AN ENERGY-BASED DISCONTINUOUS GALERKIN METHOD FOR
THE WAVE EQUATION WITH ADVECTION
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Abstract. An energy-based discontinuous Galerkin method for the advective wave equation
is proposed and analyzed. Energy-conserving or energy-dissipating methods follow from simple,
mesh-independent choices of the inter-element fluxes, and both subsonic and supersonic advection is
allowed. Error estimates in the energy norm are established, and numerical experiments on structured
grids display optimal convergence in the L? norm for upwind fluxes. The method generalizes earlier
work on energy-based discontinuous Galerkin methods for second order wave equations which was
restricted to energy forms written as a simple sum of kinetic and potential energy.
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1. Introduction. Discontinuous Galerkin (DG) methods are by now well-established
as a method of choice for solving first order systems in Friedrichs form [11]. In partic-
ular, they are robust, high-order, and geometrically flexible. In contrast, analogous
methods for second order hyperbolic equations are less well-developed. Although it
is possible to rewrite second order equations in first order form, there are disadvan-
tages. The first order systems may require significantly more variables and boundary
conditions, and they are only equivalent to the original forms for constrained data.
Moreover, it is typical that the basic wave equations arising in physical theories are
expressed as action principles for a Lagrangian, leading directly to second order equa-
tions, and it is unclear that they can always be rewritten in Friedrichs form.

In our view, a good target for a general formulation of DG methods are so-called
regularly hyperbolic partial differential equations [6, Ch. 5], which arise as the Euler-

Lagrange equations associated to a Lagrangian, L (x,t7 u, %, %—;‘). As a first step
J

to generalizing the energy-based DG formulation of [2], which applied to a restricted
class of Lagrangians of the form L = % %—':F — U(Vu,u), we focus in this paper on
the scalar wave equation with constant advection. Now L is given by

1 /0u 22 9

leading to the equation

P 2
((‘915 +W~V> u = c*Au, (1.1)
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and an associated energy density
1 /0u 22

Besides being a simple example of a second order regularly hyperbolic partial
differential equation which cannot be directly treated by the method proposed in [2],
the advective wave equation is a physically interesting model of sound propagation
in a uniform flow. Moreover, we believe our methods could be generalized to treat
more general models used in aeroacoustics. Lastly we note that both subsonic and
supersonic background flows are possible, leading to distinct formulations of upwind
fluxes.

We develop here a DG method for (1.1) which:

e Guarantees energy stability based on simply defined upwind or central fluxes

without mesh-dependent parameters,

e Does not introduce extra fields beyond the two needed (i.e. u and %).
Here our analysis is restricted to the spatial semi-discretization. We develop our
formulation in Section 2, derive energy and error estimates in Section 2.3, and display
some simple numerical examples in one and two space dimensions in Section 3. Note
that the analysis yields a suboptimal convergence rate by 1 for central fluxes and
by 1/2 for upwind fluxes. For problems in one space dimension we prove optimal
estimates in the upwind case, and observe optimal convergence in L? for upwind
fluxes in experiments on regular meshes.

A wide variety of other DG methods have been proposed to solve second order
wave equations, but we contend that none of these formulations directly treat (1.1) or
meet our criteria. Local DG [5] and hybridizable DG [4] methods introduce first order
spatial derivatives, already doubling the number of fields in three space dimensions.
Moreover, the method in [4], while providing general upwind fluxes, assumes the first
order system is in Friedrichs form. Methods which do not introduce additional spatial
derivatives include nonsymmetric and symmetric interior penalty methods [12, 10, 1].
For these the penalty parameters need to be mesh-dependent and order-dependent to
guarantee stability; see, e.g., [13, 8] for explicit expressions and lower bounds.

2. DG formulation. Asin [2], we introduce a second scalar variable to produce
a system which is first order in time and also allow the possibility of a source function
f(x,1):
ou

UZE—FW-VU,

%%f +w-Vu—v=0,
7¥+W-VU—CQAu:f.
Now the energy form is

1
2

and we find the change of energy on an element €; is given by boundary and source
contributions,

2
E(u,v) = v + %|Vu|2,

1 1
i/ E(u,v) :/ vf—i—/ AoVu-n— =|Vul*w-n— -v’w-n, (2.2)
dt Q; 2 09 2 2
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where n denotes the outward-pointing unit normal.

To discretize we require that the components of the approximations, (u”,v") to
(u,v), restricted to §;, be polynomials of degree ¢ and s respectively, that is, elements
of P@s) = II9 x I1*.! Now we seek approximations to the system which satisfy a
discrete energy identity analogous to (2.2). Consider the discrete energy in €,

B (1) = / Lome v L, (2.3)
0, 2 2

J

and its time derivative,

@ = / vha—vh + AVl - Va—w.

dt o Ot ot
To develop a weak form which is compatible with the discrete energy, choosing ¢,, € I1¢
and ¢, € II°, we test the first equation of (2.1) with —c?A¢,, the second equation
of (2.1) with ¢,, and add flux terms which vanish for the continuous problem. This
results in the following equations,

h
/ —CQAqSu(au +w-Vul — ol =
Q. ot

J
h

/ —c*V e, - n(ai +w-Vu" —v*) = Vo, - (Vu* —Vu)w-n, (2.4)
89, ot
h
| oG vwe vt —ay = [ oo+
2 ot Q;
/ Eoo(Vu* —Vu') -n— (v* —v")g,w-n. (2.5)
09,

In what follows it is useful to note that an integration by parts in (2.4) and (2.5)
yields the alternative form,

h
/ 02V¢H'V(8L+W~Vuh7vh) =
Q. ot

J

/ A ="V, -n — Vo, - (Vu* — Vu")w-n, (2.6)
99,

o h
/ %%—Fqﬁvw-Vz}h—chVuh-ngU:/ Ouf+
Q; Q;

/ Ao, Vu* -n— (v* —vM)p,w-n.  (2.7)
o)

!n the numerical experiments we also use the tensor product spaces Q4 x Q. Our analysis can
be extended to that case with no essential changes.
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Lastly, we must supplement (2.6) with an equation to determine the mean value of
8f . Precisely, for an arbitrary constant QSU we have,

/ ¢>u +w Vul — ") = 0. (2.8)

Note that this equation does not change the energy.
Setting ® = (¢u, dv, du), U = (u",v") we arrive at our final form:

h 8h
B(®,U) Z/ (*V ¢y, - V+¢u)( +w - Vu" )+¢>v +¢vw Vol

+ AV, Vuh - Z/ A ="V, -n+ ¢, Vu* -n
y 8Qj
2 * h * h
—c*V¢, - (Vu* = Vu")w-n — (v* —v")p,w - n|.
Denote by A the space of arbitrary constants on an element, then we may state

the semidiscrete problem as
PROBLEM 1. Find U = (u”,v") € P%% such that for all ® € P9* x N.

5@0)=Y [ o (2:9)

We then have the following result.
THEOREM 2.1. Let U(t) and the fluzes v*, Vu* be given. Then 4 W 18 uniquely
determined, and the energy identity

dE} h L oo, np2 Lo hy2 2 ko, h
—:/vf—&—/ [—70|Vu\W~n—7(v)w-n—|—c(v*—v)VU ‘n

— AV (Vu* = V" )w-n+ 2"Vu n — o (v - o")w - n}, (2.10)

holds.
Proof. The system on the element €2; is linear in the time derivatives, and the mass
matrix of dsth’ is nonsingular. The number of linear equations for %, which equals

the number of independent equations in (2.6) plus the equation in (2.8), matches the

dimensionality of I19. If the data v", v*, Vu", Vu* vanish in (2.6), we must have

dsth = 0, and so the linear system is invertible. By setting ® = (U, 0) in Problem 1,

we obtain (2.10) directly. O

2.1. Fluxes. To complete the problem specification we must prescribe the states
Vu*,v* both at inter-element and physical boundaries. Let “+” refer to traces of data
from outside and “—” represent traces of data from inside. Moreover, we introduce
the notation

Ho}}r = %(UJF +v7), [v]] = v nt +v ™ n",

(v} = %(vw +Vu), [Vu]] = Vut -t + Vu-
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We firstly consider the inter-element boundaries. For definiteness label two elements
sharing a boundary by 1 and 2. Then their net contribution to the energy derivative
is the boundary integral of

1 1
Jh = —502|Vu?|2w ‘ny — §(v?)2w 0y + A — o)Vl ony

— AVul - (Vu* — Vul)w - ny + 0P Vet -ny — ol (vF — o)) wong
1 1
- 502|Vu'21\2w ‘ng — i(vg)Qw 1y + A0 — )Vl - ny
— AVl - (Vu* — Vul)w - ng + ol Vu* - ng — ol (v —vy)w - ny

There will be energy conservation if J» = 0, and a typical example is given by the
central flux,

v* = {{v}}, Vu"={{Vu}}. (2.11)

To define upwind fluxes, which will lead to J* < 0 in the presence of jumps, we first
assume |w - n| < ¢, and introduce a flux splitting determined by a parameter £ > 0
which has units of ¢,

vVu~n:é(er{Vu-n)szlg(vffVUon)z:F+7F*.

Now choose the boundary states so that F'T is computed using values from the outside
of the element, and F'~ using the values from inside. That is, we enforce the equation
forl=1,2,

v* — VU oy = ol — €Vl ny, €>0.

Solving and additionally setting the tangential components of Vu* to be the average
of the values from each side we derive what we call the Sommerfeld fluz:

* f * 1 )
=) SV, Ve =g Ve (212)
For this choice we find
562 62 2 02 g
Tt == (G5 v + G [ = G + )Tl - w).

Denoting by the subscript 7 the orthogonal projection of any vector onto the tangent
space of the element boundary, we can rewrite this formula

I == (ST + g ] = (5 + DUTY - mtow- 1)+ (o] 7))
=~ (S5 + ] = (5 + DUTE Y - mov - ).

Moreover, we have
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so that
h £c? h Ehonnl? L C 1 n|?
It < =S = S]]+ (g + Sl ml(FUTWE + o] ):
Now, if
2 2
(G P mlS <0 and — o+ (5 + Slwenlzh <0
which requires
(¢ +&)lw - n 22
22 SOS @i ewoal 21

our numerical energy will not grow. In the following, we are going to claim the
existence of « satisfying (2.13). Since

262 (+&)lw-n| 42" — (2 +&)*|w

(2 +&2)|w - n| 2c2 2c3|w-m|(c2 +£2)
if 4€2¢* — (2 + €2)|lw - n|2 > 0, i.e,

2¢c?
‘n| < 7 2.14
|W n| - 2 _|_§2’ ( )
we conclude that (2.13) can be satisfied. Therefore, we will have a decreasing energy
2 2
if jlw-n| < j?f@ and an unchanged energy if |w - n| = 633652. Particularly, if £ = ¢,

we will get a decreasing energy if |w - n| < ¢ and an unchanged energy if |w - n| = ¢.

A general parametrization of the flux is given by

v* = (ol 4+ (1 = o)ol) —g[[Vu"]], Vur = —8[v"])] + ((1 —o)Vul + JVU';),

with 0 <o <1, 8,n > 0. For this general flux form, we find

Jh — —(c2n[[vuhn2 L crzﬁ‘[[vh]]‘z (@84 T[] - n)(w - n))’

The previous situations correspond to the following:
Central fluz: o =3, B=n=0.
Sommerfeld fluz: o = %, B = 2%7 n=>5.

We also consider the situation ¢ < |w - n| in which case upwind fluzes only come
from one element. For example
vt =l Vut = Vb, (2.15)
or
vt =0l Vu* =Vl (2.16)
Based on (2.15), we then have

1
Jh = 3 (02|Vu§‘ - Vu§|2 + (fu{Z — v%)z)w -ng + CQ(Vu'f — Vug) . nl(vf — fug)

(w-ng +¢)

< 5 (cZ\VuT — Va2 4 (v — U§)2>. (2.17)
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then J* < 0if w-ny < —c. From (2.16), we have

1
ﬁ:QGﬂWﬁ—V@F+u¢—ﬁfﬁwnﬁw%Wﬁ—V%mnmﬁ—@>

‘ny +
< UMED (29 Tul 1 (0f - 0h)?). (218)

then J" < 0if w-n; < —c.

2.2. Boundary conditions. Next we consider physical boundary conditions.
We consider separately inflow boundaries for which we have w - n < 0 and outflow
boundaries, where w - n > 0.

2.2.1. Inflow boundary conditions. On an inflow boundary, w - n < 0, we
choose the Dirichlet boundary condition, u(x,t) = 0, which implies % = 0. Then
ou(x,t)

ot

Considering the flux terms, assuming again that ¢ > |w - n|, we enforce the following
conditions,

v(x,t) = +w - Vu(x,t) =w - Vu(x,t).

v* —w-Vu* =0,
v — €V on =0t — VUl - n,
(Vu*), =0.

Solving this system we find

Vult -n— ol
Vu*-nzfi, v
E—w-n

. w-n
where we have used the fact w- Vu* = (w-n)(Vu*-n) +w, - (Vu*),. Then through

a simple calculation we find

—AVil - vur = oMt =

¢ 2 —&w-n w-n
— §7W.H(Vuh~ )2+ fwon (Vul - n)o" 57w~n(vh)2’ (2.20)
and
2¢0 . 2
A" —o")Vul n + A" Vut on = %(Vuh -n)? — gicﬁ(vh)% (2.21)

Denote by the subscript I faces with inflow. Inserting (2.19) into (2.10) and using
(2.20) and (2.21) to simplify the resulting equation we find

dE" 1 1
L= / (*CQ|VU,h| + = (v")? = AVu - Vu* — vhv*)w ‘n
&t~ Jon, \2 2

+ 02(’0* _ Uh)vuh ‘n+ CQUhvu* .n

Awen oo Awen oy wen | (won)?—c? hy2
_/m C R+ Rty (TR — ) "

(> —&w-n)w-n h h
+ f—won (Vu'" - n)ov".
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2 o)
Noting that w - n < 0 on the inflow boundaries, denote a = 62%, b= %

and d = ¥5* + (“gf)#, then we will get a decreasing energy if ad > b2. Now, let us
claim the fact ad > b2. Since

d= 2%(w-n)? + 2¢4(w - n)? — 2¢*¢(w - n) — ¢*(w - n)?
= 46 —w-n)? ’

and

A(w-n)? 4+ 2(w-n)* —2c¢2¢(w - n)3

2 _
= 1E—w-n)? ’

we find that the numerator of ad — b? is
(¢ = (w-n)?)(w - n)( +E)w -1 — 26%),
then, if —c < w-n < 0, we will have ad > b%. Thus, we will get a decreasing energy

if —c < w-n < 0 and an unchanged energy if w -n = —c and (Vu"), = 0 on inflow
boundaries.

If w-n < —c we must impose two boundary conditions,
u=0, Vu-n=0, (2.22)

from which we deduce v* = 0, Vu* = 0. Then from (2.18) we conclude that the
energy is decreasing.

2.2.2. Outflow boundary conditions. At outflow boundaries, 0 < w-n < ¢,
we impose the radiation boundary conditions,

v* +EVu* -n =0,
v — Vet n =0t — VUl - n,

(Vu*), = (Vuh),.

Solving this system, we find that

Vu* -n

= (2.23)
By a simple calculation we obtain

—Avil - vur = oMo*

° h 2 Lo hye € h h_ 2 Ry |2
=——(Vu" -n) —5(1)) +(i+§)(VU n)v" — c*|(Vu"),|%, (2.24)
and
02(v*—vh)Vuh~n+c2thu*'n:—CQ—g(V h )2—32( )2 (2.25)
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Denote by the subscript O faces that have outflow. Using (2.23) in (2.10) and applying
(2.24) and (2.25) to the resulting equation, we conclude that

; 1 1
_—Jo _ / <702\Vuh|2 + f(vh)2 — AVl - vur — vhv*)w ‘n
dt o0, | \2 2

+ A" —o")Vu - n + "Vt ]

= —2|(Vu"), |*w-n+ —2 f (Vu"-n)vwn— CQg(Vuh-n)Q——(vh)Q.
r9) 5 2

For positive §, we have that

2 52 1 /2
(;§+£>(VU n)viw.n < - <;§ f)w n(Vu" n)2—|— (gﬁ g)w n(v")?,
thus we get a decreasing energy if the following conditions are satisfied

§rc? ¢ ¢ 1 /2 € c?
(= +2)won-"2<0, —(=—+2)w-n——<0.
2(2§+2)W Ty =Y 25<2§+2>W BT o =

These conditions are equivalent to

2 2V 2¢2
(c*+&Hw n_ o 2¢%¢ '
2¢? T T (4w n
Now, the existence of § follows as
2c2¢2 (2+&)w-n B 4c1€? — (2 4+ €2)%(w - n)?
(2 +€2)w-n 2c2 B 2¢2(c2+&)w-n

and then ¢ exists if 4c*¢? — (c? + €2)%)(w - n)? > 0, ie. (w-n)? < 7z which

(c2+52
2
in turn gives us a decreasing energy if 0 < w-n < cgéfcg% an unchanged energy if
wW-n = CQigg and (Vuh)T = 0 on the outflow boundaries. Moreover, if we choose
¢ = ¢, we will have a decreasing energy when 0 < w - n < ¢, an unchanged energy
when w - n = ¢ and (Vu"),; = 0 on the outflow boundaries.
Lastly we note that if w-n > ¢ we impose no boundary conditions. That is we
set

vt =0l Vut =Vl (2.26)

and invoke (2.17) to conclude that the energy is decreasing.
THEOREM 2.2. Suppose the following fluzes are imposed:

i. The Sommerfeld fluz (2.19) at subsonic inflow boundaries, —c < w-n < 0,

ii. (2.22) at supersonic inflow boundaries, w-n < —c,

iii. The Sommerfeld fluz (2.23) at subsonic outflow boundaries, 0 < w-n <

iv. (2.26) at supersonic outflow boundaries w -n > ¢,

v. At inter-element boundaries either the central ﬂum (2.11), or
a. the Sommerfeld flur (2.12) if |[w-n| <
b. (2.15) if w-n1 > ¢,

2¢c?
02+£2 )

2
2+£27
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c. (2.16) if w-na > c.
Also suppose that the parameter £ defining the Sommerfeld fluz at any boundary sat-
isfies |w - m| < 5225%; Then the discrete energy E"(t) = > E;’(t) with E]h(t) defined
in (2.8) satisfies

% - ; /Qj W f - zjz /F,. [nlVu"])? + 8] [["]]

— B[R] - (Vb (w ) + Vb (w - ma)) = 5[[Va" ]| [[0"] - w]

#5 f, [5 I - St s (U G Yoty
i B
(2~ éw mw n ¢
+ E—w-n (Vuh~n)11h] +zj:/Bjo a 5|(Vuh)r\2w'n
A ¢ h h A on 2 C e
+(%+§)(vu '1'1>U w-n—7(vu ~1’1) _275(1})}

<y /Q o f < VIEF||fll e (2:27)
7 J

2.3. Error estimates in the energy norm. We define the errors by
ew =u—u, e, =v—0"
and let
D" = (ey, ).
Note the fundamental Galerkin orthogonality relation:

B(®,D") =0.

To proceed we follow the standard approach of comparing (u”,v") to an arbitrary
polynomial (%", ") € P%*. We define the differences

Ey=0"—ul, e, =" —0", 6,=a"—u, 6,=0"—v,
and let
D" = (é,,8,) € P?®, DI = (é4,6,,0) € PL* x N, A" = (6,,0,).
Then, since D" = D" — A", we have the error equation
B(D}, D") = B(D}, A").

Finally, define the energy of D" by

1
eh = 52/9 & + P|Vé, 2.
7 J
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Then repeating the arguments which led to (2.27), we derive:

o= B(Dl, A
=30 [ [enlvad? + sl - sle - (Ve m)
4 Véua(w-na)) — nl[VEE]) - w
+Z/ {C2W'n|(vé ) |2+c w n(Vé n)? + (w n (w n)2—c2>(é 2
~JB 2 wr “ 2 E—w-n Y

—W-n ; o
2 2 2
+ (g—§ + g)(wu n)é,w-n — %(veu n)? — g?(év)ﬂ (2.28)

The strategy is to choose (@", ") which both approximates (u,v) and eleminates

some of the (potentially) larger terms in B(D}, A"). In what follows we will assume

for simplicity that (u”,v") = (@, o") at t = 0. We note that in the numerical

experiments we found it beneficial to subtract off a function satisfying the initial
conditions, thus solving a forced equation with zero initial data.

2.4. General case. Here we use the L? projection of v and a projection of
u in the (broken) H' seminorm. Precisely, on Q; we impose for all times ¢ and

(¢u7 ¢’U) e ’]D(I757

/QJ_ Voo Vo, = /Q b= /Q =0 (2.20)

J

Then, integrating by parts, we derive the following expression for B(]jg, Al

- i) a9
B(Dj, A") = / Ve, - V(77) — CAeuw - Vi, + P A&,8, + &y (-
(Df, A" Z[ (5 (52)
— W V&0, + VE, - Vo, | - Z/ |~ *Vé, -nVé, - w+ 20, Vé, n
5 Jog;

+c?&,Vo: -n — *Vé, - (Vi — Vi,)w-n — §é,w -n|,

now we can rewrite the volume integral fQ Aé,w - V§,. For example in R? we have
J

/ Aé,w - Vi, = / (V(W-V&,) +V x (W x V&,)) - Vé,,
Q; Q

J
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with analogous formulas holding in other dimensions. Then invoking (2.29) the volume
integrals in B(D!, A") will vanish and we can simplify B(D{, A") to

B(D(})LvAh Z/ag (w x Vé,) x V§u) ‘n—c?Vé, -nVi, -w

+ ?65VE, -n + c2é, Vi -n — ?Vé, - (V6 —Vé,)w -n— 07 é,w-n
= —Z/ —(Vé, -Vé,)w-n+ Vé, -nVd, w) —?Veé, -nVi, - w
o

+c20iVeé, -n+ 2E,V8 -n— Ve, - (Vo: —Vi,)w-n—§é,w-n
=— Z/ *6iVE, -0 — 056, W -n+ 26,V -n — ?VE, - Viiw -n. (2.30)
o9

Combining contributions from neighboring elements we then have
B(Dg, A") = Z/ ([Veu])a; — [[€ulo; - w + c*[[e]] - Vd,

— AVéy - Vérw -ng — Ve, - Vérw - Il2i|

- Z/ [62§:Véu ‘n— 88w n+c26,V6 n— Ve, Véiw - nl.

Here we have introduced the fluxes ¢4, V4 built from 4,, V4, according to the
specification in Section 2.1. In what follows, C' will be a constant independent of the
solution and the element diameter h for a shape-regular mesh. Here || - || denotes a
Sobolev norm and | - | denotes the associated seminorm. We then have the following
error estimate.

THEOREM 2.3. Let ¢ = min(q—1,s). Then there exist numbers Cy, C; depending
only on s,q,n, B8,& and the shape-regularity of the mesh, such that for smooth solutions
u, v and time T

IVeu(, D)L + lleo (- DIz (q)
< (CoT + C1T?) max |:h20(|u('at)|ilf7+2(ﬂ) + ‘”U('at)ﬁ;ﬂl(ﬂ))]v (2.31)

where
0 = 67 ﬂa77207 |W Il‘ < c2+§27
g+i. Bn>0, |wen| <38

Proof. From the Bramble-Hilbert lemma (e.g. [7]), we have for § = min(q — 1, s)

1600172() + VoullF2(q) < CR?TH? (|u('vt)|il’7+2 + ‘U('vt”%ﬁ‘*’l(ﬂ)) ; (2.32)
96y 5 vers |OU( )]
- < Ch%st2 | /22 , 2.33
| N 22(0) < 9t |geerion (2.33)

1813200 + 1985 03200y < R (ul, ) Bravaay + 100 D ) (2:34)

8l32 00y + V2 13200 < OB (ull3aqq) + IV2ul32(0)) (2.35)
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First, consider the case where either the central or Sommerfeld fluxes are used at

inter-element boundaries. Then applying the estimates leading to Theorem 2.2 in
(2.28), we conclude that the time derivative of the error energy satisfies

dgn
— < B(D!, AM).
dt B( 0> )

Now, by the Cauchy-Schwarz inequality in tandem with (2.34) and (2.35) we have

B(D§, A") < CY " |[Véy - nl| 200,105 2(09,) + 60l L2002,) IV 85 - 1l L2(00;)
J
+ IVeullL200) IV, [ L2 00,y + 105112200, 160 [l 22 (89,)
S C\/ ghh(j(|u(~,t)|H§+2(Q) =+ |’U(~,t)‘H§+1(Q)).
Then a direct integration in time combined with (é,,é,) = 0 at ¢ = 0 gives us

EM(T) < OT* w7 (Ju(-. 1) fyasagoy + (Do)

For dissipative fluxes, 8, 7 > 0, we can improve the estimates. For the inter-element
boundaries, the contribution is

> J, [0985; — 5w+ ) - 96— V- T
~ Vi Viwem] -3 [ [patveae + e
= PBllE]] - (Véu (w 1) + Véua(w ) = nl[Ve @] - w),
resulting in
01 < o; (183125 + 1902032, )

< OB (Ju, ) Bgava y + (00 Dz ) (2:36)
on the physical boundaries, by using the fact
Ve, Vo = (Vé, -n)(Vo -n)+ (Veéy)r - (Vi)

at inflow we have

- Z/ [c2§:Véu ‘n— 07 E,w-n+ %6,V -n—c*(Vé, -n) (Ve -n)w-n

*w-n

A (Vey)r - (V65w - n} +Z/ Veu) 1 + (Vé, -n)?
W n W~n27c2 ¢ —&w-n)w-n

+< 2 Jr(ﬁ—iv-n )(év)ZJr( fg—wil (Véu - n)é,
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Thus
0: < C (103 132(s,,) + V62325, )
J

< ch2q+1(\u(.,t)|§m2(m + |U(.,t)|§{q+2(m). (2.37)

Similarly, on the outflow boundaries we obtain that

O3 = —Z/Bv [025;Véu ‘n— 8w -n+ 2,V -n—c?(Vé, -n) (V8 -n)w-n
j Vo

— A(VEy), - (V&) yw - n} +Z/B [f %(veu)f\?w ‘n

< §)(Véu : n)évw ‘n—= g(v‘éu : Il)2 B ;Z

+ (i + 9 5 (€0)?|-

Then
03 <C Y (1021325, + 1901325,
J

< CRH (Jul, ) Bravaay + 100 D ) (2:38)
Combining (2.28) with (2.36)-(2.38) yields

5h(T) < CTIPSa%hZGH(W(',t)ﬁ{éﬂ(m + |U(',t)|qu+1(g))-

Since e, = €, — 0y, €y = €4 — 0y, (2.31) follows from the triangle inequality and an
invocation of (2.32). O

REMARK 1. A similar analysis yields the same results in the presence of super-
sonic boundaries, |w - n| > c.

2.5. Improved estimates for one dimension. We can improve this estimate
if we only consider the 1d case. Now assume s = ¢ — 1 and seek (a",o") such that
the boundary terms in B(D}, A") vanish:

007
6* = U —
v Ox
This can be accomplished if we enforce the boundary condition on the end points of
the element Q; = (x;_1, ;)

0. (2.39)

(1+5—a)d, + (n+ ) =0, z=u1x;_1, (2.40)

%,
Ox
0dy
(ﬂ+a)5v7(1+nfa)%:0, T =x;. (2.41)

As shown in [2], we find we must assume a(1 — ) = 8. This will be satisfied by the
Sommerfeld flux but it does not hold for the central flux. Given (2.40) we construct
0, and 6, by requiring

T 96, z; zj
/ o5 = / 06, = / 60 =0, (2.42)
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where ¢ is an arbitrary polynomial of degree ¢ — 2. Using the Bramble-Hilbert lemma,
for (u,v) € H1T2(Q) x H*1(Q) we have the following inequality

1%
ot

Now, repeating the computations from the previous section and invoking (2.39) and
(2.42) yields

(2.43)

- <
H(Q) + H ot } L2(Q) — ( Ot lrat1 (o) ‘6t Hq(Q)

508 09 09
B(Dh, A" = / & ) E, 2.
0 Z axax<at)+6”at
Then (2.43) gives us the improved estimate

dE 1/2
< ChIVER(Jul,8)Brasaqy + G Do) -

3. Numerical experiments. In this section, we present some numerical results
to study the convergence in the Lo norm for our method. In the experiments we add
a forcing term, f, to the equations. Such a term could be incorporated into the
previous analysis without changing the results. In all cases we used a standard modal
formulation with a tensor-product Legendre basis, marched in time using the 4-stage
fourth order Runge-Kutta scheme (RK4) and set £ = ¢ in Sommerfeld flux.

For the experiments we choose a time step sufficiently small to make the errors
due to the spatial discretization dominate. We note that a study of the spectrum of
the spatial discretization establishes that its spectral radius scales with (¢ + |w|)§,
with some variability depending on whether ¢ is even or odd. This is comparable to
what was found in the case of the scalar wave equation [2].

3.1. Periodic boundary conditions in one space dimension. To investi-
gate the order of accuracy of our methods, we solve

Upt + 2Wiy + WUy = gy, x € (0,1), t>0,
with the initial condition
u(z,0) = sin(27z), =€ (0,1),

and periodic boundary condition u(0,t) = w(1,t) for ¢ > 0. This problem has the
exact traveling wave solution

u(zx,t) = cos(2ert) sin(2w(z — wt)), ¢t > 0.

The discretization is performed on a uniform mesh with element vertices z; = ih,
t=20,...,n, h = 1/n. We evolve the solution until 7" = 0.4 with time step At =
CFL x h for the degree of approximation polynomials ¢ = (1,2,3,4,5,6). We present
the L2?-error for both u" and v".

In the numerical experiments, we test two different fluxes: the central flux and
the upwind flux. We present three different cases: |w| = ¢, |w| < ¢, and |w| > c.
These choices are consistent with our theory. Note that if |w| > ¢ the upwind flux is
taken from a single element.

We also consider two different choices for the degrees of the approximation spaces:
either the approximation degree of v is one less than the approximation degree of
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u” or u” and v" are in the same space. To measure the convergence rates due to the
spatial discretization, we set the following CFL conditions. We did not attempt to pre-
cisely characterize the largest time steps we could take based on accuracy /stability re-
quirements, but simply chose convenient sufficiently small values. For the central flux
we set CFL = 0.075/(27) when ¢ = (1,2,3,4,5) and CFL = 0.00375/(27) when ¢ = 6.
For the upwind flux with |w| < ¢, we set CFL = 0.1125/(27) when ¢ = (1,2, 3,4, 5),
and CFL = 0.01125/(27) when ¢ = 6. Finally, for the upwind flux with |w| > ¢, we set
CFL = 0.075/(27) when g = (1,2,3,4,5), and CFL = 0.0075/(27) when ¢ = 6. The
aggressive reductions in time step for ¢ = 6, though not necessary, were convenient.
First, due to the fact that the spatial accuracy exceeds the temporal accuracy by a
fairly significant factor for ¢ = 6 compared with other cases, we found that we could
not observe convergence at the design order for ¢ = 6 without reducing the time step;
second, as the spectral radius of the spatial discretization matrix is proportional to
¢, the stability requirements are stricter for higher order approximation, although
here we found that the scheme was stable for ¢ = 6 using the same steps as in the
other cases.

In our initial numerical experiments we found that the convergence was somewhat
irregular in all cases when we used L?-projection to determine the initial conditions.
Possibly this could be remedied for the upwind flux by using the special projection
required by the analysis, see for example the approach in [5] which discusses a projec-
tion for the LDG method with alternating fluxes. Here we propose a simpler solution
which is to transform the problem to one with zero initial data:

u(z,t) = a(x,t) + uo(x)e*tg,
where ug(x) is the initial condition for u(x), and then numerically solve for 4.

The L? error for v and v are plotted against the grid spacing h in Figure 3.1 for
both u" and v when the upwind flux is used. Linear regression estimates of the rate
of convergence, for u” and v" in the same polynomial space, can be found in Table
3.2, and for the degree of v" one less than that of u”, in Table 3.1. Note that we only
use the ten finest grids to obtain the rates of convergence.

For ¢ > 2 we observe the same rate of convergence, g + 1 for u and ¢ for v, for
the two choices of approximation space for v. However, from the graphs we see that
there are sometimes noticeable differences in accuracy. Generally speaking, errors are
smaller when v" is taken from the same space as u”, the only exception being the
errors in approximating v for the rather special case of w = c.

TABLE 3.1
Linear regression estimates of the convergence rate of u and v in 1d with upwind flux for
periodic boundary condition, approximation for v is one degree lower than u.

Degree (g) of approx. for u 1 2 3 4 5 6
Rate fit u (w = 0.5,c¢=1) 0.90 3.00 4.05 5.03 5.92 6.91
Rate fit v (w = 0.5,¢ = 1) 0.87 1.99 299 399 5.00 6.00
Rate fit u (w =0.5,¢=0.5) | 0.92 3.00 4.01 5.00 6.14 7.00

(

(

(

Rate fit v (w =0.5,¢=0.5) | 0.88 2.00 3.00 4.00 5.06 5.99
Rate fit u
Rate fit v

=1,¢=0.5) 088 299 4.01 5.03 6.04 6.93
1,¢=10.5) 093 199 299 399 5.00 6.00

w
w

In Figure 3.2 the L? errors in u and v are plotted against the grid-spacing h for
the central flux. Linear regression estimates of the convergence rate can be found in
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F1G. 3.1. Plots of the error in u (left column) and v (right column) as a function of h in
1d with upwind fluz for periodic boundary condition. In the legend, q is the maximum degree of
the approzimation of u, solid lines represent the case of u" and v" in the same space, dotted lines
represent the case of v one degree lower than u™.
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F1G. 3.2. Plots of the error in u (left column) and v (right column) as a function of h in
1d with central flux for periodic boundary condition. In the legend, q is the mazimum degree of
the approzimation of u, solid lines represent the case of u™ and v" in the same space, dotted lines
represent the case of v one degree lower than u™.
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TABLE 3.2
Linear regression estimates of the convergence rate of u and v in 1d with upwind fluz for
periodic boundary condition, u and v are in the same approrimation space.

Degree (q) of approx. of u 1 2 3 4 5 6

Rate fit u (w =0.5,c=1) 0.97 3.00 4.01 5.00 5.98 6.95
Rate fit v (w =0.5,¢=1) 0.95 1.99 3.00 4.00 5.00 6.00
Rate fit u (w =0.5,¢=0.5) | 1.91 3.01 4.00 5.00 6.00 6.89
Rate fit v (w=0.5,¢=0.5) | 0.98 2.00 3.00 4.00 5.00 6.00
Rate fit u (w =1,c¢=0.5) 097 299 4.00 5.01 599 6.90
Rate fit v (w = 1,¢ = 0.5) 099 202 3.02 4.01 500 6.01

Table 3.4 for " and v" in the same approximation space and in Table 3.3 for u” and
vP in different spaces.

Excluding the special case |w| = ¢, we observe for ¢ odd, optimal convergence,
q+ 1, for u while the rate of convergence for v is one order lower than u. When u and
v are in the same space this is suboptimal for v. For even ¢ the rate of convergence
is only ¢ for u. The convergence rate for v is always one less than for u.

TABLE 3.3
Linear regression estimates of the convergence rate for u and v in 1d with central flux for

periodic boundary condition, the approximation for v is one degree lower than w.

Degree (q) of approx. of u 1 2 3 4 5 6

Rate fit u (w =0.5,¢=10.5) | 2.00 1.99 4.05 3.71 6.01 6.27
Rate fit v (w =0.5,¢=0.5) | 1.61 1.01 3.24 282 540 5.27
Rate fit u (w =0.5,c=1) 2.00 2.00 4.03 4.03 5.99 591
Rate fit v (w =0.5,¢=1) 1.72 1.09 3.03 2.05 5.06 4.48
Rate fit u (w = Lc=05) | 2.00 1.99 413 411 581 5.0
Rate fit v (w =1,¢=0.5) 1.00 1.01 3.01 274 5.02 4.95

TABLE 3.4

Linear regression estimates of the convergence rate of u and v in 1d with central flux for periodic

boundary condition, u and v are in the same approximation space.

Degree (q) of approx. of u 1 2 3 4 5 6

Rate fit u (w =0.5,¢=0.5) | 2.00 3.01 3.99 4.99 6.00 6.73
Rate fit v (w =0.5,¢=0.5) | 1.00 2.01 299 397 4.99 6.01
Rate fit u (w =0.5,c=1) 1.99 2.00 4.03 4.01 6.02 6.01
Rate fit v (w = 0.5,¢ = 1) 0.99 1.00 3.01 3.00 5.00 5.01
Rate fit u (w =1,c¢=10.5) 2.00 2.00 4.01 4.03 6.04 6.01
Rate fit v (w=1,¢=0.5) 0.97 1.01 3.12 3.03 4.91 5.02

3.2. Periodic boundary conditions in two space dimensions.

our method on the problem

(825

0 +w-V)2u=cAu, (z,

y) €

(0,1) x

(0,1),

t>0,

We now test
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TABLE 3.5
Linear regression estimates of the convergence rate of u and v in 2d with upwind fluz for
pertodic boundary condition and gz = qy = q.

Degree (g) of approx. of u and v 1 2 3 4 5 6

Rate fit u (w; = L,wy =1,c=1) 177 3.04 399 5.00 6.00 6.97
Rate fit v (w, =1, w, =1,c = 1) 0.89 196 297 398 498 5.99
Rate fit v (wy = 0.5,w, =1.5,¢=1) | 1.05 2.93 4.00 4.99 5.99 6.96
Rate fit v (w, =0.5,w, =1.5,c=1) | 0.90 1.91 299 3.97 498 5.99
Rate fit u (wy = 0.5,w, =0.5,¢c=1) | 1.07 2.95 4.02 4.98 5.99 7.00
Rate fit v (wy = 0.5,w, =0.5,¢c=1) | 0.89 1.92 297 3.97 498 5.98

TABLE 3.6
Linear regression estimates of the convergence rate of u and v in 2d with central flux for periodic
boundary condition and gz = qy = q.

Degree (q) of approx. of v and v 1 2 3 4 5 6

Rate fit v (wy =0.5,w, =0.5,c=1) | 2.00 2.04 4.04 4.06 6.15 6.01
Rate fit v (w, =0.5,w, =0.5,c=1) | 0.96 0.99 3.08 2.97 515 4.99
Rate fit u (wy = L,wy =1,¢=1) 2.00 3.05 4.01 497 6.01 5.13
Rate fit v (w, =1,w, =1,c = 1) 1.00 2.05 295 399 496 6.01
Rate fit v (wy; =0.5,c=1,w, =1.5) | 200 2.01 430 4.09 6.11 5.86
Rate fit v (w, =0.5,¢c=1,w, =1.5) | 0.97 0.99 3.09 298 5.07 4.99
Rate fit v (wy = 1.5,w, =1.5,¢=1) | 200 1.96 4.56 4.20 6.06 5.45
Rate fit v (w, = 1.5,wy, =1.5,c=1) | 1.79 1.02 3.37 3.23 4.55 4.97

with periodic boundary conditions u(0, y,t) = u(1,y,t), u(z,0,t) = u(z, 1,t) for t > 0.
We approximate the exact solution

u(z,y,t) = sin(2cnt) (sin (27 (z — wyt)) + sin (27 (y — wyt))), t>0.

The discretization is performed with elements whose vertices are on the Cartesian
grid defined by z; = th, y; = jh, i,j =0,1,...,n with h = 1/n. Here we restrict
attention to the case where v and v" are in the same space. We evolve the solution
until 7' = 0.2 using the classic fourth order Runge-Kutta method and with the time
step size At = CFLh.

In the numerical experiments we test both the central flux and the upwind flux.
We have CFL = 0.075/(27) for the central flux and CFL = 0.0375/(27) for the upwind
flux. Note that at an interface with supersonic normal flow the upwind flux is one-
sided. Also, we only display graphs of the error in u, but tabulate the convergence
rates for both variables.

The errors for u obtained with the upwind flux are plotted against the grid-spacing
h in Figure 3.3. Linear regression estimates of the rate of convergence can be found in
Table 3.5. We observe convergence at the optimal rate, ¢+ 1, for v and a convergence
rate of ¢ for v if ¢ > 2.

The L? error for u for the central flux is plotted against the grid-spacing h in
Figure 3.4. Linear regression estimates of the rate of convergence can be found in
Table 3.6 for both u and v. Similar to the one-dimensional case, convergence is
optimal for v when ¢ is odd and suboptimal by one when ¢ is even except in the
special case of sonic boundaries.
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Fic. 3.3. Plots of the error in w as a function of h in 2d with the upwind flur and periodic
boundary conditions. In the legend, q is the degree of the approximation of u and v for both x and
y directions.

3.3. Dirichlet and radiation boundary conditions in two space dimen-
sions. Lastly we consider a problem with a Dirichlet boundary condition on inflow
boundaries (left and bottom) and radiation boundary condition on outflow bound-
aries (right and top). Since we don’t have a simple exact solution satisfying these
boundary conditions, we set

u(z,y,t) = x(1 — x)*y(1 — y)* exp(x + y) sin(t),

and solve

0

(a +w-V)2u=cAAu+f, (z,y) € (0,1) x (0,1), t>0,

with f determined by w. Note that for this specific choice we have that u(z,y,t) =0
on the inflow boundaries and u(x,y,t) = ugy(z,y,t) = uy(z,y,t) = 0 on the outflow
boundaries. In the following numerical experiments we choose the same approximation
spaces for u” and v", polynomial degrees ¢, = gy = q. We evolve the solution to
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Fic. 3.4. Plots of the error in u as a function of h in 2d with the central flur and periodic
boundary conditions. In the legend, q is the degree of approximation to u and v for both x and y

directions.

TABLE 3.7

Linear regression estimates of the convergence rate for u and v in 2d with Dirichlet boundary
condition on inflow boundaries, radiation boundary condition on outflow boundaries and gz = qy =
q. Here the first two rows correspond to the upwind flux and the last two to the central fluzx.

Degree (q) of approx. of u 1 2 3 4 5 6

Rate fit u (wy = 0.5,w, =0.5,¢c=1) | 0.82 2.94 4.01 4.96 597 6.96
Rate fit v (w, =0.5,w, =0.5,c=1) | 0.78 1.87 292 3.92 495 597
Rate fit v (wy =0.5,w, =0.5,c=1) | 1.65 2.09 4.09 4.04 6.01 6.01
Rate fit v (w, =0.5,w, =0.5,c=1) | 0.93 0.98 298 3.00 5.01 5.00

T = 0.2 with the step size At = CFLh and CFL = 0.075/(27). Here we only consider
the subsonic case, w; = w, = 0.5 with ¢ = 1, and compare both upwind and central
fluxes.

The error for u is plotted against the grid-spacing h for both fluxes in Figure 3.5.
Linear regression estimates of the rate of convergence can be found in Table 3.7. The
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F1G. 3.5. Plots of the error in u as a function of h in 2d with upwind (left) and central (right)
fluzes for Dirichlet boundary condition on inflow boundaries and a radiation boundary condition on
outflow boundaries. In the legend, q is the degree of the approximation to u and v for both x and y
directions.

rates of convergence are very close to those for the periodic problem.

4. Conclusion and extension. In conclusion, we have generalized the energy-
based discontinuous Galerkin method of [2] to the wave equation with advection, a
problem for which the energy density takes a more complicated form than a simple
sum of a term involving the time derivative and a term involving space derivatives.
We have shown that the new form can be handled by introducing a second variable
which, unlike what was done in [2, 3], involves both space and time derivatives. We
prove error estimates completely analogous with those shown in [2] for the isotropic
wave equation, including cases with both subsonic and supersonic background flows.
Numerical experiments also demonstrate optimal convergence on regular grids when
an upwind flux is used.

A potential application of the method would be to linearized models in aeroa-
coustics, where its generalization to inhomogeneous media such as those defined by
background shear flows would be needed (e.g. [9]). Here we expect that the use of
upwind fluxes would guarantee stability for the discretization of the principal part
which should be sufficient to establish convergence. Secondly, we will understand our
construction in the context of regularly hyperbolic systems as defined in [6, Ch. 5]
with the hope of treating the general case.
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