small deformations, and results from the

analysis of multiaxial deformations of IPMCs undergoing uniform bending [31]. In Section

3, we detail our approach to describe the mechanics and electrochemistry of IPMCs through

reduced-order models. Therein, we introduce the TPE, present the structural models, and

derive the governing equations associated with each model. Solutions of these structural

models for specific boundary conditions leading to non-uniform bending and the comparison

between these solutions and FE simulations are presented in Section 4. Section 5 concludes

the paper and offers possible lines of future inquiry.

2 Background

The proposed approach to study IPMC actuation is anchored in the thermodynamically-

consistent continuum theory proposed in Cha and Porfiri [29] to describe mechanics and

electrochemistry of ionomers. Here, we briefly review the main aspects of the theory, which

are combined with a structural model for the electrodes to establish our variational formula-

tion for IPMC actuation. In principle, the theory is applicable to study both sensing and ac-

tuation in the presence of large deformations. However, we present the theory in a linearized

form, where we neglect bidirectional coupling between mechanics and electrochemistry and

we consider small deformations, while retaining nonlinearities in the electrochemistry. Such

a linear treatment of IPMC mechanics is expected to be sufficient in practical applications,

whereby IPMCs typically experience axial strains of less than 5% [48]. The FE analysis,

instead, incorporates the complete nonlinear form of the theory from Cha and Porfiri [29].

Alongside the continuum theory [29], we review our previous analysis on multiaxial

deformations in ionic membranes in plane-strain [31]. Specifically, we recall the main hy-

potheses of our semi-analytical solution, and outline its main results, which were previously

validated through FE. The FE analysis, implemented in ABAQUSTM, is based on a UEL

in plane-strain that allows for examining mechanics and electrochemistry of ionomers [31].

Here, this FE framework is adapted to study IPMC actuation by treating the electrodes as

two isotropic, linear elastic layers.

2.1 Review of thermodynamically-consistent continuum theory

The continuum theory in [29] describes multiaxial deformations of cation-exchange ionic

membranes, associated with bidirectional coupling between mechanics and electrochem-

istry. The ionomer consists of a negatively charged membrane, saturated and neutralized

in a solution containing positive ions. Counterions can move through the membrane, and

their migration is governed by diffusion and electromigration, following the application of

a voltage across the electrodes. On the other hand, anions are fixed to the ionomer, and their

concentration can only vary as a consequence of mechanical deformation.

Mechanics and electrochemistry of the ionomer are described with respect to the unde-

formed electroneutral configuration in which the point-wise mechanical stress, net charge,

and electric potential are equal to zero. A point of the ionomer in the reference configura-

tion is labelled as X and t is the time variable. The three field variables of the theory are:

the mechanical displacement, u(X, t); the counterions’ concentration per unit undeformed

volume, C(X, t); and the voltage, ψ(X, t) (with respect to a common ground).
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Governing equations are obtained from conservation laws. Specifically, we consider the

linear momentum balance for the ionomer, neglecting body forces and inertia, such that

Divσ = 0, (1)

where σ is the, symmetric, Cauchy stress tensor and Div(·) indicates divergence. We assume

that no chemical reaction occurs in the ionomer and at the interface with the electrodes, such

that counterions’ concentration is conserved,

∂C

∂ t
+DivJ = 0, (2)

where J is the counterions’ flux. Electrodynamics is neglected, so that the electric field E

is irrotational and we define a scalar electric potential ψ such that E = −∇ψ , where ∇(·)
indicates the gradient. In this framework, the last governing equation of the model is Gauss

law, namely,

DivD = Q, (3)

where D is the electric displacement, and

Q = F (C−C0) (4)

is the net charge per unit undeformed volume. Here, F = 96,485Cmol−1 is the Faraday

constant, while C0 represents the concentration per unit undeformed volume of fixed ions in

the membrane. In the following, we hypothesize that C0 is homogeneous in the membrane.

The system of partial differential equations (PDEs) in Eqs. (1), (2), and (3) must be

complemented by constitutive equations describing the mechanical and electrochemical re-

sponse of the material. In Cha and Porfiri [29], nonlinear constitutive laws are obtained

through a thermodynamically-consistent approach, based on the definition of a free-energy

density, encompassing the strain energy of the ionomer, and the free-energy associated with

ion mixing and polarization. By suitably differentiating the free-energy, one can obtain con-

stitutive laws that satisfy the second principle of thermodynamics. Here, we specialize the

constitutive equations derived in Cha and Porfiri [29] to the case of small deformations, also

neglecting steric effects and bidirectional coupling between sensing and actuation that were

considered therein. The Cauchy stress tensor in Eq. (1) can be written as

σ = σmec +σ ion +σpol (5)

where σmec is the mechanical stress in the ionomer, σ ion is the osmotic pressure generated by

charge gradients [30], and σpol is Maxwell stress due to electric polarization [49]. Osmotic

effects and Maxwell stress constitute the eigenstress in the ionomer, which we consolidate

into

σ0 = σ ion +σpol. (6)

Assuming that the ionomer is isotropic, the mechanical stress σmec is

σmec = λLtr(ε)I+2µLε, (7)

where

ε =
1

2
(∇u+∇uT) (8)

is the infinitesimal strain tensor, T indicates transposition, I is the identity tensor, tr(·) rep-

resents the trace operator, and λL and µL are the Lamé parameters for the ionomer. In the
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complete FE analysis, a Saint Venant-Kirchhoff model is implemented [29]. When modeling

ion mixing, we assume a dilute solution [50], such that

σ ion =−RT (C−C0)I, (9)

where R = 8.314Jmol−1 K−1 is the universal gas constant and T is the absolute temper-

ature. This spherical tensor encapsulates the effect of the osmotic pressure, which grows

proportionally to the charge imbalance. Finally, we assume that the material is dielectrically

isotropic, such that Maxwell stress tensor [49] is given by

σpol =
1

ε

[

D⊗D− 1

2
(D ·D)I

]

, (10)

where ε is the dielectric constant of the ionomer, “⊗” indicates the tensor product, and “·”
is the inner product. We assume that ε is constant in the ionomer.

When considering electrochemical constitutive equations, the dielectric isotropy of the

material implies [49]

E =
1

ε
D, (11)

and the diluteness of the solution leads to the following form of the electrochemical potential

µ [50]:

µ = Fψ +RT ln
C

C0
. (12)

Finally, we implement the classical Nernst-Planck linear constitutive law for the flux of

chemical species [50], that is,

J =− DC

RT
∇µ, (13)

where D is the diffusivity of counterions in the membrane. In the complete FE analysis, both

the electrochemical potential and the flux account for the effect of mechanical deformation,

which is neglected in this linearized model.

Boundary conditions must be specified at the interface with either the electrodes (Sel) or

the surrounding environment (Sext), including air or water depending on the application. For

simplicity, we suppose that the electrodes are perfect, that is, their resistivity is negligible and

they are ion-blocking. The former hypothesis allows us to neglect voltage drops across and

along the electrodes, such that the electric potential at the interface is equal to the uniform

potential V̄ of the electrode,

ψ = V̄ on Sel. (14)

The value of this voltage is imposed externally during actuation, while it is determined by

mechanical deformation during sensing. The validity of this hypothesis may be strained

when considering relatively long IPMCs, where significant voltage attenuation along the

electrodes may be observed [51]. The ion-blocking hypothesis implies

J ·N = 0 on Sel, (15)

where N is the normal to the surface Sel in the reference configuration.

At the interface with the surrounding environment, we assume that there is no counteri-

ons’ flux through the surface and that the normal component of the electric displacement is

zero to avoid loss of charges, such that

J ·N = 0 on Sext, (16a)
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D ·N = 0 on Sext. (16b)

We expect these boundary conditions to be reasonably satisfied for IPMCs in air or deionized

water.

In light of our assumptions, electrodes play a role exclusively on shaping the mechanical

response of the IPMC, whereby the voltage is constant therein and ions concentrations are

zero. We suppose that the electrodes follow a linear elastic behavior, for which we specify

electrodes’ Young modulus Yel and Poisson ratio νel.

2.2 Semi-analytical solution for uniform bending and zero-thickness electrodes

Our effort to develop viable structural theories for IPMCs is grounded in our previous in-

vestigation of multiaxial deformations [31], which evidenced a critical role of through-the-

thickness deformation in the vicinity of the electrodes in shaping the macroscopic response.

Therein, we proposed a semi-analytical solution for plane-strain deformations of IPMCs

with zero-thickness electrodes, in the case of uniform bending. Such a solution was vali-

dated through FE simulations of the continuum theory summarized above, in the complete

nonlinear form presented in Cha and Porfiri [29]. The same FE formulation, with the addi-

tion of electrodes, is utilized in the following as ground truth to assess the accuracy of the

proposed structural theories.

Throughout the paper, we consider a rectangular IPMC of length l, with an ionomer

core of thickness 2h ≪ l and two electrodes of the same thickness e ≪ h, under plane-strain

conditions. We consider a reference frame at the center of the ionomer thickness at the left

end of the ionomer, with the X-axis along the axis of the IPMC, Y -axis pointing through its

thickness toward the anode, and Z-axis along its width (Fig. 1).

h

e

l
Anode

Cathode

+

-

V̄

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

+ +

+ + + + + +

+ + + + + + + + + +

X

Y

Fig. 1 Schematics of IPMC actuation, with simply supporting boundary conditions. Upon the application of

an external voltage across its electrodes, counterions (in red) migrate toward the cathode, while anions (in

blue) are fixed to the ionomer membrane.

For simplicity, the interface between the ionomer and the electrodes is assumed to be flat

in the undeformed configuration. While this hypothesis may be valid macroscopically, the

roughness of the interface at a microscopic level plays a fundamental role on the impedance

of the IPMC, whereby it provides a capacitance-boost that considerably enhances IPMC

actuation [52, 53]. This effect may be considered by introducing composite layers with a
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different dielectric constant near the interface, to mimic the increase of effective surface

area associated with the rough landspace of the interface [54].

In Boldini and Porfiri [31], we put forward two critical simplifying hypotheses, which

will be relaxed in the following Section. Specifically, we assume that the IPMC is simply

supported along its mid-axis, and that electrodes have zero thickness, that is, we set e = 0.

In light of the first hypothesis, we can neglect shear stresses in the IPMC, which under-

goes uniform bending. Hence, we can decouple the through-the-thickness equilibrium from

the equilibrium along the axial direction and we solve the former to obtain the through-

the-thickness strain. This result is, in turn, utilized in the equilibrium along the axial direc-

tion to determine the effective axial stress. By following this procedure, we can obtain a

semi-analytical solution for the mechanical deformation. The hypothesis of zero-thickness

electrodes allows us to neglect the presence of the electrodes in any of these computations.

However, the validity of this hypothesis might be questionable, based on overwhelming ev-

idence in the field of composite structures [33, 34, 37, 38], which has highlighted how stiff

skins in a three-layered sandwich could drastically affect the deformation of the structure.

The semi-analytical solution for multiaxial deformations of ionomer membranes in plane-

strain [31] is based on a Saint-Venant approach that is valid away from the edges of the

IPMC. First, we solve the nonlinear electrochemistry through the thickness of the ionomer,

which is independent of the mechanical deformation and can be computed a-priori given the

voltage applied across the electrodes. A solution of the resulting system of PDEs, commonly

known as Poisson-Nernst-Planck (PNP) system [17, 50, 55], is obtained through the method

of matched asymptotic expansions. In practice, we determine the nondimensional voltage

drop α , defined with respect to the thermal voltage Vth = RT /F , across the boundary lay-

ers near the electrodes by solving a simple ordinary differential equation (ODE) of a circuit

model. From the ODE solution, we recover the profiles of counterions’ concentration and

voltage through the thickness of the ionomer. Details of the procedure are provided in A.

Once the through-the-thickness electrochemical profiles have been computed through

the method of matched asymptotic expansions, we can evaluate the eigenstress related to

osmotic pressure and Maxwell stress. We substitute the counterions’ concentration and volt-

age along the thickness from Eq. (87) into Eqs. (9) and (10). Thus, the components of the

eigenstress in Eq. (6) read

σ0XX
(Y ) = σ0ZZ

(Y ) =−RT (C(Y )−C0)−
ε

2

(

∂ψ(Y )

∂Y

)2

, (17a)

σ0YY
(Y ) =−RT (C(Y )−C0)+

ε

2

(

∂ψ(Y )

∂Y

)2

, (17b)

σ0XY
(Y ) = σ0XZ

(Y ) = σ0Y Z
(Y ) = 0. (17c)

Here and henceforth, we omit the dependence on time for the sake of legibility.

In addition, under plane-strain the sole non-vanishing components of the strain tensor

are

εXX (X ,Y ) =
∂u(X ,Y )

∂X
, (18a)

εYY (X ,Y ) =
∂w(X ,Y )

∂Y
, (18b)

εXY (X ,Y ) =
1

2

(

∂u(X ,Y )

∂Y
+

∂w(X ,Y )

∂X

)

, (18c)
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where u(X ,Y ) and w(X ,Y ) are the longitudinal and transverse displacements.

Mirroring the treatment of electrochemistry (see A), we neglect variations of the strain

along the IPMC axis and width. Therefore, the overall stress in the ionomer is

σXX (Y ) = (λL +2µL)εXX (Y )+λLεYY (Y )+σ0XX
(Y ), (19a)

σYY (Y ) = λLεXX (Y )+(λL +2µL)εYY (Y )+σ0YY
(Y ), (19b)

σXY (Y ) = 2µLεXY (Y ). (19c)

Inspired by the Saint-Venant solution for uniform bending with eccentricity, we assume

a linear form of the axial strain

εXX (Y ) =−kY + ε0, (20)

where k and ε0 are the curvature and mid-axis strain of the ionomer, respectively, while

neglecting the shear strain εXY (Y ). From equilibrium and stress-free boundary conditions,

we find that the through-the-thickness stress in Eq. (19b) is point-wise zero along the thick-

ness of the ionomer. This condition provides an equation for the through-the-thickness strain

εYY (Y ), namely,

εYY (Y ) =− 1

λL +2µL
[λLεXX (Y )+σ0YY

(Y )] , (21)

which presents a non-trivial dependence on the through-the-thickness coordinate Y , where

we observe strain boundary layers at the interface with the electrodes. For the parameters in

Tab. 1, corresponding to a Young modulus for the ionomer
(

Yi =
µL(3λL+2µL)

λL+µL

)

of 150MPa

and a Poisson ratio
(

νi =
λL

2(λL+µL)

)

of 0.45, we display strain localization in Fig. 2.

Parameter Value

T [K] 300

C0 [molm−3] 1200

D [m2 s−1] 1×10−11

ε [Fm−1] 4.48×10−5

h [µm] 100

l [mm] 2

λL [Pa] 4.6552×108

µL [Pa] 5.1724×107

Table 1 Parameters utilized in the simulations, borrowed from Boldini and Porfiri [31].

The non-zero through-the-thickness strain from Eq. (21) elicits a contraction of the

ionomer thickness. Similar to a capacitor, the accumulation of charges in the vicinity of

the electrodes generates Maxwell stress, such that the electrodes will be attracted by each

other. We quantify this contraction point-wise along the ionomer thickness by defining the

displacement with respect to the IPMC mid-axis, namely,

f̄ (Y ) =
∫ Y

0
εYY (Ỹ )dỸ . (22)

Such a thickness contraction plays a significant role in determining the ionomer response,

challenging the adoption of classical structural theories that rely on the infinite transveral

rigidity of cross-sections, such as Euler-Bernoulli and Timoshenko beam theories [46]. Note
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Fig. 2 Through-the-thickness strain in the vicinity of the cathode (a) and anode (b), for a step voltage V̄ =
5Vth, at time t = 0.25s (blue line), t = 0.5s (red line), t = 1s (brown line), and t = 7.5s (black line) for the

material constants in Tab. 1. Results are computed from the semi-analytical model in [31]. We note that the

strains are not self-similar, since scaling the strain by the peak value at the interface will lead to different

profiles, especially toward the anode.

that we had omitted the time dependence for the purpose of improved legibility, but the

function in Eq. (22) evolves with time as well.

By substituting the axial and through-the-thickness strains εXX (Y ) and εYY (Y ) from Eqs.

(20) and (21) in Eq. (19a), we find that the axial stress is completely determined by the

knowledge of the mid-axis strain ε0 of the ionomer, its curvature k, and the electrochemical

variables, known from matched asymptotic expansions. Expressions for the ionomer mid-

axis strain and its curvature can be found by computing the resultant axial force and bending

moment, which must be equal to zero as no external force is applied on the ionomer.

Specifically, we obtain [31]

ε0 =
RT C0

8µL
δH (α), (23a)

βk+Mion +Mpol = 0, (23b)

where β , Mion, and Mpol are the bending stiffness, bending moment associated with osmotic

pressure, and bending moment related to Maxwell stress, respectively, whose expression is

given by [31]

β =
8

3
µL

λL +µL

λL +2µL
h3, (24a)

Mion =−4RT C0h2 µL

λL +2µL
δϑ(α), (24b)

Mpol = 2RT C0h2 λL +µL

λL +2µL
δG (α). (24c)

In these expressions, δ = 1
Fh

√

εRT

C0
is the ratio between the Debye screening length λ

[17, 50] and the semi-thickness h of the ionomer membrane, while H (α), ϑ(α), and G (α)
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are universal functions, common to all IPMCs, whose full expressions and polynomial fits

can be found in Boldini and Porfiri [31].

From the fact that H (α)≥ 0 and Eq. (23a), we conclude that the ionomer membrane is

subject to an overall elongation along its axis. In Boldini and Porfiri [31], we demonstrated

that such an elongation is coupled to the through-the-thickness contraction, such that the

overall deformation is volume-preserving, regardless of the value of the Poisson ratio.

Despite the deep insight in multiaxial deformations provided by this exact solution,

its range of applicability is limited. In fact, our treatment [31] does not account for the

electrodes, which are expected to play a critical role in determining the overall axial and

bending stiffness of the IPMC. Similar to previous endeavours in the literature of composite

structures [33, 34, 37, 38], electrodes may cause qualitative differences in the response of

IPMCs, with stress concentrations at the ionomer-electrode interfaces during bending that

would overlap with the stress concentrations already induced by the eigenstress. In addi-

tion, the proposed solution is restricted to uniform bending, where shear deformations are

negligible. The chief goal of this paper is to develop structural theories that can accurately

describe multiaxial deformations in IPMCs, for general boundary conditions and electrodes

with nonzero thickness.

3 Variational formulation based on structural theories

In this Section, we relax the hypotheses of uniform bending and zero-thickness electrodes

that were adopted in Boldini and Porfiri [31]. By accounting for arbitrary boundary condi-

tions and the presence of the electrodes, the determination of a semi-analytical solution for

multiaxial mechanical deformations becomes substantially unfeasible. To address this issue,

we formulate a TPE [45], upon which we establish structural theories for IPMC actuation.

Our approach to describe the mechanics and electrochemistry of IPMCs unfolds along

the following steps. First, we study the electrochemistry through the thickness of the IPMC,

in the form of a one-dimensional (1D) nonlinear system of PDEs. The problem is solved

through the matched asymptotic expansions method [32], which allows for computing the

counterions’ concentration and voltage profiles through the thickness at any time instant t,

independent of the mechanical deformation. From the counterions’ concentration and volt-

age, we compute the eigenstress associated with osmotic pressure and Maxwell stress. Since

we consider inert electrodes that do not affect the electrochemistry in the ionomer, this step

is identical to the treatment in Boldini and Porfiri [31], which is briefly summarized in A.

To compute the mechanical deformation from the eigenstress, we first define a TPE

[45], encompassing the strain energy of the ionomer and electrodes and the work done by

the eigenstress. We introduce four different structural models to describe the kinematics of

ionomer and electrodes. We consider two classical approaches from the literature, that is,

Euler-Bernoulli beam theory1 [46] and EHOSPT [43]. In addition, we propose two exten-

sions of these models that include the through-the-thickness contraction, in Eq. (22), arising

from uniform bending [31]. To accommodate different boundary conditions, we assume that

the contraction in the enriched models is modulated by a function of the axial coordinate,

which acts as an additional field variable. By substituting these kinematic relationships in

the TPE and imposing its stationarity, we obtain BVPs for each degree of freedom present

in the structural theory.

1 Strictly speaking, one should refer to this theory as Kirchhoff-Love plate theory for cylindrical bending,

given the underlying plane-strain assumptions.
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We consider again the sample problem in Fig. 1, consisting of a rectangular IPMC that is

initially electroneutral and stress-free. We hypothesize that electrodes are thin (e ≪ h ≪ l),

but with finite thickness, and we consider more general boundary conditions. Within this

framework, matching conditions at the interface between the ionomer and the electrodes

include the continuity of the longitudinal and transverse displacements, and normal and

tangential stresses, that is,

uel±(X ,±h) = ui(X ,±h), (25a)

wel±(X ,±h) = wi(X ,±h), (25b)

σ el±
YY (X ,±h) = σ i

YY (X ,±h), (25c)

σ el±
XY (X ,±h) = σ i

XY (X ,±h), (25d)

where apices “i”, “el+” and “el−” indicate the ionomer, anode, and cathode regions, respec-

tively.

3.1 Total potential energy

We partition the TPE per unit width, U , into three contributions,

U =Umec +Uel +Weig, (26)

where Umec and Uel are the strain energies per unit width associated with the ionomer and

the electrodes, respectively, and Weig is the work per unit width done by the eigenstress.

The strain energy of the ionomer is given by the integration of the free-energy density

Wmec =
1
2
σmec · ε on the X −Y plane S i of the ionomer. Within the hypothesis of plane-

strain, Eq. (7) implies

Umec =
∫

S i
WmecdS =

1

2

∫

S i

[

(λL +2µL)
[

(ε i
XX )

2 +(ε i
YY )

2
]

+2λLε i
XX ε i

YY +µL(γ
i
XY )

2
]

dS,

(27)

where γ i
XY = 2ε i

XY is the shear strain in the ionomer.

Following standard practice in the literature on composite structures [33, 38], we treat

the thin electrodes as Euler-Bernoulli beams. Specifically, we assume that, for any structural

model, the displacement of the electrodes has the form

uel±(X ,Y ) = uel±
0 (X)−

[

Y ∓
(

h+
e

2

)] ∂wel±
0 (X)

∂X
, (28a)

wel±(X ,Y ) = wel±
0 (X), (28b)

where uel+

0 (X), uel−
0 (X), wel+

0 (X), and wel−
0 (X) are the mid-axis longitudinal displacement of

the anode and cathode and the mid-axis transverse displacement of the anode and cathode,

respectively. Therefore, the overall strain energy of the electrodes is given by

Uel =
1

2

∫

S el+
Y ′

el

(

εel+

XX

)2

dS+
1

2

∫

S el−
Y ′

el

(

εel−
XX

)2

dS, (29)

where S el+ and S el+ indicate the domains of the anode and cathode, respectively, and from

Eqs. (18) and (28),

εel±
XX (X ,Y ) =

∂uel±(X ,Y )

∂X
=

∂uel±
0 (X)

∂X
−
[

Y ∓
(

h+
e

2

)] ∂ 2wel±
0 (X)

∂X2
. (30)
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We recall that, for plane-strain, the Young modulus Yel of the electrodes should be substituted

by the effective Young modulus Y ′
el [56], that is, Y ′

el =Yel/(1−ν2
el), where νel is the Poisson

ratio of the electrodes. As only four variables are required to describe the electrodes’ dis-

placement field, that is, uel±
0 and wel±

0 , we can always obtain the kinematics of the electrodes

as a function of the kinematics of the ionomer, by utilizing the four matching conditions for

longitudinal and transverse displacements in Eq. (25).

Finally, the work performed by the eigenstress is given by

Weig =
∫

S i
(σ0 · ε i)dS =

∫

S i

(

σ0XX
ε i

XX +σ0YY
ε i

YY

)

dS. (31)

Here, the eigenstress is equal to Eq. (17), with the counterions’ concentration and voltage

a-priori determined from the matched asymptotic expansions (A).

3.2 Structural theories

In the following, we present four structural theories that can be adopted to describe IPMC

multiaxial deformations. Two of them are based on classical beam theory: the simplest is

Euler-Bernoulli beam theory [46], which describes the ionomer deformation through the

longitudinal and transverse displacements of its mid-axis, while the more complex model

entails EHOSPT, a higher-order theory that accounts for transverse deformability of the

ionomer [43]. The other two theories are enrichments that account for localized through-the-

thickness deformation at the electrode-ionomer interface. Inspired by classical treatments

of shear deformations in Saint-Venant problems [56], we superimpose the through-the-

thickness strain obtained from uniform bending to the transverse displacement of the orig-

inal structural theories. Since boundary conditions could affect the through-the-thickness

contraction, we modulate the deformation from uniform bending with an unknown function

p(X) of the axial coordinate X .

3.2.1 Original and enriched Euler-Bernoulli beam theories

Within the classical framework of Euler-Bernoulli beam theory [46], the displacement field

in the ionomer is determined by the mid-axis longitudinal and transverse displacements

(ui
0(X) and wi

0(X), respectively), such that

ui(X ,Y ) = ui
0(X)−Y wi

0,X (X), (32a)

wi(X ,Y ) = wi
0(X). (32b)

Here and henceforth, we indicate derivatives at the pedices, while omitting the explicit de-

pendence on time.

The simple kinematic assumptions of the original Euler-Bernoulli beam theory in Eq.

(32) beget a non-zero axial strain with null shear and through-the-thickness strains. These

simplistic assumptions are likely to lead to inadequate predictions of IPMC actuation, based

on the results summarized in Section 2.2.

In order to describe through-the-thickness contraction of the ionomer, we propose an

enriched Euler-Bernoulli beam theory with strain localization at the ionomer-electrodes in-

terfaces. In particular, we add through-the-thickness non-uniform transverse component of

the displacement in the ionomer in Eq. (32b). This deformation is described through a new

field variable p(X), which modulates the function f̄ (Y ) in Eq. (22); for electrodes with
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zero-thickness and uniform bending, this field variable is equal to one along the IPMC span.

Hence, the kinematics of the enriched Euler-Bernoulli beam theory is

ui(X ,Y ) = ui
0(X)−Y wi

0,X (X), (33a)

wi(X ,Y ) = wi
0(X)+ p(X) f̄ (Y ), (33b)

with the corresponding strains from Eq. (18),

ε i
XX (X ,Y ) = ui

0,X (X)−Y wi
0,XX (X), (34a)

ε i
YY (X ,Y ) = p(X) f̄,Y (Y ), (34b)

γ i
XY (X ,Y ) = p,X (X) f̄ (Y ). (34c)

We only provide the derivation for this enriched Euler-Bernoulli beam theory, whereby we

can recover the original one by setting f̄ (Y ) = 0.

The introduction of a function depending on Y in the transverse displacement of the

ionomer yields non-zero through-the-thickness strain and non-zero shear strain, associated

with the variation of the through-the-thickness contraction along the axis of the IPMC. Both

effects are expected to play an important role when dealing with IPMC with electrodes of

non-zero thickness and more general boundary conditions. For example, when testing IPMC

for their blocked force [2], one is clamping one side of the actuator and pinning the other

one with a load cell, thereby triggering shear deformations along with through-the-thickness

contraction.

By imposing the matching conditions in Eq. (25), the electrodes’ displacement in Eq.

(33) is obtained as a function of the displacement of the ionomer in Eq. (32),

uel±(X ,Y ) = ui
0(X)−Y wi

0,X (X)− (Y ∓h)p,X (X) f̄ (±h), (35a)

wel±(X ,Y ) = wi
0(X)+ p(X) f̄ (±h), (35b)

such that from Eq. (18) the axial strain in the electrodes is

εel±
XX (X ,Y ) = ui

0,X (X)−Y wi
0,XX (X)− (Y ∓h)p,XX (X) f̄ (±h). (36)

Predictably, the longitudinal displacement of the electrodes in Eq. (35a) mirrors that of the

ionomer in Eq. (32a), with an additional term related to the rotation of the electrodes in the

case of non-uniform through-the-thickness contraction along the IPMC axis.

We substitute Eqs. (34) and (36) in the TPE contributions, that is, Eqs. (27), (29), and

(31), and perform integrations along the thickness of the ionomer and electrodes, such that
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the TPE reads

U = [(λL +2µL)h+Y ′
ele]
∫ l

0

(

ui
0,X

)2

dX

+
h3

3

{

(λL +2µL)+Y ′
el

[

(

1+
e

h

)3

−1

]}

∫ l

0

(

wi
0,XX

)2

dX

+
1

2
(λL +2µL)IY (( f̄,Y )

2)
∫ l

0
p2 dX +λL

[

IY ( f̄,Y )
∫ l

0
pui

0,X dX −IY ( f̄,YY )
∫ l

0
pwi

0,XX dX

]

+
1

2
µL

∫ l

0
(p,X )

2
IY ( f̄ 2)dX

+
1

2
Y ′

ele
2

{

e

3

[

( f̄ (h))2 +( f̄ (−h))2
]

∫ l

0
(p,XX )

2 dX −IY ( f̄,Y )
∫ l

0
ui

0,X p,XX dX

+

(

h+
2

3
e

)

[

f̄ (h)+ f̄ (−h)
]

∫ l

0
p,XX wi

0,XX dX

}

+Iy(σ0XX
)
∫ l

0
ui

0,X dX

−Iy(σ0XX
Y )
∫ l

0
wi

0,XX dX +Iy(σ0YY
f̄,Y )

∫ l

0
pdX ,

(37)

where IY (·) =
∫ h
−h(·)dỸ indicates integration of a function through the thickness of the

ionomer.

Balance equations are obtained from the stationarity of the TPE in Eq. (37). Specifically,

BVPs with natural boundary conditions for the unknown functions ui
0(X), wi

0(X), and p(X)
are found by imposing that the first variation of the TPE with respect to each variable is

equal to zero [45]. More in detail, we compute the first variation of the TPE in Eq. (37) with

respect to the desired function, set it to zero, integrate by parts the terms that contain the

derivative of the variation of the unknown function, and impose that the equality must hold

for any choice of its variation.

From the first variation of the TPE with respect to ui
0(X), we obtain the following dif-

ferential problem:

Au0
ui

0,XX +Bu0
p,X +Cu0

p,XXX = 0, (38a)

Au0
ui

0,X (0)+Bu0
p(0)+Cu0

p,XX (0)+IY (σ0XX
) = 0 or ui

0(0) imposed, (38b)

Au0
ui

0,X (l)+Bu0
p(l)+Cu0

p,XX (l)+IY (σ0XX
) = 0 or ui

0(l) imposed, (38c)

where coefficients are listed in the column “u0” in Tab. 2.

By setting to zero the first variation of the TPE with respect to wi
0(X), we find

Aw0
wi

0,XXXX +Bw0
p,XXXX +Cw0

p,XX = 0, (39a)

Aw0
wi

0,XXX (0)+Bw0
p,XXX (0)+Cw0

p,X (0) = 0 or wi
0(0) imposed, (39b)

Aw0
wi

0,XXX (l)+Bw0
p,XXX (l)+Cw0

p,X (l) = 0 or wi
0(l) imposed, (39c)

Aw0
wi

0,XX (0)+Bw0
p,XX (0)+Cw0

p(0)−IY (σ0XX
Y ) = 0 or wi

0,X (0) imposed, (39d)

Aw0
wi

0,XX (l)+Bw0
p,XX (l)+Cw0

p(l)−IY (σ0XX
Y ) = 0 or wi

0,X (l) imposed. (39e)

The coefficients of this BVP are tabulated in Tab. 2, in the column “w0”.
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Finally, by examining the variation of the TPE with respect to p(X), we establish

Ap p,XXXX +Bp p,XX +Cp p+Dpwi
0,XXXX +Epwi

0,XX

+Fpui
0,XXX +Gpui

0,X +IY (σ0YY
f̄,Y ) = 0,

(40a)

Ap p,XXX (0)+Bp p,X (0)+Dpwi
0,XXX (0)+Fpui

0,XX (0) = 0 or p(0) imposed, (40b)

Ap p,XXX (l)+Bp p,X (l)+Dpwi
0,XXX (l)+Fpui

0,XX (l) = 0 or p(l) imposed, (40c)

Ap p,XX (0)+Dpwi
0,XX (0)+Fpui

0,X (0) = 0 or p(0),X imposed, (40d)

Ap p,XX (l)+Dpwi
0,XX (l)+Fpui

0,X (l) = 0 or p(l),X imposed, (40e)

whose coefficients are given in the column “p” in Tab. 2.

u0 w0 p

A(·) 2[(λL +2µL)h+Y ′
ele]

2
3

{

(λL +2µL)+Y ′
el

[

(

1+ e
h

)3 −1
]}

Y ′
el

e3

3
[ f̄ (h)2 + f̄ (−h)2]

B(·) λLIY ( f̄,Y )
1
2
Y ′

ele
2
(

h+ 2
3

e
)[

f̄ (h)+ f̄ (−h)
]

−µLIY ( f̄ 2)

C(·) − 1
2
Y ′

ele
2Iy( f̄,Y ) −λLIy( f̄,YY ) (λL +2µL)IY (( f̄,Y )

2)

D(·)
1
2
Y ′

ele
2
(

h+ 2
3

e
)

[ f̄ (h)+ f̄ (−h)]
E(·) −λLIY ( f̄,YY )

F(·) − 1
2
Y ′

ele
2IY ( f̄,Y )

G(·) λLIY ( f̄,Y )

Table 2 Coefficients for the displacement of the ionomer in the enriched Euler-Bernoulli model in Eqs. (38),

(39), and (40).

Since we consider f̄ (Y ) as a known function, the BVPs in Eqs. (38), (39), and (40) are

all linear. Predictably, the BVP for the longitudinal displacement of the mid-axis, ui
0(X),

does not contain any term with the transverse displacement of the mid-axis, wi
0(X). Exten-

sion and bending are only indirectly coupled through p(X), which modifies the classical

second and fourth order differential equations describing extension and bending in Euler-

Bernoulli beam theory. The coefficients multiplying the derivatives of ui
0(X) and wi

0(X) in

Eq. (38) and (39) represent the axial and bending stiffness of the IPMC, respectively. Both

of these quantities depend on a combination of the mechanical properties of the ionomer

and electrodes.

The BVP for p(X) in Eq. (40) displays much more complex couplings than the other

two BVPs, as it contains terms with odd derivatives of the longitudinal displacement of the

mid-axis ui
0(X) and even derivatives of the transverse displacement of the mid-axis wi

0(X).
Interestingly, should we discard the presence of the electrodes (that is, e = 0), the order

of the BVP for p(X) would reduce from four to two. This observation suggests that the

presence of the electrodes qualitatively affects multiaxial deformations in IPMCs, increasing

the complexity of the problem. Similarly, the highest derivatives of p(X) in Eqs. (38) and

(39), and those of ui
0(X) and wi

0(X) in Eq. (40) would disappear, further simplifying the

BVPs.

The forcing terms associated with the eigenstress components σ0XX
and σ0YY

enter the

equations in two different ways. Specifically, σ0XX
appears only in the boundary conditions

of Eqs. (38) and (39), as the resultant axial force and bending moment, respectively. This

is a consequence of the fact that σ0XX
does not depend on the axial coordinate X . On the
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other hand, σ0YY
appears directly in the differential equation in Eq. (40), scaled by f̄,Y (Y )

and integrated along the thickness, without appearing in any boundary condition.

Due to the relative simplicity of the linear BVPs in Esq. (38), (39), and (40), it is pos-

sible to compute a closed-form solution for specific boundary and loading conditions. This

computation is tackled in Section 4.1.1.

3.2.2 Original and enriched enhanced high-order sandwich panel theories

While the original and enriched Euler-Bernoulli beam theories provide a simple, analytically-

tractable description of IPMC actuation, their validity may be limited by low-order repre-

sentation of the ionomer deformation. In fact, IPMCs share similarities with sandwich-like

structures used in aerospace applications, formed by a core between two stiffer skins. In

these composite structures, shear deformability of the core may play a dramatic role in the

response of the sandwich, which is not captured by low-order theories [33, 34, 37]. Model-

ing the mechanical response of sandwich structures becomes even more challenging if the

core is soft, that is, if the transverse deformation is relevant [38, 39, 40, 43].

In order to account for the core deformability, we should rely on higher-order theories,

like the original EHOSPT proposed by Phan et al. [43] to retrieve shear deformations in

sandwich structures. Within this framework, the displacement field of the ionomer is de-

scribed by seven functions of the axial coordinate X , four for the longitudinal displacement

and three for the transverse displacement, namely,

ui(X ,Y ) = ui
0(X)+ui

1(X)Y +ui
2(X)Y 2 +ui

3(X)Y 3, (41a)

wi(X ,Y ) = wi
0(X)+wi

1(X)Y +wi
2(X)Y 2. (41b)

By retaining the second order power in the expansion for the transverse displacement

in Eq. (41b), the original EHOSPT accounts for through-the-thickness contraction with an

affine dependence on Y . The possibility of describing parabolic thickness contraction is im-

portant for separately tracking the motion of the two skins that could be triggered under

severe boundary conditions [39], for example, when loading only one of the skins of the

sandwich. When compared with the original Euler-Bernoulli beam theory, this theory en-

capsulates shear deformations and warping of the cross-section, which is allowed to rotate

about the mid-axis (ui
1(X) 6= −wi

0(X),X ) and parabolically deform. When examining the

longitudinal displacement in Eq. (41b), the theory enables a much more complex behavior

than original Euler-Bernoulli beam theory, including a cubic dependence on the through-the-

thickness coordinate Y on top of the mid-axis translation and cross-section rigid rotation.

With respect to strain fields, the original EHOSPT enables cubic variations of the axial

strain along the ionomer thickness, compared to the linear profiles of the original Euler-

Bernoulli beam theory. The through-the-thickness strain, completely absent from the orig-

inal Euler-Bernoulli, has a linear through-the-thickness profile in the original EHOSPT.

Shear strains consist of a second-order polynomial in Y , whose coefficients are function

of X that combine terms from longitudinal and transverse displacements in Eq. (41).

Similar to the previous Subsection, we consider an enriched version of the EHOSPT

where we add the localized through-the-thickness strain near the electrodes, modulated by

an unknown function of the axial coordinate, p(X). In the following, we only derive the

governing equations for the enriched EHOSPT, that is,

ui(X ,Y ) = ui
0(X)+ui

1(X)Y +ui
2(X)Y 2 +ui

3(X)Y 3, (42a)

wi(X ,Y ) = wi
0(X)+wi

1(X)Y +wi
2(X)Y 2 + p(X) f̄ (Y ), (42b)
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which are associated with the following strains, computed from Eq. (18):

ε i
XX (X ,Y ) = ui

0,X (X)+ui
1,X (X)Y +ui

2,X (X)Y 2 +ui
3,X (X)Y 3, (43a)

ε i
YY (X ,Y ) = wi

1(X)+2wi
2(X)Y + p(X) f̄,Y (Y ), (43b)

γ i
XY (X ,Y ) = [ui

1(X)+wi
0(X),X ]+ [2ui

2(X)+wi
1(X),X ]Y

+[3ui
3(X)+wi

2(X),X ]Y
2 + p,X (X) f̄ (Y ).

(43c)

Original EHOSPT without localized through-the-thickness strain in Eq. (41) can be com-

puted by setting f̄ (Y ) = 0.

By considering the Euler-Bernoulli beam model for the electrodes in Eq. (28), imposing

the matching conditions in Eq. (25), and utilizing Eq. (42), we express the displacement

field of the electrodes as a function of that of the core, whereby

uel+(X ,Y ) = ui
0(X)+ui

1(X)h+ui
2(X)h2 +ui

3(X)h3

− (Y −h)[wi
0,X (X)+wi

1,X (X)h+wi
2,X (X)h2 + p,X (X) f̄ (h)],

(44a)

uel−(X ,Y ) = ui
0(X)−ui

1(X)h+ui
2(X)h2 −ui

3(X)h3

− (Y +h)[wi
0,X (X)−wi

1,X (X)h+wi
2,X (X)h2 + p,X (X) f̄ (−h)],

(44b)

wel+(X ,Y ) = wi
0(X)+wi

1(X)h+wi
2(X)h2 + p(X) f̄ (h), (44c)

wel−(X ,Y ) = wi
0(X)−wi

1(X)h+wi
2(X)h2 + p(X) f̄ (−h). (44d)

The axial strain of the electrodes, from Eq. (18), is given by

εel±
XX = ui

0,X (X)±ui
1,X (X)h+ui

2,X (X)h2 ±ui
3,X (X)h3

− (Y ±h)[wi
0,XX (X)±wi

1,XX (X)h+wi
2,XX (X)h2 + p,XX (X) f̄ (±h)].

(45)

From Eq. (44), we note that the electrodes follow the longitudinal and transverse displace-

ments of the ionomer-electrode interfaces, with an additional term describing the rotation of

their cross-sections, caused by the transverse displacement of the interfaces varying along

the IPMC axis.

By substituting Eqs. (43) and (45) into Eqs. (27), (29), and (31), we obtain the TPE,

U =
1

2

∫

Si

{

(λL +2µL)
[

(ui
0,X +ui

1,XY +ui
2,XY 2 +ui

3,XY 3)2 +(wi
1 +2Y wi

2 + p f̄,Y )
2
]

+2λL(u
i
0,X +ui

1,XY +ui
2,XY 2 +ui

3,XY 3)(wi
1 +2Y wi

2 + p f̄,Y )

+µL(u
i
1 +2Yui

2 +3Y 2ui
3 + p,X f̄ +wi

0,X +wi
1,XY +wi

2,XY 2)2

}

dSi

+
1

2

∫

S el+
Y ′

el

[

ui
0,X +ui

1,X h+ui
2,X h2 +ui

3,X h3

− (Y −h)[wi
0,XX +wi

1,XX h+wi
2,XX h2 + p,XX f̄ (h)]

]2

dS+

+
1

2

∫

S el−
Y ′

el

[

ui
0,X −ui

1,X h+ui
2,X h2 −ui

3,X h3

− (Y +h)[wi
0,XX −wi

1,XX h+wi
2,XX h2 + p,XX f̄ (−h)]

]2

dS−

+
∫

Si

[

σ0XX
(ui

0,X +ui
1,XY +ui

2,XY 2 +ui
3,XY 3)+σ0YY

(wi
1 +2Y wi

2 + p f̄,Y )
]

dSi.

(46)
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The governing equations for each of the seven functions describing the displacement

field of the core, together with the axial variation of the through-the-thickness contraction,

are obtained by imposing the stationarity of the TPE in Eq. (46), following the same proce-

dure of Section 3.2.1. Below, we list the equations associated with the first variation of the

TPE with respect to each variable, whose coefficients are collected in Tabs. 3 and 4.

– ui
0:

A′
u0

ui
0,XX +B′

u0
ui

2,XX +C′
u0

wi
1,X +D′

u0
wi

1,XXX +E ′
u0

p,XXX +F ′
u0

p,X = 0, (47a)

A′
u0

ui
0,X (0)+B′

u0
ui

2,X (0)+C′
u0

wi
1(0)+D′

u0
wi

1,XX (0)+E ′
u0

p,XX (0)

+F ′
u0

p(0)+IY (σ0XX
) = 0 or ui

0(0) imposed,
(47b)

A′
u0

ui
0,X (l)+B′

u0
ui

2,X (l)+C′
u0

wi
1(l)+D′

u0
wi

1,XX (l)+E ′
u0

p,XX (l)

+F ′
u0

p(l)+IY (σ0XX
) = 0 or ui

0(l) imposed;
(47c)

– ui
1:

A′
u1

ui
1,XX +B′

u1
ui

3,XX +(C′
u1
+D′

u1
)wi

2,X +(E ′
u1
+F ′

u1
)p,X +G′

u1
wi

0,X +G′
u1

ui
1

+H ′
u1

ui
3 + I′u1

wi
0,XXX + J′u1

wi
2,XXX +K′

u1
p,XXX = 0,

(48a)

A′
u1

ui
1,X (0)+B′

u1
ui

3,X (0)+C′
u1

wi
2(0)+E ′

u1
p(0)+ I′u1

wi
0,XX (0)+ J′u1

wi
2,XX (0)

+K′
u1

p,XX (0)+IY (σ0XX
Y ) = 0 or ui

1(0) imposed,
(48b)

A′
u1

ui
1,X (l)+B′

u1
ui

3,X (l)+C′
u1

wi
2(l)+E ′

u1
p(l)+ I′u1

wi
0,XX (l)+ J′u1

wi
2,XX (l)

+K′
u1

p,XX (l)+IY (σ0XX
Y ) = 0 or ui

1(l) imposed;
(48c)

– ui
2:

A′
u2

ui
0,XX +B′

u2
ui

2,XX +(C′
u2
+D′

u2
)wi

1,X +(E ′
u2
+F ′

u2
)p,X

+G′
u2

ui
2 +H ′

u2
wi

1,XXX + I′u2
p,XXX = 0,

(49a)

A′
u2

ui
0,X (0)+B′

u2
ui

2,X (0)+C′
u2

wi
1(0)+E ′

u2
p(0)+H ′

u2
wi

1,XX (0)

+ I′u2
p,XX (0)+IY (σ0XX

Y 2) = 0 or ui
2(0) imposed,

(49b)

A′
u2

ui
0,X (l)+B′

u2
ui

2,X (l)+C′
u2

wi
1(l)+E ′

u2
p(l)+H ′

u2
wi

1,XX (l)

+ I′u2
p,XX (l)+IY (σ0XX

Y 2) = 0 or ui
2(l) imposed;

(49c)

– ui
3:

A′
u3

ui
1,XX +B′

u3
ui

3,XX +(C′
u3
+D′

u3
)wi

2,X +(E ′
u3
+F ′

u3
)p,X +G′

u3
ui

1 +G′
u3

wi
0,X

+H ′
u3

ui
3 + I′u3

wi
0,XXX + J′u3

wi
2,XXX +K′

u3
p,XXX = 0,

(50a)

A′
u3

ui
1,X (0)+B′

u3
ui

3,X (0)+C′
u3

wi
2(0)+E ′

u3
p(0)+ I′u3

wi
0,XX (0)+ J′u3

wi
2,XX (0)

+K′
u3

p,XX (0)+IY (σ0XX
Y 3) = 0 or ui

3(0) imposed,
(50b)

A′
u3

ui
1,X (l)+B′

u3
ui

3,X (l)+C′
u3

wi
2(l)+E ′

u3
p(l)+ I′u3

wi
0,XX (l)+ J′u3

wi
2,XX (l)

+K′
u3

p,XX (l)+IY (σ0XX
Y 3) = 0 or ui

3(l) imposed;
(50c)
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– wi
0:

A′
w0

wi
0,XXXX +B′

w0
wi

2,XXXX +C′
w0

ui
1,XXX +D′

w0
ui

3,XXX +E ′
w0

ui
1,X +E ′

w0
wi

0,XX

+F ′
w0

ui
3,X +G′

w0
p,XX +H ′

w0
wi

2,XX + I′w0
p,XXXX = 0,

(51a)

A′
w0

wi
0,XXX (0)+B′

w0
wi

2,XXX (0)+C′
w0

ui
1,XX (0)+D′

w0
ui

3,XX (0)

+E ′
w0

ui
1(0)+E ′

w0
wi

0,X (0)+F ′
w0

ui
3(0)+G′

w0
p,x(0)

+H ′
w0

wi
2,X (0)+ I′w0

p,XXX (0) = 0 or wi
0(0) imposed,

(51b)

A′
w0

wi
0,XXX (l)+B′

w0
wi

2,XXX (l)+C′
w0

ui
1,XX (l)+D′

w0
ui

3,XX (l)

+E ′
w0

ui
1(l)+E ′

w0
wi

0,X (l)+F ′
w0

ui
3(l)+G′

w0
p,X (l)

+H ′
w0

wi
2,X (l)+ I′w0

p,XXX (l) = 0 or wi
0(l) imposed,

(51c)

A′
w0

wi
0,XX (0)+B′

w0
wi

2,XX (0)+C′
w0

ui
1,X (0)+D′

w0
ui

3,X (0)

+ I′w0
p,XX (0) = 0 or wi

0,X (0) imposed,
(51d)

A′
w0

wi
0,XX (l)+B′

w0
wi

2,XX (l)+C′
w0

ui
1,X (l)+D′

w0
ui

3,X (l)

+ I′w0
p,XX (l) = 0 or wi

0,X (l) imposed;
(51e)

– wi
1:

A′
w1

wi
1,XXXX +B′

w1
ui

0,XXX +C′
w1

ui
2,XXX +D′

w1
wi

1 +E ′
w1

p+F ′
w1

ui
0,X +(G′

w1
+H ′

w1
)ui

2,X

+ I′w1
p,XX + J′w1

wi
1,XX +K′

w1
p,XXXX +IY (σ0YY

) = 0,

(52a)

A′
w1

wi
1,XXX (0)+B′

w1
ui

0,XX (0)+C′
w1

ui
2,XX (0)+H ′

w1
ui

2(0)+ I′w1
p,X (0)

+ J′w1
wi

1,X (0)+K′
w1

p,XXX (0) = 0 or wi
1(0) imposed,

(52b)

A′
w1

wi
1,XXX (l)+B′

w1
ui

0,XX (l)+C′
w1

ui
2,XX (l)+H ′

w1
ui

2(l)+ I′w1
p,X (l)

+ J′w1
wi

1,X (l)+K′
w1

p,XXX (l) = 0 or wi
1(l) imposed,

(52c)

A′
w1

wi
1,XX (0)+B′

w1
ui

0,X (0)+C′
w1

ui
2,X (0)+K′

w1
p,XX (0) = 0 or wi

1,X (0) imposed,
(52d)

A′
w1

wi
1,XX (l)+B′

w1
ui

0,X (l)+C′
w1

ui
2,X (l)+K′

w1
p,XX (l) = 0 or wi

1,X (l) imposed;

(52e)

– wi
2:

A′
w2

wi
0,XXXX +B′

w2
wi

2,XXXX +C′
w2

ui
1,XXX +D′

w2
ui

3,XXX +E ′
w2

wi
2 +F ′

w2
p

+(G′
w2

+H ′
w2
)ui

1,X +H ′
w2

wi
0,XX +(I′w2

+ J′w2
)ui

3,X +K′
w2

p,XX

+L′
w2

wi
2,XX +M′

w2
p,XXXX +2IY (σ0YY

Y ) = 0,

(53a)

A′
w2

wi
0,XXX (0)+B′

w2
wi

2,XXX (0)+C′
w2

ui
1,XX (0)+D′

w2
ui

3,XX (0)

+H ′
w2

ui
1(0)+H ′

w2
wi

0,X (0)+ J′w2
ui

3(0)+K′
w2

p,X (0)

+L′
w2

wi
2,X (0)+M′

w2
p,XXX (0) = 0 or wi

2(0) imposed,

(53b)
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A′
w2

wi
0,XXX (l)+B′

w2
wi

2,XXX (l)+C′
w2

ui
1,XX (l)+D′

w2
ui

3,XX (l)

+H ′
w2

ui
1(l)+H ′

w2
wi

0,X (l)+ J′w2
ui

3(l)+K′
w2

p,X (l)

+L′
w2

wi
2,X (l)+M′

w2
p,XXX (l) = 0 or wi

2(l) imposed,

(53c)

A′
w2

wi
0,XX (0)+B′

w2
wi

2,XX (0)+C′
w2

ui
1,X (0)+D′

w2
ui

3,X (0)

+M′
w2

p,XX (0) = 0 or wi
2,X (0) imposed,

(53d)

A′
w2

wi
0,XX (l)+B′

w2
wi

2,XX (l)+C′
w2

ui
1,X (l)+D′

w2
ui

3,X (l)

+M′
w2

p,XX (l) = 0 or wi
2,X (l) imposed;

(53e)

– p:

A′
p p,XXXX +B′

p p,XX +C′
p p+D′

pui
0,XXX +E ′

pui
1,XXX +F ′

pui
2,XXX

+G′
pui

3,XXX +H ′
pwi

0,XXXX + I′pwi
1,XXXX + J′pwi

2,XXXX +K′
pwi

1

+L′
pwi

2 +M′
pui

0,X +(N′
p +O′

p)u
i
1,X +O′

pwi
0,XX +(P′

p +Q′
p)u

i
2,X

+(R′
p +S′p)u

i
3,X +T ′

pwi
1,XX +U ′

pwi
2,XX +IY (σ0YY

f̄,Y ) = 0,

(54a)

A′
p p,XXX (0)+B′

p p,X (0)+D′
pui

0,XX (0)+E ′
pui

1,XX (0)+F ′
pui

2,XX (0)+G′
pui

3,XX (0)

+H ′
pwi

0,XXX (0)+ I′pwi
1,XXX (0)+ J′pwi

2,XXX (0)+O′
pui

1(0)+O′
pwi

0,X (0)

+Q′
pui

2(0)+S′pui
3(0)+T ′

pwi
1,X (0)+U ′

pwi
2,X (0) = 0 or p(0) imposed,

(54b)

A′
p p,XXX (l)+B′

p p,X (l)+D′
pui

0,XX (l)+E ′
pui

1,XX (l)+F ′
pui

2,XX (l)+G′
pui

3,XX (l)

+H ′
pwi

0,XXX (l)+ I′pwi
1,XXX (l)+ J′pwi

2,XXX (l)+O′
pui

1(l)+O′
pwi

0,X (l)

+Q′
pui

2(l)+S′pui
3(l)+T ′

pwi
1,X (l)+U ′

pwi
2,X (l) = 0 or p(l) imposed,

(54c)

A′
p p,XX (0)+D′

pui
0,X (0)+E ′

pui
1,X (0)+F ′

pui
2,X (0)+G′

pui
3,X (0)+H ′

pwi
0,XX (0)

+ I′pwi
1,XX (0)+ J′pwi

2,XX (0) = 0 or p,X (0) imposed,
(54d)

A′
p p,XX (l)+D′

pui
0,X (l)+E ′

pui
1,X (l)+F ′

pui
2,X (l)+G′

pui
3,X (l)+H ′

pwi
0,XX (l)

+ I′pwi
1,XX (l)+ J′pwi

2,XX (l) = 0 or p,X (l) imposed.
(54e)

Compared to BVPs in Eqs. (38), (39), and (40) for the enriched Euler-Bernoulli model,

this system of linear BVPs shows a much more complex structure, with a large number

of couplings. Even without considering p(X), the extension of the IPMC, described by the

BVP in Eq. (47), is coupled with the higher-order terms in the longitudinal displacement

and the linear term in the transverse displacement. A similar claim can be made for IPMC

bending in Eq. (48), where the cross-section rotation is coupled to the cubic term in the

longitudinal displacement and the even terms in the transverse displacement of the core.

The BVP for the mid-axis transverse displacement wi
0 in Eq. (51) shows couplings with

the same terms as the cross-section rotation ui
1, with derivatives of higher orders. For the

higher-order terms in the expressions of the longitudinal and transverse displacements in

Eq. (42), the BVPs in Eqs. (49), (50), (52), and (53) present even more complex couplings,

challenging a physical interpretation of the terms in the equations. In general, we observe
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that odd (even) terms in the longitudinal displacement only couple to even (odd) terms in

the transverse displacement, and vice versa, similar to what observed in the shear strain in

Eq. (43c).

The BVP in Eq. (54) for p(X) presents the largest number of couplings. Contrary to all

the other BVPs, in this case, all the terms in the longitudinal and transverse displacements

appear in the differential equation. Should one utilize the original EHOSPT, odd (even)

terms in the longitudinal displacement in Eq. (42a) would not interact with the even (odd)

terms in the same expression and with odd (even) terms in the transverse displacement in

Eq. (42b), and vice versa.

Similar to enriched Euler-Bernoulli beam theory, the presence of the electrodes further

exacerbates the overall scenario. Based on the coefficients in Tabs. 3 and 4, we comment

that several terms with high-order derivatives in all the BVPs would disappear with zero-

thickness electrodes. In particular, as for enriched Euler-Bernoulli beam theory, neglecting

the presence of the electrodes would reduce the fourth-order BVP in Eq. (54) to a second-

order problem. This observation suggests that the electrodes modify multiaxial deformations

in IPMCs not only quantitatively, by increasing the stiffness associated with IPMC axial

deformations (see coefficients A′
(·) and B′

(·) in Tab. 3), but also qualitatively.

The eigenstress components σ0XX
and σ0YY

are present as forcing terms in all BVPs

but the one for the mid-axis transverse displacement in Eq. (51). Similar to the treatment

of Euler-Bernoulli beam theory, σ0XX ,X does not appear in the differential equations of the

BVPs in Eqs. (47), (48), (49), and (50), as it is constant along X . On the other hand, terms

in σ0XX
multiplied by increasing powers of Y and integrated along the thickness are present

in the corresponding natural boundary conditions of the same BVPs. We remark that the

through-the-thickness eigenstress σ0YY
never appears in the natural boundary conditions,

since f̄,Y (Y ) is imposed a-priori. The terms σ0YY
, σ0YY

Y , and σ0YY
f̄,Y , integrated along the

thickness of the ionomer, constitute the forcing terms for the differential equations in the

BVPs in Eqs. (52), (53), and (54).

The system of coupled linear BVPs for EHOSPT does not allow for a simple closed-

form solution, even in the original case. Thereby, we tackle this problem through a Fourier-

series approach, similar to that proposed by Pagano [47], in what follows.

4 Solution of structural models and comparison with the fully nonlinear continuum

theory

Here, we assess the accuracy of the proposed structural theories through comparison with

FE simulations based on the complete nonlinear theory in Cha and Porfiri [29]. We focus

on a specific configuration, for which we can obtain a closed-form solution for the enriched

Euler-Bernoulli beam theory and a Fourier-series solution for the enriched EHOSPT. In

particular, we consider the boundary conditions in Pagano [47], where the end-sections of

the IPMC are constrained to move only along the axial direction (Fig. 3). Hence, the ends

of the IPMC cannot either rigidly translate transversely nor contract along their thickness.

Rigid body motion along the axial direction is blocked by a single-point constraint at the

mid-axis. Overall, we impose the following boundary conditions:

ui

(

l

2
,0

)

= 0, (55a)

wi(0,Y ) = 0,Y ∈ [−h,h], (55b)
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wi(l,Y ) = 0,Y ∈ [−h,h], (55c)

wel±(0,Y ) = 0,Y ∈ [−h,h], (55d)

wel±(l,Y ) = 0,Y ∈ [−h,h]. (55e)

Fig. 3 Schematics of the boundary conditions from Pagano [47], utilized to compute our results. Dashed lines

indicate the undeformed configuration, while the dash dotted line represents the IPMC mid-axis.

First, we establish a solution for the enriched Euler-Bernoulli beam theory and for the

enriched EHOSPT presented in Sections 3.2.1 and 3.2.2, respectively. Then, we present the

results of each structural theory against FE simulations, focusing on both the displacement

and stress in the ionomer and electrodes.

4.1 Solution of structural theories

4.1.1 Original and enriched Euler-Bernoulli beam theories

We provide an exact solution for the enriched Euler-Bernoulli model in Section 3.2.1; the

solution for the original version can be obtained by setting f̄ (Y ) = 0 in the general solution.

The essential boundary conditions in Eq. (55) imply that wi
0(0) = 0, wi

0(l) = 0, p(0) = 0,

and p(l) = 0. Accounting for the remaining natural conditions in the systems of BVPs in

Eqs. (38), (39), our problem reduces to

– ui
0:

Au0
ui

0,XX +Bu0
p,X +Cu0

p,XXX = 0, (56a)

ui
0

(

l

2

)

= 0, (56b)

Au0
ui

0,X (0)+Bu0
p(0)+Cu0

p,XX (0)+IY (σ0XX
) = 0, (56c)

Au0
ui

0,X (l)+Bu0
p(l)+Cu0

p,XX (l)+IY (σ0XX
) = 0, (56d)

– wi
0:

Aw0
wi

0,XXXX +Bw0
p,XXXX +Cw0

p,XX = 0, (57a)

wi
0(0) = 0, (57b)

wi
0(l) = 0, (57c)

Aw0
wi

0,XX (0)+Bw0
p,XX (0)+Cw0

p(0)−IY (σ0XX
Y ) = 0, (57d)

Aw0
wi

0,XX (l)+Bw0
p,XX (l)+Cw0

p(l)−IY (σ0XX
Y ) = 0, (57e)
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– p:

Ap p,XXXX +Bp p,XX +Cp p+Dpwi
0,XXXX +Epwi

0,XX

+Fpui
0,XXX +Gpui

0,X +IY (σ0YY
f̄,Y ) = 0,

(58a)

p(0) = 0, (58b)

p(l) = 0, (58c)

Ap p,XX (0)+Dpwi
0,XX (0)+Fpui

0,X (0) = 0, (58d)

Ap p,XX (l)+Dpwi
0,XX (l)+Fpui

0,X (l) = 0. (58e)

We note that Eq. (56b) does not correspond to any of the essential boundary conditions in

Eq. (38), as the IPMC is constrained at the mid-span section rather than at its ends. However,

this choice does not affect the solution, as this constraint only blocks the rigid body motion

along the axial direction. The overdetermination of the BVP in Eq. (56) is only apparent,

whereby imposing the natural boundary condition in Eq. (56c) automatically satisfies Eq.

(56d), and vice versa.

As observed in Section 3.2.2, Eqs. (56) and (57) are not directly coupled, such that

they can be solved to express ui
0(X) and wi

0(X) as a function of p(X). In this way, we can

substitute their expressions in Eq. (58) to obtain a BVP in p(X) only. From integration of

Eq. (56) with either of the natural boundary conditions in Eqs. (56c) or (56d), we find

ui
0,X (X) =− 1

Au0

[

IY (σ0XX
)+Bu0

p(X)+Cu0
p,XX (X)

]

. (59)

We note that this expression satisfies both the natural boundary conditions at x = 0 and

x = l in the BVP in Eq. (56). On the other hand, by integrating twice Eq. (57) and using the

boundary conditions in Eqs. (39d) and (39e), we obtain

Aw0
wi

0,XX +Bw0
p,XX +Cw0

p−IY (σ0XX
Y ) = 0. (60)

Substituting Eqs. (59), (60) and their derivatives into Eq. (58), one finds a linear fourth-

order biquadratic BVP in p(X) only, that is,

k4 p,XXXX + k2 p,XX + k0 p = k̄, (61a)

p(0) = 0, (61b)

p(l) = 0, (61c)

kBC
2 p,XX (0)+ kBC

0 p(0) = k̄BC, (61d)

kBC
2 p,XX (l)+ kBC

0 p(l) = k̄BC, (61e)

where we have introduced the following quantities:

k4 = Ap −Dp

Bw0

Aw0

−Fp

Cu0

Au0

, (62a)

k2 = Bp −Dp

Cw0

Aw0

−Ep

Bw0

Aw0

−Fp

Bu0

Au0

−Gp

Cu0

Au0

, (62b)

k0 =Cp −Ep

Cw0

Aw0

−Gp

Bu0

Au0

, (62c)
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k̄ =−IY (σ0XX
Y )

Ep

Aw0

+IY (σ0XX
)

Gp

Au0

−IY (σ0YY
f̄,Y ), (62d)

kBC
2 = Ap −Dp

Bw0

Aw0

−Fp

Cu0

Au0

, (62e)

kBC
0 =−Dp

Cw0

Aw0

−Fp

Bu0

Au0

, (62f)

k̄BC =−IY (σ0XX
Y )

Dp

Aw0

+IY (σ0XX
)

Fp

Au0

. (62g)

These quantities vary with time, and they are known at each time instant from material

properties and electrochemical profiles computed a-priori through matched asymptotic ex-

pansions (A).

The solution of the linear ODE in Eq. (61a) is given by the sum of the general solution

of the associated homogeneous equation and a particular solution. Herein, we focus on the

case in which the squares of the roots of the characteristic equation are complex conjugate,

which corresponds to the parameters utilized in our simulations. In this case, given a root

λ of the characteristic equation, we define σ = |Re(λ )| and ω = |Im(λ )|, where Re(·) and

Im(·) are real and imaginary parts, respectively. Hence, the general solution of the ODE is

given by

pG(X) = AGeσ(X−l) cos(ωX)+BGeσ(X−l) sin(ωX)+CGe−σX cos(ωX)+DGe−σX sin(ωX),
(63)

where AG, BG, CG, and DG are determined by imposing boundary conditions in Eq. (61). It

is easy to verify that the particular solution

pP(X) =
k̄

k0
(64)

satisfies the inhomogeneous ODE in Eq. (61a). Thus, the complete solution of the ODE is

given by

p(X) = pG(X)+ pP(X) = AGeσ(X−l) cos(ωX)+BGeσ(X−l) sin(ωX)

+CGe−σX cos(ωX)+DGe−σX sin(ωX)+
k̄

k0
.

(65)

By imposing the boundary conditions in Eq. (61) on the general solution in Eq. (65), we

obtain the following system of equations for AG, BG, CG, and DG:

e−σ lAG +CG =− k̄

k0
, (66a)

cos(ωl)AG + sin(ωl)BG + e−σ l cos(ωl)CG + e−σ l sin(ωl)DG =− k̄

k0
, (66b)

(σ2 −ω2)e−σ lAG +2σωe−σ lBG +(σ2 −ω2)CG −2σωDG =
k̄BC

kBC
2

, (66c)
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[(σ2 −ω2)cos(ωl)−2σω sin(ωl)]AG

+[(σ2 −ω2)sin(ωl)+2σω cos(ωl)]BG

+[(σ2 −ω2)cos(ωl)+2σω sin(ωl)]CG

+[(σ2 −ω2)sin(ωl)−2σω cos(ωl)]DG =
k̄BC

kBC
2

.

(66d)

Once these quantities are obtained from the linear system, we substitute them back into Eq.

(65) to obtain the final expression for p(X).
Next, we compute the longitudinal displacement of the ionomer mid-axis by integrating

Eq. (59) with the boundary condition in Eq. (55), such that

ui
0(X) =− 1

Au0

{

IY (σ0XX
)

(

X − l

2

)

+Bu0

[

P(X)−P

(

l

2

)]

+Cu0

[

p,X − p,X

(

l

2

)]}

,

(67)

where P(X) =
∫ X

0 p(X̃)dX̃ . Finally, by integrating twice Eq. (60) and applying the bound-

ary conditions in Eq. (55), we determine

wi
0(X)=

1

Aw0

{

IY (σ0XX
Y )

X

2
(X − l)−Cw0

[

∫ X

0
P(X̃)dX̃ − X

l

∫ l

0
P(X̃)dX̃

]

−Bw0
p(X)

}

.

(68)

By setting f̄ (Y ) = 0, we obtain the following longitudinal and transverse displacements

of the ionomer mid-axis for the original Euler-Bernoulli beam theory:

ui
0(X) =− 1

Au0

IY (σ0XX
)

(

X − l

2

)

, (69a)

wi
0(X) =

1

Aw0

IY (σ0XX
Y )

X

2
(X − l). (69b)

4.1.2 Original and enriched enhanced high-order sandwich panel theories

Despite the linearity of the original EHOSPT and enriched EHOSPT presented in Section

3.2.2, the large number of equations and couplings among the variables pose a challenge in

determining a closed-form solution as we did for the enriched Euler-Bernoulli beam theory.

Therefore, we pursue a different approach, by expanding the variables in a series of cosines

or sines along the axial coordinate X , similar to the method of Pagano [47] to find exact

plane-strain solutions in composite structures with arbitrary numbers of layers.

Specifically, we assume the following expansions for each variable:

ui
0(X) =

∞

∑
n=1

U
(n)
0 cos

(nπ

l
X
)

, (70a)

ui
1(X) =

∞

∑
n=1

U
(n)
1 cos

(nπ

l
X
)

, (70b)

ui
2(X) =

∞

∑
n=1

U
(n)
2 cos

(nπ

l
X
)

, (70c)

ui
3(X) =

∞

∑
n=1

U
(n)
3 cos

(nπ

l
X
)

, (70d)
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wi
0(X) =

∞

∑
n=1

W
(n)
0 sin

(nπ

l
X
)

, (70e)

wi
1(X) =

∞

∑
n=1

W
(n)
1 sin

(nπ

l
X
)

, (70f)

wi
2(X) =

∞

∑
n=1

W
(n)
2 sin

(nπ

l
X
)

, (70g)

p(X) =
∞

∑
n=1

P(n)
(nπ

l
X
)

, (70h)

where all the variables in capital letters are Fourier coefficients that depend only on time.

These expansions satisfy the essential boundary conditions in Eq. (55), such that cosines

and sines are admissible functions.

Similarly, we expand the eigenstress components, constant with respect to the X coordi-

nate, into the following series:

σ0XX
(Y ) =

∞

∑
n=1

S
(n)
XX (Y )sin

(nπ

l
X
)

, (71a)

σ0YY
(Y ) =

∞

∑
n=1

S
(n)
YY (Y )sin

(nπ

l
X
)

, (71b)

where the Fourier coefficients vary through the thickness of the ionomer, such that

S
(n)
XX (Y ) =

{

4
nπ σ0XX

(Y ) if n is odd,

0 if n is even,
(72a)

S
(n)
YY (Y ) =

{

4
nπ σ0XX

(Y ) if n is odd,

0 if n is even.
(72b)

We comment that, while the eigenstress is zero at both ends of the IPMC, natural boundary

conditions would still be satisfied asymptotically [57].

By substituting the expansions in Eqs. (70) and (71) into the TPE in Eq. (46), one finds

the TPE as a function of the Fourier coefficients. By setting to zero the derivative of the

TPE with respect to each of these coefficients and exploiting the orthogonality of harmonic

functions, we obtain the following linear system:

−
(nπ

l

)

A′
u0

U
(n)
0 −

(nπ

l

)

B′
u0

U
(n)
2 +

[

C′
u0
−
(nπ

l

)2

D′
u0

]

W
(n)
1

+

[

−
(nπ

l

)2

E ′
u0
+F ′

u0

]

P(n)+IY

(

S
(n)
XX

)

= 0,

(73a)

[

−
(nπ

l

)2

A′
u1
+G′

u1

]

U
(n)
1 +

[

−
(nπ

l

)2

B′
u1
+H ′

u1

]

U
(n)
3

+

[

(nπ

l

)

G′
u1
−
(nπ

l

)3

I′u1

]

W
(n)
0 +

[

(nπ

l

)

(C′
u1
+D′

u1
)−
(nπ

l

)3

J′u1

]

W
(n)
2

+

[

(nπ

l

)

(E ′
u1
+F ′

u1
)−
(nπ

l

)3

K′
u1

]

P(n)+
(nπ

l

)

IY

(

S
(n)
XXY

)

= 0,

(73b)
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−
(nπ

l

)2

A′
u2

U
(n)
0 +

[

−
(nπ

l

)2

B′
u2
+G′

u2

]

U
(n)
2 +

[

(nπ

l

)

(C′
u2
+D′

u2
)−
(nπ

l

)3

H ′
u2

]

W
(n)
1

+

[

(nπ

l

)

(E ′
u2
+F ′

u2
)−
(nπ

l

)3

I′u2

]

P(n)+
(nπ

l

)

IY

(

S
(n)
XXY 2

)

= 0,

(73c)

[

−
(nπ

l

)2

A′
u3
+G′

u3

]

U
(n)
1 +

[

−
(nπ

l

)2

B′
u3
+H ′

u3

]

U
(n)
3

+

[

(nπ

l

)

G′
u3
−
(nπ

l

)3

I′u3

]

W
(n)
0 +

[

(nπ

l

)

(C′
u3
+D′

u3
)−
(nπ

l

)3

J′u3

]

W
(n)
2

+

[

(nπ

l

)

(E ′
u3
+F ′

u3
)−
(nπ

l

)3

K′
u3

]

P(n)+
(nπ

l

)

Iy

(

S
(n)
XXY 3

)

= 0,

(73d)

[

(nπ

l

)2

C′
w0

−E ′
w0

]

U
(n)
1 +

[

(nπ

l

)2

D′
w0

−F ′
w0

]

U
(n)
3 +

[

(nπ

l

)3

A′
w0

−
(nπ

l

)

E ′
w0

]

W
(n)
0

+

[

(nπ

l

)3

B′
w0

−
(nπ

l

)

H ′
w0

]

W
(n)
2 +

[

−
(nπ

l

)

G′
w0

+
(nπ

l

)3

I′w0

]

P(n) = 0,

(73e)

[

(nπ

l

)3

B′
w1

−
(nπ

l

)

F ′
w1

]

U
(n)
0 +

[

(nπ

l

)3

C′
w1

−
(nπ

l

)

(G′
w1

+H ′
w1
)

]

U
(n)
2

+

[

(nπ

l

)4

A′
w1

−
(nπ

l

)2

J′w1
+D′

w1

]

W
(n)
1 +

[

(nπ

l

)4

K′
w1

−
(nπ

l

)2

I′w1
+E ′

w1

]

P(n)

+IY

(

S
(n)
YY

)

= 0,

(73f)

[

(nπ

l

)3

C′
w2

−
(nπ

l

)

(G′
w2

+H ′
w2
)

]

U
(n)
1 +

[

(nπ

l

)3

D′
w2

−
(nπ

l

)

(I′w2
+ J′w2

)

]

U
(n)
3

+

[

(nπ

l

)4

A′
w2

−
(nπ

l

)2

H ′
w2

]

W
(n)
0 +

[

(nπ

l

)4

B′
w2

−
(nπ

l

)2

L′
w2

+E ′
w2

]

W
(n)
2

+

[

(nπ

l

)4

M′
w2

−
(nπ

l

)2

K′
w2

+F ′
w2

]

P(n)+2IY

(

S
(n)
YY Y

)

= 0,

(73g)

[

(nπ

l

)3

D′
p −
(nπ

l

)

M′
p

]

U
(n)
0 +

[

(nπ

l

)3

E ′
p −
(nπ

l

)

(N′
p +O′

p)

]

U
(n)
1

+

[

(nπ

l

)3

F ′
p −
(nπ

l

)

(P′
p +Q′

p)

]

U
(n)
2 +

[

(nπ

l

)3

G′
p −
(nπ

l

)

(R′
p +S′p)

]

U
(n)
3

+

[

(nπ

l

)4

H ′
p −
(nπ

l

)2

O′
p

]

W
(n)
0 +
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This system of equations can be solved to find U
(n)
0 , U

(n)
1 , U

(n)
2 , U

(n)
3 , W

(n)
0 , W

(n)
1 , W

(n)
2 ,

and P(n), from which one can recover ui
0(X), ui

1(X), ui
2(X), ui

3(X), wi
0(X), wi

1(X), wi
2(X),

and p(X) from Eq. (70). The solution of the original EHOSPT can be obtained by setting

f̄ (Y ) = 0 in Eq. (73).
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4.2 Comparison between structural models

We examine IPMC response to a step voltage of V̄ = 5Vth applied across its electrodes

at time t0 = 0s. We focus on the steady-state profiles at t = 7.5s. Geometrical and physical

parameters for the ionomer and electrodes are listed in Tabs. 1 and 5, respectively. Constants

are selected from the literature on NafionTM [27, 29, 58] and platinum electrodes [29, 59].

Only the dielectric constant, ε , is artificially inflated, such that the ratio δ = λ
h

of the Debye

screening length and the semi-thickness of the ionomer is equal to 10−3. Although we could

attempt at simulations with smaller Debye screening lengths, we choose this value to ease

the visualization of the boundary layers.

In our FE simulations, we utilize the UEL implemented in ABAQUSTM to study the non-

linear, bidirectionally coupled mechanics and electrochemistry of the ionomer. The UEL

implements a quadrilateral quadratic element with eight nodes, with integration scheme

through Gaussian quadrature [60]. In this framework, electrodes are modeled as isotropic

metal layers. Consistent with our discussion in Section 2.1, we do not include any electro-

chemical variable in the electrodes. For the electrodes, we utilize CPE8 elements, a quadratic

eight-node plane-strain element built-in in ABAQUSTM. (Dealing with finite deformations

in ABAQUSTM, the linear elastic model posits that the Cauchy stress is linearly related to the

logarithmic strain.) We implement a mesh of 36,000 elements, with 4,000 on the electrodes.

In order to resolve the boundary layers at the interface between ionomer and electrodes, the

mesh is refined on the ionomer side near the interfaces, as shown in Fig. 4. Our elasticity

framework is free from numerical issues that are typical of elastic-perfectly-plastic models,

such that a suitable mesh refinement is sufficient to accurately capture strain localization in

the boundary layers. To facilitate numerical convergence, in FE simulations, we approximate

the jump in the step as a ramp, reaching the desired value at 10−3 s.

Parameter Value

e [µm] 2.3
Yel [Pa] 168×109

νel 0.39

Table 5 Electrodes’ parameters utilized in the simulations.

For the solution of the original Euler-Bernoulli beam theory, we directly evaluate Eq.

(69) to find ui
0(X) and wi

0(X), which completely determine the displacement field of the

IPMC. With respect to the enriched Euler-Bernoulli beam theory, we find the coefficients

for p(X) in Eq. (61) from the system in Eq. (66), we evaluate the integrals of p(X), and

ultimately substitute them in Eqs. (67) and (68) to obtain ui
0(X) and wi

0(X), respectively. The

original and enriched EHOSPT require the solution of a 7× 7 and 8× 8 linear system for

each harmonic, respectively. To mitigate Gibbs phenomenon [61] in both of these theories,

we utilize 5,000 harmonics, which we determine by solving the system in Eq. (73) for n =
1, . . . ,5000. Once the Fourier coefficients for each harmonic have been computed, we find

the longitudinal and transverse displacements through Eq. (70), truncated to 5,000 terms.

The code implementing this procedure has been verified through the method by Batra and

Liang [62], where one computes the eigenstress components and forces required to obtain a

known displacement field and utilizes the code to verify the displacement.

We assess the accuracy of the four proposed structural theories against FE simula-

tions, by considering longitudinal and transverse displacements of the mid-axis, through-
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1µm

Electrode

Boundary layer

Bulk

Fig. 4 Detail of the mesh near an electrode. The mesh is relatively coarse in the bulk of the ionomer, and

it is highly refined at the interface with the electrode to resolve the boundary layer on the ionomer side. A

relatively fine mesh is utilized to discretize the electrode.

the-thickness displacement of the mid-span section with respect to the mid-axis, longitu-

dinal and transverse displacements of anode and cathode, and axial, through-the-thickness,

and shear stresses in the ionomer. Displacements are automatically available from FE sim-

ulations. Stresses are reconstructed from Eq. (7), utilizing as infinitesimal strain tensor the

nominal strain tensor available as a FE output.

First, we examine the accuracy of the four structural theories in reconstructing the

macroscopic deflection of IPMCs, in terms of the displacement of the mid-axis. With re-

spect to the longitudinal displacement of the mid-axis in Fig. 5(a), we register symmetric

profiles with respect to X = l/2, as one should expect from the boundary conditions in

Eq. (55). The positive slope of the displacement along the IPMC axis indicates an over-

all extension of the IPMC, as noted in Section 2.2 for uniform bending and zero-thickness

electrodes. The original Euler-Bernoulli beam theory shows a linear profile of the mid-axis

displacement along the IPMC span, similar to FE simulations, but with a different slope. The

original EHOSPT displays a fifth-order polynomial trend along the IPMC length (adjusted

R2 = 0.9996), which is linear in the vicinity of the mid-span, but becomes progressively non-

linear toward the ends of the IPMC. While this structural theory provides a good estimate of

the longitudinal displacement near the mid-span, the error increases as we move away from

it. On the contrary, the enriched Euler-Bernoulli beam theory and EHOSPT both provide an

accurate prediction of the linear profile of the longitudinal mid-axis displacement, closely

matching FE simulations.

The transverse displacement of the mid-axis in Fig. 5(b) further corroborates our claim

regarding the inadequacy of the original Euler-Bernoulli beam theory to study IPMC actua-

tion. In fact, this structural theory predicts a parabolic profile (see Eq. (69)) with an opposite

concavity with respect to the FE solution. Such an effect has already been observed in Bol-

dini and Porfiri [31] for uniform bending and zero-thickness electrodes, and it is associated

with the modification of the effective axial stress due to strain localization near the elec-

trodes. The original Euler-Bernoulli beam theory does not include this correction, thereby

failing to predict bending toward the cathode (that is, back-relaxation), that is observed in

FE. This phenomenon is captured by the original EHOSPT, which can account for through-

the-thickness deformations. However, these strains are not localized in the vicinity of the

electrodes, whereby the through-the-thickness strain only varies linearly along the ionomer
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Fig. 5 Longitudinal (a) and transverse (b) displacement of the IPMC mid-axis and through-the-thickness

displacement of the ionomer relative to the mid-axis, near the anode (c) and cathode (d) at the mid-span.

Reported results refer to original Euler-Bernoulli beam theory (EBT, dashed brown line), enriched Euler-

Bernoulli beam theory (EEBT dash dotted red line), original enhanced high-order sandwich panel theory

(EHOSPT, dashed green line), enriched enhanced high-order sandwich panel theory (EEHOSPT, dash dotted

blue line), and FE simulations (solid black line), at time 7.5s. Coordinates and displacements are nondimen-

sionalized with respect to the ionomer semi-thickness h.

thickness. This limitation can explain the discrepancy between the original EHOSPT and

FE results, where the original EHOSPT overpredicts IPMC deflection and shows two peaks

in the proximity of IPMC ends, which are absent in FE simulations. Similar to the longitu-

dinal displacement of the mid-axis, the enriched structural theories show highly comparable

results, with a slightly smaller peak displacement at the mid-span section when compared to

FE.

In addition to the mid-axis displacement, we evaluate the performance of the proposed

structural theories in predicting the through-the-thickness displacement of IPMC cross-

sections. Toward this goal, we consider the through-the-thickness displacement of the mid-

span section with respect to the mid-axis, whose profiles in the vicinity of the electrodes are

shown in Fig. 5(c-d). The original Euler-Bernoulli beam theory always yields a null relative

displacement, since it assumes that the transverse displacement of the ionomer is point-wise

equal to that of the mid-axis, see Eq. (32b). As one should expect from Eq. (41b), the orig-

inal EHOSPT shows a parabolic profile of the relative through-the-thickness displacement,

which is not reminiscent of the strain localization close to the electrodes that is predicted
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by FE simulations. Thus, both the original theories fail in anticipating FE results, which are

characterized by two boundary layers at the ionomer-electrode interfaces. Interestingly, the

enriched Euler-Bernoulli beam theory displays such a localization, but its predictions show

an almost constant shift with respect to FE results within the regions in Figs. 5(c-d). The only

structural theory that accurately predicts the through-the-thickness displacement relative to

the mid-axis is the enriched EHOSPT, which is in close agreement with FE simulations.

Compared to the enriched Euler-Bernoulli beam theory, the enriched EHOSPT accounts

for the transverse deformability of the ionomer, which provides an additional parabolic de-

formation along the ionomer thickness that is important to capture the effect of the large

contrast between the compliance of the ionomer and electrodes.

Moreover, we consider longitudinal and transverse displacements of the anode and cath-

ode as a measure of structural theories’ ability to reconstruct multiaxial deformations in

IPMCs. Figure 6(a) illustrates the longitudinal displacement of the top face of the anode,

that is, the top face of the IPMC. Similar to the longitudinal displacement of the mid-axis,

the original Euler-Bernoulli beam theory yields a linear profile along the IPMC span, whose

slope does not coincide with FE simulations. The original EHOSPT and the two enriched

structural theories offer equivalent results, matching FE simulations, with the largest de-

viation shown by the enriched Euler-Bernoulli beam theory. From Fig. 6(b), we find that

the original Euler-Bernoulli beam theory fails in estimating the deflection of the top face

of the anode. The original EHOSPT provides an accurate prediction of the displacement

near the mid-axis section, while it overestimates peaks close to the ends of the IPMC. The

enriched Euler-Bernoulli beam theory and enriched EHOSPT closely match FE analysis

along the entire IPMC span. With respect to the longitudinal displacement of the bottom

face of the cathode, which corresponds to the bottom face of the IPMC, Fig. 6(c) pictures a

scenario similar to the other electrode, with the original Euler-Bernoulli beam theory being

unable to anticipate the correct slope and the other three structural theories offering com-

parable results. In this case, the enriched Euler-Bernoulli beam theory shows a lower error

compared to EHOSPT-based theories. The scenario for the transverse displacement of the

top face of the anode is mirrored in the transverse displacement of the bottom face of the

cathode, displayed in Fig. 6(d). The error of the original Euler-Bernoulli beam theory with

respect to FE simulations is larger than in the previous case, while the other three theories

slightly undepredict the peak value of the deflection at the mid-span section, with additional

discrepancies for the original EHOSPT near the ends of the IPMC.

Quantities associated with the derivatives of the displacement field, such as strains and

stresses, are other critical metrics for testing the accuracy of structural theories. Given that

our structural theories rely on a Saint-Venant approach for the electrochemistry, we do not

expect to obtain accurate predictions of mechanical deformations in the vicinity of the ends

of the IPMC, where edge effects may affect the electrochemistry. Thus, we focus on ax-

ial, through-the-thickness, and shear stresses at the mid-span of the IPMC. In Figs. 7(a-b),

we present the axial stress in the ionomer in the vicinity of the electrodes. Both original

theories cannot predict stress concentration that is identified in the FE simulations, offer-

ing compelling evidence in favor of the inclusion of the proposed enrichment. On the other

hand, the results from enriched Euler-Bernoulli and enriched EHOSPT accurately follow

the boundary layers predicted by FE simulations, both on the anode and cathode sides.

The results for the through-the-thickness stress, whose profile near the electrodes is

shown in Figs. 7(c-d), mirror those for axial stress. Once again, original theories cannot

anticipate through-the-thickness stress concentration near the electrodes, while the enriched

structural theories beget an almost perfect prediction compared to FE analyses. Contrary

to the case of uniform bending in which the through-the-thickness stress was point-wise
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Fig. 6 Longitudinal (a, c) and transverse (b, d) displacement of the top face of the anode (a, b) and bottom face

of the cathode (c, d). Reported results refer to original Euler-Bernoulli beam theory (EBT, dashed brown line),

enriched Euler-Bernoulli beam theory (EEBT dash dotted red line), original enhanced high-order sandwich

panel theory (EHOSPT, dashed green line), enriched enhanced high-order sandwich panel theory (EEHOSPT,

dash dotted blue line), and FE simulations (solid black line), at time 7.5s. Coordinates and displacements are

nondimensionalized with respect to the ionomer semi-thickness h.

zero along the ionomer thickness (see Section 2.2), the through-the-thickness stress may

dominate the axial stress, further supporting the need of considering multiaxial deformations

when studying IPMC actuation.

As one should expect, shear stresses at the mid-span are much smaller than the other

components of the stress tensor. Consistent with this observation, all structural theories and

FE simulations display negligible values of the shear strain, as shown in the proximity of

electrodes in Figs. 7(e-f). Interestingly, the enriched EHOSPT provides the largest value of

the shear stress, which is still six orders of magnitude smaller than the axial and through-the-

thickness stresses registered in the boundary layers, such that it can be disregarded compared

to the other stress components. Within the IPMC, shear stresses are only revelant toward the

ends, where our Saint Venant approach for the electrochemistry fails due to edge effects,

thereby challenging an accurate reconstruction of these stress components from the proposed

structural theories. Should one study more severe boundary conditions [39], it might be

possible to achieve accurate prediction of shear stresses through stress recovery [37, 63],

based on a Jourawski approach [64].
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Fig. 7 Axial (a, b), through-the-thickness (c, d), and shear (e, f) stress in the ionomer, in the vicinity of

the cathode (a, c, e) and of the anode (b, d, f). Reported results refer to original Euler-Bernoulli beam the-

ory (EBT, dashed brown line), enriched Euler-Bernoulli beam theory (EEBT dash dotted red line), original

enhanced high-order sandwich panel theory (EHOSPT, dashed green line), enriched enhanced high-order

sandwich panel theory (EEHOSPT, dash dotted blue line), and FE simulations (solid black line), at time 7.5s.

Note that EEBT profiles perfectly overlap with those of EEHOSPT in (a-d). Coordinates and stresses are

nondimensionalized with respect to the ionomer semi-thickness h and reference stress RT C0, respectively.
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5 Conclusions

Ionic polymer metal composites (IPMCs) are a class of electroactive polymers that promise

unprecedented applications in soft robotics [4, 5, 7] and biomedical engineering [6]. Recent

advancements in the manufacturing of these materials [4] demand technical progress toward

inverse design and optimization of IPMCs, where engineers could tailor the geometrical and

physical properties of IPMCs to attain desired actuation. Critical to such an inverse prob-

lem is the formulation of accurate, but computationally affordable, mathematical models

of IPMC actuation. The literature on IPMC actuation [16, 26, 27, 29, 41] heavily relies on

traditional structural theories, such as the classical Euler-Bernoulli beam theory. However,

the use of these theories and the validity of their underlying hypotheses are seldom sup-

ported by computational or experimental evidence. The presence of a complex eigenstress

within the ionomer, associated with osmotic pressure and Maxwell stress, can challenge the

use of these classical structural theories that are not tailored to handle the complexity of

IPMC physics. Hypotheses such as the infinite rigidity of the cross-sections are unlikely to

be verified in these electroactive materials.

In an effort to ascertain the validity of these claims, in Boldini and Porfiri [31] we

developed a finite element (FE) environment in ABAQUSTM that implements a nonlinear

continuum theory to study the mechanics and electrochemistry of IPMCs [29]. Through

FE simulations, we discovered complex multiaxial deformations in the ionomer. In partic-

ular, we identified through-the-thickness strain localization in the vicinity of the ionomer-

electrode interfaces, associated with the formation of boundary layers of the electrochemical

variables. These through-the-thickness deformations, significantly larger than axial strains,

dramatically affect the macroscopic deformation of IPMCs, thereby hampering the use of

classical structural theories. While through-the-thickness deformations could reach mod-

erate levels at the ionomer-electrode interfaces, linear elasticity predictions are generally

found to be adequate. These FE analyses were complemented by a semi-analytical solution

of the problem under the simplifying assumptions of uniform bending and zero-thickness

electrodes. Neither the FE environment nor the developed semi-analytical solution can be

leveraged for inverse design and optimization problems. FE simulations are accurate, but

complex and computationally expensive, whereas the semi-analytical solution is limited to

one, very specific, scenario.

Here, we tackle the problem of relaxing these two hypotheses and establish novel struc-

tural theories to accurately describe multiaxial deformations in IPMCs for non-uniform

bending and electrodes with non-zero thickness. Under the assumptions of small deforma-

tions and decoupling of the electrochemistry from the mechanical deformation, we compute

the counterions’ concentration and voltage profiles by solving the nonlinear 1D electro-

chemical problem through the ionomer thickness, via the method of matched asymptotic

expansions. In this way, we calculate a-priori axial and through-the-thickness eigenstress

components, associated with osmotic pressure and Maxwell stress. The description of IPMC

actuation is anchored in the definition of a total potential energy (TPE), which includes the

strain energy of the ionomer, strain energy of the electrodes, and work done by the eigen-

stress. We project the kinematics of the IPMC on four different structural theories. Two of

them entail classical beam theories of different complexity, namely, Euler-Bernoulli beam

theory and enriched high-order sandwich panel theory (EHOSPT). The other two are en-

riched versions of these classical structural theories, encompassing an additional term that

encodes the localized through-the-thickness deformation from uniform bending. This con-

traction is modulated by a function of the axial coordinate which enables the treatment of
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general boundary conditions that could lead to shear deformations. Balance equations for

each degree of freedom are obtained from the stationarity of the TPE.

We compare the four proposed structural theories against FE simulations with inert,

linear elastic electrodes. As one would expect, the original Euler-Bernoulli beam theory

fails to predict any of the examined quantities, let them be displacement and stress fields.

The original EHOSPT shows slightly better performance, whereby it can accurately estimate

displacement and stress in the bulk of the ionomer, close to the mid-span. However, it fails to

capture the ionomer displacement close to the ends of the IPMC and at the ionomer-electrode

interfaces, and stress concentration in the vicinity of the electrodes. The enriched Euler-

Bernoulli beam theory and enriched EHOSPT provide equivalent, accurate predictions for

both displacement and stress, with the enriched EHOSPT yielding slightly better results with

respect to the through-the-thickness displacement of the ionomer.

Despite the promising results of these enriched structural theories, several limitations of

the present work should be addressed in future investigations. First of all, it is well known

that electrodes not only play a role in determining the mechanical deformation of IPMCs,

but can also affect their electrochemistry. For example, capacitance-boost associated with a

rough interface between the ionomer and electrodes can be modeled through the introduction

of dedicated composite layers [54]. In addition, the resistivity of electrodes may not be

negligible, causing a voltage attenuation along the span of the IPMC [51]. Such variation of

the voltage profile along the IPMC might trigger interesting multiaxial deformations, which

can be studied by solving the through-the-thickness electrochemistry with varying applied

voltage for each IPMC cross-section.

Another line of future research entails the study of thick electrodes, which can arise

from repeated plating process, which is shown to improve the electrochemical properties of

IPMCs, at the cost of increased bending stiffness [2, 3]. Herein, the derivation is limited to

the case of thin electrodes, whereby we utilize Euler-Bernoulli beam theory to describe elec-

trodes’ mechanics. One can define an alternative structural theory to account for electrodes

with larger thickness, such as Timoshenko beam theory [34, 40, 44]. Our discovery of the

critical role of strain localization near the electrodes paves the way for further research on

tailored physical models, such as continuum higher-order gradient models that would allow

the control of the build up of deformation gradients within the boundary layers, through a

material length scale [65].

Finally, this work can be extended to the study of the dynamic response of IPMCs, by

including the effect of inertia forces. Interestingly, the localized through-the-thickness dis-

placement of the enriched theories is already a function of time, thus providing an additional

contribution to the inertia of the IPMC, which is associated with the electrochemistry. We

should also note that the typical approach to find modes of vibration based on separation

of variables [57] cannot be applied in this case, whereby the enrichment function cannot be

written as the product of two independent functions of time and space.

The work presented herein provides a first, important step toward structural theories that

can accurately describe multiaxial deformations of IPMCs at a reduced computational cost.

The enriched Euler-Bernoulli beam theory provide fast and reliable estimations for slender

IPMCs. The enriched EHOSPT can increase the accuracy of these predictions, but it calls

for higher computational cost, whereby the number of field variables increases from three to

eight. We expect that one should resort to the enriched EHOSPT to obtain accurate results in

the case of more severe mechanical boundary conditions than those examinged in this work,

for example when testing IPMCs for their blocked force where a load cell is preventing

transverse displacement of a point of one of the electrodes. Overall, the proposed structural

theories hold promise to unleash the full potential of novel manufacturing techniques for
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IPMCs, which can benefit real-world applications and commercialization of these materials

outside laboratory settings.

A Electrochemistry

Here, we put forward several hypotheses that allow us to compute a semi-analytical solution for the electro-

chemistry through the thickness, independently of the mechanical deformation. From the knowledge of the

profiles of counterions’ concentration and voltage, we can evaluate the eigenstress related to osmotic pressure

in Eq. (9) and Maxwell stress in Eq. (10).

We consider a Saint-Venant solution, whereby we neglect edge effects so that the variations of the elec-

trochemical variables along the IPMC axis and width are negligible compared to their through-the-thickness

variations [29, 66]. Specifically, we suppose that the counterions’ concentration and voltage depend only on

the through-the-thickness coordinate Y , such that C =C(Y, t) and ψ = ψ(Y, t), respectively.

Under these assumptions, the electrochemistry is described by a 1D system of two PDEs, commonly

known as Poisson-Nernst-Planck (PNP) system [17, 18, 19, 50, 67]. The first equation is derived from mass

conservation of the counterions in Eq. (2),

∂C(Y, t)

∂ t
+

∂JY (Y, t)

∂Y
= 0, (74)

where JY indicates the counterions’ flux through the thickness of the IPMC, obtained from Eqs. (13) and (12)

as

JY (Y, t) =−D

(

∂C(Y, t)

∂Y
+

DC(Y, t)

RT

∂ψ(Y, t)

∂Y

)

. (75)

The second equation is the 1D Gauss law, derived from Eq. (3) as

∂D(Y, t)

∂Y
= F (C(Y, t)−C0), (76)

where D indicates the through-the-thickness electric displacement, which from Eq. (11) reads

D(Y, t) =−ε
∂ψ(Y, t)

∂Y
. (77)

Substituting the constitutive relations in Eqs. (75), (77) in the PDEs in Eqs. (74), (76) and assuming that

material properties are homogeneous in the ionomer, we obtain the PNP system

∂C(Y, t)

∂ t
−D

∂

∂Y

(

∂C(Y, t)

∂Y
+

FC(Y, t)

RT

∂ψ(Y, t)

∂Y

)

, (78a)

−ε
∂ 2ψ(Y, t)

∂Y 2
= F (C(Y, t)−C0), (78b)

which should be complemented by appropriate boundary conditions at the interface with the electrodes and

initial conditions. Consistent with hypotheses in Section 2.1, we consider ion-blocking conditions at the

ionomer-electrode interfaces,

J(−h, t) = J(h, t) = 0, (79)

and we assume that there is no drop of the external voltage V̄ (t) across the electrodes, such that

ψ(−h, t) =− V̄ (t)

2
, (80a)

ψ(h, t) =
V̄ (t)

2
. (80b)

Furthermore, we consider the IPMC to be initially electroneutral, that is,

C(Y,0) =C0, (81a)

ψ(Y,0) = 0. (81b)



On structural theories for IPMCs 41

The system of PDEs in Eq. (78) with boundary and initial conditions in Eqs. (79), (80), and (81), repre-

sents a singularly perturbed BVP [17], due to the small value of the dielectric constant multiplying the highest

order derivative in the Poisson equation in Eq. (78b). In fact, should one neglect this term, it would not be

possible to satisfy both boundary conditions in Eq. (80). In this family of differential problems, boundary

layers typically develop at the boundaries of the domain, challenging the application of standard numerical

techniques based on the discretization of the domain, such as finite differences or FE methods [68].

The need to accurately resolve boundary layers to ensure a precise quantification of the eigenstress,

along with the limitations on the aspect ratio of the elements to guarantee stability of the numerical scheme,

require the use of fine meshes that drastically increase the computational burden. Specifically, the thickness

of boundary layers is of the order of the so-called Debye screening length [50], which is given by

λ =
1

F

√

εRT

C0
. (82)

For common ionomers, the Debye screening length is a few Angstrom [17], thereby hindering the feasibility

of numerical simulations on millimeter- and centimeter-sized domains and calling for alternative methods to

solve the problem, such as the one proposed in this paper.

Singularly perturbed problems can be solved analytically with the method of matched asymptotic ex-

pansions [32]. Specifically, we divide our computational domain into three subdomains: an “outer” region in

the bulk of the ionomer, and two “inner” subdomains near the interfaces with electrodes, where we define a

magnified spatial coordinate to describe the formation of boundary layers. In each of these three subdomains,

we expand each variable in a power series of δ = λ/h quantifying the ratio of the Debye screening length

and the semi-thickness of the ionomer. By considering different orders, we obtain a series of simpler systems

of PDEs in each subdomain, coupled through matching conditions in the overlapping region between inner

and outer subdomains, where both PDE systems should be valid. A composite solution, valid in the entire

computational domain, can be assembled by summing the solutions for each subdomain and subtracting their

value in the overlapping regions. A detailed solution of this mathematical problem is presented in [17].

The matched asymptotic expansion reveals that IPMC electrochemistry is determined by the solution of

an RC circuit, excited by the voltage V̄ (t) applied across the electrodes [17]. The conductivity per unit area

of the resistor is given by [17]

σ =
DC0F

2

2hRT
, (83)

while the nonlinear constitutive behavior of the capacitor, representing the charge stored in the boundary

layers, is described by [17]

qS(t) =
√

εRT C0ϑ

(

V (t)

Vth

)

, (84)

where qS is the charge stored per unit surface of electrodes, V (t) is the voltage drop across the capacitor, and

ϑ(α) =
√

2

√

α

exp(α)−1
− ln

α

exp(α)−1
−1. (85)

The circuit can be solved by applying Kirchhoff law, such that

V̄ (t) =V (t)+
i(t)

σ
, (86)

where i(t) = dqS(t)/dt is the current through the circuit.

From the solution of the ordinary differential equation (ODE) of the circuit in Eq. (86), with initially

discharged capacitor (V (0) = 0), we obtain the time evolution of the voltage drop across the capacitor α(t) =
V (t)/Vth, which completely defines the first order composite solution through the thickness as [17]

C(Y,α(t)) =C0

[

−1+ exp

(

y+

(

1− Y
h

δ
,α(t)

))

+ exp

(

y−
(

1+ Y
h

δ
,α(t)

))]

, (87a)

ψ(Y,α(t))=
V̄ (t)

2
+

i(t)

2σ

(

Y

h
−1

)

+Vth

[

ln

(

α(t)

exp(α(t))−1

)

− y+

(

1− Y
h

δ
,α(t)

)

− y−
(

1+ Y
h

δ
,α(t)

)]

,

(87b)
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where y±(ξ±) are functions of the magnified variables ξ± = (1∓Y )/δ near the electrodes, describing the

formation and development of boundary layers. These functions are obtained by solving the following second

order differential problems [17]:

∂ 2y±(ξ±,α)

(∂ξ±)2
= exp(y±(ξ±,α))−1, (88a)

y+(0,α) = ln
α

exp(α)−1
, (88b)

y−(0,α) = ln
α

exp(α)−1
+α, (88c)

∂y±(0,α)

∂ξ± =±ϑ(α). (88d)

In summary, from the solution of the circuit model we compute the voltage across the capacitor, where

Eq. (86) is used, and counterions’ concentration and voltage profiles through the thickness are obtained with

Eqs. (87) and (88). Since these problems are independent of the deformation, the distribution of the electro-

chemical variables over time can be found once for all and then used to compute the eigenstress in the IPMC

according to Eqs. (9) and (10).
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26(4), 045004 (2017)

25. K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhata, H. Takenaka, Polymer Journal 27, 436 (1995)

26. M. Shahinpoor, K.J. Kim, Smart Materials and Structures 13(6) (2004). DOI https://doi.org/10.1088/

0964-1726/13/6/009

27. M. Porfiri, A. Leronni, L. Bardella, Extreme Mechanics Letters 13, 78 (2017)

28. M. Porfiri, H. Sharghi, P. Zhang, Journal of Applied Physics 123(014901) (2018)

29. Y. Cha, M. Porfiri, Journal of the Mechanics and Physics of Solids 71, 156 (2014)

30. W. Hong, X. Zhao, Z. Suo, Journal of the Mechanics and Physics of Solids 58(4), 558 (2010). DOI

https://doi.org/10.1016/j.jmps.2010.01.005

31. A. Boldini, M. Porfiri, International Journal of Engineering Science 149, 103227 (2020). DOI https:

//doi.org/10.1016/j.ijengsci.2020.103227

32. A.H. Nayfeh, Introduction to Perturbation Techniques (Wiley, 2011)

33. H.G. Allen, Analysis and design of structural sandwich panels (Pergamon Press Ltd., Oxford, 1969)

34. D. Krajcinovic, Journal of Applied Mechanics 39(3), 773 (1972). DOI 10.1115/1.3422787

35. Y.M. Ghugal, R.P. Shimpi, Journal of Reinforced Plastics and Composites 20(3), 255 (2001). DOI

10.1177/073168401772678283

36. A. Tessler, M.D. Sciuva, M. Gherlone, Journal of Composite Materials 43(9), 1051 (2009). DOI 10.

1177/0021998308097730

37. D. Tonelli, L. Bardella, M. Minelli, Journal of Sandwich Structures & Materials 14(6), 629 (2012). DOI

10.1177/1099636212444656

38. Y. Frostig, M. Baruch, O. Vilnay, I. Sheinman, Journal of Engineering Mechanics 118(5), 1026 (1992).

DOI 10.1061/(ASCE)0733-9399(1992)118:5(1026)

39. O. Mattei, L. Bardella, European Journal of Mechanics - A/Solids 58, 172 (2016). DOI https://doi.org/

10.1016/j.euromechsol.2016.01.015

40. A. Panteghini, L. Bardella, European Journal of Mechanics - A/Solids 61, 393 (2017). DOI https://doi.

org/10.1016/j.euromechsol.2016.10.012

41. S. Lee, H.C. Park, K.J. Kim, Smart Materials and Structures 14(6), 1363 (2005). DOI 10.1088/

0964-1726/14/6/028

42. L. Bardella, Journal of Mechanics of Materials and Structures 3(7), 1187 (2008). DOI http://dx.doi.org/

10.2140/jomms.2008.3.1187

43. C.N. Phan, Y. Frostig, G.A. Kardomateas, Journal of Applied Mechanics 79(4) (2012). DOI 10.1115/1.

4005550

44. A. Leronni, L. Bardella, European Journal of Mechanics - A/Solids 77, 103750 (2019). DOI https:

//doi.org/10.1016/j.euromechsol.2019.02.016

45. I.S. Sokolnikoff, Mathematical theory of elasticity, 2nd edn. (McGraw-Hill New York, 1956)

46. O.A. Bauchau, J.I. Craig, Structural Analysis - With Applications to Aerospace Structures (Springer,

2009). DOI 10.1007/978-90-481-2516-6

47. N.J. Pagano, Journal of Composite Materials 4(1), 20 (1970). DOI https://doi.org/10.1177\
%2F002199837000400102

48. B.J. Akle, D.J. Leo, Journal of Intelligent Material Systems and Structures 19(8), 905 (2008). DOI

https://doi.org/10.1177/1045389X07082441

49. J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, 1998)

50. A.J. Bard, L.R. Faulkner, Electrochemical Methods - Fundamentals and Applications (John Wiley &

Sons, 2001)

51. H. Kim, Y. Cha, M. Porfiri, Journal of Intelligent Material Systems and Structures 27(17), 24262430

(2016). DOI https://doi.org/10.1177/1045389X15620045

52. M. Porfiri, Physical Review E 79 (2009). DOI https://doi.org/10.1103/PhysRevE.79.041503



44 Alain Boldini et al.

53. M. Aureli, W. Lin, M. Porfiri, Journal of Applied Physics 105(10), 104911 (2009). DOI 10.1063/1.

3129503

54. Y. Cha, M. Aureli, M. Porfiri, Journal of Applied Physics 111(12) (2012). DOI https://doi.org/10.1063/

1.4729051

55. M.Z. Bazant, K. Thornton, A. Ajdari, Physical Review E 70(021506) (2004)

56. S. Timoshenko, J. Goodier, Theory of Elasticity, 3rd edn. (McGrawHill, 2001)

57. L. Meirovitch, Fundamentals of Vibrations, International edn. (McGraw-Hill, 2001)

58. M.N. Silberstein, M.C. Boyce, Journal of Power Sources 195(17), 5692 (2010). DOI https://doi.org/10.

1016/j.jpowsour.2010.03.047

59. F. Cardarelli, Materials Handbook, 3rd edn. (Springer, 2018). DOI https://doi.org/10.1007/

978-3-319-38925-7

60. T. Belytschko, W.K. Liu, B. Moran, K.I. Elkhodary, Nonlinear Finite Elements for Continua and Struc-

tures, 2nd edn. (Wiley, 2014)

61. P. Dyke, An Introduction to Laplace Transforms and Fourier Series, 2nd edn. (Springer-Verlag London,

2014)

62. R.C. Batra, X.Q. Liang, Computational Mechanics 20(5), 427 (1997). DOI 10.1007/s004660050263

63. H. Matsunaga, Composite Structures 55(1), 105 (2002). DOI https://doi.org/10.1016/S0263-8223(01)

00134-9

64. D. Jourawski, Annales des Ponts and Chaussées 12, 328 (1856)

65. S. Forest, K. Sab, Mechanics Research Communications 40, 16 (2012). DOI https://doi.org/10.1016/j.

mechrescom.2011.12.002

66. J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS (CRC Press, 2002)

67. Q. Shen, V. Palmre, T. Stalbaum, K.J. Kim, Journal of Applied Physics 118(12) (2015). DOI https:

//doi.org/10.1063/1.4931912

68. A. Quarteroni, Numerical Models for Differential Problems, 2nd edn. (Springer, 2014). DOI 10.1007/

978-88-470-5522-3


