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Abstract
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1 Introduction

Distributions have been studied for a long time in social sciences by geographers and others,

and have recently attracted more interest in economics (Axtell, 2001; Anderson, 2006; Gabaix,

2016). Indeed, interest in international trade in sales revenue distributions and in the CES

monopolistic competition model has exploded in the empirical literature over the last decade

(following Melitz, 2003). The CES monopolistic competition model and a particular sales

revenue distribution (the most commonly used ones are the Pareto and log-normal) will tie

down the shapes of the other distributions, such as profit, price, and output distributions.

However, little research has investigated the other implied distributions. Here we develop

equilibrium connections between distributions in the paradigm CES demand formulation (which

we extend in two major ways) under monopolistic competition. For example, can a log-normal

distribution of unit costs be consistent with a log-normal distribution of firms’ outputs? Can

a Pareto distribution for profit be consistent with a Pareto distribution for firm prices? The

answer is affirmative for the first one: in fact, if output is log-normally distributed, then unit

costs must be log-normally distributed: and so must equilibrium prices. But (for the second

question) a Pareto profit distribution function is only consistent with a power distribution of

prices. However, when we extend the CES for quality heterogeneity we can indeed render

Pareto distributions for both.
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The CES representative consumer model is widely used in economics in conjunction with

monopolistic competition.1 A flurry of recent contributions deploy the CES and variants thereof

(e.g., Dhingra and Morrow, 2019; Zhelobodko et al., 2012; Bertoletti and Etro, 2017, etc.).

The current most intensive use of the model is in International Trade, where it is at the

heart of empirical estimation.2 It is used as a theoretical component in the New Economic

Geography and Urban Economics, it is the linchpin of Endogenous Growth Theory, Keynesian

underpinnings in Macro, and Industrial Organisation. The convenience of the model stems

from its analytic manipulability. The CES monopolistic competition model delivers equilibrium

mark-ups proportional to marginal costs, and so delivers market power (imperfect competition)

in a simple way without complex market interaction. The standard models in this vein (following

Melitz, 2003) assume that firms’ unit production costs are heterogeneous.

However, when we apply this model to distributions, if one distribution (such as profit) is

a Pareto (1965) distribution, then the distributions of all the “primary” economic variables

(productivity, revenue, profit, output, and price reciprocal) lie in the Pareto class. This we call

the “Pareto circle”. More generally, we establish the CES circle by characterising distribution

families that are closed under the positive power transformations that the CES entails between

the primary economic variables. These distributions we call Closed Power-Families - CPF

henceforth. The implication is that if any one of the distributions is in the family, then they

1See the original book on monopolistic competition by Chamberlin (1933).
2Although note that Fajgelbaum et al. (2011) take a nested multinomial logit approach.
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all are. Previous authors have derived special cases of this relation between productivity and

sales revenue for particular distributions: Helpman et al. (2004) cover Pareto, while Head et al.

(2014) treat the log-normal distribution. We show that the Pareto and log-normal distributions

constitute closed power-families and we show that these authors’ results cover all power-closed

distribution families as well as the other economic variables.

On the other hand, other standard distributions are not closed under power transformations.

If the productivity distribution is normal or Laplace, the output and revenue distributions are

not (except under exceptional circumstances for specific parameter matches). We extend below

standard distribution classes, which are not closed under power transformations (such as Normal

and Laplace, and Log-Normal and Log-Laplace), to broader classes of CPF that are closed under

power transformations.

Another key characterisation result is that if the output, revenue, and productivity distri-

butions form a CPF, then their densities take the same functional form as the price density.

Indeed, price is determined from the other variables via a negative power transformation for

the CES. The relevant distributions for negative power transformations are thus the inverse

distributions to the positive power family. Indeed, a distribution and its survival function (e.g.

Pareto and power) have the same parametric density function. This property connects their

densities. One straightforward consequence of the density representation is that the price-

reciprocal distribution is log-normal if the revenue distribution is log-normal.
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The power-family analysis enables us to write the relation between the shapes of the satellite

distributions as simple linear relations of density elasticities and the demand elasticity of the

CES. For example, the elasticities of both output and profit densities are linear functions of

the elasticity of the density of costs, with the demand elasticity determining the parameters.

This analysis extends the insights from the constant elasticity case associated to the Pareto

distribution. For instance, it enables us to describe inherited concavity/convexity properties of

satellite distributions. It also enables us to derive some testable predictions for the densities,

for example the relationship between their respective modes.

The CES circle imposes restrictions on the satellite distributions. The (ubiquitous) CES

demand side can be retained while decoupling the CES circle by introducing qualities. These

we introduce in the same way as do Baldwin and Harrigan (2011) and Feenstra and Romalis

(2014).3 Doing so delivers two fundamental drivers of equilibrium distributions (instead of just

one) – the cost distribution and the quality/cost one. Even if one distribution is Pareto, others

can take other forms. Most notably, the output distribution depends on the cost distribution

(as before) but now also on the quality/cost distribution and so there are three groups of

distributions involved. This we call the decoupling of the CES circle. Paradoxically, perhaps,

introducing quality also enables a recoupling of distributions. As noted above, without quality,

a Pareto revenue distribution must induce a power distribution for prices. But, with a quality

3These authors assume a Pareto distribution for productivities for their empirical work. They do not pursue
the implications of the properties of the various distributions and how they are linked, which is our goal here.
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distribution too, and the appropriate (sufficiently positive) relation between quality and cost,

the price distribution can be Pareto too. However, the mark-ups in percentage terms remain

constant across products due to the CES formulation, jarring with several empirical studies

(e.g., Atkin et al., 2015). This property spurs us to develop a broader demand formulation

which allows for variable mark-ups.

The CES demand system is usually derived from a representative consumer’s utility function,

although individual consumers typically consume few variants in practice. The demand system

though is also consistent with a population of heterogeneous consumers who make discrete

choices across products. This disaggregation approach enables us to formulate a generalisation

which picks up the CES as a special case and links the CES to the logit model of monopolistic

competition (which we propose and develop here) via a structural demand parameterisation

using an additional parameter, b. Our model delivers clean comparative static results and

profit quasi-concavity ensuring a unique maximum. The case b = 0 corresponds to the CES,

while b = 1 is Logit. For b ∈ (0, 1), percentage mark-ups are increasing in b while absolute

mark-ups are decreasing. Not only can we book-end the model with CES and Logit, but we

can also go beyond them. In particular, the (well-behaved) case b < 0 delivers the property

that even percentage mark-ups rise with cost, and with quality too as long as the unit cost

function is sufficiently inelastic with respect to quality. Such properties are consistent with

empirical findings of Atkin et al. (2015) that mark-ups are increasing with quality, and larger
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firms have higher qualities. We also deliver and develop new distribution results for Logit: a

normal distribution for quality-costs implies a log-normal distribution for firm size in terms of

both output and profit, while an exponential function delivers Pareto distributions. The log-

normal and Pareto distributions have figured prominently in empirical work on size distribution

of firms.

A wide-ranging paper by Mrázová et al. (2017) also links distributions and demand systems,

focussing on Constant Revenue Elasticity of Marginal Revenue (CREMR) and Constant Elas-

ticity of Marginal Revenue cases; the intersection of the two is the CES form. They show various

“self-reflection” properties; most notable for our study are their 3-way equivalence properties,

whereby any two properties imply the third. In particular, they link (i) Pareto productivity and

sales revenue distributions to CREMR; (ii) log-normal productivity and sales revenue distribu-

tions to CES; (iii) Pareto productivity and output distributions to CEMR; and (iv) log-normal

productivity and output distributions to a case of CEMR. Their paper is also noteworthy for

analysing how Kullback-Leibler divergence measures can be used for comparing predicted to

observed distributions, concluding that the choice of Pareto or Log-Normal distribution is less

important than the demand form.

Effectively, they add important additive constant parameter to the early part of our analysis.

Their philosophical backdrop follows Anderson and de Palma (2015) in studying how endoge-

nous economic distributions are related to each other and to primitive distributions through
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the core economic monopolistic competition model. Methodologically, noteworthy is our use of

our family density equivalence result as a device to uncover the tightest Closed Power-Family

encompassing the Normal, and we give parameter relations that must hold to be consistent

with the CES model, while MNP concentrate on log-normal and Pareto distribution circles

(as noted above). For example, we define the parameterisation of the A-family which includes

the Normal (for a Normal alone transforms into other distribution types) within the tightest

possible class; and we seat the log-normal within a broader class too (the log-A family). We

also extend to quality, and our generalisation (which enables us to pick up the Logit) does not

fall into MNP’s CREMR or CEMR families.

In the sequel, we first develop the analysis for cost heterogeneity alone and show how the

productivity distribution delivers the Pareto (and power) circle. In Section 3, we then describe

the general CES circle and explore further power families of distributions. We next show in

Section 4 how equilibrium densities are tied together by simple linear relations between their

elasticities. Section 5 allows for quality too in order to decouple the CES circle. Section 6

turns to a disaggregate micro-foundation of the CES representative consumer to generalise

the demand model, and tie together CES and Logit special cases. A final section gives some

concluding remarks.
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2 Standard CES model and the Pareto circle

2.1 Basic CES model with cost heterogeneity

We start with the standard CES monopolistic competition model with heterogeneity only in

firms’ productivities (the reciprocal of unit production costs). This is the basic Melitz (2003)

approach. We show how all economic distributions (output, profit, revenue, and price recipro-

cal) are tied down by the productivity distribution, and we later show (in Section 3.3) that this

distributional relationship defines a closed power-family to which all these satellite distributions

belong.

Several forms of CES representative consumer utility functions are prevalent in the literature.

We nest these into one embracing form. The CES representative consumer involves a sub-utility

functional for the differentiated product χ =
(∫

Ω
q (ω)ρ dω

)1/ρ
, where the q’s are quantities

consumed of the differentiated variants, and ρ ∈ (0, 1): variants are perfect substitutes for

ρ = 1, demands are independent for ρ→ 0. The elasticity of substitution is σ = 1
1−ρ ∈ (1,∞).

This statistic is often reported in empirical studies: −σ is also the (constant) elasticity of the

CES demand function. The important property of the CES for what follows is that the demand

elasticity is constant (and elastic).

The individual variants are denoted by ω, and each is produced by a separate firm; the set

of variants is denoted by Ω. Common forms of representative consumer formulation are:

8



(i) Melitz (2003) model (see also Dhingra and Morrow, 2019), where U = χ so there is only

one sector;

(ii) the classic Dixit and Stiglitz (1977) case much used in earlier trade theory (e.g., Helpman

and Krugman, 1985), U = χqη0 with η > 0, where q0 is consumption in a numéraire sector;

(iii) U = lnχ+ q0, which is a quasi-linear form 1 (with no income effects) and so constitutes

a partial equilibrium approach (see Anderson and de Palma, 2000; Nocke and Yeaple, 2008).

The first two formulations have unit income elasticities of demand; hence their popularity

in Trade models. Utility is maximised under the budget constraint
∫

Ω
q (ω) p (ω) dω + q0 ≤ I,

where p (ω) is the price of variant ω. We need I > 1 for case (iii), or else it reverts to case (i)

because all income is spent on the differentiated variants.

Let the (constant) unit production costs of variant ω be c (ω), and let FC (c) denote the

cumulative distribution function of these costs. Let fC (c) denote the probability density of

unit production costs, and assume that it is continuously differentiable.4

The next results are quite standard. For a given set of prices and a set Ω of firms (with

total mass M = ‖Ω‖), Firm i’s demand is:

h (pi) =
Ξ (I)

pi

p
ρ
ρ−1

i∫
ω∈Ω

p (ω)
ρ
ρ−1 dω

, (1)

where Ξ (I) is the total amount spent on the differentiated commodity. This is Ξ (I) = I for

4Exceptions will be flagged when relevant.
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case (i), Ξ (I) = I
1+η

for case (ii) (which clearly nests case (i) for η = 0); and Ξ (I) = 1 for

case (iii). The denominator in (1) (assumed bounded) represents the aggregate impact of firms’

actions on individual demand: under monopolistic competition, each firm’s action has no effect

on this statistic. Notice that the CES demand system exhibits the Independence from Irrelevant

Alternatives (IIA) property that the ratio of the demands for any two products is independent

of the price of any other product.5 The analysis of Section 6 indicates why the CES shares this

property with Logit discrete choice models.

Firm i’s profit maximising price solves max
pi

{
(pi−ci)
pi

p
ρ
ρ−1

i

}
, so equilibrium pi = ci

ρ
, and the

equilibrium Lerner index is

li ≡
pi − ci
pi

= (1− ρ) . (2)

Given such pricing, Firm i’s equilibrium output is (from (1))

yi = ρΞ (I)
c

1
ρ−1

i

DC

, (3)

where DC = M
∫
c (u)

ρ
ρ−1 fC (u) du, and fC (.) is the density of unit production costs, which we

assume ensures DC is bounded.

5That is, from (1), h (pi) /h (pj) = (pi/pj)
1/(ρ−1)

is independent of pk, k 6= i, j.
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Firm i’s equilibrium profit, πi, is proportional to its sales revenue, ri = piyi, so that

ri = Ξ (I)
c

ρ
ρ−1

i

DC

, (4)

and

πi = (1− ρ) ri. (5)

Hence equilibrium output is elastic with respect to cost, with elasticity 1
ρ−1

= −σ < −1,

which is the same as the elasticity of demand for the CES. Sales revenue (and also profit) has

elasticity ρ
ρ−1

= 1 − σ < 0, which is smaller in absolute terms. Doubling cost cuts output by

more than half, while profit goes down proportionately less (because of the price increase).

2.2 Pareto and power distributions

Part of the folklore for the CES is that “everything is Pareto”, although we cannot cite a

definitive reference. Helpman, Melitz, and Yeaple (2004) showed that the revenue distribution

is Pareto if the productivity distribution is Pareto for the CES, and Mrázová et al. (2017)

showed the same relation for revenue and output distributions. Here, for the record, we make

the statement precise by documenting the CES-Pareto circle for all five primary distributions

(i.e., the ones above, which we refer to as primary because they will all be seen to related

by a simple transformation). We simultaneously make the analogous statement for the power

distribution.
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Define ĉ ≡ 1/c as productivity, and suppose that the distribution of productivities is Pareto,

FĈ (ĉ) = 1−
(
ĉ

ĉ

)αĉ
for ĉ ≥ ĉ, (6)

where αĉ > 0.6 Now, (4) implies r = kĉθ, where θ takes the value ρ
1−ρ > 0. Therefore

FR (r) = 1−
(r
r

)αr
for r ≥ r, with αr = αĉ

1− ρ
ρ

.

From (5), this tail parameter value is also απ, with FΠ (π) = 1−
(
π
π

)απ
for π ≥ π.

Because from (3) equilibrium output has productivity elasticity 1
1−ρ , the equilibrium output

has a Pareto distribution with tail parameter

αy = (1− ρ)αĉ = αrρ. (7)

It is readily apparent that the price reciprocal is also Pareto, thus establishing that the primary

distributions are all Pareto if any one is.

The cost distribution associated to the Pareto productivity distribution (6) is the power

cost distribution:

FC (c) =

(
c

c

)αĉ
for c ∈ [0, c] , (8)

6The ĉ value might be endogenously determined by fixed cost, as in Melitz (2003).
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and the price distribution has the same tail parameter, so:

FP (p) =

(
p

p

)αĉ
for p ∈

[
0, p
]
, where p = c/ρ.

Following the analogous steps above shows that the five primary distributions are Power

distributions, with the same relation as (7) holding for their power values. Furthermore, the

cost and price distributions are Pareto, with tail parameter αĉ. To summarise:7

Proposition 1 (CES Pareto / Power circle) (a) If any one of the five primary distributions

(profit, revenue, output, price reciprocal, or productivity) is Pareto (resp. Power), then they all

are Pareto (resp. Power). (b) Price and cost are Power distributed if the five primary distribu-

tions are Pareto, and are Pareto distributed if they are Power. (c) Tail/power parameters are

related by (7): αy = (1− ρ)αĉ = αrρ; αr = απ; αp = αĉ.

The Pareto circle says that all five (primary) distributions in (a) are Pareto if any one is.

Part (b) indicates that the survivor functions for price and cost also take the Pareto form.

The positive transformation sends any Pareto distribution to another Pareto, while a negative

transformation sends a Pareto to the inverse circle, which is the Power one. The Power circle

is analogous, mutatis mutandis.8

7Part (c) is discussed further in Section 4.
8As we show below, the log-normal also delivers a CES circle for the five primary distributions.
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3 Distribution transformations, Closed Power Families,

and the CES-circle

Multiplicative and positive power transformations relate profit, revenue, output, price reciprocal

(1/p), and productivity (the cost reciprocal, 1/c) in the CES model. The corresponding primary

distributions are related with the help of the following straightforward technical result, which

tells us how distributions are modified by (positive) multiplicative and power transformations.9

We shall also be interested in cost and price distributions, which are related to the others by

negative power transformations. Let U be defined on a bounded support.

Lemma 1 (Transformation) Let FU (u) be the CDF of a random variable U . Then, the CDF

of FV (v) for the multiplicative transformation (V = kU , k > 0), positive power transformation

(V = kU θ, k > 0, θ > 0), and negative power transformations (V = kU θ, k > 0, θ < 0) are:

(a) (Multiplicative) FV (v) = FU
(
v
k

)
;

(b) (Positive power) FV (v) = FU

[(
v
k

) 1
θ

]
;

(c) (Negative power) FV (v) = 1− FU
[(

v
k

) 1
θ

]
.

This coheres with the earlier Pareto and power distribution analysis. For example, power

distributions beget power distributions under positive power transforms. They beget Pareto

distributions under negative power transforms and conversely: Pareto distributions beget power

9For example, for case (b) below, FV (v) = Pr (V < v) = Pr
(
kUθ < v

)
= Pr

(
U < v

k

1
θ

)
= FU

[(
v
k

) 1
θ

]
.
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distributions under negative power transforms. The Lemma defines multiplicative and power

relations between distributions, which we immediately engage to characterise the CES distri-

bution circle:

Proposition 2 (CES distribution relation) (a) The distributions of profit and revenue are

multiplicatively related, as are the distributions of price and cost. (b) The primary distributions

(profit, revenue, output, price reciprocal, and productivity) are positive-power related. (c) The

distributions of price and cost are negative-power related to the distributions of profit, revenue

and output (and conversely).

Proof. From (5), profit is a positive fraction of revenue. By Lemma 1(a), revenue and profit

distributions are related by multiplicative transformations. Likewise, cost is a positive fraction

of equilibrium price (see (2)), so the same property attains. From (3), equilibrium output, yi,

is related to the cost reciprocal, 1/ci, by a positive power and a positive factor, and similarly

for the price reciprocal, 1/pi. Profit and revenue distributions are related to the cost reciprocal

and hence to the output distribution by a positive-power transformation. Hence the second

statement follows from Lemma 1(b). The last statement follows from 1(c) because costs and

prices are related to output and to revenue and profit by negative-power transformations.

15



3.1 The CES Circle

We here extend the Pareto/power circle to provide some distributions that form what we call

Closed Power-Families (CPF) under the CES transformation, which transformation for the

primary distributions (as we have seen) involves taking positive powers. In such a closed

power-family, the satellite distributions retain the same functional form under the positive

power transformation, so that profit, revenue, output, productivity (cost reciprocal), and price

reciprocal remain in a CES-circle. Because we want the results to hold for any CES specification

(any value of ρ ∈ (0, 1)), we want the family to entertain any positive power transformation.10

We first provide a formal definition of the concept of a CPF. If F (.) is to be such a family,

then, setting v = kuθ with k > 0 and θ > 0 must imply that F
((

v
k

)1/θ
)
∈ F (.) for any θ > 0.11

Then

FV (v) = FU

[(v
k

)1/θ
]

(with k > 0 and θ > 0) must hold for any pair of distributions of U and V in the family (and

similarly for θ < 0, see Lemma1 (c)).

Differentiating this identity leads us to a density relation that any two densities in the family

must satisfy:

fV (v) ∝ v( 1
θ
−1)fU

((v
k

)1/θ
)
. (9)

10Recall that the relevant θ can take any value in (0,∞) because ρ ∈ (0, 1): see Section 2.
11Here u ∈ [u, ū] so v ∈

[
kuθ, kūθ

]
for θ > 0 and v ∈

[
kūθ, kuθ

]
for θ < 0.
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This empirically-testable density expression is the key to finding candidate power-closed fam-

ilies (and eliminating others): if the relation does not hold, then the CES model as given is

empirically invalid.12 Indeed, we have been working till now with CDFs, and for the Pareto

and Power distributions they are the appropriate tool. But if we consider other distributions

(like Normal, or Log-Normal) there is no analytical form for the CDF, and a fortiori for their

power transformations. A more tractable way to relate such distributions is through their den-

sities, and this approach enables us to show that the log-normal constitutes a CPF, while the

Normal needs to be extended as an element of a larger class.

3.1.1 CPF densities

Consider now the shape of the densities of the inverse distributions: the ones of interest are cost

and price (which vary inversely with the primary variables.) This implies that if a distribution

U is a closed power-family then U θ belongs to this family for θ > 0 and U θ belongs to the

inverse family for θ < 0. From Lemma 1(c), for θ < 0 we have the survivor function FV (v) =

1 − FU

[(
v
k

) 1
θ

]
. Differentiating, we get exactly the same expression (9) as for the case of a

positive power transformation (i.e., FV (v) = FU

[(
v
k

) 1
θ

]
with θ > 0). Therefore we can write

the following Corollary of Lemma 1 and Proposition 2:

Corollary 1 (CES densities) The densities of profit, revenue, output, price, and cost for a

closed power-family satisfy (9).

12Notice that power and Pareto distributions both deliver power densities.
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We now turn to some closed power-families. While standard distributions such as the Normal

cannot represent all the primary distributions, we show how to extend such distributions to seat

them within a corresponding circle. However, the Log-Normal is already a closed power-family.

3.2 Log-Normal

The log-normal distribution also delivers a CES circle. Head et al. (2014) showed that a log-

normal distribution for productivity delivers log-normal revenues for the CES.13 We show how

this result extends to encompass all the primary distributions – as well as the distributions of

their reciprocals.

To see this property, consider the basic log-normal density

fU (u) ∝ 1

u
exp

(
−
(

lnu− ξ
σ

)2
)
, u > 0. (10)

Making the change of variables v = ku1/θ, as befits the basic power transform fundamental

to the CES circle, then gives another log-normal by simply adjusting ξ and σ appropriately,

and this is true for θ positive or negative. The immediate implication is that the revenue and

productivity distributions are log-normal if one is (as shown by Head et al., 2014). Furthermore,

so are profit and output (the output result was shown by Mrázová et al., 2017), and so are

price and cost densities (which involve the survivor function distributions because of the flip

13These authors look at the empirical evidence for choosing either log-normal or Pareto distributions for firm
size: Nigai (2017) splices the two (with the right tail Pareto) to get the best fit.
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from high prices associated with low profits, etc.). Empirically, the log-normal has shown up

for revenue distributions in Head et al. (2014) among others. To summarise:

Corollary 2 (Log-Normal densities) The densities of profit, revenue, output, price, and cost

all have the form (10) if any one has.

3.3 Other CPF distributions for CES

3.3.1 A-family

Recent empirical work has not supported power distributions for prices (and hence, for the CES,

for costs either). Two eminent studies with big data on prices have recently appeared: Kaplan

and Menzio (2015) and Hitsch et al. (2017). While the latter do not directly estimate the

shape of price distributions, Kaplan and Menzio (2015) tend to support symmetric bell-shaped

densities (although a huge caveat is that they deal with prices across a range of retail outlets

and for a broad gamut of products, rather than the specific industries we have in mind, although

they do find similar patterns for different product groupings) The following Figure reproduces

their Figure 2a (Kaplan and Menzio, 2015) with the empirical distribution approximated by a

Normal (fitted line):

Notice that this empirical distribution looks closer to a Laplace than a Normal: in what

follows we consider a class of densities that includes both as special cases.14

14From Kaplan and Menzio (2015): “First, for all definitions of a good, the price distribution has a unique
mode that is very close to its mean. Second, for all definitions of a good, the price distribution is very close to
symmetric. Third, for all definitions of a good, the price distribution has more mass around the mean and has
thicker tails than a Normal distribution with the same mean and variance.”
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Figure 1: Price Density from Kaplan and Menzio (2015)

On the other hand, several studies suggest (e.g., Head et al., 2014; Cabral and Mata, 2003)

a Pareto or a log-normal for sales revenue or profit. As we have shown above, a Pareto profit

distribution implies a power price distribution under CES. We now entertain a reverse question,

and ask what types of (revenue or output) distribution are delivered by normal or log-normal

price densities (and we cover log-normal revenues along the way). In what follows, it is easier

to work directly with the density, with parameters determined so that the densities do generate

distributions over the relevant support. Truncated distributions are handled through writing

the appropriate support for the transformed variable.

We start by looking at some distributions that are not closed power-families, in order to guide

us towards ones that are. Consider first the Normal, which has density fU (u) ∝ exp
(
−
(
u−ξ
σ

)2
)

.

The corresponding density of V is not a Normal (except for specific parameter values noted

below), and for two reasons. Applying (9) (and using dv = kθuθ−1du = kθ
(
v
k

)(1− 1
θ ) du) gives
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fV (v) ∝ v( 1
θ
−1) exp

(
−σ−2

((
v
k

)1/θ − ξ
)2
)

, so that there is an extra power term before the

exponential term, and, second, the term in the square now has a power not equal to 1 (if

θ 6= 1).15

Similarly, a Laplace density with fU (u) ∝ exp
(
−
∣∣u−ξ
σ

∣∣) does not constitute a closed power-

family. A Fréchet distribution (see Mrázová et al., 2017), given by fU (u) ∝ u−α−1 exp
(
− (u−µ)−α

σ

)
,

is not closed under a power transformation. However, a simple Fréchet distribution (without

shift parameter and with u > 0) of the form fU (u) ∝ u−α−1 exp
(
−u−α

σ

)
does constitute a

closed power-family because the same form arises under the power transformation.16

If θ = 1, the distributions of all economic variables are the same up to a (multiplicative) scale

factor. Given the multiplicative relation for the CES between revenues and profits, and also

between productivity and price reciprocal, these pairs of variables follow the same distribution,

up to a scale factor.17

The Normal and Laplace distributions can be extended to yield power-closed families, which

are parameterised by A below. That is, any value of A defines a power-closed family, which we

call an A-family : all of the other parameters vary according to the satellite distribution while

remaining in the A-family.

15If θ = 1 then neither of these issues arise, a point we elaborate in the next paragraph.
16The same argument applies to the double Weibull (given in the footnote below) without shift parameter

and with x > 0, whose density has the form fU (u) ∝ uα−1 exp
(
−
(
u−ζ
σ

)α)
.

17There is one other case when θ can be 1, and that is the relationship between revenue (or profit) and
productivity when ρ = 1/2. Then, from (4), revenue linearly tracks productivity.
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The A-family is defined by:

fU (u) ∝ uΛ exp

(
−
∣∣∣∣uB − ξσ

∣∣∣∣A
)
, u ≥ 0, (11)

with parameters {Λ, B, σ, ξ;A}.18 Throughout, we set σ > 0 and we take u ≥ 0 as relevant for

the economic variables under consideration.19

This specification encompasses standard distributions such as the power or Pareto (for

A = 0); the Normal for {Λ, B;A} = {0, 1; 1}; the Laplace for {Λ, B;A} = {0, 1; 1}; and, for

simple Fréchet (with no shift), Λ = −α − 1, AB = −α, and ξ = 0. The power transformation

then launches satellite distributions in the same A-family. The density (11) is continuous and

is differentiable except at u = ξ1/B ≥ 0 (although it is differentiable if A = 2).

Under the CES transformation v = kuθ, we have the V density satisfying

fV (v) ∝ vΛV exp

(
−
∣∣∣∣vBV − ξVσV

∣∣∣∣A
)
, v > 0, (12)

where the V subscripts indicate how the parameters change under a positive power transform,

and hence the closed density power family dictates ΛV = −1 + (1 + Λ) /θ, BV = B/θ, ξV =

ξkB/θ, and σV = σkB/θ. The transformed parameters indicate what to expect empirically when

18This form is similar to the double Weibull, which is fU (u) = c
2σ

∣∣∣u−ζσ ∣∣∣A−1 exp

(
−
∣∣∣u−ζσ ∣∣∣A). For A = 1, we

get the Laplace (or the double exponential) density. The double Weibull generalises the Rayleigh distribution,
whose density is u exp

(
−u2β

)
. However, unless ζ = 0, the double Weibull does not constitute a power class.

However, introducing a power parameter on the u on the RHS rectifies this.
19As noted in the beginning of this Subsection, truncations for this density and the following ones may be

required if the CDF is not defined on (0,∞), or if some moments of the distribution do not exist on (0,∞), as
for the case of the generalised log-normal considered below.
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the various distributions are estimated from this family, since we know how parameters are

related. The transformation remains in the same CPF.

As we argue below, the same arguments as above apply to price densities, so that we have

the result that price densities are in the same closed density power-family too. To illustrate,

consider the form (12), and the relation between productivity (1/c) and price, which for CES

is the relation p = 1/ĉρ. Hence, the power transform for price is to set k = 1/ρ and θ = −1

(negative power). Then the price density (denoted by subscript P ) is (using ΛP = −2 − Λ,

BP = −B, ξP = ξρB, and σP = σρB in (12)):

fP (p) ∝ p−2−Λ exp

− ∣∣∣∣∣(ρp)−B − ξσ

∣∣∣∣∣
A
 , p > 0.

Note the price distribution is a power distribution in the special case of a Pareto productivity

distribution.20 Reciprocally for a power productivity distribution: the price distribution is then

Pareto. As we show next, the log-normal distribution for productivity begets prices that are

also log-normal (along with all the other satellite distributions being log-normal).

3.3.2 Log-A-family

A potentially useful generalisation of the log-Laplace and log-Normal that is a closed density

power-family (for any A) as an alternative to (11) is to write the log-A-family.

20Discussed more in the next section.
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The log-A-family is defined by densities of the form

fU (u) ∝ 1

u
exp

(
−
∣∣∣∣ lnu− ξσ

∣∣∣∣A
)
, x > 0. (13)

This distribution has previously appeared in the literature as the generalised log-normal (Kleiber,

2014).

Here, when A = 2, the density is log-normal; and when A = 1 it is log-Laplace. Indeed,

for any given A, (13) constitutes a closed logA-power-family. This form also nests Pareto, and

potentially constitutes a flexible form to estimate, in a manner that extends the log-normal and

Pareto. Not only does this allow tighter investigation of the CES circle, where log-normal and

Pareto have played prominent roles, but it also can be a useful guide for relating distributions

in other contexts.

4 Distribution shape relations

4.1 Constant elasticity productivity distributions

For the Pareto distribution, densities are always decreasing (the distribution function is con-

cave), so profit, revenue, and output densities must decrease. However, the price or cost ones

can be increasing. This can be seen from the relation αĉ = αr

(
ρ

1−ρ

)
(see (7)) and noting that

the slope of the density of costs has the sign of αĉ − 1 so that the cost density is decreasing
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if and only if αr = απ <
1−ρ
ρ

.21 For example, if the tail parameter is απ = 1 (as per Axtell,

2001) then the cost density is decreasing if ρ < 1/2, i.e. far from close substitutes.22 And if

the “80/20” rule holds, then απ = 1.16, with corresponding value ρ < 0.46 for decreasing cost

density.23

4.2 General density analysis

While the Pareto imposes decreasing primary densities, this property is not true generally

for other distributions. We next show the connections between the densities of the satellite

distributions by determining the inheritance properties of distributions under the (positive or

negative) power transformation. That is, we determine the elasticity properties of the pdfs

that characterise the relations between distributions for the CES model. We consider the rela-

tions between cost, output, and revenue distributions (the CES involves power transformations

between these variables).

Lemma 2 (Inheritance) Let FU (u) be the CDF of a random variable U and let V = kU θ with

21Recall that αĉ is the elasticity of the cost distribution and must be constant to deliver the Pareto distributions
for the primary variables. Equivalently, αĉ is the tail parameter of the (Pareto) productivity distribution.

22Axtell (2001) estimates the sales revenue tail parameter as αr = .994 (and recall that απ = αr for the CES).
He estimates the tail parameter for firm size by employee numbers as 1.059, which one might take as a proxy
for αy. Both are estimated for 1997 US Census Bureau data. Intriguingly, (7) then suggests that ρ is close to 1
(indeed, larger!), at least for the aggregate data. However, empirical estimates of ρ from Broda and Weinstein
(2006) and Blonigen and Soderbery (2010) are quite different from 1.

23Values of σ from Broda and Weinstein (2006) vary from 1.2 for footwear (very differentiated) through 17.1
for crude oil (very homogeneous). The corresponding ρ values are 0.17 and 0.94. Coffee comes in at ρ = 0.6: the
CES would then suggest that unit costs for coffee should be close to uniform if (7) is to hold and the revenue
tail parameter is close to 1 in the industry.
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k > 0 and θ 6= 0. Let ηfU (v) be the elasticity of fU (u) with u =
(
v
k

)1/θ
. Then

ηfV (v) =
1

θ
{ηfU (v) + (1− θ)} . (14)

Proposition 3 Hence, if ηfU (v) > −1, then ηfV (v) > −1 iff θ > 0; if ηfU (v) < −1, then

ηfV (v) > −1 iff θ < 0. Furthermore, ηfV (v) is strictly decreasing in θ iff ηfU (v) > −1.

Proof. Consider first θ > 0. Because FV (v) = FkUθ (v) = FU

[(
v
k

)1/θ
]
, then we have

fV (v) =
1

θ

(v
k

)1/θ 1

v
fU

[(v
k

)1/θ
]
.

Differentiating this identity,

f ′V (v) =
1

θ2

(v
k

)2/θ 1

v2
f ′U

[(v
k

)1/θ
]

+

(
1

θ
− 1

)
1

θ

(v
k

)1/θ 1

v2
fU

[(v
k

)1/θ
]
,

so ηfV (v) =
1

θ

(vk)1/θ f
′
U

[(
v
k

)1/θ
]

fU

[(
v
k

)1/θ
] + (1− θ)

 .

Hence the required condition (14) holds.

Similarly, for the negative power transformation (i.e., when θ < 0) in Lemma 1(c), because

FV (v) = FkUθ (v) = 1 − FU
[(

v
k

)1/θ
]
, we again obtain (14). Both cases (θ > 0 and θ < 0) are

covered by the statement in the Proposition.

For the last part, assume first that ηfU (v) > −1. In this case, the relation ηfV (v) =

1
θ
{ηfU (v) + 1} − 1 defines two decreasing rectangular hyperbolae separated by θ = 0 and
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ηfV (v) = −1. If ηfU (v) < −1, the two rectangular hyperbolae are increasing, with the same

asymptotes.

Notice from (14) that ηfU (v) = −1 if and only if ηfV (v) = −1, regardless of θ 6= 0.

Furthermore, ηfV (v) increases with ηfU (v) if and only if θ > 0, so that density elasticities move

in the same direction when the economic variables are positively related.

The uniform distribution for U clarifies the role of the other term. Then ηfU = 0, and so

ηfV (v) > 0: hence, f ′V (v) > 0 if and only if θ ∈ (0, 1). Then an increasing fU (u) is reinforced,

but a decreasing one is offset (and may be overturned). That is, f ′V (v) ≥ 0 is guaranteed for

f ′U (u) ≥ 0 and θ ∈ (0, 1); and θ > 1 is necessary for f ′V (v) ≤ 0 if f ′U (u) ≥ 0. For θ < 0,

f ′V (v) < 0 if f ′U (u) ≥ 0. For example, uniform costs in CES imply a decreasing revenue density

(due to convexity of the revenue function in c).

More specifically, taking U as cost, then elasticities of output (where θ = − 1
1−ρ < 0) and

revenue are (where θ = − ρ
1−ρ < 0):24

ηfY = − (1− ρ)

(
ηfC + 1 +

1

1− ρ

)
(15)

and

ηfR = −
(

1− ρ
ρ

)(
ηfC +

1

1− ρ

)
. (16)

For the Pareto circle, the output and revenue density elasticities are ηfY = − (αy + 1), and

24Or, in terms of the elasticity of substitution, σηfY = −ηfC − 1− σ and ηfΠ = − 1
σ−1 (ηfC + σ).
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ηfR = − (αr + 1) respectively.25 The cost (or price) density elasticity is ηfC = αĉ − 1 (so that

ηfCmust exceed −1 for the underlying cost distribution to be increasing in c). Recall that the

cost density elasticity is the same as the price one, so cost and price can be interchanged in the

statements below. We prefer to retain costs because they are a primitive to the model.

Notice first that a greater cost density elasticity feeds through to a smaller output or revenue

density elasticity. Recalling that the latter are negative, this means that those densities become

more elastic (more responsive to output or profit levels): more variation in the fundamental

variable causes more variation in the induced economic variables.

The impact on these elasticities of the degree of industry product differentiation is rather

interesting. The derivatives of (15) and (16) with respect to ρ have the sign of (ηfC + 1), which

is positive. This means that the density elasticities are larger, and (being negative) hence

actually less elastic when there is less product differentiation (higher ρ). This is because the

equilibrium profit and output functions become more elastic (as expected) when ρ rises, since

the underlying cost heterogeneity is parlayed into more revenue variability when products in

the industry are closer substitutes.26 Then revenue and output densities (i.e., as functions of

revenue and output respectively) get less responsive to their arguments. These densities are

flatter because there is higher variability in the outputs and revenues of firms.27

25The output and profit ones are elastic (below −1) because the α’s are positive. The cost one must exceed
−1 (but can be positive) because αĉ > 0 for the cost distribution to be increasing.

26For example, the profit elasticity is ρ
ρ−1 , so its derivative is negative. The elasticity is negative, and becomes

more so as ρ increases.
27This can be seen most clearly with a uniform cost density, so ηfC = 0. Then the density elasticities are
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Combining (15) and (16) gives the relation between output and revenue density elasticities

as

ηfR =
1

ρ
ηfY +

1− ρ
ρ

. (17)

This indicates that these two elasticities are positively related, with the revenue one both more

leveraged (i.e., its coefficient, 1
ρ
> 1) and more responsive to the output one the smaller is

ρ. Moreover, recalling that both elasticities are below −1,28 a higher ρ entails a higher (less

elastic) revenue density elasticity: less product differentiation in the sector means a flatter

revenue density even conditioning on a given output density.

4.3 Modes and slopes

Equations (15) and (16) imply several slope conditions, including:

f ′Y (y) < 0 iff ηfC (y) > −1− 1

1− ρ
and f ′R (r) < 0 iff ηfC (r) > − 1

1− ρ
.29

These relations combine technological and taste distribution properties. A decreasing revenue

density implies a decreasing output density, while an increasing output density is necessary

for an increasing revenue density (since f ′R (r) < 0 iff ηfY < ρ − 1 by (17)). The relations

ηfY = − (2− ρ) and ηfr = − 1
ρ and so higher ρ increases both and they become less responsive. If ρ is small,

the CES demand system entails that revenues and outputs are almost the same for all firms, so densities pile
up on very close output or revenue values.

28The derivative with respect to ρ has the sign of − (ηfY + 1), which is positive because ηfY < −1.
29Here the ηfC ’s depend on c through y and π respectively. When we compare density shapes below, we are

comparing at the y and π values that are compatible through the same c that generates them from (3) and (5).
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also have implications for properties of distribution modes. For example, if both output and

revenue densities were uni-modal, then the modal revenue level is higher than the revenue level

associated to the modal output. Loosely, the most common revenue level is higher than the

revenue of the most common output level: if this were not true in the data, the data could

not have been given from a CES model. Also, note from (15) and (16) that an increasing cost

density implies both output and revenue densities are decreasing. Recall though that high costs

are associated to low output and revenue, so if the cost density is uni-modal then the others

can also be uni-modal.30

Likewise, an analogous reasoning with (17) indicates that if the output density has a single

peak then the revenue density function is increasing at the corresponding revenue, so the mode

of the revenue density is below the revenue level of the modal density. Pulling this together, the

output density peaks before the revenue density, which in turn peaks before the cost density.

Put another way, decreasing cost density drives decreasing revenue density drives decreasing

output density. The chain reverses for increasing output density driving the two others increas-

ing. These qualitative features should hold empirically under the CES when there is enough

information on two or three densities.

Proposition 2 above implies that the standard CES model with cost heterogeneity alone

30For the power cost case, the associated revenue and output densities are always decreasing (as should be
the case since they are Pareto!) To see this, note that for FC (c) = (c/c)

αĉ then ηfc = αĉ− 1 and so the revenue
slope condition above becomes f ′R (r) < 0 iff αĉ + ρ

1−ρ > 0, which must hold since both terms are positive.
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cannot deliver (say) Pareto distributions for both revenue and prices. Indeed, if revenue is

Pareto distributed, then price must follow a power distribution. We next introduce quality

heterogeneity in Section 5 to decouple the CES-circle into two or more satellite orbits, and so

enrich the associated distribution circles.

5 CES quality-enhanced model

5.1 General specification

We now extend the model to allow for quality differences across products. Quality heterogeneity

appears to play an important role empirically. Following Baldwin and Harrigan (2011) and

Feenstra and Romalis (2014), we rewrite the Representative Consumer’s sub-utility functional

as χ =
(∫

Ω
z (ω)ρ dω

)1/ρ
with ρ ∈ (0, 1) and interpret z (ω) = v (ω) q (ω) as the quality-adjusted

consumption of variant ω, where v (ω) is its quality and q (ω) is the quantity consumed (as

before). We clarify the quality interpretation in Section 6 in terms of a disaggregate model of

individual discrete choice. The corresponding demands are:

h (pi, p̂i) =
Ξ (I)

pi

p̂
ρ
ρ−1

i∫
ω∈Ω

p̂ (ω)
ρ
ρ−1 dω

, (18)

where we have defined p̂i = pi/vi, which is interpreted as the price per unit of “quality,” and

Ξ (I) is as in Section 2 for the three different cases (the amount spent on the differentiated

commodity).
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The key feature of (18) is that pi enters both with and without quality. The standard model

(1) ensues when all the v’s are the same.

With a continuum of firms (as per the usual monopolistic competition set-up), Firm i’s

equilibrium price solves max
pi

{
(pi−ci)
pi

p̂
ρ
ρ−1

i

}
, so that the pricing solution pi = ci

ρ
and the Lerner

condition (2) still hold independent of quality. Hence, defining xi = vi/ci, which we refer to

as quality/cost, all firms set the same proportional mark-up, and the equilibrium profit now

depends on quality/cost:

πi = (1− ρ) Ξ (I)
x

ρ
1−ρ
i

DX

= (1− ρ) ri, (19)

where DX =
∫
ω∈Ω

x (ω)
ρ

1−ρ dω is assumed to converge. Equilibrium profit is still a fraction

(1− ρ) of sales revenue, so their two distributions are the same up to a scale factor. Likewise,

(19) implies that profit, sales revenue, and quality/cost distributions are in the same closed

power-family.31

Price and cost distributions are still the same up to a scale factor, but productivity (recipro-

cal costs) and profits are no longer necessarily in the same power-family (because one depends

on the distribution of c and the other on the distribution of x). How the cost and profit dis-

tributions are linked is determined by the link between cost and quality. A functional relation

between cost and quality/cost ties this down (and is illustrated in the next sub-section), along

31Profits are increasing in x so that firms would like this as large as possible. We can link cost and quality
through a type of production function and have (heterogeneous) firms choose their x. More anon.
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with the other distributions on the profit side.

The equilibrium output is given by

yi =
ρ

ci
Ξ (I)

x
ρ

1−ρ
i

DX

, (20)

and so the output distribution may be in neither the productivity nor the quality/cost power-

family, because it draws from both the cost and quality/cost distributions (none of these links

are explored in Baldwin and Harrigan, 2011, or Feenstra and Romalis, 2014.)

Therefore, there are at most three (linked) distribution families. To summarise:

Proposition 4 (Decoupling the CES circle) Consider the quality-enhanced CES model of mo-

nopolistic competition. Then, in equilibrium:

(a) Price and cost distributions are multiplicatively related;

(b) Profit and sales revenue distributions are multiplicatively related;

(c) Profit, sales revenue, and quality/cost distributions are positive-power related;

(d) The output distribution is not in general multiplicatively or power related to any of the

other distributions.

We can derive analogous elasticity relations to those in Section 3 to link the elasticities

of the densities on the third leg (c).32 We next illustrate the Proposition with an example

32Namely, ηfY = (1− ρ)
(
ηfX − 1− 1

1−ρ

)
and ηfΠ =

(
1−ρ
ρ

)(
ηfX − 1

1−ρ

)
.
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which specifies a power relation between quality and cost and amends statement (d) of the

Proposition.

5.2 Constant elasticity quality/cost relation

Suppose that x = cγ so that quality/cost is increasing with cost if γ > 0 (i.e., quality rises

faster than cost), and it is decreasing if γ < 0. The latter case is embodied in the standard

CES model above where γ = −1 and so “better” firms are those with lower costs. The former

case effectively corresponds to Feenstra and Romalis (2014).33 The advantage of the constant

elasticity relation is that it allows us to deploy results (Lemma 1) on applying power transforms

to random variables.

Because revenues are proportional to x
ρ

1−ρ
i (see (19)), they are proportional to c

γ ρ
1−ρ

i . Hence

if γ > 0, the revenue distribution is in the same power-family as the cost distribution. So

then too are the profit and quality-cost distributions (see (3)). But if γ < 0, profits, revenues

and quality-costs are in the inverse (or “opposite”) power-family, which is the power-family of

productivity.34 This is the generalisation of the earlier standard CES result. Prices, of course,

still distributed (up to a scale factor) like costs.

Output is more intricate because it draws its influences from both sides. Indeed, from (18),

33Along the same lines as Feenstra and Romalis (2014), we can let v = lα be the quality produced at cost wl+φ
with φ a firm-specific productivity shock, where l is labour input, w is the wage, and α ∈ (0, 1). Maximising
x = lα/ (wl + φ) gives the optimised value relation between cost and quality as x =

(
α
w

)α
cα−1 and so the

quality relation takes a power form. Here it is decreasing (and depends on the fundamental via x = φα−1).
34Recall that one distribution is the inverse of another one if it is its survival function.
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output is proportional to x
ρ

1−ρ
i /ci, which equals c

γ ρ
1−ρ−1

i under the constant elasticity quality/cost

formulation. This implies that for γ >
(

1−ρ
ρ

)
the output and cost distributions are in the same

power-family, while otherwise they are in inverse families. A summarizing statement:

Proposition 5 (Constant elasticity quality/cost relation) Consider the quality-enhanced CES

model of monopolistic competition with x = cγ. Then, in equilibrium:

(a) Price and cost distributions are multiplicatively related;

(b) Profits, sales revenue, and quality/cost distributions are positive-power related to unit

costs for γ > 0 and negative-power related for γ < 0;

(c) The output distribution is negative-power related to unit costs for γ <
(

1−ρ
ρ

)
, and

positive-power related for γ >
(

1−ρ
ρ

)
.

The actionable tests for the model are that estimated profit and revenue distributions should

be the same up to a multiplicative factor. Likewise for prices and cost.35 If these hold (which

is also true for Proposition 4), the test for the constant elasticity bridge function is that these

distributions lie in the same CPF. If so, then the value of γ can be estimated from them. And

the output distribution should be in the same CPF too.

Take the example of a Pareto distribution for unit costs. First, prices are also Pareto

distributed. Second, profits, revenue, and quality/cost are Pareto distributed for γ > 0 and

35This is equivalent to mark-ups being constant for the CES: this restriction we soften in our demand extension
Section 6.
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power distributed for γ < 0 (they are independent of cost if γ = 0). Third, output is power

distributed for γ <
(

1−ρ
ρ

)
, and Pareto distributed for γ >

(
1−ρ
ρ

)
.36 Hence, this formulation can

deliver Pareto distributions for both prices and profits via the constant elasticity quality/cost

function. Pareto revenue and profit distributions are well documented in the literature. Coad

(2009) analyzes price distributions for wine, one-week holidays in Majorca, used cars, and

London house prices, situations where there is considerable quality differentiation.37 He finds

the resulting distribution is close to Pareto, though less skewed (and more skewed than the

lognormal).

Proposition 5(b) indicates that quality/cost and profit distributions are in the same power-

family. For example, suppose that the distribution of quality/costs is Pareto: FX (x) = 1 −

(x/x)αx and assume that αx
1−ρ
ρ
> 1, so that the size distribution of profit is Pareto with tail

parameter απ = αx
1−ρ
ρ

. Our result is that the profit tail parameter is the product of a preference

parameter and a quality/cost distribution one.38

While the introduction of quality enables matching of disparate distribution pairs, the CES

still involves at most three distribution families (only two for the constant elasticity case, with

one being the inverse family of the other). Second, prices are independent of qualities, but

percentage cost increases are passed on at equal percentage rates because the Lerner measure,

36If costs are power distributed, Pareto and power are reversed in the above statements.
37Note though that for the first two cases the products are sold by a single firm.
38Although why they yield the same constant across settings remains intriguing.
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l = p−c
p

, is constant. Even when c depends on quality, l is independent of quality.

Atkin et al. (2015) find that the elasticity of mark-ups is significantly greater than that

for costs, and quality differences appear to play an important role in this. Therefore we next

introduce a generalization of the structure above, which might better explain the patterns

found, and it yields flexible mark-up patterns.

6 (Really) Beyond the CES

So far, we have considered distributions of equilibrium variables on the supply side. These are

driven by fundamental productivity (and/or quality) heterogeneity. The CES model is usually

presented from a Representative Consumer utility perspective. However, individuals typically

consume one (or at most a few) of product variants. The question whether the representative

consumer can capture an aggregate relation of individuals making discrete choices was addressed

by Anderson et. al. (1992) who showed how to underpin the CES demand system by aggregating

heterogeneous individuals’ discrete choices. Here, we micro-found how quality enters individual

utilities consistent with aggregating to the previous formulation, and use this technique to

generalize the demand model to bridge CES to Logit, which is the workhorse of empirical IO.

We construe cases in between and beyond both book-end cases. Doing so enables us to deliver

a wide variety of mark-up properties: empirical work on mark-ups can identify the appropriate

demand model.
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6.1 Discrete choice roots for CES and Logit

There is a set of consumers (with mass 1) making choices according to a discrete choice frame-

work. Suppose that each consumer makes a discrete choice of which variant to buy, based on a

conditional (indirect) utility for variant i as

ui = ūi + εi, i ∈ Ω (21)

where ūi is the common “measured” utility and εi is the individual preference shock (or id-

iosyncratic draw). We assume that ūi has a Constant Relative Risk Aversion (Box-Cox trans-

formation) form, so:

ūi = Ī + vi −
pbi − 1

b
, i ∈ Ω, (22)

where Ī is individual income, vi represents the quality of option i, ūi is decreasing in pi, and

b is a parameter enabling us to move seamlessly between CES (b = 0) and Logit (b = 1).

Each consumer chooses the option for which ui is greatest. Assume that the εi are i.i.d.

Type 1 Extreme Value (or “Gumbel”) distributed with scale parameter µ ≥ 0.39 The choice

39The Gumbel distribution takes the form F (s;β, µ) = exp (− exp (β − s) /µ), where β is the “location”
parameter. The mean is β + µγ (where γ is Euler’s constant), and the standard deviation is πµ/

√
6.
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probabilities for any option follow the continuous version of the standard logit formula:

Pi =
exp

(
ūi
µ

)
∫
ω∈Ω

exp
(
ū(ω)
µ

)
dω
. (23)

Applying Roy’s identity to (22) indicates that the quantity consumed of option i, conditional

on preferring it, is pb−1
i . Therefore, the expected demand for i is h (pi) = pb−1

i Pi or

h (pi) = pb−1
i

exp
(
ūi
µ

)
∫
ω∈Ω

exp
(
ū(ω)
µ

)
dω
. (24)

6.2 Case b = 0: CES

For b = 0 when all vi are the same, we obtain the CES demand form (1) from l’Hôpital’s rule:

h (pi) =
1

pi

p
− 1
µ

i∫
ω∈Ω

p (ω)−
1
µ dω

, (25)

where the parameters are matched by µ = 1−ρ
ρ

= 1
σ−1

(or ρ = 1
1+µ

). Notice how the limit cases

concur. If µ→ 0, products are perfect substitutes from (21) and this corresponds to ρ→ 1 for

the CES. If µ → ∞, then idiosyncratic tastes are paramount, and ρ → 0 (the Cobb-Douglas

limit).

For b = 0 and different vi, and letting xi = ṽi/pi, where ṽi = exp vi is a convenient rescaling
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of measuring quality, we recover the form of (20):

h (pi) =
1

pi

x
1
µ

i∫
ω∈Ω

x (ω)
1
µ dω

, (26)

with µ = 1−ρ
ρ

.

We now describe the relation between equilibrium output and quality that comes from

the CES model. Temporarily dropping subscripts to ease clutter, we have output and price

(recalling the earlier CES mark-up formula, (2)) respectively as

y =
1

DX

1

p

(
ṽ

p

)1/µ

with p = (1 + µ) c (ṽ) , so y =
1

DX

ṽ1/µ [(1 + µ) c (ṽ)]−(1+µ)/µ , (27)

where we make explicit the dependence of unit cost on quality, and where the equilibrium value

of the denominator in (26) is DX = (1 + µ)−1/µ ∫
ω∈Ω

[ṽ (ω) /c (ω)]
1
µ dω. Then l = p−c

p
= µ

1+µ
is

independent of c.

Differentiation yields dy
dṽ
∝ [c (ṽ)− ṽc′ (ṽ)], so that output rises if the cost function is inelas-

tic. This result stems from two conflicting forces. Higher quality raises demand at constant

prices, but raises price too through the mark-up. If cost rises quickly enough with quality, then

output falls.

These forces are present in the extended model too, so that whether or not higher size is

associated to higher quality depends on the elasticity of the cost function. Atkin et al. (2015)
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find (for the case of footballs made in Sialkot, Pakistan) that mark-ups rise with firm size, as

measured by employment. Since they argue that higher quality is expressed as higher quality

inputs, then we can take employment as a good proxy for output. Thus we could infer, through

the lens of the current model, that costs are quite inelastic in quality.

6.3 Case b = 1: Logit

When b = 1 we have the standard (quality-enhanced) Logit model with40

h (pi) =
exp (xi/µ)∫

ω∈Ω
exp (x (ω) /µ) dω

, (28)

and here xi = vi − pi. Straightforward algebra yields the equilibrium price for the monopolis-

tically competitive Logit model is

p = c (v) + µ, (29)

which concurs with the limit of the oligopoly model (given in Anderson et al., 1992) when

the number of firms gets large. We have thus just introduced the tractable and simple Logit

monopolistic competition model into the literature.

6.4 Case b ∈ (0, 1): between Logit and CES

We now describe the equilibrium properties for b ∈ (0, 1).41

40An outside option is readily appended here and below.
41We discuss below what happens outside the range b ∈ (0, 1).
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Firm i’s profit is proportional to

πi = (pi − ci) pb−1
i exp

(
ūi
µ

)
,

where we recall from (22) that ūi = Ī + vi −
(
pbi − 1

)
/b. Then we have

dπi
dpi

= pb−1
i

(
pbi
µ
− b+ 1

)
exp

(
ūi
µ

) 1
pbi
µ
− b+ 1

− li

 , (30)

where the terms before the parentheses are positive (for pi > 0) and recall li = (pi − ci) /pi is

the Lerner index. Here li monotonically increases from 0 at pi = ci to 1 when pi → ∞. The

term 1/
(
pbi
µ
− b+ 1

)
> 0 is strictly decreasing in pi > 0 and asymptotes to 0 as pi →∞. Thus

there is a unique solution to the first-order condition dπi
dpi

= 0, call it pei . Moreover profit is

strictly quasi-concave, because dπi
dpi

> 0 when pi < pei and dπi
dpi

> 0 when pi > pei . When b → 1

(Logit), the equilibrium price tends to (29), while the CES price form in (27) results when

b→ 0.

The comparative static effects of an increase in ci are to decrease equilibrium li, as can be

seen by noting that li moves down for given pi, while the other term in brackets in (30) is

unchanged. However, a change in quality, vi, does not alter the equilibrium percentage mark-

up, li. The implication is that when higher quality is associated to higher cost, then percentage

mark-up falls. We discuss below some empirical evidence for a particular industry, and how
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this can be consistent with b < 0 instead.42

The absolute mark-up, mi = pi − ci, moves the other direction with ci (for b ∈ [0, 1)). To

see this, rewrite the profit derivative as

dπi
dpi

= pb−2
i

(
pbi
µ
− b+ 1

)
exp

(
ūi
µ

) pi
pbi
µ
− b+ 1

−mi

 (31)

and note that that the slope of the first term in brackets has the sign of (1− b) and that this

slope is below 1. Again, quality only impacts the mark-up through the cost, and the positive

slope property implies that mi rises with ci.

6.5 Case b > 1: the super-logit

While this case is incongruent with the discrete choice underpinnings given above (because the

conditional demand slopes up), it nonetheless delivers a system of product demands that slope

down under some parameter restrictions, and allows us to analyze a tractable functional form

for demand that goes the “other side” of Logit, where absolute mark-ups decrease with cost.

The product demand slopes down for pi > ci as long as ci > ((b− 1)µ)1/b, and so we

henceforth assume that condition holds. Now, along the lines of the earlier analysis, we have

that profit remains quasi-concave and that higher ci concurs with a lower percentage mark-up,

li, because the first term in brackets in (31) is decreasing for b > 1. However, now it means a

42Different parameter values could hold for different industries, of course, and our model ranges over a wide
span.
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lower absolute mark-up, mi, too. Clearly, the latter property implies the former.43

6.6 Case b < 0: the sub-CES

Because the first term in parentheses in (30) is flat for the CES, then profit quasi-concavity still

holds in the neighborhood of b = 0. Surprisingly, this property is preserved for all b < 0. To see

this, recall that profit is quasi-concave if the demand reciprocal is convex (Caplin and Nalebuff,

1991). The demand reciprocal is proportional to p1−b exp
(
pb

µb

)
, which has second derivative

proportional to −b (1− b) p−b−1 + (1−b)
µ
p−1 + 1

µ2
pb; each term is positive for b < 0, as desired.

Now higher ci necessarily entails higher percentage mark-up, li, for now the term 1
pb
i
µ
−b+1

in (30)

increases in ci. Higher li drives higher mi too.

The implication here is that higher qualities, through higher production costs, now drive

higher mark-ups. The regime b < 0 is consistent with Finding (3) of Atkin et al. (2015)

insofar as they argue that mark-up elasticity exceeds cost elasticity with respect to firm size (as

measured by employment). Their Finding 4 is that larger firms have higher costs due to higher

quality inputs, so higher mark-ups are set on high quality products (Finding 5). In order to

generate the finding that large size correlates with high quality we refer back to the property

enunciated in Section 6.2 that higher quality raises demand but raises price too, but the direct

effect dominates in equilibrium when cost rises slowly enough with quality. So our takeaway is

43A lower mi implies a lower li, and the contrapositive is that a higher li implies a higher mi: see Table 1
below.
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that these findings are consistent with b < 0 and there being an inelastic relation between costs

and quality.

We conclude with a summary table for the two different mark-ups.

b < 0
sub-
CES

b = 0
CES

b ∈ (0, 1)
b = 1
Logit

b > 1
super-
Logit

l ↑ µ
1+µ

↓ µ
c+µ

↓
m ↑ cµ ↑ µ ↓

Table 1: Percentage Mark-up, l, and Absolute Mark-up, m.

When relations between economic variables are monotone, the analysis goes through as

before. In the discussion below, we assume that quality is fixed, as in the CES standard

model and as in Mrázová et al. (2017). Equilibrium profit is decreasing in cost (by the

envelope theorem). The Lerner index and markup are monotone transformations, increasing or

decreasing according to the value of b (see Table 1). Output decreases with price (a condition on

marginal cost is required when b > 1). Finally, equilibrium price increases with cost (see (31)).

These monotonicity properties translate into one-to-one relations between CDFs (or survival

functions) of cost, output, price, mark-up, and profit, using similar relations as before. Here

the CDF of price is numerical, since the equilibrium price does not have a closed form (see (31))

except for CES and Logit, which have explicit prices. We next treat the Logit with quality and

provide explicit relations between the CDFs.44

44Anderson and de Palma (2001) rank firms by quality-cost for the Logit oligopoly. The concept needs to
be extended for the generalized CES model to determine the monotonicity relations needed to derive relations
between the CDF of the different economic variables (see the interpretation of quality by Kugler and Verhoogen,
2012).
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7 Distributions for Logit

We finish up with the analysis of distributions for the Logit, which corresponds to b = 1. The

Logit model is a mainstay for structural empirical Industrial Organization. The monopolistic

competition model delivers closed-form solutions for the primary variables.

The key features of Logit are that absolute mark-up is constant, pi = ci + µ (from (29)) so

that higher qualities bear the same mark-up as lower ones, although firm size is consequently

larger. The equilibrium price distribution therefore tracks the unit cost distribution (up to the

additive constant, µ). Because then πi = miyi = µyi, the profit and output distributions are in

the same multiplicative class. The revenue distribution depends on both the cost distribution

and the quality-cost distribution (recall xi = vi − ci). The most interesting relation is between

the profit (or output) and quality-cost distributions.

The following extension to Lemma 1 gives the relevant new transformations.

Lemma 3 (Transformation extension) Let FU (u) be the CDF of a random variable U . Then,

the CDF of FV (v) for the additive transformation (V = k (U + a), k > 0, a > 0), exponential

transformation (V = k1 exp (k2U), k1 > 0, k2 > 0) are respectively given by:

(a) (Additive) FV (v) = FU
(
v
k
− a
)
;

(b) (Exponential) FV (v) = FU

[
1
k2

ln
(
v
k1

)]
.

The importance of the Lemma is that both profit and output are related to quality-cost by
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exponential transforms for the Logit. This transformation renders log distributions. First, the

normal distribution is perhaps the most natural primitive assumption to take for quality-costs.

Then profit Π ∈ (0,∞) is log-normally distributed. The log-normal has sometimes been fitted

to firm size distribution (see Cabral and Mata, 2003, for a well-cited study of Portuguese firms).

Note that a truncated normal begets a truncated log-normal.

The simplest text-book case is the uniform distribution. Then, by Lemma 3b the equilibrium

profit Π has distribution FΠ (π) = µ ln
(
πDL
µ

)
, where DL is the logit denominator, and the profit

density is unit elastic. A truncated Pareto distribution leads to a truncated Log-Pareto for profit

(or output).

The most successful function to fit the distribution of firm size has been the Pareto. The

corresponding distribution of quality-cost (x = v − c) is:

Proposition 6 (Exponential and Pareto distributions under Logit) For the Logit model of mo-

nopolistic competition, and let quality-cost be exponentially distributed: FX (x) = 1−exp [−λ (x− x)],

λ > 0, x > 0, x ∈ [x,∞), with λµ > 1. Then equilibrium output and profit are Pareto dis-

tributed: FY (y) = 1−
(
y

y

)αy
and FΠ (π) = 1−

(
π
π

)απ
, where αy = απ = λµ > 1.

The proof is in the Appendix. Thus the shape parameter, αy = απ, for the endogenous

economic distributions depends just on the product of the taste heterogeneity and the technol-

ogy shape parameter. Note that DL is bounded if µ > 1/λ, i.e., the taste heterogeneity should
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exceed average quality-cost.

8 Conclusions

The CES model has been the workhorse model of monopolistic competition with asymmetric

firms. The central distribution in the literature has been the Pareto for sales revenues. We

show that all relevant distributions are Pareto if any one is (caveat: for prices and costs it is

the distribution of the reciprocal that is Pareto). This result we term the Pareto circle. To

put this another way, suppose we posit that productivity (the reciprocal of costs) is Pareto

distributed. (Equivalently, costs have a power distribution.) Then, so does the reciprocal

of prices follow a Pareto distribution, and the other variables (output, revenue, and profit)

are all Pareto distributed. The Pareto circle cannot be escaped if one element is Pareto. It

is not possible to have (for example) a Pareto distribution for profits and (another) Pareto

distribution for prices in the CES model. Similar results hold for other distributions, yielding

a more general CES circle: the assumed distribution of productivity (cost reciprocal) is in the

same closed power-family as the equilibrium distributions of outputs, profits, etc.

This analysis determines the logical relations between equilibrium distributions. These are

simple for the core Pareto distribution, but they turn out to be surprisingly general once couched

as relations between elasticities of equilibrium densities. Put another way, the Pareto results

form a solid benchmark for broader distribution relations. The relations (between equilibrium
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distributions) describe how shapes of densities, as described by their elasticities, are all related

to each other in the CES through a simple linear relation.

The CES circle is broken by allowing for a further dimension of firm heterogeneity. Fol-

lowing Baldwin and Harrigan (2011) and Feenstra and Romalis (2014), we introduce “quality”

heterogeneity and link the quality and cost distributions via a function that writes quality as

a function of cost. Doing this then enables us to get linked groups of distributions. In one

group are profit, revenue, and quality/cost; and in another are costs and prices. The output

distribution draws from both these groups. Our leading example is a quality/cost function that

can deliver Pareto distribution for both revenues and prices. The circle could be broken with

other heterogeneities too.

Even with the introduction of quality, the CES remains restrictive in the properties it

imposes. To break the constant (percentage) mark-up property we introduced a simple pa-

rameterization linking CES to Logit and forms beyond. One virtue of the extended model is

that it helps explain recent results on quality, firm size, and mark-ups. With more data com-

ing onstream, more empirical verification of the shapes of the distributions of these variables

should be forthcoming. Such data would evaluate the scope of the proposed extended CES,

and suggest whether more elaborate demand models are required to better explain observed

economic distributions.
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Appendix A Proof of Proposition 6

We first calculate the logit denominator, DL, from (28), using the exponential CDF FX (x) =

1−exp (−λ (x− x)) with density fX (x) = λ exp (−λ (x− x)) and λ > 0, x > 0, and x ∈ [x,∞).

Integrating,

DL =
Mλµ

λµ− 1
exp

(
x

µ

)
,

which is positive and bounded under the assumption that λµ > 1. Now, the CDF of Π is given

by FΠ (π) = Pr
(

exp(x/µ)
DL

< π
)

= Pr (x < µ ln (DLπ)) = FX (µ ln (DLπ)). Then

FΠ (π) = 1− exp

(
−λ
(
µ ln

(
πDL

µ

)
− x
))

= 1−
(
πDL

µ

)−λµ
exp (λx) .

The profit, π, of the lowest quality-cost firm solves FΠ (π) = 0, and thus verifies the expected

property π = µ
DL

exp
(
x
µ

)
. Inserting this value back into FΠ (π) gives the expression in Propo-

sition 6. The output distribution follows from the profit distribution:

FY (y) = Pr (Y < y) = Pr

(
Π

µ
< y

)
= FΠ (µy) = 1−

(
π

µy

)λµ
= 1−

(
y

y

)λµ
,

where the lowest output, y, is associated to the lowest profit, π = µy.
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