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The chiral photocurrent or circular photogalvanic effect (CPGE) is a photocurrent that depends on the
sense of circular polarization. In a disorder-free, noninteracting chiral Weyl semimetal, the magnitude of
the effect is approximately quantized with a material-independent quantum e3=h2 for reasons of band
topology. We study the first-order corrections due to the Coulomb and Hubbatrd interactions in a
continuum model of a Weyl semimetal in which known corrections from other bands are absent. We find
that the inclusion of interactions generically breaks the quantization. The corrections are similar but larger
in magnitude than previously studied interaction corrections to the (nontopological) linear optical
conductivity of graphene, and have a potentially observable frequency dependence. We conclude that,
unlike the quantum Hall effect in gapped phases or the chiral anomaly in field theories, the quantization of
the CPGE in Weyl semimetals is not protected but has perturbative corrections in interaction strength.
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The quantization of physical observables has become a
cornerstone in condensed matter physics for the past few
decades, guiding theoretical and experimental efforts across
a wide range of fields. Starting from the discovery of
quantum Hall effect, it led to multiple breakthroughs in our
understanding of quantum systems. For example, identify-
ing the quantization of Berry phase led to the discovery of
topological insulators [1]. A few examples of quantization
of electronic and optical properties have been identified in
metallic systems as well, such as the universal optical
conductivity and optical transmittance in graphene [2–5]
and, more recently, the circular photogalvanic effect
(CPGE) in Weyl semimetals [6] and crystals with multifold
nodal fermions [7–10].
One of the crucial questions in the study of topological

materials, from both experimental and theoretical perspec-
tives, is whether the quantized features are robust against
interactions and disorder. In most cases, weak interactions
do not destroy or qualitatively change gapped topological
phases [11]. In particular, the quantum Hall and quantum
anomalous Hall conductivities are known to preserve the
quantized value even in the presence of a weak interaction
[12–18], which is intimately related to the topological
nature of the effect [12,14,15] and ultimately its connection
to adiabatic transport [19].
For Weyl fermions, the effect of interactions was

exhaustively studied in the context of the chiral anomaly
—nonconservation of the chiral charge without an explicit
breaking of the chiral symmetry [20,21]. It has long been
known that the anomaly is not renormalized by interactions
that do not explicitly break the chiral symmetry [22,23].
Analogously to the quantum Hall effect, this nonrenorma-
lizability is deeply rooted in the topological nature of the

chiral anomaly [24–26]. The chiral anomaly, however,
leads to quantization of the chiral current, which in
condensed matter is not the observable electrical current
but rather a pumping between Weyl nodes, and hence it has
not yet been possible to observe the quantization despite
various proposals [27,28].
In this Letter, we study the effect of electron-electron

interactions on the CPGE, another quantized response in
nodal semimetals [6]. The CPGE is the production of a dc
current by a circularly polarized light incident on a surface
of the material [29–35]. In particular, the CPGE is the part
of photocurrent that switches sign depending on the sign of
the light polarization. This is a nonlinear response, second
order in electric field, and hence requires the breaking of
inversion symmetry; such responses can have topological
content [36]. In Weyl semimetals that are also free of mirror
symmetries, the CPGE becomes approximately quantized
over some range of frequencies. As found in Ref. [6], the
intrinsic contribution from a single Weyl point to the
CPGE, an injection current j, is quantized and has the value

dj
dt

¼ β0ðωÞEω ×E−ω; β0ðωÞ ¼ i
πe3

3h2
C; ð1Þ

where e is the electron charge, h ¼ 2πℏ is the Planck’s
constant, and C is the topological charge of the node. The
important prerequisite for this result is the absence of
inversion and mirror symmetries. Then nodes of different
chiralities are located at different energies. Consequently,
for a certain frequency range, one node contributes exactly
the quantized value (1) from the transitions across the Weyl
point, while the second one does not have such interband
transitions because of Pauli blocking. The intraband
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contribution to the CPGE current originating, e.g., from the
indirect disorder-assisted transitions and allowed even at
low frequencies, is typically at least an order of magnitude
smaller and governed by previous semiclassical calcula-
tions [32–35]. So while the CPGE involves generation of a
three-dimensional current density from two powers of
electromagnetic field, like the chiral anomaly, unlike the
chiral anomaly it can be observed in the overall electrical
current, not the chiral current between nodes. Remarkably,
this effect was recently predicted [37], and the distinctive
frequency dependence observed [38], in the chiral Weyl
semimetal RhSi.
We show using a minimal continuum model of a chiral

Weyl semimetal that generic interactions give corrections to
the perfect quantization of the CPGE, in contrast to the
chiral anomaly. This model has the feature that corrections
from other pieces of the Fermi surface are absent and the
CPGE is exactly quantized without interactions for a range
of frequencies. Furthermore, as was shown in Ref. [6], the
quantization within the noninteracting two-band model is
quite robust in the sense that it does not depend on such
material or model-specific details as the Fermi velocity, tilt
of the node, or the exact position of the chemical potential,
and is given by Eq. (1). While the topological charge of the
nodes C, when properly defined, is not affected by weak
interactions [39,40], we find that the universal proportion-
ality between the CPGE coefficient β and the topological
charge, Eq. (1), does not hold in the presence of inter-
actions. Using the low-energy field theory suitable for Weyl
fermions, we demonstrate that the CPGE response acquires
a nonuniversal correction even at weak coupling, in the
sense that this correction depends on such material-specific
parameters as the Fermi velocity or dielectric constant [41].
So while e3=h2 remains the natural scale for the CPGE
response, there are potentially observable interaction
effects that need not be small in real materials. We use
the Hubbard and screened Coulomb potentials as examples.
Our results imply that the CPGE is an example of a

quantized response which is not protected by topology
beyond the non-interacting limit, and hence gets renormal-
ized by arbitrarily weak interactions. In some sense, this
scenario is similar to the effect of the interaction corrections
to the (nontopological) optical conductivity in graphene.
While the non-interacting consideration leads to the quan-
tized value e2=4ℏ [2–5], the presence of interactions is
known to contribute additional nonuniversal correction
[43–51]. Similar results have been recently obtained for
the optical conductivity in nodal-line semimetals [52].
The calculation of the numerical coefficient for the

interaction correction in graphene turned out to be a
nontrivial task. Originally, three different values of this
coefficient were obtained for the hard-cutoff, soft-cutoff,
and dimensional regularization schemes [43–47], leading
to an intensive discussion regarding the choice of the
correct one. The reason for such a peculiar behavior is

rooted in the ultraviolet anomaly [45]: when applied
naïvely, different approaches differently account for the
high-energy states, resulting in different answers. It was
shown later that, when the renormalization procedure is
performed carefully, the soft-cutoff and dimensional reg-
ularizations lead to the same answer [50,51]. We also
encounter the same anomaly in our study. We find that the
results obtained within the soft-cutoff and the dimensional
regularization procedures agree with each other, while the
scheme with the hard cutoff, which implies neglecting the
electron states with momenta exceeding certain ultraviolet
value, leads to a different answer. This is somewhat natural,
since the presence of a hard cutoff violates the Ward-
Takahashi identity and incorrectly accounts for the con-
tribution from the high-energy states, leading to a result
which is only qualitatively correct.
Quantization of the CPGE in the absence of interac-

tion.—Before presenting the main results of our Letter, we
first reproduce the result for the non-interacting problem [6]
using the framework of Feynman diagrams. The detailed
derivation of the second-order response within the Keldysh
formalism is given in Ref. [53] (see also Refs. [54,55]). In
this Letter, however, we find it more convenient to use the
Matsubara imaginary time formalism [56], which is equiv-
alent to the Keldysh approach.
We start with a noninteracting system of two identical

Weyl nodes of opposite chirality separated by energy
jμ1j þ jμ2j, as shown in Fig. 1. We assume for definiteness
that the chemical potential for the first node is negative,
μ1 < 0, while for the second node it is positive, μ2 > 0. The
low-energy Hamiltonian of the system then takes the form

H0 ¼
X
k

ψ†
1kðvFk · σ − μ1Þψ1k

þ ψ†
2kð−vFk · σ − μ2Þψ2k; ð2Þ

where ψ1 and ψ2 are two-component fermion spinors
describing the states near the first and second node,
respectively, σ is a vector of pseudospin Pauli matrices,

FIG. 1. Schematic picture of two Weyl nodes of opposite
chirality separated by energy jμ1j þ jμ2j. The quantization of
the circular photogalvanic effect in the noninteracting material
occurs provided 2jμ1j < ω < 2jμ2j.
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and vF is the Fermi velocity. Here and in what follows, we
set ℏ ¼ 1 for brevity, unless explicitly stated otherwise. The
different sign of the Fermi velocities reflects the fact that
the nodes have different chiralities.
We assume that the nodes are well separated in momen-

tum space, and consequently the contribution to the (uni-
form) photocurrent can be calculated separately for each
node. For definiteness, we focus on the first node for now.
The expression for the second-order photocurrent reads as

jγðΩÞ ¼ χαβγðω1;ω2Þ þ χβαγðω2;ω1Þ
ω1ω2

Eα
ω1
Eβ
ω2
; ð3Þ

where Ω≡ ω1 þ ω2, and the factors ω1;2 in the denomi-
nator originate from the relation between the electric field
and the vector potential Eω ¼ iωAω. The analytical
expressions for the tensor χðiω1; iω2Þ in Matsubara
frequencies is given by [53]

χαβγðiω1; iω2Þ ¼ T
X
εn

Z
d3k
ð2πÞ3 tr½ĵ

αGðiεn − iω1;kÞ

×ĵβGðiεn − iΩ;kÞĵγGðiεn;kÞ�; ð4Þ

with εn ¼ πTð2nþ 1Þ and T is temperature. The current
operator in this expression equals

ĵα ¼ e
δĤ0ðkÞ
δkα

¼ evFσα; ð5Þ

while the Matsubara Green’s function has the form

Gðiεn;kÞ ¼
1

2

�
PþðkÞ

iεn − vFkþ μ1
þ P−ðkÞ
iεn þ vFkþ μ1

�
; ð6Þ

and we introduced the projectors onto the conduction and
the valence bands P�ðkÞ ¼ I � k̂ · σ with k̂≡ k=k. We
emphasize again that we have only focused on the first node
thus far; the contribution from the second node is obtained
analogously.
Interestingly, the expression for χðiω1; iω2Þ in the

case of Weyl semimetals can be obtained exactly at
T ¼ 0. Delegating the details of the calculation to the
Supplemental Material [57], we present the answer:

χαβγðiω1; iω2Þ ¼
e3

48π2
εαβγ

Ω3ðω2 − ω1Þ ln ð4μ21 þΩ2Þ þ ω3
1ðω2 þ ΩÞ ln ð4μ21 þ ω2

1Þ − ω3
2ðω1 þΩÞ ln ð4μ21 þ ω2

2Þ
ω1ω2Ω

; ð7Þ

where εαβγ is the fully antisymmetric Levi-Civita tensor.
Equation (7), along with Eq. (3), is the first important result
of our work, which describes the second-order response to
external electric fields at arbitrary frequencies.
To obtain the injection current, we need to perform the

analytic continuation to real frequencies, iω1;2 → ω1;2þ
i0, and set ω1 ¼ ωþΩ, ω2 ¼ −ω with Ω → 0 [59]:

jγðΩÞ ¼ −
1

12π

e3

Ω
εαβγEα

ωE
β
−ωΘðω − 2jμ1jÞ: ð8Þ

In the time domain, the Ω → 0 limit exactly corresponds to
Eq. (1) with C ¼ 1 and the CPGE coefficient given by

β0 ¼ i
πe3

3h2
Θðω − 2jμ1jÞ: ð9Þ

Here we explicitly restored the Planck’s constant h ¼ 2πℏ
for clarity.
The contribution from the second Weyl point has a

similar form, but with the opposite sign due to different
chirality, and μ2 instead of μ1 in the Heaviside step
function. Consequently, in the frequency range 2jμ1j <
ω < 2jμ2j, the CPGE in a noninteracting Weyl system
becomes truly quantized and does not depend on the
material-specific parameters such as the Fermi velocity,

the exact position of the chemical potential, or the distance
between the nodes, and is given by Eq. (1). As we show
below, the perfect quantization breaks down in the presence
of interactions.
Interaction corrections to the CPGE: the Hubbard

potential.—Now we demonstrate by an explicit calculation
that the electron-electron interactions destroy the quantiza-
tion of the CPGE. As an example, we start with the
Hubbard interaction and consider the static Coulomb
potential later.
Generally (pseudospin conserving) electron-electron

interaction is described by a Hamiltonian of the form

Hint¼
1

2

X2
i;j¼1

X
k;p;q

ψ†
k−q;i;sψk;i;sψ

†
pþq;j;s0ψp;j;s0VðqÞ

þ1

2

X2
i¼1

X
k;p;q

ψ†
k−q;i;sψk;ī;sψ

†
pþq;ī;s0ψp;i;s0VðK0Þ: ð10Þ

We explicitly write down the summation over the nodal
indices i, j, and the summation over the pseudospin indices
s, s0 is implied. Symbol ī stands for the node different from
node i and K0 is the distance between the nodes in the
momentum space (we assume K0 ≫ p, k, q).
The first term in Eq. (10) stands for the intranodal

scattering, while the second one describes the scattering
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between the nodes, and we neglect processes that do not
conserve the number of particles within each node sepa-
rately (since they also violate momentum conversation).
To the first order in interaction, corrections to photo-

current are given by the self-energy and vertex corrections
shown diagrammatically in Fig. 2. Solid and dashed lines
correspond to the electron propagators of the first and the
second nodes, respectively.
In the case of the Hubbard potential, VðqÞ ¼ −λ, the

self-energy diagrams are just proportional to the total
number of holes in the first node, Nh, or the number of
electrons in the second node, Ne: ΣðaÞ ¼ −ΣðcÞ=2 ¼
−λNh=2, ΣðbÞ ¼ −ΣðdÞ=2 ¼ λNe=2. Taken together, these
corrections only renormalize chemical potential, δμ ¼
−
P

i ΣðiÞ ¼ λðNe − NhÞ=2, which, in turn, shifts the range
of frequencies where the CPGE is observed. This correction
does not change the quantized value of the CPGE itself.
The vertex corrections, on the contrary, have a more

profound effect and destroy the quantization of the CPGE.
The correction to the CPGE coefficient β0, Eq. (9), due to
the intranodal interaction is given by Fig. 2(e) and equals
[after the summation over all three current vertices in
Eq. (4)]

δβð1ÞðωÞ ¼ −β0
λ

24π2v3F

×

�
6v2FΛ2 − 6μ21 − ω2 ln

jω2 − 4μ21j
4v2FΛ2 − ω2

�
; ð11Þ

where Λ is the high-momentum ultraviolet (UV) cutoff.
The strong UV divergence of this result is cured once we

take the internodal scattering into account. Indeed, the
short-ranged nature of the Hubbard interaction allows for
the corrections shown in Fig. 2(f), δβð2ÞðωÞ, which con-
tributes with the overall opposite sign due to the opposite
chirality of the second node. Hence, after adding up both
intra- and internodal contributions, we obtain the total
correction to the CPGE coefficient (see the Supplemental
Material [57] for details)

δβðωÞ¼δβð1ÞðωÞþδβð2ÞðωÞ

¼−β0
λ

24π2v3F

�
6μ22−6μ21−ω2 ln

����ω
2−4μ21

ω2−4μ22

����
�
: ð12Þ

We see that the first-order interaction correction is free of
the UV divergencies, but is nonzero and has a characteristic
frequency dependence.
Interaction corrections to the CPGE: the Coulomb

potential.—The whole analysis for the Coulomb potential
is similar to that for the Hubbard interaction, with few
important differences which we highlight below. The static
screened Coulomb interaction that we focus on is given by
Eq. (10) with

VðqÞ ¼ 4πe2

ε0ðq2 þ q20Þ
; ð13Þ

where e is the electron’s charge, ε0 is the dielectric constant
due to core electrons, and q0 is the Thomas-Fermi wave
vector, respectively. The latter can be expressed through the
fine-structure constant and the density of states at the Fermi
level [60]. We, however, keep it an independent parameter
for the purpose of generality, so that the interaction has the
same form as the Yukawa potential.
Because of the long-ranged nature of the Coulomb

interaction, one can focus on the correction due to the
intranodal processes described by the first term in Eq. (10)
only, while the contribution from the internodal scattering
can be shown to be parametrically small. The correction is
given by Figs. 2(a) and 2(e), and Fig. 2(c) describes the
q ¼ 0 component of the Coulomb interaction which is
cancelled by the positive background. It can be straight-
forwardly shown that both the self-energy and vertex
corrections to the CPGE coefficient β are logarithmically
UV divergent, see the Supplemental Material [57]. The
total answer, however, does not explicitly depend on the
UV cutoff Λ and is given by

δβ ¼ β0
e2

πvFε0
F

�
vFq0
ω

;
jμ1j
ω

�
: ð14Þ

The function Fðx; yÞ is a smooth function independent of
Λ, which is shown in Fig. 3 and with the exact expression
given in the Supplemental Material [57]. It turns out,
however, that the particular form of Fðx; yÞ is sensitive
to the regularization procedure. Thus, the answer obtained
within the hard-cutoff (hc) regularization (which effectively
cuts off the electron spectrum beyond the UV momentum
scale Λ) is different from that obtained by the soft-cutoff
(sc) and dimensional regularization (dr), and they all are
related according to

Fscðx; yÞ ¼ Fdrðx; yÞ ¼ Fhcðx; yÞ − 1: ð15Þ

(d)

(c)(b)(a)

(e) (f)

FIG. 2. First-order self-energy [(a)–(d)] and vertex [(e)–(f)]
corrections. Solid and dashed lines correspond to the Green’s
function of the first and second node, respectively. Diagrams (a),
(c), and (e) describe the intranodal processes, while (b), (d), and
(f) stand for the internodal scattering (important only for the
Hubbard interaction).
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This peculiar result is similar to what happens with the
interaction correction to the optical conductivity in gra-
phene. The origin of the discrepancy is rooted in the way
that different regularization procedures account for the
high-energy (of order vFΛ) states. The hard-cutoff scheme
completely neglects the high-energy contribution and, as a
result, violates the Ward-Takahashi identity. Hence the
answer obtained within this procedure is only qualitatively
correct.
The interaction corrections (12) and (14), along with the

general response function for the noninteracting system (7),
are the main calculational results of this work. In graphene,
the interaction corrections seem experimentally to be small
[5], but in the present case we expect the interaction
corrections to be significant, unless the effective dielectric
constant is rather large, and potentially observable.
Conclusions.—In conclusion, using the Hubbard and the

static Coulomb interactions as examples, we have shown
that the interactions destroy the quantization of the CPGE.
We have found that, in case of the Coulomb interaction, the
correction depends on the way one regularizes the con-
tribution from the high-energy states, leading to the wrong
result if the hard cutoff is used. This result is similar to that
for the interaction correction to optical conductivity in
graphene. Unlike graphene, however, where the quantiza-
tion of optical conductivity even in a noninteracting system
is not protected by topology, the quantization of the CPGE
in noninteracting Weyl semimetals is tight to the monopole
strength of the Weyl nodes. Hence, our result implies that,
since the topological charge of the node remains
unchanged, the interactions change the relation between
the CPGE injection current and the nodal strength. It may
be possible to observe the interaction effects on the
frequency dependence of the plateau in the photocurrent,
especially if the effects of disorder can be minimized by a
short pulse or a difference-frequency-generation approach
[61]. We expect the same qualitative results to hold for the

higher-order nodal materials [10], though we leave an
explicit calculation in this case for a future study.

We thank Fernando de Juan, Adolfo Grushin, and Daniel
Parker for discussions and collaboration on related projects.
We also appreciate comments from Jörg Schmalian, Inti
Sodemann, and Igor Herbut. This work was supported by
the Quantum Materials program at LBNL, funded by the
US Department of Energy under Contract No. DE-AC02-
05CH11231 (V. K. and J. E. M.), the National Science
Foundation under Grant No. DMR-1918065 (A. A.), and
a Simons Investigatorship (J. E. M.).

*These authors contributed equally.
[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological

insulators, Rev. Mod. Phys. 82, 3045 (2010).
[2] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Unusual

Microwave Response of Dirac Quasiparticles in Graphene,
Phys. Rev. Lett. 96, 256802 (2006).

[3] L. A. Falkovsky and A. A. Varlamov, Space-time dispersion
of graphene conductivity, Eur. Phys. J. B 56, 281 (2007).

[4] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van
der Marel, Universal Optical Conductance of Graphite,
Phys. Rev. Lett. 100, 117401 (2008).

[5] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov,
T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim,
Fine structure constant defines visual transparency of
graphene, Science 320, 1308 (2008).

[6] F. de Juan, A. G. Grushin, T. Morimoto, and J. Moore,
Quantized circular photogalvanic effect in Weyl semimetals,
Nat. Commun. 8, 15995 (2017).

[7] M. Ezawa, Chiral anomaly enhancement and photoirradia-
tion effects in multiband touching fermion systems, Phys.
Rev. B 95, 205201 (2017).

[8] Z.-M. Huang, J. Zhou, and S.-Q. Shen, Topological re-
sponses from chiral anomaly in multi-Weyl semimetals,
Phys. Rev. B 96, 085201 (2017).

[9] L. Lepori, M. Burrello, and E. Guadagnini, Axial anomaly
in multi-Weyl and triple-point semimetals, J. High Energy
Phys. 06 (2018) 110.

[10] F. Flicker, F. de Juan, B. Bradlyn, T. Morimoto, M. G.
Vergniory, and A. G. Grushin, Chiral optical response of
multifold fermions, Phys. Rev. B 98, 155145 (2018).

[11] S. Rachel, Interacting topological insulators: A review, Rep.
Prog. Phys. 81, 116501 (2018).

[12] J. E. Avron and R. Seiler, Quantization of the Hall Con-
ductance for General, Multiparticle Schrödinger Hamilto-
nians, Phys. Rev. Lett. 54, 259 (1985).

[13] Q. Niu, D. J. Thouless, and Y.-S. Wu, Quantized Hall
conductance as a topological invariant, Phys. Rev. B 31,
3372 (1985).

[14] K. Ishikawa and T. Matsuyama, Magnetic field induced
multi-component QED3 and quantum Hall effect, Z. Phys. C
33, 41 (1986).

[15] M. B. Hastings and S. Michalakis, Quantization of Hall
conductance for interacting electrons on a torus, Commun.
Math. Phys. 334, 433 (2015).

FIG. 3. The dependence of function F, Eq. (14), on q0 at
jμj=ω ¼ 0.00, 0.40, and 0.43 for the cases of the soft-cutoff and
the dimensional regularizations. At vFq0 ≫ ω, all curves ap-
proach F ¼ 0.

PHYSICAL REVIEW LETTERS 124, 196603 (2020)

196603-5

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.96.256802
https://doi.org/10.1140/epjb/e2007-00142-3
https://doi.org/10.1103/PhysRevLett.100.117401
https://doi.org/10.1126/science.1156965
https://doi.org/10.1038/ncomms15995
https://doi.org/10.1103/PhysRevB.95.205201
https://doi.org/10.1103/PhysRevB.95.205201
https://doi.org/10.1103/PhysRevB.96.085201
https://doi.org/10.1007/JHEP06(2018)110
https://doi.org/10.1007/JHEP06(2018)110
https://doi.org/10.1103/PhysRevB.98.155145
https://doi.org/10.1088/1361-6633/aad6a6
https://doi.org/10.1088/1361-6633/aad6a6
https://doi.org/10.1103/PhysRevLett.54.259
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1007/BF01410451
https://doi.org/10.1007/BF01410451
https://doi.org/10.1007/s00220-014-2167-x
https://doi.org/10.1007/s00220-014-2167-x


[16] S. Coleman and B. Hill, No more corrections to the
topological mass term in QED3, Phys. Lett. 159B, 184
(1985).

[17] A. Giuliani, I. Jauslin, V. Mastropietro, and M. Porta,
Topological phase transitions and universality in the Hal-
dane-Hubbard model, Phys. Rev. B 94, 205139 (2016).

[18] A. Giuliani, V. Mastropietro, and M. Porta, Universality of
the Hall conductivity in interacting electron systems, Com-
mun. Math. Phys. 349, 1107 (2017).

[19] R. B. Laughlin, Quantized Hall conductivity in two dimen-
sions, Phys. Rev. B 23, 5632 (1981).

[20] S. L. Adler, Axial-vector vertex in spinor electrodynamics,
Phys. Rev. 177, 2426 (1969).

[21] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ-
model, Nuovo Cimento A 60, 47 (1969).

[22] S. L. Adler and W. A. Bardeen, Absence of higher-order
corrections in the anomalous axial-vector divergence equa-
tion, Phys. Rev. 182, 1517 (1969).

[23] A. Giuliani, V. Mastropietro, and M. Porta, Anomaly non-
renormalization in interacting Weyl semimetals, arXiv:
1907.00682.

[24] A. A. Zyuzin and A. A. Burkov, Topological response in
Weyl semimetals and the chiral anomaly, Phys. Rev. B 86,
115133 (2012).

[25] A. A. Burkov, Chiral anomaly and transport in Weyl metals,
J. Phys. Condens. Matter 27, 113201 (2015).

[26] A. A. Burkov, Weyl metals, Annu. Rev. Condens. Matter
Phys. 9, 359 (2018).

[27] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin,
and A. Vishwanath, Probing the Chiral Anomaly with
Nonlocal Transport in Three-Dimensional Topological
Semimetals, Phys. Rev. X 4, 031035 (2014).

[28] S. Roy, M. Kolodrubetz, J. E. Moore, and A. G. Grushin,
Chern numbers and chiral anomalies in Weyl butterflies,
Phys. Rev. B 94, 161107(R) (2016).

[29] C. Aversa and J. E. Sipe, Nonlinear optical susceptibilities
of semiconductors: Results with a length-gauge analysis,
Phys. Rev. B 52, 14636 (1995).

[30] J. E. Sipe and A. I. Shkrebtii, Second-order optical response
in semiconductors, Phys. Rev. B 61, 5337 (2000).

[31] F. Nastos and J. E. Sipe, Optical rectification and current
injection in unbiased semiconductors, Phys. Rev. B 82,
235204 (2010).

[32] E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak,
Semiclassical theory of the photogalvanic effect in non-
centrosymmetric systems, arXiv:0904.1917.

[33] J. E. Moore and J. Orenstein, Confinement-Induced Berry
Phase and Helicity-Dependent Photocurrents, Phys. Rev.
Lett. 105, 026805 (2010).

[34] E. J. König, H.-Y. Xie, D. A. Pesin, and A. Levchenko,
Photogalvanic effect in Weyl semimetals, Phys. Rev. B 96,
075123 (2017).

[35] L. E. Golub and E. L. Ivchenko, Circular and magneto-
induced photocurrents in weyl semimetals, Phys. Rev. B 98,
075305 (2018).

[36] T. Morimoto and N. Nagaosa, Topological nature of non-
linear optical effects in solids, Sci. Adv. 2, e1501524 (2016).

[37] G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, S.-M.
Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H.
Lin, and M. Z. Hasan, Unconventional Chiral Fermions and

Large Topological Fermi Arcs in RhSi, Phys. Rev. Lett. 119,
206401 (2017).

[38] D. Rees, K. Manna, B. Lu, T. Morimoto, H. Borrmann, C.
Felser, J. E. Moore, D. H. Torchinsky, and J. Orenstein,
Observation of topological photocurrents in the chiral Weyl
semimetal RhSi, arXiv:1902.03230.

[39] G. E. Volovik, An analog of the quantum Hall effect in a
superfluid 3He film, JETP 67, 1804 (1988), http://www.jetp
.ac.ru/cgi-bin/e/index/e/67/9/p1804?a=list.

[40] V. Gurarie, Single-particle Green’s functions and inter-
acting topological insulators, Phys. Rev. B 83, 085426 (2011).

[41] This is in contrast to the Coulomb interaction correction to
the optical conductivity in Weyl semimetals, which was
found to be universal [42].

[42] B. Roy and V. Juričić, Optical conductivity of an interacting
weyl liquid in the collisionless regime, Phys. Rev. B 96,
155117 (2017).

[43] I. F. Herbut, V. Juričić, and O. Vafek, Coulomb Interaction,
Ripples, and the Minimal Conductivity of Graphene, Phys.
Rev. Lett. 100, 046403 (2008).

[44] V. Juričić, O. Vafek, and I. F. Herbut, Conductivity of
interacting massless Dirac particles in graphene: Collision-
less regime, Phys. Rev. B 82, 235402 (2010).

[45] E. G. Mishchenko, Minimal conductivity in graphene:
Interaction corrections and ultraviolet anomaly, Europhys.
Lett. 83, 17005 (2008).

[46] D. E. Sheehy and J. Schmalian, Optical transparency of
graphene as determined by the fine-structure constant, Phys.
Rev. B 80, 193411 (2009).

[47] J. M. Link, P. P. Orth, D. E. Sheehy, and J. Schmalian,
Universal collisionless transport of graphene, Phys. Rev. B
93, 235447 (2016).

[48] I. Sodemann and M.M. Fogler, Interaction corrections to
the polarization function of graphene, Phys. Rev. B 86,
115408 (2012).

[49] B. Rosenstein, M. Lewkowicz, and T. Maniv, Chiral
Anomaly and Strength of the Electron-Electron Interaction
in Graphene, Phys. Rev. Lett. 110, 066602 (2013).

[50] S. Teber and A. V. Kotikov, The method of uniqueness and
the optical conductivity of graphene: New application of a
powerful technique for multiloop calculations, Theor. Math.
Phys. 190, 446 (2017).

[51] S. Teber and A. V. Kotikov, Field theoretic renorma-
lization study of interaction corrections to the universal
ac conductivity of graphene, J. High Energy Phys. 82
(2018).

[52] D. Muñoz-Segovia and A. Cortijo, Many-body effects in
nodal-line semimetals: Correction to the optical conduc-
tivity, arXiv:1910.08081.

[53] S. M. João and J. M. V. P. Lopes, Basis-independent spectral
methods for non-linear optical response in arbitrary tight-
binding models, J. Phys. Condens. Matter 32, 125901
(2020).

[54] J. Rammer and H. Smith, Quantum field-theoretical meth-
ods in transport theory of metals, Rev. Mod. Phys. 58, 323
(1986).

[55] D. E. Parker, T. Morimoto, J. Orenstein, and J. E. Moore,
Diagrammatic approach to nonlinear optical response with
application to Weyl semimetals, Phys. Rev. B 99, 045121
(2019).

PHYSICAL REVIEW LETTERS 124, 196603 (2020)

196603-6

https://doi.org/10.1016/0370-2693(85)90883-4
https://doi.org/10.1016/0370-2693(85)90883-4
https://doi.org/10.1103/PhysRevB.94.205139
https://doi.org/10.1007/s00220-016-2714-8
https://doi.org/10.1007/s00220-016-2714-8
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRev.182.1517
https://arXiv.org/abs/1907.00682
https://arXiv.org/abs/1907.00682
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1103/PhysRevX.4.031035
https://doi.org/10.1103/PhysRevB.94.161107
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1103/PhysRevB.82.235204
https://doi.org/10.1103/PhysRevB.82.235204
https://arXiv.org/abs/0904.1917
https://doi.org/10.1103/PhysRevLett.105.026805
https://doi.org/10.1103/PhysRevLett.105.026805
https://doi.org/10.1103/PhysRevB.96.075123
https://doi.org/10.1103/PhysRevB.96.075123
https://doi.org/10.1103/PhysRevB.98.075305
https://doi.org/10.1103/PhysRevB.98.075305
https://doi.org/10.1126/sciadv.1501524
https://doi.org/10.1103/PhysRevLett.119.206401
https://doi.org/10.1103/PhysRevLett.119.206401
https://arXiv.org/abs/1902.03230
http://www.jetp.ac.ru/cgi-bin/e/index/e/67/9/p1804?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/67/9/p1804?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/67/9/p1804?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/67/9/p1804?a=list
https://doi.org/10.1103/PhysRevB.83.085426
https://doi.org/10.1103/PhysRevB.96.155117
https://doi.org/10.1103/PhysRevB.96.155117
https://doi.org/10.1103/PhysRevLett.100.046403
https://doi.org/10.1103/PhysRevLett.100.046403
https://doi.org/10.1103/PhysRevB.82.235402
https://doi.org/10.1209/0295-5075/83/17005
https://doi.org/10.1209/0295-5075/83/17005
https://doi.org/10.1103/PhysRevB.80.193411
https://doi.org/10.1103/PhysRevB.80.193411
https://doi.org/10.1103/PhysRevB.93.235447
https://doi.org/10.1103/PhysRevB.93.235447
https://doi.org/10.1103/PhysRevB.86.115408
https://doi.org/10.1103/PhysRevB.86.115408
https://doi.org/10.1103/PhysRevLett.110.066602
https://doi.org/10.1134/S004057791703014X
https://doi.org/10.1134/S004057791703014X
https://doi.org/10.1007/JHEP07(2018)082
https://doi.org/10.1007/JHEP07(2018)082
https://arXiv.org/abs/1910.08081
https://doi.org/10.1088/1361-648X/ab59ec
https://doi.org/10.1088/1361-648X/ab59ec
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/PhysRevB.99.045121
https://doi.org/10.1103/PhysRevB.99.045121


[56] H. Rostami and V. Juričić, Probing quantum criticality using
nonlinear Hall effect in a metallic Dirac system, Phys. Rev.
Research 2, 013069 (2020).

[57] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.124.196603 for the de-
tails on the diagrammatic calculation of the CPGE coef-
ficient and the interaction corrections to it, which also
includes Ref. [58].

[58] M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory (CRC Press, Boca Raton, 2018).

[59] The analytic continuation requires some extra care. Matsu-
bara frequencies ω1 and ω2 must be taken either both
positive or both negative. Otherwise, the real-
frequency answer will be incorrect.

[60] M. Lv and S.-C. Zhang, Dielectric function, Friedel oscil-
lation and plasmons in Weyl semimetals, Int. J. Mod. Phys.
B 27, 1350177 (2013).

[61] F. de Juan, Y. Zhang, T. Morimoto, Y. Sun, J. E. Moore, and
A. G. Grushin, Difference frequency generation in topo-
logical semimetals, Phys. Rev. Research 2, 012017 (2020).

PHYSICAL REVIEW LETTERS 124, 196603 (2020)

196603-7

https://doi.org/10.1103/PhysRevResearch.2.013069
https://doi.org/10.1103/PhysRevResearch.2.013069
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.196603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.196603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.196603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.196603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.196603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.196603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.196603
https://doi.org/10.1142/S0217979213501774
https://doi.org/10.1142/S0217979213501774
https://doi.org/10.1103/PhysRevResearch.2.012017

