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Abstract. An energy-based discontinuous Galerkin method for the advective wave equation
is proposed and analyzed. Energy-conserving or energy-dissipating methods follow from simple,
mesh-independent choices of the inter-element fluxes, and both subsonic and supersonic advection is
allowed. Error estimates in the energy norm are established, and numerical experiments on structured
grids display optimal convergence in the L2 norm for upwind fluxes. The method generalizes earlier
work on energy-based discontinuous Galerkin methods for second order wave equations which was
restricted to energy forms written as a simple sum of kinetic and potential energy.
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1. Introduction. Discontinuous Galerkin (DG) methods are by now well-established
as a method of choice for solving first order systems in Friedrichs form [11]. In partic-
ular, they are robust, high-order, and geometrically flexible. In contrast, analogous
methods for second order hyperbolic equations are less well-developed. Although it
is possible to rewrite second order equations in first order form, there are disadvan-
tages. The first order systems may require significantly more variables and boundary
conditions, and they are only equivalent to the original forms for constrained data.
Moreover, it is typical that the basic wave equations arising in physical theories are
expressed as action principles for a Lagrangian, leading directly to second order equa-
tions, and it is unclear that they can always be rewritten in Friedrichs form.

In our view, a good target for a general formulation of DG methods are so-called
regularly hyperbolic partial differential equations [6, Ch. 5], which arise as the Euler-

Lagrange equations associated to a Lagrangian, L
(

x, t,u, ∂u
∂xj

, ∂u
∂t

)

. As a first step

to generalizing the energy-based DG formulation of [2], which applied to a restricted
class of Lagrangians of the form L = 1

2 |∂u∂t |2 − U(∇u,u), we focus in this paper on
the scalar wave equation with constant advection. Now L is given by

1

2

(

∂u

∂t
+w · ∇u

)2

− c2

2
|∇u|2,

leading to the equation

(

∂

∂t
+w · ∇

)2

u = c2∆u, (1.1)
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and an associated energy density

E =
1

2

(

∂u

∂t
+w · ∇u

)2

+
c2

2
|∇u|2.

Besides being a simple example of a second order regularly hyperbolic partial
differential equation which cannot be directly treated by the method proposed in [2],
the advective wave equation is a physically interesting model of sound propagation
in a uniform flow. Moreover, we believe our methods could be generalized to treat
more general models used in aeroacoustics. Lastly we note that both subsonic and
supersonic background flows are possible, leading to distinct formulations of upwind
fluxes.

We develop here a DG method for (1.1) which:
• Guarantees energy stability based on simply defined upwind or central fluxes
without mesh-dependent parameters,

• Does not introduce extra fields beyond the two needed (i.e. u and ∂u
∂t ).

Here our analysis is restricted to the spatial semi-discretization. We develop our
formulation in Section 2, derive energy and error estimates in Section 2.3, and display
some simple numerical examples in one and two space dimensions in Section 3. Note
that the analysis yields a suboptimal convergence rate by 1 for central fluxes and
by 1/2 for upwind fluxes. For problems in one space dimension we prove optimal
estimates in the upwind case, and observe optimal convergence in L2 for upwind
fluxes in experiments on regular meshes.

A wide variety of other DG methods have been proposed to solve second order
wave equations, but we contend that none of these formulations directly treat (1.1) or
meet our criteria. Local DG [5] and hybridizable DG [4] methods introduce first order
spatial derivatives, already doubling the number of fields in three space dimensions.
Moreover, the method in [4], while providing general upwind fluxes, assumes the first
order system is in Friedrichs form. Methods which do not introduce additional spatial
derivatives include nonsymmetric and symmetric interior penalty methods [12, 10, 1].
For these the penalty parameters need to be mesh-dependent and order-dependent to
guarantee stability; see, e.g., [13, 8] for explicit expressions and lower bounds.

2. DG formulation. As in [2], we introduce a second scalar variable to produce
a system which is first order in time and also allow the possibility of a source function
f(x, t):

v =
∂u

∂t
+w · ∇u,

{

∂u
∂t +w · ∇u− v = 0,
∂v
∂t +w · ∇v − c2∆u = f.

(2.1)

Now the energy form is

E(u, v) = 1

2
v2 +

c2

2
|∇u|2,

and we find the change of energy on an element Ωj is given by boundary and source
contributions,

d

dt

∫

Ωj

E(u, v) =
∫

Ωj

vf +

∫

∂Ωj

c2v∇u · n− 1

2
c2|∇u|2w · n− 1

2
v2w · n, (2.2)
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where n denotes the outward-pointing unit normal.

To discretize we require that the components of the approximations, (uh, vh) to
(u, v), restricted to Ωj , be polynomials of degree q and s respectively, that is, elements
of P(q,s) ≡ Πq × Πs.1 Now we seek approximations to the system which satisfy a
discrete energy identity analogous to (2.2). Consider the discrete energy in Ωj ,

Eh
j (t) =

∫

Ωj

1

2
(vh)2 +

1

2
c2|∇uh|2, (2.3)

and its time derivative,

dEh
j

dt
=

∫

Ωj

vh
∂vh

∂t
+ c2∇uh · ∇∂uh

∂t
.

To develop a weak form which is compatible with the discrete energy, choosing φu ∈ Πq

and φv ∈ Πs, we test the first equation of (2.1) with −c2∆φu, the second equation
of (2.1) with φv, and add flux terms which vanish for the continuous problem. This
results in the following equations,

∫

Ωj

−c2∆φu(
∂uh

∂t
+w · ∇uh − vh) =

∫

∂Ωj

−c2∇φu · n(∂u
h

∂t
+w · ∇uh − v∗)− c2∇φu · (∇u∗ −∇uh)w · n, (2.4)

∫

Ωj

φv(
∂vh

∂t
+w · ∇vh − c2∆uh) =

∫

Ωj

φvf+

∫

∂Ωj

c2φv(∇u∗ −∇uh) · n− (v∗ − vh)φvw · n. (2.5)

In what follows it is useful to note that an integration by parts in (2.4) and (2.5)
yields the alternative form,

∫

Ωj

c2∇φu · ∇(
∂uh

∂t
+w · ∇uh − vh) =

∫

∂Ωj

c2(v∗ − vh)∇φu · n− c2∇φu · (∇u∗ −∇uh)w · n, (2.6)

∫

Ωj

φv
∂vh

∂t
+ φvw · ∇vh + c2∇uh · ∇φv =

∫

Ωj

φvf+

∫

∂Ωj

c2φv∇u∗ · n− (v∗ − vh)φvw · n. (2.7)

1In the numerical experiments we also use the tensor product spaces Qq
×Qs. Our analysis can

be extended to that case with no essential changes.
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Lastly, we must supplement (2.6) with an equation to determine the mean value of
∂uh

∂t . Precisely, for an arbitrary constant φ̃u we have,

∫

Ωj

φ̃u(
∂uh

∂t
+w · ∇uh − vh) = 0. (2.8)

Note that this equation does not change the energy.
Setting Φ = (φu, φv, φ̃u), U = (uh, vh) we arrive at our final form:

B(Φ,U) =
∑

j

∫

Ωj

[

(c2∇φu · ∇+ φ̃u)(
∂uh

∂t
+w · ∇uh − vh) + φv

∂vh

∂t
+ φvw · ∇vh

+ c2∇φv · ∇uh
]

−
∑

j

∫

∂Ωj

[

c2(v∗ − vh)∇φu · n+ c2φv∇u∗ · n

− c2∇φu · (∇u∗ −∇uh)w · n− (v∗ − vh)φvw · n
]

.

Denote by N the space of arbitrary constants on an element, then we may state
the semidiscrete problem as

Problem 1. Find U = (uh, vh) ∈ Pq,s such that for all Φ ∈ Pq,s ×N .

B(Φ,U) =
∑

j

∫

Ωj

φvf. (2.9)

We then have the following result.
Theorem 2.1. Let U(t) and the fluxes v∗, ∇u∗ be given. Then dU

dt is uniquely
determined, and the energy identity

dEh
j

dt
=

∫

Ωj

vhf +

∫

∂Ωj

[

− 1

2
c2|∇uh|2w · n− 1

2
(vh)2w · n+ c2(v∗ − vh)∇uh · n

− c2∇uh · (∇u∗ −∇uh)w · n+ c2vh∇u∗ · n− vh(v∗ − vh)w · n
]

, (2.10)

holds.
Proof. The system on the element Ωj is linear in the time derivatives, and the mass

matrix of dvh

dt is nonsingular. The number of linear equations for duh

dt , which equals
the number of independent equations in (2.6) plus the equation in (2.8), matches the
dimensionality of Πq. If the data vh, v∗, ∇uh, ∇u∗ vanish in (2.6), we must have
duh

dt = 0, and so the linear system is invertible. By setting Φ = (U, 0) in Problem 1,
we obtain (2.10) directly.

2.1. Fluxes. To complete the problem specification we must prescribe the states
∇u∗, v∗ both at inter-element and physical boundaries. Let “+” refer to traces of data
from outside and “−” represent traces of data from inside. Moreover, we introduce
the notation

{{v}} =
1

2
(v+ + v−), [[v]] = v+n+ + v−n−,

{{∇u}} =
1

2
(∇u+ +∇u−), [[∇u]] = ∇u+ · n+ +∇u− · n−.
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We firstly consider the inter-element boundaries. For definiteness label two elements
sharing a boundary by 1 and 2. Then their net contribution to the energy derivative
is the boundary integral of

Jh = −1

2
c2|∇uh

1 |2w · n1 −
1

2
(vh1 )

2w · n1 + c2(v∗ − vh1 )∇uh
1 · n1

− c2∇uh
1 · (∇u∗ −∇uh

1 )w · n1 + c2vh1∇u∗ · n1 − vh1 (v
∗ − v1)w · n1

− 1

2
c2|∇uh

2 |2w · n2 −
1

2
(vh2 )

2w · n2 + c2(v∗ − vh2 )∇uh
2 · n2

− c2∇uh
2 · (∇u∗ −∇uh

2 )w · n2 + c2vh2∇u∗ · n2 − vh2 (v
∗ − v2)w · n2

There will be energy conservation if Jh = 0, and a typical example is given by the
central flux ,

v∗ = {{v}}, ∇u∗ = {{∇u}}. (2.11)

To define upwind fluxes, which will lead to Jh < 0 in the presence of jumps, we first
assume |w · n| ≤ c, and introduce a flux splitting determined by a parameter ξ > 0
which has units of c,

v∇u · n =
1

4ξ
(v + ξ∇u · n)2 − 1

4ξ
(v − ξ∇u · n)2 = F+ − F−.

Now choose the boundary states so that F+ is computed using values from the outside
of the element, and F− using the values from inside. That is, we enforce the equation
for l = 1, 2,

v∗ − ξ∇u∗ · nl = vhl − ξ∇uh
l · nl, ξ > 0.

Solving and additionally setting the tangential components of ∇u∗ to be the average
of the values from each side we derive what we call the Sommerfeld flux :

v∗ = {{vh}} − ξ

2
[[∇uh]], ∇u∗ = − 1

2ξ
[[vh]] + {{∇uh}}. (2.12)

For this choice we find

Jh = −
(ξc2

2
[[∇uh]]2 +

c2

2ξ

∣

∣

∣
[[vh]]

∣

∣

∣

2

− (
c2

2ξ
+

ξ

2
)[[∇uh]][[vh]] ·w

)

.

Denoting by the subscript τ the orthogonal projection of any vector onto the tangent
space of the element boundary, we can rewrite this formula

Jh = −
(ξc2

2
[[∇uh]]2 +

c2

2ξ

∣

∣

∣
[[vh]]

∣

∣

∣

2

− (
c2

2ξ
+

ξ

2
)[[∇uh]](([[vh]] · n)(w · n) + ([[vh]]τ ·wτ ))

)

= −
(ξc2

2
[[∇uh]]2 +

c2

2ξ

∣

∣

∣
[[vh]]

∣

∣

∣

2

− (
c2

2ξ
+

ξ

2
)[[∇uh]]([[vh]] · n)(w · n)

)

.

Moreover, we have

[[∇u]]([[v]] · n) ≤ α

2
[[∇u]]2 +

1

2α

∣

∣

∣
[[v]]

∣

∣

∣

2

, α > 0,
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so that

Jh ≤ −ξc2

2
[[∇uh]]2 − c2

2ξ

∣

∣

∣
[[vh]]

∣

∣

∣

2

+ (
c2

2ξ
+

ξ

2
)|w · n|

(α

2
[[∇uh]]2 +

1

2α

∣

∣

∣
[[vh]]

∣

∣

∣

2)

.

Now, if

−ξc2

2
+ (

c2

2ξ
+

ξ

2
)|w · n|α

2
≤ 0 and − c2

2ξ
+ (

c2

2ξ
+

ξ

2
)|w · n| 1

2α
≤ 0,

which requires

(c2 + ξ2)|w · n|
2c2

≤ α ≤ 2ξ2c2

(c2 + ξ2)|w · n| , (2.13)

our numerical energy will not grow. In the following, we are going to claim the
existence of α satisfying (2.13). Since

2ξ2c2

(c2 + ξ2)|w · n| −
(c2 + ξ2)|w · n|

2c2
=

4ξ2c4 − (c2 + ξ2)2|w · n|2
2c2|w · n|(c2 + ξ2)

,

if 4ξ2c4 − (c2 + ξ2)2|w · n|2 ≥ 0, i.e,

|w · n| ≤ 2ξc2

c2 + ξ2
, (2.14)

we conclude that (2.13) can be satisfied. Therefore, we will have a decreasing energy

if |w · n| < 2ξc2

c2+ξ2 and an unchanged energy if |w · n| = 2ξc2

c2+ξ2 . Particularly, if ξ = c,

we will get a decreasing energy if |w · n| < c and an unchanged energy if |w · n| = c.

A general parametrization of the flux is given by

v∗ = (σvh1 + (1− σ)vh2 )− η[[∇uh]], ∇u∗ = −β[[vh]] +
(

(1− σ)∇uh
1 + σ∇uh

2

)

,

with 0 ≤ σ ≤ 1, β,η ≥ 0. For this general flux form, we find

Jh = −
(

c2η[[∇uh]]2 + c2β
∣

∣

∣
[[vh]]

∣

∣

∣

2

− (c2β + η)[[∇uh]]([[vh]] · n)(w · n)
)

,

The previous situations correspond to the following:
Central flux : σ = 1

2 , β = η = 0.

Sommerfeld flux : σ = 1
2 , β = 1

2ξ , η = ξ
2 .

We also consider the situation c < |w · n| in which case upwind fluxes only come
from one element. For example

v∗ = vh1 , ∇u∗ = ∇uh
1 , (2.15)

or

v∗ = vh2 , ∇u∗ = ∇uh
2 . (2.16)

Based on (2.15), we then have

Jh =
1

2

(

c2|∇uh
1 −∇uh

2 |2 + (vh1 − vh2 )
2
)

w · n2 + c2(∇uh
1 −∇uh

2 ) · n1(v
h
1 − vh2 )

≤ (w · n2 + c)

2

(

c2|∇uh
1 −∇uh

2 |2 + (vh1 − vh2 )
2
)

. (2.17)
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then Jh ≤ 0 if w · n2 ≤ −c. From (2.16), we have

Jh =
1

2

(

c2|∇uh
1 −∇uh

2 |2 + (vh1 − vh2 )
2
)

w · n1 + c2(∇uh
1 −∇uh

2 ) · n2(v
h
1 − vh2 )

≤ (w · n1 + c)

2

(

c2|∇uh
1 −∇uh

2 |2 + (vh1 − vh2 )
2
)

. (2.18)

then Jh ≤ 0 if w · n1 ≤ −c.

2.2. Boundary conditions. Next we consider physical boundary conditions.
We consider separately inflow boundaries for which we have w · n < 0 and outflow
boundaries, where w · n > 0.

2.2.1. Inflow boundary conditions. On an inflow boundary, w · n < 0, we

choose the Dirichlet boundary condition, u(x, t) = 0, which implies ∂u(x,t)
∂t = 0. Then

v(x, t) =
∂u(x, t)

∂t
+w · ∇u(x, t) = w · ∇u(x, t).

Considering the flux terms, assuming again that c ≥ |w · n|, we enforce the following
conditions,







v∗ −w · ∇u∗ = 0,
v∗ − ξ∇u∗ · n = vh − ξ∇uh · n,
(∇u∗)τ = 0.

Solving this system we find

∇u∗ · n =
ξ∇uh · n− vh

ξ −w · n , v∗ =
w · n

ξ −w · n (ξ∇uh · n− vh). (2.19)

where we have used the fact w · ∇u∗ = (w ·n)(∇u∗ ·n) +wτ · (∇u∗)τ . Then through
a simple calculation we find

− c2∇uh · ∇u∗ − vhv∗ =

− c2ξ

ξ −w · n (∇uh · n)2 + c2 − ξw · n
ξ −w · n (∇uh · n)vh +

w · n
ξ −w · n (vh)2, (2.20)

and

c2(v∗ − vh)∇uh · n+ c2vh∇u∗ · n =
c2ξw · n
ξ −w · n (∇uh · n)2 − c2

ξ −w · n (vh)2. (2.21)

Denote by the subscript I faces with inflow. Inserting (2.19) into (2.10) and using
(2.20) and (2.21) to simplify the resulting equation we find

dEh
jI

dt
=

∫

∂ΩjI

(1

2
c2|∇uh|2 + 1

2
(vh)2 − c2∇uh · ∇u∗ − vhv∗

)

w · n

+ c2(v∗ − vh)∇uh · n+ c2vh∇u∗ · n

=

∫

∂ΩjI

c2w · n
2

|∇uh
τ |2 +

c2w · n
2

(∇uh · n)2 +
(w · n

2
+

(w · n)2 − c2

ξ −w · n
)

· (vh)2

+
(c2 − ξw · n)w · n

ξ −w · n (∇uh · n)vh.
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Noting that w · n < 0 on the inflow boundaries, denote a = c2w·n
2 , b = (c2−ξw·n)w·n

2(ξ−w·n)

and d = w·n
2 + (w·n)2−c2

ξ−w·n
, then we will get a decreasing energy if ad > b2. Now, let us

claim the fact ad > b2. Since

ad =
c2ξ2(w · n)2 + 2c4(w · n)2 − 2c4ξ(w · n)− c2(w · n)4

4(ξ −w · n)2 ,

and

b2 =
c4(w · n)2 + ξ2(w · n)4 − 2c2ξ(w · n)3

4(ξ −w · n)2 ,

we find that the numerator of ad− b2 is

(c2 − (w · n)2)(w · n)((c2 + ξ2)w · n− 2c2ξ),

then, if −c < w · n < 0, we will have ad > b2. Thus, we will get a decreasing energy
if −c < w · n < 0 and an unchanged energy if w · n = −c and (∇uh)τ = 0 on inflow
boundaries.

If w · n < −c we must impose two boundary conditions,

u = 0, ∇u · n = 0, (2.22)

from which we deduce v∗ = 0, ∇u∗ = 0. Then from (2.18) we conclude that the
energy is decreasing.

2.2.2. Outflow boundary conditions. At outflow boundaries, 0 < w · n ≤ c,
we impose the radiation boundary conditions,







v∗ + ξ∇u∗ · n = 0,
v∗ − ξ∇u∗ · n = vh − ξ∇uh · n,
(∇u∗)τ = (∇uh)τ .

Solving this system, we find that

∇u∗ · n =
ξ∇uh · n− vh

2ξ
, v∗ =

vh − ξ∇uh · n
2

. (2.23)

By a simple calculation we obtain

− c2∇uh · ∇u∗ − vhv∗

= −c2

2
(∇uh · n)2 − 1

2
(vh)2 + (

c2

2ξ
+

ξ

2
)(∇uh · n)vh − c2|(∇uh)τ |2, (2.24)

and

c2(v∗ − vh)∇uh · n+ c2vh∇u∗ · n = −c2ξ

2
(∇uh · n)2 − c2

2ξ
(vh)2. (2.25)
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Denote by the subscript O faces that have outflow. Using (2.23) in (2.10) and applying
(2.24) and (2.25) to the resulting equation, we conclude that

dEh
jO

dt
=

∫

∂ΩjO

[

(1

2
c2|∇uh|2 + 1

2
(vh)2 − c2∇uh · ∇u∗ − vhv∗

)

w · n

+ c2(v∗ − vh)∇uh · n+ c2vh∇u∗ · n
]

=

∫

∂ΩjO

[

−c2|(∇uh)τ |2w·n+
(

c2

2ξ
+

ξ

2

)

(∇uh·n)vhw·n− c2ξ

2
(∇uh·n)2− c2

2ξ
(vh)2

]

.

For positive δ, we have that

( c2

2ξ
+

ξ

2

)

(∇uh ·n)vhw ·n ≤ δ

2

( c2

2ξ
+

ξ

2

)

w ·n(∇uh ·n)2+ 1

2δ

( c2

2ξ
+

ξ

2

)

w ·n(vh)2,

thus we get a decreasing energy if the following conditions are satisfied

δ

2

( c2

2ξ
+

ξ

2

)

w · n− c2ξ

2
≤ 0,

1

2δ

( c2

2ξ
+

ξ

2

)

w · n− c2

2ξ
≤ 0.

These conditions are equivalent to

(c2 + ξ2)w · n
2c2

≤ δ ≤ 2c2ξ2

(c2 + ξ2)w · n .

Now, the existence of δ follows as

2c2ξ2

(c2 + ξ2)w · n − (c2 + ξ2)w · n
2c2

=
4c4ξ2 − (c2 + ξ2)2(w · n)2

2c2(c2 + ξ2)w · n ,

and then δ exists if 4c4ξ2 − (c2 + ξ2)2(w · n)2 ≥ 0, i.e. (w · n)2 ≤ 4c4ξ2

(c2+ξ2)2 which

in turn gives us a decreasing energy if 0 < w · n < 2ξc2

c2+ξ2 , an unchanged energy if

w · n = 2ξc2

c2+ξ2 and (∇uh)τ = 0 on the outflow boundaries. Moreover, if we choose
ξ = c, we will have a decreasing energy when 0 < w · n < c, an unchanged energy
when w · n = c and (∇uh)τ = 0 on the outflow boundaries.

Lastly we note that if w · n > c we impose no boundary conditions. That is we
set

v∗ = vh, ∇u∗ = ∇uh, (2.26)

and invoke (2.17) to conclude that the energy is decreasing.
Theorem 2.2. Suppose the following fluxes are imposed:

i. The Sommerfeld flux (2.19) at subsonic inflow boundaries, −c < w · n < 0,
ii. (2.22) at supersonic inflow boundaries, w · n < −c,

iii. The Sommerfeld flux (2.23) at subsonic outflow boundaries, 0 < w · n < 2ξc2

c2+ξ2 ,

iv. (2.26) at supersonic outflow boundaries w · n > c,
v. At inter-element boundaries either the central flux (2.11), or

a. the Sommerfeld flux (2.12) if |w · n| < 2ξc2

c2+ξ2 ,

b. (2.15) if w · n1 > c,
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c. (2.16) if w · n2 > c.
Also suppose that the parameter ξ defining the Sommerfeld flux at any boundary sat-

isfies |w · n| ≤ 2ξc2

ξ2+c2 . Then the discrete energy Eh(t) =
∑

j E
h
j (t) with Eh

j (t) defined

in (2.3) satisfies

dEh

dt
=

∑

j

∫

Ωj

vhf −
∑

j

∫

Fj

[

c2η[[∇uh]]2 + c2β
∣

∣[[vh]]
∣

∣

2

− c2β[[vh]] ·
(

∇uh
1 (w · n1) +∇uh

2 (w · n2)
)

− η[[∇uh]][[vh]] ·w
]

+
∑

j

∫

BjI

[c2w · n
2

|(∇uh)τ |2 +
c2w · n

2
(∇uh · n)2 +

(w · n
2

+
(w · n)2 − c2

ξ −w · n
)

(vh)2

+
(c2 − ξw · n)w · n

ξ −w · n (∇uh · n)vh
]

+
∑

j

∫

BjO

[

− c2

2
|(∇uh)τ |2w · n

+ (
c2

2ξ
+

ξ

2
)(∇uh · n)vhw · n− c2ξ

2
(∇uh · n)2 − c2

2ξ
(vh)2

]

≤
∑

j

∫

Ωj

vhf ≤
√
2Eh‖f‖L2 . (2.27)

2.3. Error estimates in the energy norm. We define the errors by

eu = u− uh, ev = v − vh,

and let

Dh = (eu, ev).

Note the fundamental Galerkin orthogonality relation:

B(Φ,Dh) = 0.

To proceed we follow the standard approach of comparing (uh, vh) to an arbitrary
polynomial (ũh, ṽh) ∈ Pq,s. We define the differences

ẽu = ũh − uh, ẽv = ṽh − vh, δu = ũh − u, δv = ṽh − v,

and let

D̃h = (ẽu, ẽv) ∈ Pq,s, D̃h
0 = (ẽu, ẽv, 0) ∈ Pq,s ×N , ∆h = (δu, δv).

Then, since Dh = D̃h −∆h, we have the error equation

B(D̃h
0 , D̃

h) = B(D̃h
0 ,∆

h).

Finally, define the energy of D̃h by

Eh =
1

2

∑

j

∫

Ωj

ẽ2v + c2|∇ẽu|2.
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Then repeating the arguments which led to (2.27), we derive:

dEh

dt
= B(D̃h

0 ,∆
h)

−
∑

j

∫

Fj

[

c2η[[∇ẽu]]
2 + c2β

∣

∣[[ẽv]]
∣

∣

2 − c2β[[ẽv]] ·
(

∇ẽu1(w · n1)

+∇ẽu2(w · n2)
)

− η[[∇ẽu]][[ẽv]] ·w
]

+
∑

j

∫

BjI

[c2w · n
2

|(∇ẽu)τ |2 +
c2w · n

2
(∇ẽu · n)2 +

(w · n
2

+
(w · n)2 − c2

ξ −w · n
)

(ẽv)
2

+
(c2 − ξw · n)w · n

ξ −w · n (∇ẽu · n)ẽv
]

+
∑

j

∫

BjO

[

− c2

2
|(∇ẽu)τ |2w · n

+ (
c2

2ξ
+

ξ

2
)(∇ẽu · n)ẽvw · n− c2ξ

2
(∇ẽu · n)2 − c2

2ξ
(ẽv)

2
]

. (2.28)

The strategy is to choose (ũh, ṽh) which both approximates (u, v) and eleminates
some of the (potentially) larger terms in B(D̃h

0 ,∆
h). In what follows we will assume

for simplicity that (uh, vh) = (ũh, ṽh) at t = 0. We note that in the numerical
experiments we found it beneficial to subtract off a function satisfying the initial
conditions, thus solving a forced equation with zero initial data.

2.4. General case. Here we use the L2 projection of v and a projection of
u in the (broken) H1 seminorm. Precisely, on Ωj we impose for all times t and
(φu, φv) ∈ Pq,s,

∫

Ωj

∇φu · ∇δu =

∫

Ωj

φvδv =

∫

Ωj

δu = 0. (2.29)

Then, integrating by parts, we derive the following expression for B(D̃h
0 ,∆

h):

B(D̃h
0 ,∆

h) =
∑

j

∫

Ωj

[

c2∇ẽu · ∇(
∂δu
∂t

)− c2∆ẽuw · ∇δu + c2∆ẽuδv + ẽv(
∂δv
∂t

)

−w · ∇ẽvδv + c2∇ẽv · ∇δu

]

−
∑

j

∫

∂Ωj

[

− c2∇ẽu · n∇δu ·w + c2δ∗v∇ẽu · n

+ c2ẽv∇δ∗u · n− c2∇ẽu · (∇δ∗u −∇δu)w · n− δ∗v ẽvw · n
]

,

now we can rewrite the volume integral
∫

Ωj
∆ẽuw · ∇δu. For example in R3 we have

∫

Ωj

∆ẽuw · ∇δu =

∫

Ωj

(

∇(w · ∇ẽu) +∇× (w ×∇ẽu)
)

· ∇δu,
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with analogous formulas holding in other dimensions. Then invoking (2.29) the volume
integrals in B(D̃h

0 ,∆
h) will vanish and we can simplify B(D̃h

0 ,∆
h) to

B(D̃h
0 ,∆

h) = −
∑

j

∫

∂Ωj

c2
(

(w ×∇ẽu)×∇δu
)

· n− c2∇ẽu · n∇δu ·w

+ c2δ∗v∇ẽu · n+ c2ẽv∇δ∗u · n− c2∇ẽu · (∇δ∗u −∇δu)w · n− δ∗v ẽvw · n

= −
∑

j

∫

∂Ωj

c2
(

− (∇δu · ∇ẽu)w · n+∇ẽu · n∇δu ·w
)

− c2∇ẽu · n∇δu ·w

+ c2δ∗v∇ẽu · n+ c2ẽv∇δ∗u · n− c2∇ẽu · (∇δ∗u −∇δu)w · n− δ∗v ẽvw · n

= −
∑

j

∫

∂Ωj

c2δ∗v∇ẽu · n− δ∗v ẽvw · n+ c2ẽv∇δ∗u · n− c2∇ẽu · ∇δ∗uw · n. (2.30)

Combining contributions from neighboring elements we then have

B(D̃h
0 ,∆

h) = −
∑

j

∫

Fj

[

c2[[∇ẽu]]δ
∗
v − [[ẽv]]δ

∗
v ·w + c2[[ẽv]] · ∇δ∗u

− c2∇ẽu1 · ∇δ∗uw · n1 − c2∇ẽu2 · ∇δ∗uw · n2

]

−
∑

j

∫

Bj

[

c2δ∗v∇ẽu · n− δ∗v ẽvw · n+ c2ẽv∇δ∗u · n− c2∇ẽu · ∇δ∗uw · n
]

.

Here we have introduced the fluxes δ∗v , ∇δ∗u built from δv, ∇δu according to the
specification in Section 2.1. In what follows, C will be a constant independent of the
solution and the element diameter h for a shape-regular mesh. Here || · || denotes a
Sobolev norm and | · | denotes the associated seminorm. We then have the following
error estimate.

Theorem 2.3. Let q̄ = min(q−1, s). Then there exist numbers C0, C1 depending
only on s, q, η, β, ξ and the shape-regularity of the mesh, such that for smooth solutions
u, v and time T

||∇eu(·, T )||2L2(Ω) + ||ev(·, T )||2L2(Ω)

≤ (C0T + C1T
2)max

t≤T

[

h2θ
(

|u(·, t)|2H q̄+2(Ω) + |v(·, t)|2H q̄+1(Ω)

)

]

, (2.31)

where

θ =

{

q̄, β, η ≥ 0, |w · n| ≤ 2c2ξ
c2+ξ2 ,

q̄ + 1
2 , β, η > 0, |w · n| ≤ 2c2ξ

c2+ξ2 .

Proof. From the Bramble-Hilbert lemma (e.g. [7]), we have for q̄ = min(q − 1, s)

‖δv‖2L2(Ω) + ‖∇δu‖2L2(Ω) ≤ Ch2q̄+2
(

|u(·, t)|2H q̄+2 + |v(·, t)|2H q̄+1(Ω)

)

, (2.32)

‖∂δv
∂t

‖2L2(Ω) ≤ Ch2s+2

∣

∣

∣

∣

∂v(·, t)
∂t

∣

∣

∣

∣

2

Hs+1(Ω)

, (2.33)

‖δ∗v‖2L2(∂Ω) + ‖∇δ∗u · n‖2L2(∂Ω) ≤ Ch2q̄+1
(

|u(·, t)|2H q̄+2(Ω) + |v(·, t)|2H q̄+1(Ω)

)

, (2.34)

‖ẽv‖2L2(∂Ω) + ‖∇ẽu · n‖2L2(∂Ω) ≤ Ch−1
(

‖ẽv‖2L2(Ω) + ‖∇ẽu‖2L2(Ω)

)

. (2.35)
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First, consider the case where either the central or Sommerfeld fluxes are used at
inter-element boundaries. Then applying the estimates leading to Theorem 2.2 in
(2.28), we conclude that the time derivative of the error energy satisfies

dEh

dt
≤ B(D̃h

0 ,∆
h).

Now, by the Cauchy-Schwarz inequality in tandem with (2.34) and (2.35) we have

B(D̃h
0 ,∆

h) ≤ C
∑

j

‖∇ẽu · n‖L2(∂Ωj)‖δ∗v‖L2(∂Ωj) + ‖ẽv‖L2(∂Ωj)‖∇δ∗u · n‖L2(∂Ωj)

+ ‖∇ẽu‖L2(∂Ωj)‖∇δ∗u‖L2(∂Ωj) + ‖δ∗v‖L2(∂Ωj)‖ẽv‖L2(∂Ωj)

≤ C
√
Ehhq̄(|u(·, t)|H q̄+2(Ω) + |v(·, t)|H q̄+1(Ω)).

Then a direct integration in time combined with (ẽu, ẽv) = 0 at t = 0 gives us

Eh(T ) ≤ CT 2 max
t≤T

h2q̄
(

|u(·, t)|2H q̄+2(Ω) + |v(·, t)|2H q̄+1(Ω)

)

.

For dissipative fluxes, β, η > 0, we can improve the estimates. For the inter-element
boundaries, the contribution is

Θ1 = −
∑

j

∫

Fj

[

c2[[∇ẽu]]δ
∗
v − [[ẽv]]δ

∗
v ·w + c2[[ẽv]] · ∇δ∗u − c2∇ẽu1 · ∇δ∗uw · n1

− c2∇ẽu2 · ∇δ∗uw · n2

]

−
∑

j

∫

Fj

[

c2η[[∇ẽu]]
2 + c2β

∣

∣[[ẽv]]
∣

∣

2

− c2β[[ẽv]] ·
(

∇ẽu1(w · n1) +∇ẽu2(w · n2)
)

− η[[∇ẽu]][[ẽv]] ·w
]

,

resulting in

Θ1 ≤ C
∑

j

(

‖δ∗v‖2L2(Fj)
+ ‖∇δ∗u‖2L2(Fj)

)

≤ Ch2q̄+1
(

|u(·, t)|2H q̄+2(Ω) + |v(·, t)|2H q̄+2(Ω)

)

, (2.36)

on the physical boundaries, by using the fact

∇ẽu · ∇δ∗u = (∇ẽu · n)(∇δ∗u · n) + (∇ẽu)τ · (∇δ∗u)τ ,

at inflow we have

Θ2 = −
∑

j

∫

BjI

[

c2δ∗v∇ẽu · n− δ∗v ẽvw · n+ c2ẽv∇δ∗u · n− c2(∇ẽu · n)(∇δ∗u · n)w · n

− c2(∇ẽu)τ · (∇δ∗u)τw · n
]

+
∑

j

∫

BjI

[c2w · n
2

|(∇ẽu)τ |2 +
c2w · n

2
(∇ẽu · n)2

+
(w · n

2
+

(w · n)2 − c2

ξ −w · n
)

(ẽv)
2 +

(c2 − ξw · n)w · n
ξ −w · n (∇ẽu · n)ẽv

]

.
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Thus

Θ2 ≤ C
∑

j

(

‖δ∗v‖2L2(BjI
) + ‖∇δ∗u‖2L2(BjI

)

)

≤ Ch2q̄+1
(

|u(·, t)|2H q̄+2(Ω) + |v(·, t)|2H q̄+2(Ω)

)

. (2.37)

Similarly, on the outflow boundaries we obtain that

Θ3 = −
∑

j

∫

BjO

[

c2δ∗v∇ẽu ·n− δ∗v ẽvw ·n+ c2ẽv∇δ∗u ·n− c2(∇ẽu ·n)(∇δ∗u ·n)w ·n

− c2(∇ẽu)τ · (∇δ∗u)τw · n
]

+
∑

j

∫

BjO

[

− c2

2
|(∇ẽu)τ |2w · n

+ (
c2

2ξ
+

ξ

2
)(∇ẽu · n)ẽvw · n− c2ξ

2
(∇ẽu · n)2 − c2

2ξ
(ẽv)

2
]

.

Then

Θ3 ≤ C
∑

j

(

‖δ∗v‖2L2(BjO
) + ‖∇δ∗u‖2L2(BjO

)

)

≤ Ch2q̄+1
(

|u(·, t)|2H q̄+2(Ω) + |v(·, t)|2H q̄+2(Ω)

)

. (2.38)

Combining (2.28) with (2.36)-(2.38) yields

Eh(T ) ≤ CT max
t≤T

h2q̄+1(|u(·, t)|2H q̄+2(Ω) + |v(·, t)|2H q̄+1(Ω)).

Since ev = ẽv − δv, eu = ẽu − δu, (2.31) follows from the triangle inequality and an
invocation of (2.32).

Remark 1. A similar analysis yields the same results in the presence of super-
sonic boundaries, |w · n| > c.

2.5. Improved estimates for one dimension. We can improve this estimate
if we only consider the 1d case. Now assume s = q − 1 and seek (ũh, ṽh) such that
the boundary terms in B(D̃h

0 ,∆
h) vanish:

δ∗v =
∂δ∗u
∂x

= 0. (2.39)

This can be accomplished if we enforce the boundary condition on the end points of
the element Ωj = (xj−1, xj)

(1 + β − α)δv + (η + α)
∂δu
∂x

= 0, x = xj−1, (2.40)

(β + α)δv − (1 + η − α)
∂δu
∂x

= 0, x = xj . (2.41)

As shown in [2], we find we must assume α(1−α) = βη. This will be satisfied by the
Sommerfeld flux but it does not hold for the central flux. Given (2.40) we construct
δu and δv by requiring

∫ xj

xj−1

φ
∂δu
∂x

=

∫ xj

xj−1

φδv =

∫ xj

xj−1

δu = 0, (2.42)
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where φ is an arbitrary polynomial of degree q−2. Using the Bramble-Hilbert lemma,
for (u, v) ∈ Hq+2(Ω)×Hq+1(Ω) we have the following inequality

∣

∣

∣

∣

∣

∣

∂δu
∂t

∣

∣

∣

∣

∣

∣

H1(Ω)
+
∣

∣

∣

∣

∣

∣

∂δv
∂t

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ Chq

(∣

∣

∣

∂u

∂t

∣

∣

∣

Hq+1(Ω)
+
∣

∣

∣

∂v

∂t

∣

∣

∣

Hq(Ω)

)

. (2.43)

Now, repeating the computations from the previous section and invoking (2.39) and
(2.42) yields

B(D̃h
0 ,∆

h) =
∑

j

∫ xj

xj−1

c2
∂ẽu
∂x

∂

∂x

(

∂δu
∂t

)

+ ẽv
∂δv
∂t

.

Then (2.43) gives us the improved estimate

dEh

dt
≤ Chq

√
Eh

(

|u(·, t)|2Hq+2(Ω) + |v(·, t)|2Hq+1(Ω)

)1/2

.

3. Numerical experiments. In this section, we present some numerical results
to study the convergence in the L2 norm for our method. In the experiments we add
a forcing term, f, to the equations. Such a term could be incorporated into the
previous analysis without changing the results. In all cases we used a standard modal
formulation with a tensor-product Legendre basis, marched in time using the 4-stage
fourth order Runge-Kutta scheme (RK4) and set ξ = c in Sommerfeld flux.

For the experiments we choose a time step sufficiently small to make the errors
due to the spatial discretization dominate. We note that a study of the spectrum of

the spatial discretization establishes that its spectral radius scales with (c + |w|) q2h ,
with some variability depending on whether q is even or odd. This is comparable to
what was found in the case of the scalar wave equation [2].

3.1. Periodic boundary conditions in one space dimension. To investi-
gate the order of accuracy of our methods, we solve

utt + 2wutx + w2uxx = c2uxx, x ∈ (0, 1), t ≥ 0,

with the initial condition

u(x, 0) = sin(2πx), x ∈ (0, 1),

and periodic boundary condition u(0, t) = u(1, t) for t ≥ 0. This problem has the
exact traveling wave solution

u(x, t) = cos(2cπt) sin(2π(x− wt)), t ≥ 0.

The discretization is performed on a uniform mesh with element vertices xi = ih,
i = 0, . . . , n, h = 1/n. We evolve the solution until T = 0.4 with time step ∆t =
CFL× h for the degree of approximation polynomials q = (1, 2, 3, 4, 5, 6). We present
the L2-error for both uh and vh.

In the numerical experiments, we test two different fluxes: the central flux and
the upwind flux. We present three different cases: |w| = c, |w| < c, and |w| > c.
These choices are consistent with our theory. Note that if |w| > c the upwind flux is
taken from a single element.

We also consider two different choices for the degrees of the approximation spaces:
either the approximation degree of vh is one less than the approximation degree of
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uh or uh and vh are in the same space. To measure the convergence rates due to the
spatial discretization, we set the following CFL conditions. We did not attempt to pre-
cisely characterize the largest time steps we could take based on accuracy/stability re-
quirements, but simply chose convenient sufficiently small values. For the central flux
we set CFL = 0.075/(2π) when q = (1, 2, 3, 4, 5) and CFL = 0.00375/(2π) when q = 6.
For the upwind flux with |w| < c, we set CFL = 0.1125/(2π) when q = (1, 2, 3, 4, 5),
and CFL = 0.01125/(2π) when q = 6. Finally, for the upwind flux with |w| > c, we set
CFL = 0.075/(2π) when q = (1, 2, 3, 4, 5), and CFL = 0.0075/(2π) when q = 6. The
aggressive reductions in time step for q = 6, though not necessary, were convenient.
First, due to the fact that the spatial accuracy exceeds the temporal accuracy by a
fairly significant factor for q = 6 compared with other cases, we found that we could
not observe convergence at the design order for q = 6 without reducing the time step;
second, as the spectral radius of the spatial discretization matrix is proportional to
q2, the stability requirements are stricter for higher order approximation, although
here we found that the scheme was stable for q = 6 using the same steps as in the
other cases.

In our initial numerical experiments we found that the convergence was somewhat
irregular in all cases when we used L2-projection to determine the initial conditions.
Possibly this could be remedied for the upwind flux by using the special projection
required by the analysis, see for example the approach in [5] which discusses a projec-
tion for the LDG method with alternating fluxes. Here we propose a simpler solution
which is to transform the problem to one with zero initial data:

u(x, t) = ũ(x, t) + u0(x)e
−t2 ,

where u0(x) is the initial condition for u(x), and then numerically solve for ũ.
The L2 error for u and v are plotted against the grid spacing h in Figure 3.1 for

both uh and vh when the upwind flux is used. Linear regression estimates of the rate
of convergence, for uh and vh in the same polynomial space, can be found in Table
3.2, and for the degree of vh one less than that of uh, in Table 3.1. Note that we only
use the ten finest grids to obtain the rates of convergence.

For q ≥ 2 we observe the same rate of convergence, q + 1 for u and q for v, for
the two choices of approximation space for v. However, from the graphs we see that
there are sometimes noticeable differences in accuracy. Generally speaking, errors are
smaller when vh is taken from the same space as uh, the only exception being the
errors in approximating v for the rather special case of w = c.

Table 3.1

Linear regression estimates of the convergence rate of u and v in 1d with upwind flux for
periodic boundary condition, approximation for v is one degree lower than u.

Degree (q) of approx. for u 1 2 3 4 5 6
Rate fit u (w = 0.5, c = 1) 0.90 3.00 4.05 5.03 5.92 6.91
Rate fit v (w = 0.5, c = 1) 0.87 1.99 2.99 3.99 5.00 6.00
Rate fit u (w = 0.5, c = 0.5) 0.92 3.00 4.01 5.00 6.14 7.00
Rate fit v (w = 0.5, c = 0.5) 0.88 2.00 3.00 4.00 5.06 5.99
Rate fit u (w = 1, c = 0.5) 0.88 2.99 4.01 5.03 6.04 6.93
Rate fit v (w = 1, c = 0.5) 0.93 1.99 2.99 3.99 5.00 6.00

In Figure 3.2 the L2 errors in u and v are plotted against the grid-spacing h for
the central flux. Linear regression estimates of the convergence rate can be found in
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Fig. 3.1. Plots of the error in u (left column) and v (right column) as a function of h in
1d with upwind flux for periodic boundary condition. In the legend, q is the maximum degree of
the approximation of u, solid lines represent the case of uh and vh in the same space, dotted lines
represent the case of vh one degree lower than uh.
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Fig. 3.2. Plots of the error in u (left column) and v (right column) as a function of h in
1d with central flux for periodic boundary condition. In the legend, q is the maximum degree of
the approximation of u, solid lines represent the case of uh and vh in the same space, dotted lines
represent the case of vh one degree lower than uh.
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Table 3.2

Linear regression estimates of the convergence rate of u and v in 1d with upwind flux for
periodic boundary condition, u and v are in the same approximation space.

Degree (q) of approx. of u 1 2 3 4 5 6
Rate fit u (w = 0.5, c = 1) 0.97 3.00 4.01 5.00 5.98 6.95
Rate fit v (w = 0.5, c = 1) 0.95 1.99 3.00 4.00 5.00 6.00
Rate fit u (w = 0.5, c = 0.5) 1.91 3.01 4.00 5.00 6.00 6.89
Rate fit v (w = 0.5, c = 0.5) 0.98 2.00 3.00 4.00 5.00 6.00
Rate fit u (w = 1, c = 0.5) 0.97 2.99 4.00 5.01 5.99 6.90
Rate fit v (w = 1, c = 0.5) 0.99 2.02 3.02 4.01 5.00 6.01

Table 3.4 for uh and vh in the same approximation space and in Table 3.3 for uh and
vh in different spaces.

Excluding the special case |w| = c, we observe for q odd, optimal convergence,
q+1, for u while the rate of convergence for v is one order lower than u. When u and
v are in the same space this is suboptimal for v. For even q the rate of convergence
is only q for u. The convergence rate for v is always one less than for u.

Table 3.3

Linear regression estimates of the convergence rate for u and v in 1d with central flux for
periodic boundary condition, the approximation for v is one degree lower than u.

Degree (q) of approx. of u 1 2 3 4 5 6
Rate fit u (w = 0.5, c = 0.5) 2.00 1.99 4.05 3.71 6.01 6.27
Rate fit v (w = 0.5, c = 0.5) 1.61 1.01 3.24 2.82 5.40 5.27
Rate fit u (w = 0.5, c = 1) 2.00 2.00 4.03 4.03 5.99 5.91
Rate fit v (w = 0.5, c = 1) 1.72 1.09 3.03 2.05 5.06 4.48
Rate fit u (w = 1, c = 0.5) 2.00 1.99 4.13 4.11 5.81 5.60
Rate fit v (w = 1, c = 0.5) 1.00 1.01 3.01 2.74 5.02 4.95

Table 3.4

Linear regression estimates of the convergence rate of u and v in 1d with central flux for periodic
boundary condition, u and v are in the same approximation space.

Degree (q) of approx. of u 1 2 3 4 5 6
Rate fit u (w = 0.5, c = 0.5) 2.00 3.01 3.99 4.99 6.00 6.73
Rate fit v (w = 0.5, c = 0.5) 1.00 2.01 2.99 3.97 4.99 6.01
Rate fit u (w = 0.5, c = 1) 1.99 2.00 4.03 4.01 6.02 6.01
Rate fit v (w = 0.5, c = 1) 0.99 1.00 3.01 3.00 5.00 5.01
Rate fit u (w = 1, c = 0.5) 2.00 2.00 4.01 4.03 6.04 6.01
Rate fit v (w = 1, c = 0.5) 0.97 1.01 3.12 3.03 4.91 5.02

3.2. Periodic boundary conditions in two space dimensions. We now test
our method on the problem

(
∂

∂t
+w · ∇)2u = c2∆u, (x, y) ∈ (0, 1)× (0, 1), t > 0,
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Table 3.5

Linear regression estimates of the convergence rate of u and v in 2d with upwind flux for
periodic boundary condition and qx = qy = q.

Degree (q) of approx. of u and v 1 2 3 4 5 6
Rate fit u (wx = 1, wy = 1, c = 1) 1.77 3.04 3.99 5.00 6.00 6.97
Rate fit v (wx = 1, wy = 1, c = 1) 0.89 1.96 2.97 3.98 4.98 5.99
Rate fit u (wx = 0.5, wy = 1.5, c = 1) 1.05 2.93 4.00 4.99 5.99 6.96
Rate fit v (wx = 0.5, wy = 1.5, c = 1) 0.90 1.91 2.99 3.97 4.98 5.99
Rate fit u (wx = 0.5, wy = 0.5, c = 1) 1.07 2.95 4.02 4.98 5.99 7.00
Rate fit u (wx = 0.5, wy = 0.5, c = 1) 0.89 1.92 2.97 3.97 4.98 5.98

Table 3.6

Linear regression estimates of the convergence rate of u and v in 2d with central flux for periodic
boundary condition and qx = qy = q.

Degree (q) of approx. of u and v 1 2 3 4 5 6
Rate fit u (wx = 0.5, wy = 0.5, c = 1) 2.00 2.04 4.04 4.06 6.15 6.01
Rate fit v (wx = 0.5, wy = 0.5, c = 1) 0.96 0.99 3.08 2.97 5.15 4.99
Rate fit u (wx = 1, wy = 1, c = 1) 2.00 3.05 4.01 4.97 6.01 5.13
Rate fit v (wx = 1, wy = 1, c = 1) 1.00 2.05 2.95 3.99 4.96 6.01
Rate fit u (wx = 0.5, c = 1, wy = 1.5) 2.00 2.01 4.30 4.09 6.11 5.86
Rate fit v (wx = 0.5, c = 1, wy = 1.5) 0.97 0.99 3.09 2.98 5.07 4.99
Rate fit u (wx = 1.5, wy = 1.5, c = 1) 2.00 1.96 4.56 4.20 6.06 5.45
Rate fit v (wx = 1.5, wy = 1.5, c = 1) 1.79 1.02 3.37 3.23 4.55 4.97

with periodic boundary conditions u(0, y, t) = u(1, y, t), u(x, 0, t) = u(x, 1, t) for t ≥ 0.
We approximate the exact solution

u(x, y, t) = sin(2cπt)
(

sin
(

2π(x− wxt)
)

+ sin
(

2π(y − wyt)
)

)

, t ≥ 0.

The discretization is performed with elements whose vertices are on the Cartesian
grid defined by xi = ih, yj = jh, i, j = 0, 1, . . . , n with h = 1/n. Here we restrict
attention to the case where uh and vh are in the same space. We evolve the solution
until T = 0.2 using the classic fourth order Runge-Kutta method and with the time
step size ∆t = CFLh.

In the numerical experiments we test both the central flux and the upwind flux.
We have CFL = 0.075/(2π) for the central flux and CFL = 0.0375/(2π) for the upwind
flux. Note that at an interface with supersonic normal flow the upwind flux is one-
sided. Also, we only display graphs of the error in u, but tabulate the convergence
rates for both variables.

The errors for u obtained with the upwind flux are plotted against the grid-spacing
h in Figure 3.3. Linear regression estimates of the rate of convergence can be found in
Table 3.5. We observe convergence at the optimal rate, q+1, for u and a convergence
rate of q for v if q ≥ 2.

The L2 error for u for the central flux is plotted against the grid-spacing h in
Figure 3.4. Linear regression estimates of the rate of convergence can be found in
Table 3.6 for both u and v. Similar to the one-dimensional case, convergence is
optimal for u when q is odd and suboptimal by one when q is even except in the
special case of sonic boundaries.
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Fig. 3.3. Plots of the error in u as a function of h in 2d with the upwind flux and periodic
boundary conditions. In the legend, q is the degree of the approximation of u and v for both x and
y directions.

3.3. Dirichlet and radiation boundary conditions in two space dimen-

sions. Lastly we consider a problem with a Dirichlet boundary condition on inflow
boundaries (left and bottom) and radiation boundary condition on outflow bound-
aries (right and top). Since we don’t have a simple exact solution satisfying these
boundary conditions, we set

u(x, y, t) = x(1− x)2y(1− y)2 exp(x+ y) sin(t),

and solve

(
∂

∂t
+w · ∇)2u = c2∆u+ f, (x, y) ∈ (0, 1)× (0, 1), t > 0,

with f determined by u. Note that for this specific choice we have that u(x, y, t) = 0
on the inflow boundaries and u(x, y, t) = ux(x, y, t) = uy(x, y, t) = 0 on the outflow
boundaries. In the following numerical experiments we choose the same approximation
spaces for uh and vh, polynomial degrees qx = qy = q. We evolve the solution to
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Fig. 3.4. Plots of the error in u as a function of h in 2d with the central flux and periodic
boundary conditions. In the legend, q is the degree of approximation to u and v for both x and y

directions.

Table 3.7

Linear regression estimates of the convergence rate for u and v in 2d with Dirichlet boundary
condition on inflow boundaries, radiation boundary condition on outflow boundaries and qx = qy =
q. Here the first two rows correspond to the upwind flux and the last two to the central flux.

Degree (q) of approx. of u 1 2 3 4 5 6
Rate fit u (wx = 0.5, wy = 0.5, c = 1) 0.82 2.94 4.01 4.96 5.97 6.96
Rate fit v (wx = 0.5, wy = 0.5, c = 1) 0.78 1.87 2.92 3.92 4.95 5.97
Rate fit u (wx = 0.5, wy = 0.5, c = 1) 1.65 2.09 4.09 4.04 6.01 6.01
Rate fit v (wx = 0.5, wy = 0.5, c = 1) 0.93 0.98 2.98 3.00 5.01 5.00

T = 0.2 with the step size ∆t = CFLh and CFL = 0.075/(2π). Here we only consider
the subsonic case, wx = wy = 0.5 with c = 1, and compare both upwind and central
fluxes.

The error for u is plotted against the grid-spacing h for both fluxes in Figure 3.5.
Linear regression estimates of the rate of convergence can be found in Table 3.7. The
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Fig. 3.5. Plots of the error in u as a function of h in 2d with upwind (left) and central (right)
fluxes for Dirichlet boundary condition on inflow boundaries and a radiation boundary condition on
outflow boundaries. In the legend, q is the degree of the approximation to u and v for both x and y

directions.

rates of convergence are very close to those for the periodic problem.

4. Conclusion and extension. In conclusion, we have generalized the energy-
based discontinuous Galerkin method of [2] to the wave equation with advection, a
problem for which the energy density takes a more complicated form than a simple
sum of a term involving the time derivative and a term involving space derivatives.
We have shown that the new form can be handled by introducing a second variable
which, unlike what was done in [2, 3], involves both space and time derivatives. We
prove error estimates completely analogous with those shown in [2] for the isotropic
wave equation, including cases with both subsonic and supersonic background flows.
Numerical experiments also demonstrate optimal convergence on regular grids when
an upwind flux is used.

A potential application of the method would be to linearized models in aeroa-
coustics, where its generalization to inhomogeneous media such as those defined by
background shear flows would be needed (e.g. [9]). Here we expect that the use of
upwind fluxes would guarantee stability for the discretization of the principal part
which should be sufficient to establish convergence. Secondly, we will understand our
construction in the context of regularly hyperbolic systems as defined in [6, Ch. 5]
with the hope of treating the general case.
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methods for second-order wave equation in heterogeneous media, Journal of Computational
Physics, 272 (2014), pp. 88–107.

[6] D. Christodoulou, The Action Principle and Partial Differential Equations, no. 146 in Annals
of Mathematical Studies, Princeton University Press, 2000.

[7] P. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics
40, SIAM, Philadelphia, 2002.
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[10] M. Grote, A. Schneebeli, and D. Schötzau, Discontinuous Galerkin finite element method

for the wave equation, SIAM J. Num. Anal., 44 (2006), pp. 2408–2431.
[11] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods, no. 54 in Texts

in Applied Mathematics, Springer-Verlag, New York, 2008.
[12] B. Riviere and M. Wheeler, Discontinuous finite element methods for acoustic and elastic

wave problems, Contemp. Math., 329 (2003), pp. 271–282.
[13] K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method,

J. Comput. Phys., 205 (2005), pp. 401–407.


