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Abstract

We present the first lattice calculation of the valence-quark generalized parton distribution (GPD) of the 

pion using the large-momentum effective theory (LaMET) approach. We focus on the zero-skewness limit, 

where the GPD has a probability-density interpretation in the longitudinal Bjorken x and the transverse 

impact-parameter distributions. Our calculation is done using clover valence fermions on an ensemble 

of gauge configurations with 2 + 1 + 1 flavors (degenerate up/down, strange and charm) of highly im-

proved staggered quarks (HISQ) with lattice spacing a ≈ 0.12 fm, box size L ≈ 3 fm and pion mass 

mπ ≈ 310 MeV. The parton distribution function and the form factor are reproduced as special limits of the 

GPD as expected. Due to the large errors, this exploratory study does not show a clear preference among 

different model assumptions about the kinematic dependence of the GPD. To discriminate between these 

assumptions, future studies using higher-statistics data will be crucial.
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1. Introduction

In the past few decades, extensive studies of parton distribution functions (PDFs) have pro-

vided us with detailed knowledge of the longitudinal momentum distribution of quarks and 

gluons, and, therefore, a one-dimensional picture of hadrons. To map out the multidimensional 

partonic structure of hadrons, which is an important goal for experiments carried out at the exist-

ing facilities in DESY, JLab, BNL, CERN or the planned Electron-Ion Collider, we need to study 

quantities exhibiting the transverse structure of hadrons. One such quantity that has attracted a 

lot of interest in the past few years are the generalized parton distributions (GPDs) [1–3].

The GPDs unify seemingly different physical quantities, such as the PDFs and hadron form 

factors, into the same framework. They offer a description of the correlations between the trans-

verse position and longitudinal momentum of quarks and gluons inside the nucleon, thereby 

giving access to quark and gluon orbital angular momentum contributions to the nucleon spin [1]. 

Experimentally, the GPDs can be accessed through hard exclusive processes like deeply virtual 

Compton scattering or meson production. Useful constraints on the forms of the nucleon GPDs 

have been obtained from measurements of such processes at DESY [4–6] and JLab [7–10]. How-

ever, as the GPDs usually contribute to experimental observables through convolutions and they 

have more complicated kinematic dependence than the PDFs, extracting the GPDs from these 

experimental measurements is in general rather difficult. Therefore, inputs from theory are im-

portant and play a complementary role in determining the GPDs. Valuable insights are gained 

through computations using models (see e.g. Ref. [11] for a review) and lattice QCD. So far, 

computations using the latter are limited to the first few moments of the GPDs [12–15] (see 

Ref. [16] for a review).

In recent years, a new theory framework has been developed that allows for lattice calcula-

tions of the x-dependence, instead of the moments, of parton quantities [17,18]. This theory is 

now known as the large-momentum effective theory (LaMET). In this approach, a parton observ-

able such as the PDFs or the GPDs can be accessed from lattice QCD in the following manner: 

1) Construct an appropriate static-operator matrix element (a quasi-observable) that approaches 

the parton observable in the large-momentum limit of the external hadron. The quasi-observable 

constructed this way is usually hadron-momentum–dependent but time-independent, and, there-

fore, can be readily computed on the lattice. 2) Calculate the quasi-observable on the lattice. 

3) Convert it to the parton observable through a factorization formula accurate up to power cor-

rections that are suppressed by the hadron momentum. The existence of such a factorization is 

ensured by construction; for a proof, see Refs. [19–21].

Since LaMET was proposed, a lot of progress has been achieved with respect to both the 

theoretical understanding of the formalism [22–31,20,32–43,30,31,42,44–66] and its application 

to lattice calculations of nucleon and meson PDFs, as well as meson distribution amplitudes [67,

36,45,68,69,43,42,37,70–78]. Despite limited volumes and relatively coarse lattice spacings, the 

state-of-the-art nucleon isovector quark PDFs determined from lattice data at the physical point 

have shown reasonable agreement [72,75,71] with phenomenological results extracted from the 

experimental data [79–83]. Of course, a careful study of theoretical uncertainties and lattice 

artifacts is still needed to fully establish the reliability of the results.

As for the GPDs, the factorization of the isovector quark quasi-GPDs has been proven to 

leading-power accuracy using the operator product expansion [21], and the corresponding hard 

matching function was also computed both in a cutoff scheme [24,25] and in a regularization-

independent momentum-subtraction (RI/MOM) scheme [21] (for studies of quasi-GPDs in di-
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quark models see e.g. [62,84]). This allows us to perform exploratory studies on the quark GPDs 

once we have lattice simulations of the corresponding quasi-GPD matrix elements.

In this paper, we carry out the first lattice calculation of the valence-quark GPD of the pion 

using the LaMET approach. As a first step, we focus on the zero-skewness limit, that is, the mo-

mentum transfer between the initial and final states is purely transverse. In this limit, the quark 

GPD is related to the impact-parameter distribution of quarks that has a probability-density in-

terpretation [85] (see also Ref. [86]). Our calculation is done using clover valence fermions on 

an ensemble of gauge configurations with 2 + 1 + 1 flavors (degenerate up/down, strange and 

charm) of highly improved staggered quarks (HISQ) [87] generated by the MILC Collabora-

tion [88] with lattice spacing a ≈ 0.12 fm, box size L ≈ 3 fm and pion mass mπ ≈ 310 MeV.

2. From quasi-GPD to GPD in the pion

The unpolarized quark GPD in the pion is defined on a lightcone as

Hπ
q (x, ξ, t,μ) =

∫

dη−P +

2π
e−ixη−P+
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ensures gauge invariance of the quark bilinear operator. Eq. (1) is an off-forward matrix element 

where the momenta for the initial and final states are different. In the forward (�μ → 0) limit, it 

reduces to the PDF.

An appropriate quark quasi-GPD that can be computed on the lattice is given by

H̃π
q (x, ξ, t,P z, μ̃) =

∫

dzP z

2π
eixP zzh̃(z,P z, ξ, t, μ̃) (4)
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where we have chosen the Dirac matrix as γ t , since it has the advantage of avoiding mixing with 

the scalar quark operator [30,44] when a non-chiral lattice fermion is used. This choice will be 

used throughout this paper. The skewness parameter ξ in Eq. (4) is defined as ξ = −�z/(2P z), 

which differs from the lightcone definition in Eq. (1) by power-suppressed contributions of 
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O(m2
π/P 2

z ). We have ignored this difference and denoted it with the same label as the skew-

ness in the GPD. μ̃ denotes the renormalization scale in an appropriate renormalization scheme 

for the quasi-GPD. In the present paper, we will focus on the u − d combination at zero skew-

ness ξ = 0, where the former avoids contributions from disconnected diagrams as well as the 

mixing with gluon GPDs, while the latter simplifies the kinematic dependence of the quark GPD 

and is also related to the impact-parameter distribution of quarks that has a probability-density 

interpretation [89,85].

The bare pion matrix element on the right-hand side of Eq. (4) can be calculated on the 

lattice. In Refs. [40,41,31], it has been shown that the quark bilinear operator defining h̃ is mul-

tiplicatively renormalized up to lattice artifacts, and the renormalization factor can be calculated 

nonperturbatively on the lattice. In our previous study of the pion PDF [73], we chose to calcu-

late the renormalization factor in the RI/MOM scheme, where the counterterm is determined by 

requiring that it cancels all the loop contributions for the matrix element in an off-shell external 

quark state at a specific momentum [29,42]. In other words, the renormalization factor in

h̃R(z,P z, ξ, t,pR
z ,μR) = Z−1(z,pR

z ,μR, a)h̃(z,P z, ξ, t, a) (6)

is fixed by

Z(z,pR
z ,μR, a) = Tr[�γ tP]

Tr[�γ tP]tree

∣

∣

∣

∣

p2 = −μ2
R

pz = pR
z

, (7)

where �γ t is the amputated Green function of the forward quark bilinear operator in Eq. (5) in 

an off-shell quark state with momentum p. P is a projection operator that defines the RI/MOM 

renormalization factor, μR, pR
z are renormalization scales introduced in the RI/MOM scheme. 

After renormalization, all singular dependence on a has been removed, and h̃R has a well-defined

continuum limit. We have suppressed the residual a dependence in h̃R . The Z factor defined in 

Eq. (7) coincides with that of the quark quasi-PDF. This is because the UV divergence of the 

above hadron matrix element depends only on the operator defining it and not on the external 

state, the same renormalization factor can be used to renormalize the quark quasi-GPD matrix el-

ement. After renormalization, h̃R(z, P z, ξ, t, pR
z , μR) can be converted to H̃π

q through a Fourier 

transform

H̃π
u−d,R(x, ξ, t,P z,pR

z ,μR) =
∫

dzP z

2π
eixP zzh̃R(z,P z, ξ, t,pR

z ,μR), (8)

which can then be factorized into the normal GPD in the MS scheme convoluted with a pertur-

bative hard matching kernel, up to power corrections that are suppressed by the pion momen-

tum [21]
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1
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, (9)

where μ is the renormalization scale of the GPD. The matching kernel C has been worked out 

at one-loop in Ref. [21]. At zero skewness ξ = 0, C is the same as the matching kernel for the 

PDF that is documented in Refs. [72,60]. Ideally, the continuum limit of H̃u−d,R should be taken 

before applying the matching so that lattice artifacts can be removed and the rotational symmetry 
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recovered. However, only a single lattice spacing is used in the present work. The continuum limit 

can be explored in the future once we have more data at different lattice spacings.

For the power corrections, the meson-mass correction associated with the choice of Dirac 

matrix γ t is identical to that of the helicity distribution worked out in Ref. [36] with the replace-

ment m2
π → m̃2

π = m2
π − t/4. The O(�2

QCD/P 2
z ) correction is parametrically about the same size 

as the O(m̃2
π/P 2

z ) correction (except for very small or large x where the correction behaves like 

O(�2
QCD/(x2(1 − x)P 2

z )) due to renormalon ambiguity, as argued in Ref. [66]), and is negligible 

compared with other sources of errors.

For H̃π+
u−d , the matrix element h̃ is purely real in the isospin symmetric limit which is adopted 

in this work. This is because the imaginary part of the matrix element is related to the inverse 

Fourier transform of H̃π+
u−d(x) − H̃π+

u−d(−x), which is H̃π+
u−d(x) + H̃π+

ū−d̄
(x) = 0 after applying 

the definition of antiquark distribution H̃q̄(|x|) = −H̃q(−|x|) and the isospin symmetry relation 

H̃π+
u(d) = H̃π+

d̄(ū)
. Analogously, the real part of the matrix element is related to the inverse Fourier 

transform of H̃π+
u−d(x) + H̃π+

u−d(−x) = H̃π+
u−d(|x|) − H̃π+

ū−d̄
(|x|), which is the isovector quasi-GPD 

of the valence-quark (qv ≡ q − q̄): H̃π+
uv−dv

(|x|).
The above analysis applies not only to the pion quasi-GPD but also to the pion GPD. In the 

following, we will present our skewless isovector combination of valence quark GPD for the 

charged pion π+ as

Hπ
v (x, t) ≡ 1

2
Hπ+

uv−dv
(x, t) = Hπ+

uv
(x, t) = −Hπ+

dv
(x, t), (10)

where the dependence on the renormalization scale μ is suppressed.

3. Lattice calculation setup

In this work, we use a single ensemble of gauge configurations with 2 + 1 + 1 flavors (degen-

erate up/down, strange and charm) of highly improved staggered quarks (HISQ) [87] generated 

by the MILC Collaboration [88] with lattice spacing a ≈ 0.12 fm, pion mass mπ ≈ 310 MeV, 

and box size L ≈ 3 fm (MπL ≈ 4.5). Our calculation is done using clover valence fermions on 

top of one-step hypercubic (HYP)-smeared [90] gauge links, with the clover parameters tuned to 

recover the lowest pion mass of the staggered quarks in the sea [91–94]. Then we calculate the 

time-independent, nonlocal (in space, chosen to be in the z direction) correlators of a pion with 

a finite-P z boost

h̃lat(z,P
z, t, a) = 1
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〈
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where Uz is a discrete gauge link in the z direction, �P = (0, 0, P z) is the momentum of the pion, 

Ŵ = γ t and �� is the momentum transfer between initial and final pion. In this work, we only 

deal with the zero-skewness limit ξ = 0, where the matching coincides with that for the PDF. We 

use 3 boosted pion momenta, �P = (0, 0, n 2π
L

) with n ∈ {2, 3, 4}, which correspond to 0.86, 1.32 

and 1.74 GeV, respectively. The initial and final pion momenta are obtained from (0, 0, n 2π
L

) ∓
��/2, where �� = {nx, ny, 0} 2π

L
with n2

x + n2
y ≤ 5 and P0 =

√

(P z)2 − t/4 + m2
π . We carefully 

tune the Gaussian smearing parameter to best control excited states and use four source-sink 
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separations, 0.72, 0.84, 0.96 and 1.08 fm to help us remove excited-state contamination from our 

three-point correlators fits to extract the pion matrix element. We use 1840 configurations with 

total measurements of 29440, 29440, 58880 and 58880 from the smallest source-sink separation 

to largest one. After we obtain the pion form factors at each momentum, we momentum-average 

the spatial symmetry in the x-y plane for each momentum transfer t .

To make sure that we have full control of excited-state contamination, we analyze our data 

using different source-sink separations and using different levels of excited-state treatment. First, 

we use the “two-sim” analysis described in Ref. [94] to obtain the ground-state pion matrix el-

ements using all 4 source-sink separations. The “two-sim” analysis only takes account of the 

leading excited-state contamination coming from the excited- and ground-state mixing. This is 

the same level as other commonly used methods, such as the “summation” method [95]. A second 

extraction uses only the largest two separations; if there is a significant excited-state contamina-

tion at the smaller source-sink separation, 0.72 and 0.84 fm, we should see inconsistency in the 

ground-state matrix element between this analysis and earlier ones. Finally, we use the “two-

twoRR” analysis (see Ref. [94] for details), which includes an additional matrix element related 

to excited states. Given the same input source-sink separations for the three-point correlators, the 

extracted ground-state matrix elements should be noisier, since more fit parameters are used.1 All 

the above analyses generate consistent ground-state nucleon matrix elements. A few example fit 

plots from a subset of data are shown in Fig. 1. In the GPD analysis to be presented below, we 

use matrix elements from the “two-twoRR” analysis.

Fig. 2 shows the real part of the bare and RI/MOM renormalized matrix elements for P z ∈
{4π/L, 8π/L} ≈ {0.87, 1.74} GeV, and t ∈ {0, −2, −5} × (2π/L)2. The renormalization scales 

in the RI/MOM parameters have been chosen as μR = 3.7 GeV, pR
z = 6 × 2π/L. The error 

bars include statistical errors and the errors from the excited-state contamination. Systematic 

errors from renormalization scale dependence associated with one-loop matching, lattice spacing, 

non-physical pion mass and so on are not included in this figure. For z = 0, the error at t = 0 is 

much smaller than t 
= 0, due to charge conservation. The matrix elements at z = 0, which are not 

changed by the renormalization, are the values of the pion isovector form factor. It is decreasing 

in |t | as expected. Our form factor also agrees with the previous result (shown as points at z = 0

in Fig. 2) obtained in Ref. [96], which were determined from a fitted form to lattice data with a 

wide range of pion masses and lattice spacings and setting the pion mass to the same value used 

here. The errors were estimated from the difference between two fitting forms used in Ref. [96]. 

The error of our matrix elements at z = 0 is larger than that in the form factor calculation, mainly 

because the latter is equivalent to having P z = 0 while we need nonzero P z to access the full 

distribution.

4. Numerical results and discussion

Now we present our numerical results for the valence-quark GPD in the pion. As mentioned 

previously, the bare quasi-GPD matrix element calculated on the lattice can be renormalized 

by the RI/MOM renormalization factors for the quasi-PDF matrix element, which have been 

computed in Ref. [60]. The momentum distribution is then given by

H̃π
v (x) =

∫

dzP z

2π
eixzP z

h̃lat,R(z), (12)

1 The detailed procedure for treating excited-state systematics can be found in Ref. [94] for the nucleon-charge case.
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Fig. 1. Example three-point ratio plots as functions of the operator insertion time t from the real pion matrix elements for 

z = −3 with momentum transfer of (2, 1, 0)× (2π/L) (top) and for z = 6 with momentum transfer of (1, 0, 0)× (2π/L)

(bottom). The red, yellow, green, and blue bands are the reconstructed ratios from the fits to source-sink separation 

tsep = 6, 7, 8, 9, respectively, and the gray band shows the ground-state matrix elements from the “two-simRR” fits. (For 

interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where only the z and x dependence is shown for simplicity. Following our earlier work [45] on 

the nucleon PDF, we also apply the “derivative” method [45] to improve the truncation error 

in the Fourier transform in Eq. (12). We then apply the one-loop matching and meson-mass 

corrections, where the latter turn out to be numerically negligible.

In Fig. 3, we show the results of the valence-quark distribution Hπ
v (x, t, μ) for different values 

of t with the renormalization scale μ = 4 GeV. We have inverted the factorization formula in 

Eq. (9) by perturbatively expanding the matching kernel C to O(αs). Also, the meson-mass 

power corrections have been removed. For the RI/MOM renormalization of the quark quasi-GPD, 

we have chosen μR = 3.7 GeV, pR
z = 6 × 2π/L. The error bands in Fig. 3 include statistical as 

well as systematic errors of pR
z dependence by varying it between 4 × 2π/L and 8 × 2π/L. 
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Fig. 2. The real part of the bare and renormalized matrix elements, h̃B (z, P z, t) and h̃R(z, P z, t), for the zero-skewness 

isovector valence-quark GPD of the pion. The averaged pion momentum in the z-direction is P z = 4 (left to right, in 

units of (2π/L)) and the momentum transfer squared is t ∈ {0, −2, −5} (top to bottom, in units of (2π/L)2). Also plotted 

at z = 0 are the form factors (FF) from previous lattice calculations [96] at the same pion mass.

Fig. 3. The zero-skewness pion valence-quark GPD Hπ+
v (x, ξ = 0, t, μ = 4GeV) for t ∈ {0, −2, −5}(2π/L)2 after 

one-loop matching and the meson-mass correction. “PDF” denotes the pion PDF result in Ref. [73].
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The curve with t = 0 is consistent with our previous result [73] within errors. As a consistency 

check, we also tested that the x-integral of the GPDs in Fig. 3 reproduces the form factors in 

Fig. 2 within 1 standard deviation. The impact parameter-space distribution can in principle be 

obtained by Fourier transforming the t dependence to the impact parameter b⊥ dependence. 

However, we have only the results for very few values of t in this work.

For the kinematic dependence of Hπ
v (x, t, μ), a naive functional form is

Hπ
v (x, t,μ) = qπ

v (x,μ)F π
u−d(t), (13)

where qπ
v is the pion valence-quark PDF satisfying 

∫

dx qπ
v (x, μ) = 1, and F π

u−d(t) is the isovec-

tor form factor of π+ with the normalization F π
u−d(0) = 1. This parametrization is simple, but 

not favored by the study of the GPD asymptotic behavior at x → 1 [85,97]. On the lattice side, 

Eq. (13) implies factorization of the bare matrix element

h̃lat(z,P
z, t, a) = F π

u−d(t)h̃lat(z,P
z, t = 0, a), (14)

which makes it easier to be checked with lattice QCD.

Another useful parametrization is

Hπ
v (x, t,μ) = qπ

v (x,μ) exp[tfq(x,μ)], (15)

with fq an unknown function. This parametrization has been used to fit the unpolarized zero-

skewness GPD of the nucleon and in discussing the fit to experimental data for the nucleon form 

factors [97].

With current uncertainties, our results are consistent with both parametrizations. Future high-

statistics studies will be able to provide guidance to the kinematic dependence of the GPDs, and 

in particular allow differentiation between various models that are commonly used.

5. Summary

We have presented the first lattice calculation of the valence-quark generalized parton dis-

tribution of the pion using the LaMET approach. We have focused on the zero-skewness limit, 

where the GPD has a probability-density interpretation in the longitudinal Bjorken x and the 

transverse impact-parameter distributions. Our calculation is done using clover valence fermions 

on an ensemble of gauge configurations with 2 + 1 + 1 flavors (degenerate up/down, strange and 

charm) of highly improved staggered quarks (HISQ) with lattice spacing a ≈ 0.12 fm, box size 

L ≈ 3 fm and pion mass mπ ≈ 310 MeV. The parton distribution function and form factor are 

reproduced as special limits of the GPD as expected. Future studies using higher-statistics data 

will be crucial to provide guidance to the kinematic dependence of the GPDs and to differentiate 

models that are commonly used.
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