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As opposed to random disorder, which localizes single-particle wave functions in one dimension (1D) at
arbitrarily small disorder strengths, there is a localization-delocalization transition for quasiperiodic disorder
in the 1D Aubry-André model at a finite disorder strength. On the single-particle level, many properties of
the ground state at criticality have been revealed by applying a real-space renormalization-group scheme; the
critical properties are determined solely by the continued-fraction expansion of the incommensurate frequency
of the disorder. Here, we investigate the many-particle localization-delocalization transition in the Aubry-André
model with and without interactions. In contrast to the single-particle case, we find that the critical exponents
depend on a Diophantine equation relating the incommensurate frequency of the disorder and the filling fraction
which generalizes the dependence, in the single-particle spectrum, on the continued-fraction expansion of the
incommensurate frequency. This equation can be viewed as a generalization of the resonance condition in the
commensurate case. When interactions are included, numerical evidence suggests that interactions may be
irrelevant at at least some of these critical points, meaning that the critical exponent relations obtained from
the Diophantine equation may actually survive in the interacting case.
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I. INTRODUCTION

The localization of a system around random disorder is a
problem originally addressed by Anderson [1]. More recently,
once interactions were added, such systems were shown to
exhibit many-body localization (MBL) [2–4] whereby local
integrals of motion prevent thermalization. Random disorder
makes such systems difficult to study theoretically (due to the
necessity of disorder averaging) and experimentally (due to
the challenge of engineering random disorder) [5].

Between random disorder and no disorder, there is
quasiperiodic disorder as demonstrated by the Aubry-André-
(Harper) (AA) model [6,7]

HAA =
∑
j

h j n̂ j − J (ĉ†j ĉ j+1 + ĉ†j+1ĉ j ), (1)

where n̂ j = ĉ†j ĉ j , ĉ
†
j is a fermion creation operator on site

j, and h j = λJ cos(2π jβ + φ) for β an irrational number.
The model can also be understood as the result of a tight-
binding square-lattice Hamiltonian in the presence of a mag-
netic field yielding the famous Hofstadter butterfly when
the hopping amplitudes are the same [8]. Within the single-
particle spectrum, this model exhibits a one-dimensional
(1D) localization-delocalization transition at λ = 2, which
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can be seen by considering the duality transformation ĉk =∑
j exp(2π iβk j)ĉ j/

√
N sending λ → 4/λ [6].1

Adding the simplest interaction term HiAA = HAA +∑
j V n̂ j n̂ j+1 leads to the interacting Aubry-André (iAA)

model. The localization of the ground state was theoretically
predicted to persist once interactions were included [11,12].
Moreover, it was numerically demonstrated that the interact-
ing model would exhibit many-body localization [13–18], and
the universal properties of the MBL transition were predicted
to be different between the random and quasiperiodic case
[14], which has been shown in a toy model of MBL [19].
Interestingly, the MBL transition in the presence of interac-
tions does not seem to exist close to λ = 2 at V � J [20], but
dynamical studies suggest that the MBL transition occurs at a
large enough value of λ and V ∼ J [21,22].

One of the great advantages of this model, as opposed to
random disorder, is that it can be more easily realized ex-
perimentally in cold-atom systems with interactions [23–26]
and without interactions [27] or in photonic lattices without
interactions [28]. Experiments on the interacting model have
so far mostly focused on studying the MBL transition [23] and
other aspects of MBL physics [24–26].

In addition to the fascinating higher-temperature properties
of this system, the ground-state properties of this model, even
in the free case, are still being explored. Recent work on

1Note that when β is a Liouville number, the transition does not
occur [9,10], which should therefore be excluded when we say
“all β.”
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the noninteracting model has focused mainly on dynamical
studies [29–33] or the critical properties of the transition
[34,35], and numerous generalizations of the model have been
introduced to generate a system with a mobility edge [36,37]
or more topological features [38,39].

In this paper, we will focus on the ground-state critical
properties of the (interacting) Aubry-André model where it
was determined that the critical exponent of the correlation
length ν = 1 for the λ = 2 transition for all irrational β

[6]. It has been known that the universality class of the
single-particle ground state depended solely on the continued-
fraction expansion of β [40]; only recently, however, with
an explicit real-space renormalization-group (RSRG) scheme
[41–43], the authors of Ref. [34] derived an expression for
the dynamic critical exponent z(β ) for β � 1. Furthermore,
as studied in Ref. [44], a similar transition occurs in the limit
β = 1/q with q → ∞ at half-filling. (The authors of Ref. [44]
claim that ν ≈ 0.7 instead of the usual ν = 1, but we find that
ν ≈ 1 later.)

The above RSRG scheme only works for the single-particle
spectrum, and, although an RSRG for the middle of the spec-
trum exists [45], its assumptions are less physically clear, and
the RSRG procedure depends strongly on β and only works at
certain fillings. There exists therefore an open question about
z’s dependence on β and ρ where ρ = NF/N is the filling
fraction. The value of z at different filling fractions determines
how different parts of the energy spectrum scale with system
size [46–48] and is therefore useful for understanding the
multifractal properties of this system [49] as well as the
multiparticle ground-state transition properties. Furthermore,
it determines the low-temperature specific heat [49], and, as
studied by Ref. [50], the Kibble-Zurek mechanism can be used
to measure z at fixed system size. It was previously known
that z does depend on the filling fraction [40,45], and it was
incorrectly claimed that universality at half-filling was solely
determined by the continued-fraction expansion in Ref. [40]
(likely because the study was limited to only certain β), but
we are aware of no classification of the universality relation
between different filling fractions and different β.

In this work, we will present such a classification scheme.
In a sense that we will make precise in Sec. III B the uni-
versality is controlled by the integers n and m that most
nearly satisfy nβ − m = ρ where n and m are less than the
system size. In the case when n and m are constant as a
function of system size and the equation is exactly solved,
the filling is called commensurate, n specifies the order of
perturbation theory where there is a resonance between the
Fermi momentum and the λ cos(2πβ ) term, and the transition
occurs at λc = 0 with ν = n and z = 1. When n and m grow
with system size, the filling is called incommensurate, and this
equation is really a Diophantine equation that must be solved.
The transition occurs at λc = 2, with ν = 1, and z is specified
by the sequence of values of n/N as N → ∞.

Therefore, as we will show, the Diophantine equation that
originates from nβ − m = ρ determines the universality class
and reveals that, even at different fillings and different β,
the universal properties of the transition can be the same.
The same Diophantine equation has been considered for this
model in other contexts such as the integer-quantum Hall
effect as it is related to the Chern number of the band [51–54].

Once interactions are turned on, the ground-state phase
diagram becomes richer [15] (see Ref. [55] for the bosonic
version), but the critical exponent ν of the localization-
delocalization transition does not seem sensitive to the inter-
action strength at half-filling [56]. Having the same value for
all ν = 1, it is an open question whether the dynamic critical
exponent z remains the same, which would suggest that the
universality class is insensitive to the interaction strength. In
the integer quantum Hall effect, the value of ν appears to
be the same as the noninteracting model, but the value of
z = 1 seen in experiment is different than the z = 2 predicted
by the noninteracting model (see, for instance, Ref. [57] and
references therein).

We find that the interaction does not change the exponent
z, which suggests that the Diophantine equation controls
the universality even in the presence of interactions. As the
Aubry-André model can be derived from a two-dimensional
(2D) tight-binding Hamiltonian on a square lattice in the pres-
ence of a magnetic field, the robustness to interactions (and
perhaps other perturbations) of the exponents may originate
from the observation that the Diophantine equation can be
derived nonperturbatively just considering the properties of
the magnetic translation group where n = σH is the total Hall
conductivity [53,58]. In fact, in the incommensurate case,
the Diophantine equation relates systems with the same Hall
conductance per length σH/N .

The remainder of the work is organized as follows: Sec-
tion II is devoted to some essential technical information
needed to understand the rest of the paper. Section III fo-
cuses on the noninteracting AA model’s critical properties.
Sections III B and III C offer an explanation of the observed
universal classes in terms of the Diophantine equation. We
then move on to study the interacting model in Sec. IV, and
we conclude in Sec. V.

II. PRELIMINARIES

Throughout all of this work, we will be considering pe-
riodic or antiperiodic boundary conditions and system sizes
determined by the continued-fraction expansion for β, as is
typical [9,34,49]. The continued-fraction expansion for β can
be written as

β = n0 + 1

n1 + 1
n2+ 1

n3+···

= [n0, n1, n2, . . .], (2)

where, without loss of generality, we set n0 = 0 as it does
not affect HAA. Truncating the series at nk gives a rational
approximation to β as β ≈ Mk/Nk for Mk and Nk coprime.
The N → ∞ limit is taken by considering only the system
sizes Nk in order to be able to satisfy (anti)periodic boundary
conditions.

We will say two β’s have the same asymptotic continued-
fraction expansion if there exists some natural number k such
that, for all i > k, the ni appearing in the continued-fraction
expansion are the same.

A quantum critical point occurs when the state of the sys-
tem changes abruptly as some parameters in the Hamiltonian
are tuned. In our case, the ground-state changes from being
localized to delocalized as we move across the transition.

174203-2



CRITICAL PROPERTIES OF THE GROUND-STATE … PHYSICAL REVIEW B 101, 174203 (2020)

In a continuous quantum phase transition tuned by a single
parameter λ and occurring at λc, the correlation length close
to the transition scales as

ξ ∼ 1

|λ − λc|ν . (3)

For localized single-particle wave functions, ξ can be identi-
fied with localization length of the wave function. That is, if
the wave function is centered at i, the wave function decays as
e−| j−i|/ξ for large | j − i|.

The consequences of the diverging critical length are called
the critical properties; these properties include the correlation
length exponent ν and the dynamic critical exponent z, which
relates the scaling of a characteristic timescale t ∼ ξ z or
energy scale E ∼ ξ−z to the correlation length.

The critical properties can be understood via the
renormalization-group (RG) picture (see, for instance,
Ref. [59]). Given a Hamiltonian H (�λ) with a set of param-
eters expressed as a vector �λ, the RG transformation traces
over high-energy (or equivalently short-wavelength) degrees
of freedom leading to a new Hamiltonian H (�λ′). Critical
points are fixed points where �λ′ = �λ = �λc, and near the fixed
point, linearity of the RG transformation require that physical
quantities take on a scaling form. For example, the energy per
site has to behave as

E (�λ − �λc) − E (�λc) ∼ b−(d+z)F (u1b
y1 , u2b

y2 , . . .) (4)

with b > 1 being a scaling factor typically identified with
the correlation length ξ or the system size N , d is the di-
mensionality of the system, F is called a scaling function,
the yi are the eigenvalues of the RG transformation, and
�u = (u1, u2, . . .)T are the parameters �λ − �λc transformed to be
along eigenvectors of the RG transformation. If the exponent
yi > 0, ui is said to be a relevant direction as uibyi will grow
as �λ → �λc. Similarly, if yi < 0, ui is said to be an irrelevant
direction. If yi = 0, ui is said to be a marginal direction.

The form of the scaling functions is only valid near the
transition, and the data are said to collapse onto the scaling
functions if, for many different parameter values, the scaling
functions are the same. If one of the parameters is N , the
system size, these are known as finite-size scaling functions
and the exponents are determined by finite-size scaling. Devi-
ations from collapsing to a single curve are known as finite-
size effects if they disappear as N → ∞. Two critical points
are said to belong to the same universality class if all the
exponents are the same, and if all the scaling functions are the
same, up to a constant prefactor. (For a longer introduction of
critical properties, see, for example, Refs. [59,60].)

We will determine the exponents by computing the follow-
ing quantities: the (generalized) fidelity susceptibility and the
superfluid fraction. The fidelity susceptibility is a powerful
tool for studying quantum phase transitions (see Ref. [61] and
references therein). With a generalized version, the exponents
z, ν were extracted for the single-particle AA model [35], and
a transition with β → 0 in a controlled way with ν ≈ 0.7
was found at half-filling [44] (see also Fig. 6). The fidelity
susceptibility is defined as

χF = lim
δλ→0

−2 lnF

δλ2
; F = |〈�0(λ + δλ)|�0(λ)〉|, (5)

where |�0(λ)〉 is the ground state of HAA with parameter
value λ.

The superfluid fraction was used by Refs. [34,62,63] on
this model. It is given by


 = N2 d
2E

dθ2
, (6)

where E (θ ) is the ground-state energy with twisted periodic
boundary conditions and is related to the curvature of the
lowest band in the single-particle spectrum case [34].

These two quantities access certain critical exponents in the
following way [34,61,64]:

χF (λ = λmax) ∼ Nμ;

χF (λ = λmax) − χF (λ)

χF (λ)
= f (N1/ν (λ − λmax));


 = N2−zg(N1/ν (λ − λc)). (7)

Here, λmax is the value of λ that maximizes χF and is
typically close to λc, and μ, the critical adiabatic dimension,
is defined via the first equation [61].2 The functions f (x) and
g(x) are scaling functions. The exponent ν has been extracted
in the interacting Aubry-André model before using a different
quantity in Ref. [56].

Through 
, z is difficult to determine as it does not have
a peak, but we can extract the value of z in the V = 0
case through the generalized fidelity susceptibility via the
following equation [35,66]:

χF,2+2r =
∑
n �=0

|〈�n(λ)|HI |�0(λ)〉|2
(En − E0)2+2r

, (8)

where H = H0 + λHI , and the sum is over all excited states
|�n(λ)〉. When r = 0, we recover the usual fidelity suscepti-
bility. It is known that χF,2+2r ∼ Nμ+2zr at the critical point
[35,66], which provides an efficient means of extracting μ

and z. In the free case, for arbitrary fillings, this is a pos-
sible computation because only ∼N2 states contribute (see
Appendix A); once we compute z from the generalized fidelity
susceptibility, that same value is used to collapse the 
 curves
onto each other.

A. Boundary conditions

Since we are interested in the thermodynamic limit, we
expect that boundary conditions do not play such an impor-
tant role. However, we find that the boundary conditions do
influence the finite-size scaling collapse. Therefore, we want
to make as consistent a choice as possible. The easiest way
to continue is not to consider the fermionic Hamiltonian form

2Note that there is misrepresentation of the fidelity susceptibility
in the literature that says χF ∼ N2/ν , but this is not correct. This can
most easily be seen in the Kitaev honeycomb model where μ ≈ 5

2
and ν ≈ 1 [65]. However, it is quite common that μ = 2/ν, and we
will always be able to compute ν via the universal functions. We find
that μ ≈ 2/ν for this model with the largest deviation occurring for
β = “0” (see Fig. 6).
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TABLE I. Choice of phase φ and PF for a given N and NF when
computing 
 and χF,2+2r .

NF even NF odd

N odd φ = π,PF = 1 φ = 0,PF = −1
N even φ = π/2,PF = 1 φ = 3π/2,PF = −1

(1) above but to consider the spin- 1
2 Hamiltonian

H = −
N−1∑
j=1

J (S+
j S

−
j+1 + H.c.) − AJ (S+

N S
−
1 e

iθ + H.c.)

+
N∑
j=1

VSzjS
z
j+1 + h jS

z
j, (9)

where A = 1 corresponds to periodic boundary conditions
(PBC) and A = −1 corresponds to antiperiodic boundary
conditions (ABC). We have made the twist in the boundary
condition θ explicit. When we map back to the fermionic
Hamiltonian via a Jordan-Wigner transformation, we find that,
up to a shift in the chemical potential,

H = −
N−1∑
j=1

J (ĉ†j ĉ j+1 + H.c.) − PFAJ (ĉ†N ĉ1e
iθ + H.c.)

+
∑
j

h j n̂ j +V n̂ j n̂ j+1, (10)

where the number of fermions NF determines PF = (−1)NF =
(−1)N

∏
i(2S

z
i ). We will set J = 1 from here on in. This

is a number-conserving Hamiltonian, so we have the good
quantum number NF = N↑, the number of spin ups, and we
will study it at the filling ρ = NF/N = N↑/N .

Within the spin language, the Hamiltonian exhibits
spin-flip symmetry, which relates the ground states
� (λ/|J|, sgn(J ), A, φ, N↑ ) ↔ � (λ/|J|, sgn(J ), A, φ +
π,N − N↑). Since sgn(
) = (−1)NF , the data cannot be
collapsed well if NF takes both even and odd values. We
fix this by using the setup in Table I. Essentially, this
guarantees keeping the spin Hamiltonian the same, though
using φ ∈ {0, π}, being not a generic value of φ, means that
the collapse fails in certain cases and other angles need to be
tried.

The specification in Table I means we are looking at a
system with ABC in the single-particle spectrum which is
equivalent to studying the J > 0 model with PBC when N is
odd (because of the transformation ĉ j → −ĉ j for even j).

III. NONINTERACTING CASE V = 0

We now study how 
 and χF,2+2r behave in the free
case. We consider only β with a periodic continued-fraction
expansion, and, for simplicity, only those which are asymp-
totically [. . . , n, n, n, n, . . .]. Specifically, we will focus on the
following incommensurate ratios:

βnm = [0,m, n, n, n, . . .] = 1

m + βnn
, (11)

where βnn = (
√
n2 + 4 − n)/2 are the metallic means. We

will also consider β = “0” with best rational approximation
1/N for all N [44].

A. Numerical results

We are able to use this to reproduce the results [34,40]
(see also Ref. [35]) for the critical exponents z and ν in
the single-particle spectrum. In this case, z only depends on
the asymptotic continued fraction expansion. For β � 1, the
exponent z is in fact given by [34]

z(βnm) ≈ 1.1662
β−1
nn

log
(
β−1
nn

) , (12)

where it is clear that z → ∞ as β → 0. Additionally, as was
shown by Aubry and André [6], the correlation length goes as

ξ−1 ∼ ln

(
λ

2

)
, λ � 2 (13)

implying ν = 1.
From now on, we consider fillings with an extensive num-

ber of particles. We focus on the sector with NF = �ρN�
where �x� rounds x to the nearest integer, and ρ ∈ (0, 1) is
the filling fraction.

This investigation leads to a series of observations. First,
at half-filling ρ = 1

2 , we notice that not all system sizes have
the same scaling functions as seen in Fig. 1 for the golden
ratio β11, despite the exponents being the same to several
decimal points. The rational approximations to β11 ≈ Mk/Nk

from the continued-fraction expansion are given by Fk/Fk+1

where Fk = 1, 1, 2, 3, 5, . . . are the Fibonacci numbers satis-
fying F1 = 1, F2 = 1, and Fk+1 = Fk + Fk−1. In this case, the
sequence of denominators Nk breaks into three subsequences
34, 144, 610, . . .; 21, 55, 233, 987, . . .; and 89, 377, 1597, . . .

each with a separate scaling function. This separation into
three subsequences has been observed in the exact RSRG
scheme [45] and in multifractality studies [49] and the value of
the exponent for β11 agrees with that of Refs. [9,45,49] for the
scaling of the middle part of the spectrum. As a more general
pattern, when considering β1m for any m, we also find that
there are three scaling functions with the same exponent z at
half-filling.

However, when we now consider the silver ratio, β22 and
associated β2m at ρ = 1

2 , we notice that β22 splits into only two
subsequences with separate scaling functions and β21 splits
into only one, and, between the two β, z is different (see
Fig. 2). Moreover, when β22 is at a filling of 1 − 1/

√
2, it

has the same exponent as β21 at half-filling and the scaling
functions are the same after a global rescaling suggesting
that they belong to the same universality class. We have also
checked explicitly that β22 and β21 are in the same universality
class at ρ = 1

3 .
Since the second derivative of the energy ∂2E/∂λ2 = χF,1,

this quantity also has access to the exponent z, so we plot
χF,1/N vs ρ at λ = 2 in Fig. 3. We notice that a fractal shape
emerges, and the similarity of the fractal shape for β21 at
ρ = 1

2 and β22 at ρ = 1 − 1/
√

2 suggests that they belong to
the same universality class.
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FIG. 1. Scaling of the generalized fidelity susceptibility χF,2+2r and the superfluid fraction 
 for β = β11 = (
√

5 − 1)/2 at filling ρ = 1
2

with the angle and PF specified by Table I. (a), (b) Show how the maxima of χF,2+2r ∼ Lμ+2zr from which μ = 2.0 and z = 1.8285 are extracted.
In (c) and (d), the scaling of χF and 
, respectively, is consistent with μ = 2/ν = 2.00, and z = 1.8285 collapses all the 
 curves onto three
scaling functions.
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FIG. 2. In (a) and (b), the collapse of χF and 
, respectively, onto the scaling functions is plotted for β = β22, and there are two separate
scaling functions: one for N even and one for N odd. Again, μ = 2/ν = 2.00, and the same value of z = 2.0875 scales all 
 curves onto each
other. In (c) and (d), the same quantities are plotted for β = β21 with a filling of ρ = 1

2 when N = 99, 239, 577, 1983, 3363, 8119, and β = β22

with a filling of ρ = 1 − 1/
√

2 otherwise. Still ν = 1, but z = 1.575. Up to the normalization of 
 (ζ = 1.0 for β21 and ζ = 0.6605 for β22)
the two scaling functions are the same, suggesting that the universality class of the λc = 2 transition is the same for β21 at half-filling and β22

at ρ = 1 − 1/
√

2. The finite-size effects are worse for β22 because of the irrational filling. However, once N is large enough for the filling to
be well approximated, the collapse is very good. φ and PF are set according to Table I
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FIG. 3. The second derivative of the ground-state energy per particle at λ = 2, d2E/dλ2/N , for (a) β11, (b) β22, and (c) β21, is plotted against
NF/N , the filling fraction. A clear fractal structure emerges. Note the difference between β22 and β21 at half-filling, and note the similarity
at the filling fraction indicated by the black vertical line at ρ = 1 − 1/

√
2 for β22 and ρ = 1

2 for β21 where the same critical exponents and
scaling functions are observed (see Fig. 2).

When we broaden our scope to β3m and β4m (beyond
which, the number of accessible system sizes is small)
and to filling fractions 1

3 and 1
4 , we find the exponents in

Table II. Based on these results, we conjecture that when
the filling is 1/q and the filling fraction is βpm, the ex-
ponents can be different if the greatest common divisor of
q and p is not 1. (See Sec. III C for more details and
Appendix D.)

Motivated by Ref. [56], we also consider commensurate
fillings ρ = nφ − m for n = 1, 2, 3, 5 and m chosen so that
ρ ∈ (0, 1). In this case, the transition occurs not at λ = 2,
but at λ = 0. That is, a gap immediately opens up at nth
order in perturbation theory because of the close relationship
between the Fermi momentum kF = πρ and the perturbation
at k = 2πβ. The results are shown in Fig. 4. For all n, we
consider φ = β11 and find that ν = n and z = 1 as explained
by the perturbation theory analysis in Ref. [44]. For n = 2,
we additionally show β = β12 and β = 1

4 at the corresponding
commensurate fillings and see that they collapse together onto
the same curve.

B. Our Diophantine equation conjecture

We will argue that the critical properties observed in the
previous section can be understood by a Diophantine equa-
tion. This equation determines the universality class both in
commensurate and incommensurate fillings.

In the case that the filling is commensurate, there is a reso-
nance at nth order in perturbation theory because ρ = nβ − m
for integers n and m, and n determines the universality class
of the transition as ν = n and z = 1 [44]. As noted above, the
transition always occurs at λc = 0, and we numerically see
that the scaling functions are all the same.

When the filling is not commensurate, we can still consider
the same equation. Noting that we always approximate β ≈
βk = Mk/Nk and NF = �ρNk�, ρ = nβ − m becomes

MkQk − PkNk = ±NF , (14)

where (Qk,Pk ) has replaced (n,m). Since Nk , Mk , and
NF are all integers, and we are still searching for inte-
gers Qk and Pk , Eq. (14) has the form of a Diophantine
equation. We emphasize that this Diophantine equation is

TABLE II. The exponents extracted from finite-size scaling at various fillings. The number of scaling functions p is determined by scaling
collapse as in Figs. 1 and 2 and via the Diophantine equation where it is determined by the period of the repeating values of |Qk |/Nk for large k
for βmn. In the cases where z and p agree, the same sequence of |Qk |/Nk appears suggesting the Diophantine equation (14) probes the universal
properties. Indeed, the Diophantine equation predicts which β and ρ to consider to fill the last column, and predicts why differences only occur
in the first column when βmn has m even. If no value of z is reported (indicated by a “-”), it is because a good collapse was not seen for system
sizes N < 104; in those cases, p was determined via the Diophantine equation alone. It is worth noting that a value z ≈ 2 is the expected value
for a “generic” filling as that is near the peak of the distributions of 1/α’s in the multifractal analysis [34,49]. For β2n, an error bar of ±0.01
is given because the large value of p means only two curves fell into each universality class for N < 104; yet, the finite-size scaling is very
sensitive to z due to the large system sizes, and the collapse does not work well beyond the reported range.

β (z, p), ρ = 1
2 (z, p), ρ = 1

3 (z, p), ρ = 1
4 Other (ρ, z, p)

β11 = 1 − β12, β14, β13 (1.8285,3) (2.00,4) (2.0,6)
β22 (2.0875,2) (1.97 ± 0.01,4) (–,8) (1 − 1/

√
2,1.575,1)

β21 = 1 − β23, β25 (1.575,1) (1.97 ± 0.01,4) (2.09,2)
β24 (2.0875,2) (1.97 ± 0.01,4) (–,8)
β33 (2.0,3) (2.24,2) (–,6) (1/(3β31),1.67,1)
β32 (2.0,3) (2.02,1) (–,6) (β32/(3β31),1.67,1)
β31 (2.0,3) (1.67,1) (–,6)
β44 (2.374,2) (–,4) (–,2)
β43 (1.518,1) (–,4) (2.57,1)
β41 (1.518,1) (–,4) (1.815,1)
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FIG. 4. At commensurate filling, the transition moves from λc = 2 to 0 because the resonance condition is fulfilled for some fixed n = ν.
The dynamic critical exponent is always z = 1. In (a) we have β = β11 and ρ = 1 − β11 with ν = 1. In (b) we plot several N for β =
{β11, β21,

1
4 } at ρ = {2β11 − 1, 2β21 − 1, 1

2 } and we see that they have the same ν = 2 and z = 1. The curves collapse onto each other when
ζ = {1, 0.7007, 0.6755} and η = {1, 1, 1.565}. In (c) we have β = β11 and ρ = 3β11 − 2 with ν = 3. In (d) we have β = β11 and ρ = 5β11 − 3
with ν = 5. Note that the finite-size effects get worse as ρ → 0.

derived from seeking integers (Qk,Pk ) that nearly satisfy
Qkβ − Pk = ρ.

This Diophantine equation has already been studied both in
the limit of λ � 1 and λ � 1. For λ � 1, the most important
terms in perturbation theory are those with large n that nearly
satisfy ρ = nβ − m [67]. In the opposite limit, when λ � 1,
if we consider when the dominant component of the single-
particle wave function changes as we tune φ, we get the same
Diophantine equation [51], where Qk is the Chern number
[52,53].

Because Mk and Nk share no divisor except 1, there are
infinitely many solutions (Qk,Pk ) to Eq. (14). We restrict the
solutions |Qk| � Nk/2 (as the resonance condition is satisfied
at the lowest value of Qk) and, of the two possible values of
the right-hand side of Eq. (14), we pick the one that gives
the smallest |Qk|. When solving the Diophantine equation for
different Nk, NF , we find that the value of |Qk|/Nk for large k
has a period of p different values breaking the sequence of
denominators into p subsequences. We see in Table II that
p is also the number of scaling functions (e.g., p = 3 for
β11 and p = 2 for β22 at half-filling) seen in every case we
can check. When we compare the values of |Qk|/Nk with
different β and different filling ρ, we find that the sequence
is the same if and only if the exponent z, p, and the scaling
functions are the same. We therefore conjecture that |Qk|/Nk

for k � 1 determines the universality class, and p predicts the
different versions of the scaling functions. This conjecture is
our main result, and, in the next section, we will see that,
with this conjecture, we can understand all the other above
observations.

An explicit example

Before we continue, let us work through a concrete ex-
ample to show how the Diophantine equation reveals infor-
mation about the universality class. Consider the silver ratio
β22 = √

2 − 1 and β21 = 1/
√

2. Both β’s continued fraction
expansions are the same after the first term and, in the single-
particle spectrum, they would therefore be in the same uni-
versality class [34,40–43]. Let us now solve the Diophantine
equation in the case of half-filling (i.e., NF = �Nk/2� with
�·� denoting the floor function) where a different result will
emerge.

The silver ratio’s continued-fraction expansion is related to
the Pell numbers given by Pk = 1, 2, 5, 12, 29, 70, . . . where
P1 = 1, P2 = 2, and Pk+1 = 2Pk + Pk−1. The best rational
approximations to β22 are given by Mk = Pk and Nk = Pk+1,
while the best rational approximations to β21 are given by
Mk = Pk and Nk = Pk + Pk−1. After specifying Mk, Nk, and
NF = �Nk/2�, there are an infinite number of integer solutions
(Qk,Pk ) to Eq. (14), but we find the solution with |Qk| � Nk/2
for both ±NF , and, of those, we pick the solution with the
smaller value of |Qk|. With �·� denoting the ceiling function,
We find that |Qk| = 1, 6, 6, 35, 35, . . . = P2�(k+1)/2�/2 for β22

and |Qk| = 0, 1, 2, 5, 12, . . . = Mk−1 for β21. Then, for β22

and large enough k, |Qk|/Nk = . . . , q1, q2, q1, q2, . . . where
q1 = 1

2 and q2 = (
√

2 − 1)/2 ≈ Mk/(2Nk ), whereas, for β21

and large enough k, |Qk|/Nk = . . . , q3, q3, q3, . . . with q3 =
1 − 1/

√
2.

We would then conjecture that β22 and β21 belong to two
different universality classes at half-filling, which is demon-
strated in Fig. 2. The periodicity of the values of |Qk|/Nk
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corresponds to the two scaling functions for β21 and the one
scaling function for βb.

If we consider instead the golden ratio β11 = (
√

5 − 1)/2
and other β’s with the same asymptotic continued-fraction
expansion, they will ultimately have the same repeating part
of the sequence of |Qk|/Nk with a periodicity of three at
half-filling. Our Diophantine equation conjecture would then
predict that they are in the same universality class, as was seen
by Ref. [40] and as we observe numerically (see Table II and
Fig. 1).

C. Discussion

To connect our conjecture with the past results, we want
to show that the single-particle sector’s universal properties
are solely determined by the continued-fraction expansion.
It is well known that Diophantine equations can be solved
exactly with knowledge of the continued-fraction expansion
of β = [0, n1, n2, . . .]. First, we solve the case where ±NF =
±1, which is given by (Q′

k,P
′
k ) = ±(Nk−1,Mk−1) if nk−1 �= 1

and (Q′
k,P

′
k ) = ±(Nk−2,Mk−2) otherwise. Then, the solution

to the original equation is given by Qk = Q′
kNF mod Nk and

Pk = P′
kNF mod Mk .

Immediately, when NF = ±1, we compute that |Qk|/Nk =
Nk−1/Nk (or Nk−2/Nk). It suffices to show, then, that Nk−1/Nk

just depends on the asymptotic part of the continued fraction
expansion. This can easily be shown in the case of β = βnm

since (denoting βk = Mβ,k/Nβ,k)

Mβnm,k

Nβnm,k
= Nβnn,k

Nβnn,km + Mβnn,k
. (15)

Note that, as Mβnn,k/Nβnn,k is a reduced fraction, Mβnm,k/Nβnm,k

is as well. Therefore,

lim
k→∞

Nβnm,k/Nβnm,k−1 = Nβnn,k/Nβnn,k−1 ≈ n + βnn, (16)

where we used Mβnn,k/Nβnn,k → βnn as k → ∞. This ar-
gument can be easily extended to the general case, so
p = 1 and |Qk|/Nk—and therefore, under our conjecture,
the universality class—is determined solely by the asymp-
totic continued-fraction expansion consistent with the RSRG
scheme [34,41,42].

Outside of the single-particle spectrum, we worked an
explicit example in Sec. III B that showed β21 and β22 are
predicted not to be in the same universality class at half-filling.
Additionally, we can explain why the fractal shape in Fig. 3
appears. In Appendix B, we use the Diophantine equation
and our conjecture to derive that the universality class is the
same at a density of ρ and a density of ρ/βnn for βnn and
incommensurate fillings. This fact would reproduce a fractal
shape as ρ, ρ/βk

nn, and ρβk
nn will all have the same z for any

integer k.
Notably, this does not hold for nonmetallic means such

as β21 where, for instance, ρ = 1
2 and ρ = 1/

√
2 − 1

2 can be
shown to be related with the Diophantine equation trivially,
which is also seen as the second largest peak within the fractal
structure in Fig. 3(c). We have explicitly checked that β21 at
this filling not only has the same z but the scaling function
controlling 
 is the same up to a numerical prefactor.

Furthermore, we can consider βnm and, in a way that can
be made rigorous as in the calculation of Appendix B, we can

see

Qβnm − P = ρ ⇐⇒ (Q − Pm) − Pβnn = ρ

βnm
. (17)

Using the above result, we see βnm at a filling of ρ should
have the same exponent as βnn at a filling of ρ ′ = ρ/βnm.
This observation predicts the relationship between β21 and
β22 at half-filling and ρ = (1 − 1/

√
2) filling, respectively, as

particle-hole symmetry relates a filling of ρ and 1 − ρ [see
Figs. 2(c) and 2(d)].

Finally, consider the similar explicit calculation here for n
odd:

0 = Q
1

m + βnn
+ P ± 1

2
⇐⇒

0 = (Q + Pm) + Pβnn ± 1

2
(m + βnn)

=
{(

Q + Pm ± m−n
2

) + Pβnn ± 1
2βnn

if m is odd,(
Q + Pm ± m

2

) + Pβnn ± βnn

2 if m is even

=
{
P′ + Q′βnn ± 1

2βnn
if m is odd,

P′′ + Q′βnn ± βnn

2 if m is even,
(18)

where P′, P′′, and Q′ are integers. In the two cases above,
if n is odd, we have been able to absorb an integer into the
definition of P′ or P′′ to get rid of the dependence on m.
Since the critical properties of βnn at βnn/2 and 1/(2βnn) are
the same as those at ρ = 1

2 , then all the βnm have the same
exponents at half-filling if n is odd.

This breaks down if n is even because the m odd case
does not give an integer value of P′. Generically, we expect
that if ρ = 1/q, β = βnn and n and q are coprime, then all
of the βnm will be in the same universality class at filling
ρ = 1/q. However, if n and q share a common factor, there
will be separate classes. If we consider a filling of 1

3 , this
would allow for β3m to split into three separate universality
classes based on the residual of m mod 3. We indeed observe
this numerically for the systems we can access.

To summarize, the Diophantine equation can predict the
fractal structure of Fig. 3, explains the number of universal
curves p, predicts which fillings and which β belong to the
same universal classes, and, in commensurate filling, specifies
the exponent ν directly.

IV. INTERACTING CASE V �= 0

The Diophantine equation description of the universality
seems particularly pathological, so we check whether it per-
sists in the presence of the simplest form of interactions as that
is the most interesting perturbation. Trivially, it will persist
with a shift in the chemical potential, but p-wave pairing
terms would destroy it because well-defined fermion number
is necessary for the Diophantine equation. Another possible
addition would be to consider farther neighbor hopping which,
however, goes beyond the scope of this work.

In order to study the interacting model, we use the density-
matrix renormalization group (DMRG) [68] on Eq. (9) with
V �= 0 as implemented by the iTensor library [69]. We must
have PBC or ABC to compute 
 to extract z. This choice of
boundary condition makes convergence in the matrix product
state (MPS) bond dimension slower, as a truncation error
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FIG. 5. (a) Even in the presence of interactions, 
 still scales onto the same curve with λc ≈ 2.0 + 0.23V , z = 1.575, and ν = 1. The
legend applies to (a), (b), and (c): each system size N corresponds to a different color, and different symbols correspond to different V . In
(b) and (c), it is clear that the change in 
 and χF is proportional toV showing that it is likely irrelevant since such proportionality would break
down at larger N if it were relevant. There is no collapse onto a single scaling function in (b) and (c) because there are at least two irrelevant
directions that V contributes to. Because the collapse is worse for �χ than for �
, it appears that χ suffers from more finite-size effects.

comparable to one that is achieved by bond dimension m in
open boundary conditions, requires m2 in periodic boundary
conditions [70].

The PBC allow us to reliably reach a maximum system size
of �200. Since the best rational approximation’s denominator
Nk grows exponentially, it is difficult to find β which provide
enough accessible system sizes. The most dense denominators
occur for the golden ratio β11, but due to the three scaling
functions at half-filling, there are only two system sizes for
each of the three curves with 10 < Nk < 200, which makes
finite-size scaling unreliable. We instead focus on the follow-
ing three cases: β = 1/

√
2 = β21 at half-filling, β = “0” at

half-filling, and β = β11 at the commensurate filling 2β11 − 1.
For half-filling and β = 1/

√
2, all values of N have the

same scaling function, and we can easily access three system
sizes. In Fig. 5, we notice that χ , 
 still collapse onto the
same curves with the same exponents. We determine λc ≈
2.0 + �λ where �λ is how much the peak of χF shifts for
the largest N shown. Since there is no change in the exponent
and the curves remain essentially the same, we suspect that
V is irrelevant or marginal. We can attempt to estimate the
exponent of the irrelevant direction via a finite-size scaling
analysis.

We assume the scaling hypothesis of a quantity X to write

X = f (|t |N1/ν, u1N
y1 , u2N

y2 , . . .)

= f (|t |N1/ν, 0, 0, . . .)

+
∑
i

uiN
yi fi(|t |N1/ν, 0, 0, . . .), (19)

where t is the parameter tuning the transition, the scaling
function is f (x0, x1, x2, . . .) and fi = ∂ f /∂xi. Since each ui is
a linear combination of λ,V, and potentially other parameters
(if the RG procedure is not closed), then we will not be able to
easily collapse the functions onto a universal curve if ui �= 0
for i > 1 or if |y2| �� |y1|.

The typical procedure to estimate irrelevant exponents
would have us find the constants ν, y1, and a1 that provide
the best fit χF,max ∼ N2/ν (1 + a1N−y1 ). Due to the small
number of accessible system sizes, we instead attempt to see
if the curves completely collapse. When we attempt such a
collapse in Fig. 5, a single scaling function does not seem
to emerge. However, for small V , we are able to obtain a
decent collapse of �
 = 
(V ) − 
(0) at fixed N onto the

same curve as a function of V . This tells us that our results
are not suffering from numerical issues as otherwise they
would not be proportional to V . We note that the slight
nonlinearity in V of �χF is caused by finite-size corrections
(as the peak is also shifted by irrelevant parameters). Since
the data do not collapse well onto a single curve, we conclude
that the interaction term contributes to at least two irrelevant
directions. We would therefore need at least four points to
fit the χF,max data to estimate the most relevant irrelevant
direction, but such an analysis would not be very conclusive.
With β = βnm and incommensurate fillings, there exists no
good choice of β that allows for enough accessible system
sizes with this current analysis. To access more system sizes,
we can consider β = “0” by taking β = 1/N for any N , as
first discussed in Ref. [44]. This parameter choice leads to a
very similar transition at half-filling in that, for V = 0, ν = 1,
λc = 2, and z = 1.245 (see Fig. 6 for the free case).3 To keep
the curves within the same universality class at half-filling, we
choose N that are divisible by four with φ = 0. Nevertheless,
many more system sizes are accessible.4

To do the finite-size analysis, we compute χ (λmax) and

(λmax) where λmax is the peak of the fidelity susceptibil-
ity (determined with a cubic interpolation of the points at
which we performed DMRG). We first observe in Fig. 7 that
χF,max ∼ Nμ log(N ) with μ ≈ 2.1 and 
(λmax) ∼ N2−z(1 +
aN−y1 ) with z ≈ 1.2–1.3, y1 ≈ 1.1–1.3 for all cases includ-
ing the free case. Due to the nicer collapse of 
 in
the β21 case and to isolate the effect of V , we con-
sider the quantity [
(V, λmax) − 
(0, λmax)]/
(0, λmax) ≡
�
/
free ∼ N−yV and perform a scaling analysis. Using the
scaling hypothesis, we expect this to be the most relevant
irrelevant direction that V contributes to. Our analysis gives
0.44 < yV < 0.48 when we use system sizes with N > 60 for

3Reference [44] estimates that the width of the fidelity suscep-
tibility scales with N0.7 and the peak scales with N2.25. The peak
seems to scale with an exponent μ > 2, but we find that with a
logarithmic correction taken into account, μ ≈ 2.1, instead of μ =
2.25. Additionally, the collapse of 
 strongly suggests ν = 1.0,
and, as N gets larger, the fidelity susceptibility curves seem to also
collapse better and better onto a curve with width scaling with N .

4If we choose φ = π/2, the universality classes for all even N are
the same, as is predicted by the Diophantine equation.
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FIG. 6. For β = 1/N at filling NF = N/2, we plot the scaling functions χF and 
 in (a) and (b), respectively. We extract exponents
ν = 1.0, z = 1.245, and λc = 2.0. The fidelity susceptibility does not collapse well far from the transition, but 
 does, which is why Ref. [44]
underestimated ν ≈ 0.7 as the scaling of the width of the curve. When we fit the maximum of χF ∼ Lμ log(L) we find μ = 2.1 ≈ 2/ν as
opposed to the value of μ = 2.25 from Ref. [44] where such a logarithmic correction has not been included.

the fit. When we perform a similar analysis on �χF/χF,free,
we get yV ∼ 0 for low V , but we know from Fig. 5(c) that
finite-size effects influence this quantity more. Regardless, the
above very much suggests that V is irrelevant or marginal.

Finally, we turn to the commensurate filling of 2β11 − 1
for β = β11. Because of the irrelevance of a given interaction
V , we expect that at incommensurate filling, the system flows
toward the λ = 2,V = 0 critical point. However, it is unclear
if that is true when the transition is at λ = 0. The authors
of Ref. [56] studied a localization-delocalization transition at
commensurate filling whenV >

√
2 coming from the Peierls-

type resonance we discuss above. They were unable to get a
scaling collapse in λ, which we focus on.

If it is similar to the incommensurate case, we expect
that the transition will shift away from the free point, but
the exponent will stay the same. Since ν = 2, the fidelity is
less useful as a gauge for the location of the transition as
the fidelity does not grow superextensively. We can, however,
attempt a finite-size scaling allowing λc, z, and ν to vary and
minimize the following quantity [60]:

σ 2 = 1

2�x

∫ x0+�x

x0−�x
dx〈g(x)2〉 − 〈g̃(x)〉2,

g(N1/ν (λ − λc)) = Nz−2
(λ), (20)

where we use cubic interpolation of the values of g(x) with
no explicit evaluation and where 〈·〉 is an average over the

available N . The results of this fitting are shown in Table III
and, for V = −0.5 and −1.7, Fig. 8.

In contrast to Ref. [56], the exponents seem to be roughly
the same as the ones expected in the free case, namely, ν =
2, z = 1, when we perform the finite-size scaling. It should be
noted that there is no clear way to estimate errors on our values
because the dominant error would come from the finite-size
effects that we are neglecting. Adding in these effects would
allow for too many parameters to meaningfully constrain the
exponents.

Although the transition is still controlled by the same RG
fixed point, there is now a finite range of λ ∈ (−λc, λc) where
the wave function is extended. Additionally, there are rather
large finite-size effects in the fidelity susceptibility at V =
−1.7, which seem to decrease forV = −0.5 (see Fig. 8). This
suggests that V is irrelevant or marginal in this case. It is not
feasible to perform the same analysis as we did for β = “0”
because the peak of the fidelity susceptibility is not as reliably
close to the transition due to it growing only extensively.

Finally, we note that how the transition depends on V is
highly dependent on β. We saw that, at half-filling, �λ ≈
0.23V in the case of β21 and that �λ ≈ V for β = “0”
whereas �λ ≈ 0 for β = β11 [56].

V. CONCLUSIONS

By analyzing the Diophantine equation that naturally arises
in the Aubry-André model, we have found that it accurately

FIG. 7. In (a) we plot the maximum of the fidelity susceptibility occurring at λ = λmax. The lines indicate a fit to χF,max ∼ Nμ log(N ) and
μ ≈ 2.1 for all interactions. In (b) we plot 
(λmax) and fit 
(λmax) ∼ N2−z(1 + a1N−y1 ), which all yield z ≈ 1.25 as in the free case. (c) Depicts
[
(V, λmax) − 
(0, λmax)]/
(0, λmax) ≡ �
/
free ∼ N−yV giving us yV ≈ 0.44–0.48 for all V when we exclude points with N < 60.
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TABLE III. For the first two β’s, λc is determined from the shift
in χF for the largest system size probed. In the last case, it comes
from finite-size fitting for all (λc, 1/ν, z), where all three numbers
or a range are reported. Significant figures are chosen to capture the
range of values the minimization converges to. The dominant source
of error is finite-size effects, which, as mentioned in the text, are
difficult to account for or accurately estimate. Since the exponents
do not change significantly in any case we considered, we conclude
that the Diophantine equation determines the universality class even
in the presence of interactions.

β, ρ V λc

β21, 1/2 0.05 2.011
0.1 2.023
0.2 2.046
0.5 2.119
1.0 2.249

“0”, 1/2 0.2 2.2
0.5 2.5
1.0 3.0

β11, 2β11 − 1 −0.5 (0.05–0.15,0.4,–1)
−1.3 (0.5, 0.4, –1)
−1.5 (0.8, 0.4–0.5, –1)
−1.7 (1.05, 0.51, –0.95)

determines the universality class and, therefore, the dynamic
critical exponent z(β, ρ) for the incommensurate ratio β and
filling factor ρ. This analysis yielded nontrivial relationships
between different β and different ρ that show the universal-
ity class depends on more than just the continued fraction
expansion of β as is seen in the single-particle case [34,40].

The dynamic critical exponent is related to the multifractal
properties of the system as it describes how different sections
of the energy spectrum scale with system size. The major
results testing the Diophantine connection between critical
exponents in the noninteracting case are summarized in Ta-
ble II and explicit examples can be seen in Figs. 2 and 4.
The universality class may be measurable either through the
low-temperature specific heat (going as T 1/z) [49], or through
the Kibble-Zurek mechanism [50].

Such a relationship may seem contrived or pathological,
but we have provided evidence that the exponents are nearly
insensitive to the simplest form of interactions (see Table III
for β11). Although the exponents do not change, in both the
commensurate and incommensurate cases, the location of the
transition does change, and that change is dependent on β;
in the commensurate case, weak disorder will therefore not
guarantee that the wave function will be localized. The degree
of irrelevance of the interaction is measured for β = “0,” but
the results are inconclusive. We expect that for large enough
interactions, the transition will become first order or cease to
exist as large enough V will induce a charge-density wave
state [15].

As mentioned, the Diophantine equation arises nonpertur-
batively due to properties of the magnetic translation group
alone in a 2D tight-binding Hamiltonian [58]. We expect that
perturbations to Eq. (10) that can be written as perturbations to
that 2D tight-binding Hamiltonian should therefore preserve
the Diophantine equation description of the universality. This
would hold in particular for modified AA models which ex-
hibit a mobility edge in the single-particle spectrum; the only
difference being that λc would change with the filling factor
as states at different energies in the spectrum undergo the
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FIG. 8. We plot the scaling collapse of 
 [in (b) and (d)] and χF [in (a) and (c)] for commensurate filling ρ3 = 2β11 − 1 and two different
interaction strengths, where the exponents are determined using 
 only. In the free case, ν = 2, z = 1, and λc = 0, and the scaling collapse
for 
 in (b) and (d) gives ν ≈ 2.5, z ≈ 1, and λc ≈ 0.05 for V = −0.5 and ν ≈ 2 and z ≈ 1 with λc ≈ 1 for V = −1.7, so the exponents have
not changed much. Although numerically determined, 
 close to the transition should be accurate and less prone to finite-size effects than χF .
However, finite-size effects are the largest source of error.
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localization transition at different values of λ. For instance, the
modified Hamiltonian in Ref. [71] with a mobility edge can be
derived from a 2D tight-binding Hamiltonian in a magnetic
field when there is a second nearest-neighbor hopping in the
direction parallel to the gauge field. The generalizations to
the AA model introduced in Refs. [36,37] with analytically
determined mobility edges, however, do not seem to satisfy
the condition of being derived from a 2D Hamiltonian and
therefore do not feature the required symmetries. Another
possible future direction is the study of transitions in quasi-
1D systems with quasiperiodic disorder and mobility edges
[72,73].
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APPENDIX A: OPERATOR ALGEBRA DERIVATION
OF SCALING QUANTITIES

We will derive the numeric expressions we are using. We
consider the equation

χF,2+2r =
∑
n �=0

|〈�n|HI |�0〉|2
(En − E0)2+2r

∼ Nμ+2zr (A1)

for the generalized fidelity susceptibility. Since we are consid-
ering λ as the tuning parameter, HI = ∑

i hini. We can switch
bases and rewrite

H =
∑
i, j

c†i Hi jc j =
∑
i

γ
†
i γiλi (A2)

for γi = Si jc j since we diagonalize Hi j = S†ik�klSlm. The
ground state with NF particles will be

|�0〉 = γ
†
NF

γ
†
NF−1 . . . γ

†
1 |0〉, (A3)

where the energies λi are sorted from least to greatest. In this
basis, we can write

HI =
∑
i, j,k

hiS
†
jiSikγ

†
j γk (A4)

which clearly only drives transitions between the ground state
and states |�n〉 where we have excited one of the particles to
a higher-energy state. Therefore,

χF,2+2r =
∑

j>NF ,k�NF

| ∑i S
∗
i jSikhi|2

(λ j − λk )2+2r
. (A5)

There are NF (N − NF )/2 states that contribute to this sum, so
the operator scales as O(N3) if NF ∼ N . Because diagonaliz-
ing the matrix is O(N3) anyway, it does not hurt the overall
scaling.

To compute 
 = N2∂E/∂θ , we need to do perturbation
theory where the perturbation is HI = PF (eiθ − 1)c†Nc1 +
PF (e−iθ − 1)c†1cN . We need to compute the coefficient of
θ2. In addition to a term like in χF,2+2r , there is an ad-
ditional term from first-order perturbation theory where we
have Taylor expanded eiθ − 1 and kept to second order.
Therefore,


 = N2

[∑
i

PF
2

(S†iNS1i + S†i1SNi )

+
∑

j>NF ,k�NF

|S†jNS1k − S†j1SNk|2
λ j − λk

⎤
⎦ (A6)

which is O(N2).

APPENDIX B: DIOPHANTINE EQUATION
MANIPULATIONS

We will derive that (βnn, ρ) and (βnn, ρ/βnn) at incommen-
surate fillings belong to the same universality class rigorously
under our conjecture (i.e., they have the same value of Qk/Nk

for k � 1). We can use similar manipulations to make the
hand-wavy analyses in the main text [such as Eqs. (17) and
(18)] more rigorous.

Suppose that we have a solution Qk,Pk to the Diophantine
equation QkMk − PkNk = NF . Then, we can use that Mk/Nk =
Nk−1/(nNk−1 + Mk−1) for βnn to write

NF
(nNk−1 + Mk−1)

Nk
= QkNk−1 − Pk (nNk−1 + Mk−1)

= (Qk − nPk )Nk−1 − PkMk−1. (B1)

Notice that, in the limit that k → ∞, NF = Nkρ and N ′
F =

NF (nNk−1 + Mk−1)/Nk = Nk−1ρ/β where we used βnn =
Mk/Nk . Therefore, the solutions to the Diophantine equation
at these two fillings are related. It now suffices to show
that Pk/Nk−1 = Qk/Nk as k → ∞. Recall that Nk−1/Nk → βnn

and, as Pk grows extensively for incommensurate fillings,
then the Diophantine equation reveals that Mk/Nk − Pk/Qk =
NF/(NkPk ) → 0, so Pk/Qk → βnn as well.

APPENDIX C: DETAILS OF THE DMRG CALCULATIONS

As discussed in the main text, DMRG computations for
(A)PBC require larger bond dimension than for open sys-
tems. In order to ensure convergence, we use the following
procedure. Let H (λ, θ ) be the Hamiltonian at the parameter
value λ and twist to periodic boundary conditions of θ ,
and |�(λ, θ )〉 is the ground-state wave-function candidate
achieved by performing DMRG. When θ = 0, we suppress
the θ dependence for notational simplicity. For the fidelity,
we perform n1 sweeps on |�(λ)〉 with a maximum bond
dimension of M1. We then start doing two sweeps with a
maximum bond dimension at M1 + M2�nsweeps/2� for nsweeps

the total number of sweeps on |�(λ)〉 and |�(λ ± δλ)〉 [us-
ing |�(λ)〉 as the initial guess]. After the two sweeps, we
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TABLE IV. The β’s within the same cell belong to the same
universality class, based on the analysis of the Diophantine equation
alone. The value of p is given, but we omit the sequence of |Qk |/Nk

which differentiates those classes with the same value of p. Note that
when βpm has p with a common divisor to 6 = 1/ρ the universality
classes depend on more than just p, which determines the asymptotic
continued fraction expansion of βpm.

Universality class p

β11, β12, β13, β14, β15 12
β21, β23, β25, β27 8
β22, β26, β28 4
β24 8
β31, β34, β37 3
β32, β35 3
β33, β36 6
β41, β45 8
β42, β48 8
β43, β47 8
β44, β46 4

compute

χF = −2
ln

{ [〈�(λ)|�(λ+δλ)〉+〈�(λ)|�(λ−δλ)〉]
2

}
δλ2

+ O(δλ2) (B2)

and compare with the previously computed value. Once the
relative change is below ε, we consider it converged.

To compute 
, we follow a similar procedure but we are
doing sweeps on |�(λ)〉, |�(λ, θ0)〉, |�(λ, 2θ0)〉, |�(λ, 3θ0)〉,
and we compute 
 as


 = N2 −245E (0) + 270E (θ0) − 27E (2θ0) + 2E (3θ0)

90θ2
0

+O
(
θ6

0

)
, (B3)

where E (θ ) is the expectation of the energy of |�(λ, θ )〉.
We generally use parameters (n1,M1,M2, ε, δλ, θ0) =

(6, 300, 100, 10−5, 0.001, π/30). We compare the values of
χF and 
 computed with the above formula as well as
those with lower-order finite-difference expressions to ensure
reasonable accuracy. We also calculated them in the V = 0
case and found good agreement.

APPENDIX D: UNIVERSALITY CLASS AT 1
6 FILLING

The results presented in this Appendix are solely based
on the Diophantine equation. As mentioned in the main text,
the two universality classes are considered the same if the
same sequence of values of qk = |Qk|/Nk appears, and this
sequence has a period of p. We omit the sequence of qk for
clarity.

We find the results in Table IV. Notably, the universality
classes for β1m for m ∈ {1, 2, 3, 4, 5} are all the same, whereas
there are different classes for β2m, β3m, and β4m for a filling
of ρ = 1

6 . This evidence supports the notion that βpm can split
into different universality classes at a filling of 1/q if p and
q share a prime divisor, but the details are not obvious. It is
not, for instance, that m mod p or m mod q determines the
universality, based on Table IV.
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