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Abstract. We prove that the Dirichlet problem for degenerate elliptic equations

div(A∇u) = 0 in the upper half-space (x, t) ∈ Rn+1
+ is solvable when n ≥ 2 and

the boundary data is in Lp
µ(Rn) for some p < ∞. The coefficient matrix A is

only assumed to be measurable, real-valued and t-independent with a degener-

ate bound and ellipticity controlled by an A2-weight µ. It is not required to be

symmetric. The result is achieved by proving a Carleson measure estimate for

all bounded solutions in order to deduce that the degenerate elliptic measure is

in A∞ with respect to the µ-weighted Lebesgue measure on Rn. The Carleson

measure estimate allows us to avoid applying the method of ε-approximability,

which simplifies the proof obtained recently in the case of uniformly elliptic co-

efficients. The results have natural extensions to Lipschitz domains.
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1. Introduction

We consider the Dirichlet boundary value problem for the degenerate elliptic
equation div(A∇u) = 0 in the upper half-space Rn+1

+ when n ≥ 2 and which we
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make precise below. The boundary Rn × {0} is identified with Rn and we adopt the
notation X = (x, t) for points X ∈ Rn+1

+ with coordinates x ∈ Rn and t ∈ (0,∞). The
gradient ∇ := (∇x, ∂t) and divergence div := divx +∂t are with respect to all (n+1)-
coordinates. The coefficient A denotes an (n + 1) × (n + 1)-matrix of measurable,
real-valued and t-independent functions on Rn+1

+ . The matrix A(x) := A(x, t) is not
required to be symmetric. We suppose that there exist constants 0 < λ ≤ Λ < ∞
and an A2-weight µ on Rn such that the degenerate bound and ellipticity

(1.1) |〈A(x)ξ, ζ〉| ≤ Λµ(x)|ξ||ζ | and 〈A(x)ξ, ξ〉 ≥ λµ(x)|ξ|2

hold for all ξ, ζ ∈ Rn+1 and almost every x ∈ Rn. We use 〈·, ·〉 and | · | to denote the
Euclidean inner-product and norm. An A2-weight µ on Rn refers to a non-negative
locally integrable function µ : Rn → [0,∞] such that

[µ]A2(Rn) := sup
Q

(
1

|Q|

ˆ

Q

µ(x) dx

)(
1

|Q|

ˆ

Q

1

µ(x)
dx

)
< ∞,

where supQ denotes the supremum over all cubes Q in Rn with volume |Q|. We

also use µ to denote the measure µ(Q) :=
´

Q
µ(x) dx and consider the Lebesgue

space L
p
µ(Rn) with the norm ‖ f ‖Lp

µ(Rn) := (
´

Rn | f |p dµ)1/p for all p ∈ [1,∞). There

is also the notation
ffl

Q
f dµ := µ(Q)−1

´

Q
f dµ whilst

ffl

Q
f := |Q|−1

´

Q
f (x) dx.

If µ is identically 1, then A is called uniformly elliptic. The solvability of the
Dirichlet problem for general non-symmetric coefficients in that case was obtained
only recently by Hofmann, Kenig, Mayboroda and Pipher in [HKMP]. The result
in dimension n = 1 had been obtained previously by Kenig, Koch, Pipher and
Toro in [KKoPT]. These results assert that for each uniformly elliptic coefficient
matrix A, there exists some p < ∞ for which the Dirichlet problem is solvable
for Lp-boundary data. Conversely, counterexamples in [KKoPT] show that for
each p < ∞, there exists a uniformly elliptic coefficient matrix A for which the
Dirichlet problem is not solvable for Lp-boundary data. In contrast, solvability of
the Dirichlet problem for symmetric coefficients in the uniformly elliptic case is
well-understood, and we mention only that it was obtained by Jerison and Kenig
in [JK] for Lp-boundary data when 2 ≤ p < ∞.

The solvability of the Dirichlet problem in the uniformly elliptic case has also
been established for a variety of complex coefficient structures (see, for instance,
[AS, HKMP, HMM]). A significant portion of that theory was recently extended
to the degenerate elliptic case by Auscher, Rosén and Rule in [ARR] for L2-
boundary data. That extension did not include, however, the results for general
non-symmetric coefficients in [HKMP]. This paper complements the progress
made in [ARR] by extending the solvability obtained for the Dirichlet problem
in [HKMP] to the degenerate elliptic case.

For solvability on the upper half-space Rn+1
+ , the A2-weight µ on Rn is extended

to the t-independent A2-weight µ(x, t) := µ(x) on Rn+1 (and [µ]A2(Rn+1) = [µ]A2(Rn)).
We then say that u is a solution of the equation div(A∇u) = 0 in an open set

Ω ⊆ Rn+1 when u ∈ W
1,2
µ,loc(Ω) and

´

R
n+1
+
〈A∇u,∇Φ〉 = 0 for all smooth com-

pactly supported functions Φ ∈ C∞c (Ω). The solution space is the local µ-weighted

Sobolev space W
1,2
µ,loc defined in Section 2. The convergence of solutions to bound-

ary data is afforded by estimates for the non-tangential maximal function N∗u of
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solutions u, defined by

(N∗u)(x) := sup
(y,t)∈Γ(x)

|u(y, t)| ∀x ∈ Rn,

where the cone Γ(x) := {(y, t) ∈ Rn+1
+ : |y − x| < t}. If p ∈ (1,∞), then the Dirichlet

problem for L
p
µ(Rn)-boundary data, or simply (D)p,µ, is said to be solvable when

for each f ∈ L
p
µ(Rn), there exists a solution u such that

(D)p,µ





div(A∇u) = 0 in Rn+1
+ ,

N∗u ∈ L
p
µ(Rn),

limt→0 u(·, t) = f ,

where the limit is required to converge in L
p
µ(Rn)-norm and in the non-tangential

sense whereby limΓ(x)3(y,t)→(x,0) u(y, t) = f (x) for almost every x ∈ Rn. Note that
this definition of solvability is distinct from well-posedness, which requires that
such solutions are unique. We are able to obtain a uniqueness result for solutions
that converge uniformly to 0 at infinity, but the question of well-posedness more
generally remains open (see Theorem 5.34 and the preceding discussion).

A non-negative Borel measure ω on a cube Q0 in Rn is said to be in the A∞-class
with respect to µ, written ω ∈ A∞(µ), when there exist constants C, θ > 0, which
we call the A∞(Q0)-constants, such that

ω(E) ≤ C

(
µ(E)

µ(Q)

)θ
ω(Q)

for all cubes Q ⊆ Q0 and all Borel sets E ⊆ Q. This is a scale-invariant version
of the absolute continuity of ω with respect to µ. It is well-known, at least in the
uniformly elliptic case, that solvability of the Dirichlet problem for Lp-boundary
data for some p < ∞ is equivalent to the property that an adapted harmonic measure
(elliptic measure) belongs to A∞ with respect to the Lebesgue measure on Rn (see
Theorem 1.7.3 in [K]). In the degenerate case, an adapted harmonic measure ωX ,
which we call degenerate elliptic measure, can also be defined at each X ∈ Rn+1

+

(see Section 5). We prove that this degenerate elliptic measure is in A∞ with respect
to µ and then deduce the solvability of (D)p,µ stated in the theorem below. This
requires the notation associated with cubes Q in Rn whereby xQ and `(Q) denote
the centre and side length of Q, respectively, and XQ := (xQ, `(Q)) denotes the

corkscrew point in Rn+1
+ relative to Q.

Theorem 1.2. If n ≥ 2 and the t-independent coefficient matrix A satisfies the

degenerate bound and ellipticity in (1.1) for some constants 0 < λ ≤ Λ < ∞ and

an A2-weight µ on Rn, then there exists p ∈ (1,∞) such that (D)p,µ is solvable.

Moreover, on each cube Q in Rn, the degenerate elliptic measure ω := ωXQbQ
satisfies ω ∈ A∞(µ) with A∞(Q)-constants that depend only on n, λ, Λ and [µ]A2 .

In contrast to the proof of solvability in the uniformly elliptic case in [HKMP],
we avoid the need to apply the method of ε-approximability by first establishing the
Carleson measure estimate in the theorem below. This crucial estimate facilitates
the main results of the paper. The connection between the Carleson measure esti-
mate and solvability was first established in the uniformly elliptic case by Kenig,
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Kirchheim, Pipher and Toro in [KKiPT], and we follow their approach here, adapt-
ing it to the degenerate elliptic setting (see Lemma 5.24 below). In particular, the
A∞-property of degenerate elliptic measure is obtained by combining the Carleson
measure estimate (1.4) with the notion of good ε-coverings introduced in [KKoPT].

Theorem 1.3. If n ≥ 2 and the t-independent coefficient matrix A satisfies the

degenerate bound and ellipticity in (1.1) for some constants 0 < λ ≤ Λ < ∞ and

an A2-weight µ on Rn, then any solution u ∈ L∞(Rn+1
+ ) of div(A∇u) = 0 in Rn+1

+

satisfies the Carleson measure estimate

(1.4) sup
Q

1

µ(Q)

ˆ `(Q)

0

ˆ

Q

|t∇u(x, t)|2 dµ(x)
dt

t
≤ C‖u‖2∞,

where C depends only on n, λ, Λ and [µ]A2 .

Using the Carleson measure estimate in this way allows us to bypass the need
to establish norm-equivalences between the non-tangential maximal function N∗u
and the square function S u of solutions u, defined by

(S u)(x) :=

(
¨

Γ(x)

|t∇u(y, t)|2 dµ(y)

µ(∆(x, t))

dt

t

)1/2

∀x ∈ Rn,

where the surface ball ∆(x, t) := {y ∈ Rn : |y − x| < t}. It was shown by Dahlberg,
Jerison and Kenig in [DJK], however, that such estimates are a consequence of the
A∞-property of degenerate elliptic measure, which provides the following result.

Theorem 1.5. If n ≥ 2 and the t-independent coefficient matrix A satisfies the

degenerate bound and ellipticity in (1.1) for some constants 0 < λ ≤ Λ < ∞ and

an A2-weight µ on Rn, then any solution of div(A∇u) = 0 in Rn+1
+ satisfies

‖S u‖Lp
µ(Rn) ≤ C‖N∗u‖Lp

µ(Rn) ∀p ∈ (0,∞),

and if, in addition, u(X0) = 0 for some X0 ∈ Rn+1
+ , then

‖N∗u‖Lp
µ(Rn) ≤ C‖S u‖Lp

µ(Rn) ∀p ∈ (0,∞),

where C depends only on X0, p, n, λ, Λ and [µ]A2 .

The paper is structured as follows. Technical preliminaries concerning weights
and degenerate elliptic operators are in Section 2 whilst estimates for weighted
maximal operators are in Section 3. The Carleson measure estimate in Theorem 1.3
is obtained in Section 4. The degenerate elliptic measure is constructed in Section 5
and then the A∞-estimates in Theorem 1.2 are deduced as part of Theorem 5.30.
The square function and non-tangential maximal function estimates in Theorem 1.5
are included in the more general result in Theorem 5.31 whilst the solvability of
the Dirichlet problem in Theorem 1.2 is finally deduced in Theorem 5.34, where a
uniqueness result is also obtained.

We state and prove our results in the upper half-space, but we note that they
extend immediately to the case that the domain is the region above a Lipschitz
graph, by a well-known pull-back technique which preserves the t-independence
of the coefficients. In turn, our results concerning the A∞-property of degenerate
elliptic measure may then be extended to the case of a bounded star-like Lipschitz
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domain, with radially independent coefficients, by a standard localization argument
using the maximum principle.

The convention is adopted whereby C denotes a finite positive constant that
may change from one line to the next. For a, b ∈ R, the notation a . b means that
a ≤ Cb whilst a h b means that a . b . a. We write a .p b when a ≤ Cb and we
wish to emphasize that C depends on a specified parameter p.

2. Preliminaries

We dispense with some technical preliminaries concerning general Ap-weights µ
for p ∈ (1,∞) and degenerate elliptic operators on Rn for n ∈ N. All cubes Q and
balls B in Rn are assumed to be open (except in Section 5.4 where the standard
dyadic cubes S in D(Rn) are assumed to be closed to provide genuine coverings of
R

n). For α > 0, let αQ and αB denote the concentric dilates of Q and B respectively.
For x ∈ Rn and r > 0, define the ball B(x, r) := {y ∈ Rn : |y− x| < r}. An Ap-weight
refers to a non-negative locally integrable function µ on Rn with the property that

[µ]Ap(Rn) := supQ

( ffl
Q
µ
)( ffl

Q
µ−1/(p−1)

)p−1
< ∞. The measure associated with

such a weight satisfies the doubling property

(2.1) µ(αB) ≤ [µ]Ap
αnpµ(B)

for all α ≥ 1 (see, for instance, Section 1.5 in Chapter V of [S2]).

For an open setΩ ⊆ Rn, the Sobolev space W
1,p
µ (Ω) is defined as the completion,

in the ambient space L
p
µ(Ω), of the normed space of all f ∈ C∞(Ω) with finite norm

(2.2) ‖ f ‖p
W

1,p
µ (Ω)

:=

ˆ

Ω

| f |p dµ +

ˆ

Ω

|∇ f |p dµ < ∞.

The embedding of the completion W
1,p
µ (Ω) in L

p
µ(Ω) relies on the Ap-property of

the weight (to the extent that it implies both µ and µ−1/(p−1) are in L1
loc(Ω)), which

ensures that if ( f j) j is a W
1,p
µ (Ω)-Cauchy sequence in C∞(Ω) converging to 0 in

L
p
µ(Ω), then ( f j) j converges to 0 in W

1,p
µ (Ω)-norm (see Section 2.1 in [FKS]).

Therefore, since C∞(Ω) is dense in W
1,p
µ (Ω), the gradient extends to a bounded

operator ∇ : W
1,p
µ (Ω) → L

p
µ(Ω,Rn), thereby extending (2.2) to all f ∈ W

1,p
µ (Ω).

The Sobolev space W
1,p
0,µ (Ω) is defined as the closure of C∞c (Ω) in W

1,p
µ (Ω). It can

be shown that W
1,p
0,µ (Rn) = W

1,p
µ (Rn) by following the proof in the unweighted case

from Proposition 1 of Chapter V in [S1] but instead using Lemma 2.2 in [ARR] to

deduce the convergence of the regularization in L
p
µ(Rn). The local space W

1,p
µ,loc(Ω)

is then defined as the set of all f ∈ L
p
µ,loc(Ω) such that f ∈ W

1,p
µ (Ω′) for all open

sets Ω′ with compact closure Ω′ ⊂ Ω (henceforth denoted Ω′ ⊂⊂ Ω). Finally, the
weighted Sobolev and Poincaré inequalities obtained for continuous functions in
Theorems 1.2 and 1.5 in [FKS] have the following immediate extensions.

Theorem 2.3. Let n ≥ 2 and suppose that B ⊂ Rn denotes a ball with radius r(B).
If p ∈ (1,∞) and µ is an Ap-weight on Rn, then there exists δ > 0 such that

(2.4)

(
 

B

| f |p( n
n−1+δ) dµ

)1/(p( n
n−1+δ))

. r(B)

(
 

B

|∇ f |p dµ

)1/p
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for all f ∈ W
1,p
0,µ (B), and

(2.5)

(
 

B

| f (x) − cB|p dµ

)1/p

. r(B)

(
 

B

|∇ f |p dµ

)1/p

for all f ∈ W
1,p
µ (B) and cB ∈

{ffl
B

f dµ,
ffl

B
f
}

, where the implicit constants depend

only on n, p and [µ]Ap
. The estimates also hold when the ball B and the radius r(B)

are replaced by a cube Q and the sidelength `(Q).

For n ∈ N, constants 0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn, let E(n, λ,Λ, µ)
denote the set of all n × n-matrices A of measurable real-valued functions on Rn

satisfying the degenerate bound and ellipticity

(2.6) |〈A(x)ξ, ζ〉| ≤ Λµ(x)|ξ||ζ | and 〈A(x)ξ, ξ〉 ≥ λµ(x)|ξ|2

for all ξ, ζ ∈ Rn and almost every x ∈ Rn. These properties allow us to define
Lµ,Ω : Dom(Lµ,Ω) ⊆ L2

µ(Ω)→ L2
µ(Ω) as the maximal accretive operator in L2

µ(Ω)
associated with the bilinear form defined by

(2.7) aΩ( f , g) :=

ˆ

Ω

〈A∇ f ,∇g〉 =
ˆ

Ω

〈 1
µ
A∇ f ,∇g〉 dµ

for all f , g ∈ W
1,2
0,µ(Ω). The domain of Lµ,Ω is dense in L2

µ(Ω), and in particular

Dom(Lµ,Ω) = { f ∈ W
1,2
0,µ(Ω) : supg∈C∞c (Ω) |aΩ( f , g)|/‖g‖L2

µ(Ω) < ∞},

with

(2.8)

ˆ

Ω

(Lµ,Ω f )g dµ = aΩ( f , g)

for all f ∈ Dom(Lµ,Ω) and g ∈ W
1,2
0,µ(Ω). It is equivalent to define Lµ,Ω as the com-

position − divµ,Ω( 1
µ
A∇) of unbounded operators, where − divµ,Ω is the adjoint ∇∗

of the closed densely-defined operator ∇ : W
1,2
0,µ(Ω) ⊆ L2

µ(Ω)→ L2
µ(Ω,Rn), that is

(2.9)

ˆ

Ω

(− divµ,Ω f)g dµ =

ˆ

Ω

〈f,∇g〉 dµ

for all f ∈ Dom(divµ,Ω) := Dom(∇∗) and g ∈ W
1,2
0,µ(Ω). In view of (2.7) and (2.8),

we have the formal identities divµ,Ω =
1
µ

divΩ µ and Lµ,Ω = − 1
µ

divΩ(A∇).

Now let Ω = Q for some cube Q ⊂ Rn and denote the space of bounded linear

functionals on W
1,2
0,µ(Q) by W

−1,2
0,µ (Q). The inclusions W

1,2
0,µ(Q) ⊆ L2

µ(Q) ⊆ W
−1,2
0,µ (Q)

are interpreted in the standard way by identifying f ∈ L2
µ(Q) with the functional ` f

defined by ` f (g) :=
´

Q
f g dµ for all g ∈ W

1,2
0,µ(Q). Thus, setting

Lµ,Q f (g) := aQ( f , g) and − divµ,Q f(g) :=

ˆ

Q

〈f,∇g〉 dµ

for all f , g ∈ W
1,2
0,µ(Q) and f ∈ L2(Q,Rn), we obtain an extension of Lµ,Q from (2.8)

to a bounded invertible operator from W
1,2
0,µ(Q) onto W

−1,2
0,µ (Q), and an extension of
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divµ,Q from (2.9) to a bounded operator from L2
µ(Q) into W

−1,2
0,µ (Q). The surjectivity

ofLµ,Q relies on (2.4) and the Lax–Milgram Theorem. These definitions imply that

‖∇L−1
µ,Q divµ,Q f‖L2

µ(Q,Rn) . ‖f‖L2
µ(Q,Rn)

for all f ∈ L2
µ(Q,Rn). The topological direct sum or W

1,2
0,µ(Q)-Hodge decomposition

(2.10) L2
µ(Q,Rn) = { 1

µ
A∇g : g ∈ W

1,2
0,µ(Q)} ⊕ {h ∈ L2

µ(Q,Rn) : divµ,Q h = 0}

follows by writing f = − 1
µ
A∇L−1

µ,Q divµ,Q f + (f + 1
µ
A∇L−1

µ,Q divµ,Q f) =: 1
µ
A∇g+h,

since then divµ,Q h = divµ,Q f − Lµ,QL−1
µ,Q divµ,Q f = 0. This decomposition also

extends to L
p
µ(Q,Rn) for all p ∈ [2, 2 + ε) and some ε > 0 by recent work of Le

in [L], although we do not need it here.

Now let Ω = Rn and consider divµ := divµ,Rn as in (2.9) so Lµ := − divµ( 1
µ
A∇)

is maximal accretive, thus having a maximal accretive square root L1/2
µ , in L2

µ(Rn).
The solution of the Kato square root problem in [AHLMT] was recently extended
to degenerate elliptic equations by Cruz-Uribe and Rios in [CR3]. This shows that
‖L1/2

µ f ‖L2
µ(Rn) h ‖∇ f ‖L2

µ(Rn,Rn) for all f ∈ W1,2
µ (Rn), hence Dom(L1/2

µ ) = W1,2
µ (Rn).

The operator Lµ is also injective and type-Sω+ in L2
µ(Rn) for some ω ∈ (0, π/2),

so it has a bounded H∞(S o
θ+)-functional calculus in L2

µ(Rn) for each θ ∈ (ω, π),
where S o

θ+ := {z ∈ C \ {0} : | arg z| < θ}. See Section 2.2 of [A] for the uniformly
elliptic case and Theorems F and G in [ADM] for the general theory. An equivalent
property is the validity of the quadratic estimate

(2.11)

ˆ ∞

0

‖ψ(tLµ) f ‖2L2
µ(Rn)

dt

t
h ‖ f ‖2L2

µ(Rn) ∀ f ∈ L2
µ(Rn)

for each holomorphic ψ on S o
θ+ satisfying |ψ(z)| . min{|z|α, |z|−β} for some α, β > 0,

where the bounded operator ψ(tLµ) on L2
µ(Rn) is defined by a Cauchy integral.

More generally, the relationship between bounded holomorphic functional calculi
and quadratic estimates is developed in the seminal articles [Mc] and [CDMY].

The functional calculus then defines a bounded operator ϕ(Lµ) on L2
µ(Rn) for

each bounded holomorphic function ϕ on S o
θ+ and ‖ϕ(Lµ)‖L2

µ(Rn)→L2
µ(Rn) .θ ‖ϕ‖∞.

Another consequence is that −Lµ generates a holomorphic contraction semigroup

(e−ζLµ)ζ∈S o
π/2−ω∪{0} on L2

µ(Rn), thus e−tLµ f ∈ Dom(Lµ) and ∂t(e
−tLµ f ) = Lµe−tLµ f

for all f ∈ L2
µ(Rn) and t > 0. The functional calculus also extends to define

an unbounded operator φ(Lµ) on L2
µ(Rn) for each holomorphic function φ on S o

θ+

satisfying |φ(z)| . max{|z|α, |z|−β} for some α, β > 0, but the algebra homomorphism
property of the functional calculus (φ1(Lµ)φ2(Lµ) = (φ1φ2)(Lµ)) must then be
interpreted in the sense of unbounded linear operators. This allows us to interpret
both the semigroup and the square root of Lµ in terms of the functional calculus in
order to justify some otherwise formal manipulations, beginning with (2.15) in the
proof of the following corollary of the solution of the Kato problem in [CR3].

Theorem 2.12. Let n ≥ 1 and suppose that A ∈ E(n, λ,Λ, µ) for some constants

0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn. The operator Lµ := − divµ( 1
µ
A∇)
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satisfies

(2.13)

ˆ ∞

0

‖tLµe−t2Lµ f ‖2L2
µ(Rn)

dt

t
h ‖∇ f ‖2L2

µ(Rn,Rn)

and

(2.14)

ˆ ∞

0

‖t2∇x,tLµe−t2Lµ f ‖2L2
µ(Rn,Rn+1)

dt

t
. ‖∇ f ‖2L2

µ(Rn,Rn)

for all f ∈ W1,2
µ (Rn), where the implicit constants depend only on n, λ, Λ and [µ]A2 .

Proof. The functional calculus of Lµ justifies the identity

(2.15) Lµe−t2Lµ f = L1/2
µ e−t2LµL1/2

µ f = e−(t2/2)LµLµe−(t2/2)Lµ f

for all f ∈ Dom(L1/2
µ ) and t > 0. The first equality in (2.15), the quadratic estimate

in (2.11) and the solution of the Kato problem in [CR3] imply that
ˆ ∞

0

‖tLµe−t2Lµ f ‖2L2
µ(Rn)

dt

t
=

ˆ ∞

0

‖(τLµ)1/2e−τLµL1/2
µ f ‖2L2

µ(Rn)

dτ

τ

h ‖L1/2
µ f ‖2L2

µ(Rn)

h ‖∇ f ‖2L2
µ(Rn,Rn)

for all f ∈ Dom(L1/2
µ ) = W1,2

µ (Rn), which proves (2.13).

The bounded H∞(S o
θ+)-functional calculus of Lµ implies the uniform estimate

‖t∇x,te
−t2Lµg‖2L2

µ(Rn,Rn+1) = ‖t∂te
−t2Lµg‖2L2

µ(Rn) + ‖t∇xe−t2Lµ‖2L2
µ(Rn,Rn)

. ‖t2Lµe−t2Lµg‖2L2
µ(Rn) +

ˆ

Rn

t2〈A∇xe−t2Lµg,∇xe−t2Lµg〉

. ‖g‖2L2
µ(Rn) + ‖t

2Lµe−t2Lµg‖L2
µ(Rn)‖e−t2Lµg‖L2

µ(Rn)

. ‖g‖2L2
µ(Rn)

for all g ∈ L2
µ(Rn) and t > 0. Thus, the second equality in (2.15) and the vertical

square function estimate in (2.13), which we have already proved, imply that
ˆ ∞

0

‖t2∇x,tLµe−t2Lµ f ‖2L2
µ(Rn,Rn+1)

dt

t
.

ˆ ∞

0

‖tLµe−(t2/2)Lµ f ‖2L2
µ(Rn)

dt

t
. ‖∇ f ‖2L2

µ(Rn,Rn)

for all f ∈ W1,2
µ (Rn), which proves (2.14). �

Now let us return to the case when Ω ⊆ Rn is an arbitrary open set and suppose

that f : Ω → Rn is a measurable function for which 1
µ

f ∈ L∞(Ω). A solution of

the inhomogeneous equation div(A∇u) = div f in Ω ⊆ Rn refers to any function

u ∈ W
1,2
µ,loc(Ω) such that

´

Rn〈A∇u − f,∇Φ〉 = 0 for all Φ ∈ C∞c (Ω). All solutions u

of the homogeneous equation div(A∇u) = 0 in Ω are locally bounded and Hölder
continuous in the sense that

(2.16) ‖u‖L∞(B) .

(
 

2B

|u|2 dµ

)1/2
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and there exists α > 0 such that

(2.17) |u(x) − u(y)| .
(
|x − y|
r(B)

)α( 

2B

|u|2 dµ

)1/2

∀x, y ∈ B,

and if, in addition, u ≥ 0 almost everywhere on Ω, there is the Harnack inequality

(2.18) sup
B

u . inf
B

u,

for all balls B of radius r(B) such that 2B ⊆ Ω, where α and the implicit constants
depend only on n, λ, Λ and [µ]A2 . These properties follow from Corollary 2.3.4,
Lemma 2.3.5 and Theorem 2.3.12 in [FKS] by observing that the proofs do not use
the assumption therein thatA is symmetric. The estimates also hold when the balls
B are replaced by (open) cubes Q, and also when the dilate 2B is replaced by C0B

for any C0 > 1, provided the implicit constants are understood to depend on C0.

The following local boundedness estimate for solutions of the inhomogeneous
equation is needed in Lemma 4.3, although only for p = 2. This is a simpler
version of Theorem 8.17 in [GT], which we have adapted to degenerate elliptic
equations. In fact, the result for p ≥ 2 is already proven in [FKS] by combining
Corollary 2.3.4 with estimates (2.3.7) and (2.3.13) therein. The proof is included
here for the readers convenience and since it implies (2.16) as a specical case,
which in turn is the well-known starting point for establishing (2.17).

Theorem 2.19. Let n ≥ 2 and suppose that A ∈ E(n, λ,Λ, µ) for some constants

0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn. Let Ω ⊆ Rn denote an open set

and suppose that f : Ω → Rn is a measurable function such that 1
µ

f ∈ L∞(Ω). If

p ∈ (1,∞) and div(A∇u) = div f in Ω, then

(2.20) ‖u‖L∞(B) .

(
 

2B

|u|p dµ

)1/p

+ r(B)‖ 1
µ

f‖L∞(Ω)

for all balls B of radius r(B) > 0 such that 2B ⊆ Ω, where the implicit constant

depends only on p, n, λ, Λ and [µ]A2 .

Proof. Suppose that div(A∇u) = div f inΩ and consider a ball B such that 2B ⊆ Ω.

First, assume that u is non-negative and in L∞(2B). Let ε > 0, set k = r(B)‖ 1
µ

f‖L∞(Ω)

and ūε := u + k + ε. Let Br denote the ball concentric to B with radius r > 0 and
recall the index δ > 0 from the Sobolev inequality in Theorem 2.3. We claim that
if γ ∈ [p,∞) and r(B) ≤ r1 < r2 ≤ 2r(B), then

(2.21)

(
 

Br1

ū
γ( n

n−1+δ)
ε dµ

)1/(γ( n
n−1+δ))

.

(
γ

r1

r2 − r1

)2/γ
(
 

Br2

ūγε dµ

)1/γ

,

where the implicit constant depends only on p, n, λ, Λ and [µ]A2 . To prove (2.21),
fix η ∈ C∞c (Ω) such that η : Ω → [0, 1], η ≡ 1 on Br1 , η ≡ 0 on Ω \ Br2 and

‖∇η‖∞ ≤ 2/(r2 − r1). Set β := γ − 1 and ν := η2ū
β
ε . Note that ν ∈ W

1,2
0,µ(Ω) with

∇v = 2η∇ηūβε + βη
2ūβ−1

ε ∇u,

since 0 < ε ≤ ūε(x) ≤ ‖u‖L∞(2B) + k + ε < ∞ for almost every x ∈ 2B, thus
ˆ

Rn

〈A∇u − f, 2η∇ηūβε 〉 = −
ˆ

Rn

〈A∇u − f, βη2ūβ−1
ε ∇u〉.
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We then use this identity and Cauchy’s inequality with σ > 0 to obtain
ˆ

Rn

η2ūβ−1
ε |∇u|2 dµ .λ

ˆ

Rn

η2ūβ−1
ε 〈A∇u,∇u〉

= −2β−1

ˆ

Rn

ηūβε 〈A∇u − f,∇η〉 +
ˆ

Rn

η2ūβ−1
ε 〈f,∇u〉

.Λ (p−1)−1

ˆ

Rn

ηūβε (|∇u| + | 1
µ

f|)|∇η| dµ +
ˆ

Rn

η2ūβ−1
ε | 1µ f||∇u| dµ

.p σ

ˆ

Rn

η2ūβ−1
ε |∇u|2 dµ + σ−1

ˆ

Rn

ūβ+1
ε |∇η|2 dµ

+

ˆ

Rn

ūβ+1
ε |∇η|2 dµ +

ˆ

Rn

(η/r(B))2ūβ+1
ε dµ

+ σ

ˆ

Rn

η2ūβ−1
ε |∇u|2 dµ + σ−1

ˆ

Rn

(η/r(B))2ūβ+1
ε dµ,

where in the second inequality we used the assumption that β := γ − 1 ≥ p− 1 and

in the final inequality we used the fact that | 1
µ

f| ≤ k/r(B) ≤ ūε/r(B) on Ω. Next,

choose σ > 0 small enough, depending only on p, λ and Λ, to deduce that
ˆ

Br1

ūβ−1
ε |∇u|2 dµ .p,λ,Λ

ˆ

Rn

ūβ+1
ε (|∇η|2 + (η/r(B))2) dµ .

1

(r2 − r1)2

ˆ

Br2

ūβ+1
ε dµ,

where in the final inequality we used the fact that r(B) ≥ r2 − r1. Now combine
this estimate with the Sobolev inequality (2.4) and recall that β := γ − 1 to obtain

(
 

Br1

ū
γ( n

n−1+δ)
ε dµ

)1/( n
n−1+δ)

. r2
1

 

Br1

|∇(ū(β+1)/2
ε )|2 dµ

. ((β + 1)r1)2

 

Br1

ūβ−1
ε |∇u|2 dµ

.

(
γ

r1

r2 − r1

)2  

Br2

ūγε dµ,

where the implicit constants depend only on p, n, λ, Λ and [µ]A2 , proving (2.21).

We now apply the Moser iteration technique to prove (2.20). Set χ := n
n−1 + δ

and define Φ(q, r) :=
(
ffl

Br
ū

q
ε dµ

)1/q

for q, r > 0. Estimate (2.21) implies that

Φ(γχ, r1) ≤
(

Cγ
r1

r2 − r1

)2/γ

Φ(γ, r2)

where C depends only on p, n, λ, Λ and [µ]A2 , and it follows by induction that

Φ(pχm, (1 + 2−m)r(B)) ≤ (4Cp)
2
p

∑m−1
k=0 χ

−k

(2χ)
2
p

∑m−1
k=0 kχ−k

Φ(p, 2r(B)) . Φ(p, 2r(B))

for all m ∈ N. This shows that

‖ūε‖L∞(B) = lim
m→∞

Φ(pχm, r(B)) . Φ(p, 2r(B)) =

(
 

2B

ūp
ε dµ

)1/p
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and therefore

‖u‖L∞(B) ≤ ‖ūε‖L∞(B) .

(
 

2B

ūp
ε dµ

)1/p

.

(
 

2B

up dµ

)1/p

+ r(B)‖ 1
µ

f‖L∞(Ω) + ε

for all ε > 0, which implies (2.20).

Finally, it remains to remove the assumption that u is non-negative and bounded.
This is achieved by setting ūε := max{u, 0} + k + ε and ūε := −min{u, 0} + k + ε

respectively and in each case adjusting the proof above to incorporate the truncated
test function ν := η2hN(ūε)ūε , where

hN(x) :=

{
xβ−1, x ≤ N + k + ε,

(N + k + ε)β−1, x > N + k + ε.

We leave the standard details to the reader. �

The following self-improvement property for Carleson measures will be used in
conjunction with the local Hölder continuity estimate for solutions in (2.17). The
result is proved in the unweighted case in Lemma 2.14 in [AHLT]. In that proof,
the Lebesgue measure on Rn can in fact be replaced by any doubling measure,
since the Whitney decomposition of open sets can be adapted to any such measure
(see, for instance, Lemma 2 in Chapter I of [S2]). The result below then follows.

Lemma 2.22. Let n ≥ 1 and suppose that µ is an A2-weight on Rn. Let α, β0 > 0
and suppose that (vt)t>0 is a collection of Hölder continuous functions on a cube

Q ⊂ Rn satisfying

0 ≤ vt(x) ≤ β0 and |vt(x) − vt(y)| ≤ β0

(
|x − y|

t

)α

for all x, y ∈ Q. If there exists η ∈ (0, 1], β > 0 and, for each cube Q′ ⊆ Q, a

measurable set F′ ⊂ Q′ such that

µ(F′) ≥ ηµ(Q′) and
1

µ(Q′)

ˆ l(Q′)

0

ˆ

F′
vt(x) dµ(x)

dt

t
≤ β,

then
1

µ(Q)

ˆ `(Q)

0

ˆ

Q

vt(x) dµ(x)
dt

t
.α,η β + β0,

where the implicit constant depends only on α, η, n and [µ]A2 .

3. Estimates forMaximal Operators

We obtain estimates for a variety of maximal operators (Mµ, D∗,µ, N
η
∗ and Ñ

η
∗,µ)

adapted to an A2-weight µ and degenerate elliptic operators Lµ := − divµ( 1
µ
A∇)

on Rn for n ≥ 2. These will be used to prove the Carleson measure estimate from
Theorem 1.3 in Section 4. We first define the maximal operators Mµ and D∗,µ by

Mµ f (x) := sup
r>0

 

B(x,r)

| f (y)| dµ(y),

D∗,µg(x) := sup
r>0

(
 

B(x,r)

(
|g(x) − g(y)|
|x − y|

)2

dµ(y)

)1/2



12 STEVE HOFMANN, PHI LE, ANDREW J. MORRIS

for all f ∈ L1
µ,loc(Rn), g ∈ W

1,2
µ,loc(Rn) and x ∈ Rn. The usual unweighted and centred

Hardy–Littlewood maximal operator is abbreviated by M. The maximal operator
Mµ is bounded on L

p
µ(Rn) for all p ∈ (1,∞) and satisfies the weak-type estimate

(3.1) µ
(
{x ∈ Rn : |Mµ f (x)| > κ}

)
. κ−1‖ f ‖L1

µ(Rn) ∀κ > 0

for all f ∈ L1
µ(Rn) (see, for instance, Theorem 1 in Chapter I of [S2]). There is also

the following weak-type estimate for the maximal operator D∗,µ.

Lemma 3.2. Let n ≥ 2. If µ is an A2-weight on Rn, then

µ
(
{x ∈ Rn : |D∗,µ f (x)| > κ}

)
. κ−2‖∇ f ‖2L2

µ(Rn,Rn) ∀κ > 0(3.3)

for all f ∈ W1,2
µ (Rn), where the implicit constant depends only on n and [µ]A2 .

Proof. If f ∈ C∞c (Rn), then a version of Morrey’s inequality (see, for instance,
Theorem 3.5.2 in [Mo]) shows that

| f (x) − f (y)|
|x − y| . M(∇ f )(x) + M(∇ f )(y)

for almost every x, y ∈ Rn, hence

D∗,µ f (x) . M(∇ f )(x) +
(

Mµ[M(∇ f )]2(x)
)1/2

.

Estimate (3.3) then follows from the weak-type bound for Mµ in (3.1), the fact that

M is bounded on L2
µ(Rn) (see, for instance, Theorem 1 in Chapter V of [S2]) and

the density of C∞c (Rn) in W1,2
µ (Rn). �

We now define the non-tangential maximal operators N
η
∗ and Ñ

η
∗,µ, for η > 0, by

Nη
∗u(x) := sup

(y,t)∈Γη(x)

|u(y, t)|, Ñη
∗,µv(x) := sup

(y,t)∈Γη(x)

(
 

B(y,ηt)

|v(z, t)|2 dµ(z)

)1/2

for all measurable functions u, v on Rn+1
+ (such that v(·, t) ∈ L2

µ,loc(Rn) for a.e. t > 0)

and x ∈ Rn, where Γη(x) := {(y, t) ∈ Rn+1
+ : |y−x| < ηt} is the conical non-tangential

approach region in Rn+1
+ with vertex at x and aperture η.

Now suppose that A ∈ E(n, λ,Λ, µ), as defined by (2.6). In particular, since A
has real-valued coefficients, there exists an integral kernel Wt(x, y) such that

(3.4) e−tLµ f (x) =

ˆ

Rn

Wt(x, y) f (y) dµ(y),

for all f ∈ L2
µ(Rn), and there exists constants C1,C2 > 0 such that

(3.5) |Wt(x, y)| ≤ C1

µ(B(x,
√

t))
exp

(
−C2
|x − y|2

t

)

for all t > 0 and x, y ∈ Rn. This was proved by Cruz-Uribe and Rios for f ∈ C∞c (Rn)
under the assumption thatA is symmetric (see Theorem 1 and Remark 3 in [CR2]).
The symmetry assumption can be removed, however, by following their proof and
applying the Harnack inequality for degenerate parabolic equations obtained by
Ishige in Theorem A of [I], which does not require symmetric coefficients, instead
of the version recorded in Proposition 3.8 of [CR1]. The results also extend to
f ∈ L2

µ(Rn) by density, Schur’s Lemma and the doubling property of µ.
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We now consider the semigroup generated by Lµ := − divµ( 1
µ
A∇) with elliptic

homogeneity (t replaced by t2) and denoted by Pt := e−t2Lµ in the estimates below.

Lemma 3.6. Let n ≥ 2 and suppose that A ∈ E(n, λ,Λ, µ) for some constants

0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn. Let p ∈ (1,∞) and suppose that µ is

also an Ap-weight on Rn. If x ∈ Rn, η > 0 and α ≥ 1, then

(3.7) sup
(y,t)∈Γη(x)

|(ηt)−1[Pηt( f − cB(x,αηt))](y)|2 .α [Mµ(|∇ f |p)(x)]2/p

for all f ∈ W
1,p
µ (Rn) and cB(x,αηt) ∈

{
ffl

B(x,αηt) f dµ,
ffl

B(x,αηt) f

}
, and

|Nη
∗ (∂tPt f )(x)|2 .η [Mµ(|∇ f |p)(x)]2/p,(3.8)

|η−1Nη
∗ (∂tPηt f )(x)|2 . [Mµ(|∇ f |p)(x)]2/p,(3.9)

|Ñη
∗,µ(∇xPηt f )(x)|2 . Mµ

(
[Mµ(|∇ f |p)]2/p

)
(x) + Mµ(|∇ f |2)(x),(3.10)

for all f ∈ W1,2
µ (Rn) ∩ W

1,p
µ,loc(Rn), where the implicit constants depend only on n,

λ, Λ, p, [µ]A2 and [µ]Ap
, as well as on α in (3.7) and on η in (3.8).

Proof. Let x ∈ Rn, (y, t) ∈ Γη(x), f ∈ W1,2
µ (Rn) ∩W

1,p
µ,loc(Rn), fB(x,t) :=

ffl

B(x,t) f and

f̃B(x,t) :=
ffl

B(x,t) f dµ. To prove (3.7), it suffices to assume that η = 1 and α ≥ 1. We

set C0(t) := B(x, αt) and define the dyadic annulus C j(t) := B(x, 2 jαt)\B(x, 2 j−1αt)
for all j ∈ N. The Gaussian kernel estimates in (3.4) and (3.5) imply that

|t−1[Pt( f − fB(x,αt))](y)| = t−1

∣∣∣∣
ˆ

Rn

Wt2(y, z)[ f (z) − fB(x,αt)] dµ(z)

∣∣∣∣

≤
∞∑

j=0

t−1 C1

µ(B(y, t))

ˆ

C j(t)

exp

(
−C2
|y − z|2

t2

)
| f (z) − fB(x,αt)| dµ(z) =:

∞∑

j=0

I j.

To estimate I0, note that B(x, αt) ⊆ B(y, (1 + α)t) and apply the doubling property
of µ, followed by the L

p
µ-Poincaré inequality in (2.5) with cB =

ffl

B(x,αt) f , to obtain

I0 .α t−1

 

B(x,αt)

| f (z) − fB(x,αt)| dµ(z) .

(
 

B(x,αt)

|∇ f |p dµ

)1/p

. [Mµ(|∇ f |p)(x)]1/p.

To estimate I j, for each j ∈ N, expand f (z) − fB(x,αt) as a telescoping sum to write

I j ≤ C1e−C2(2 j−1α−1)2 µ(B(x, 2 jαt))

µ(B(y, t))
t−1

(
 

B(x,2 jαt)

| f − f̃B(x,2 jαt)| dµ

+

j∑

i=1

| f̃B(x,2iαt) − f̃B(x,2i−1αt)| + | f̃B(x,αt) − fB(x,αt)|
)

. e−C2(2 j−1α−1)2 µ(B(y, (1 + 2 jα)t))

µ(B(y, t))

j∑

i=0

t−1

 

B(x,2iαt)

| f − f̃B(x,2iαt)| dµ

. e−C2(2 j−1α−1)2

(1 + 2 jα)2n

j∑

i=0

2iα

(
 

B(x,2iαt)

|∇ f |p dµ

)1/p
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.α e−C4 j

4n j[Mµ(|∇ f |p)(x)]1/p,

where the second inequality relies on the inclusion B(x, 2 jαt) ⊆ B(y, (1 + 2 jα)t),
whilst the third inequality uses the doubling property of µ in (2.1) with p = 2, and
the L

p
µ-Poincaré inequality in (2.5) with cB =

ffl

B(x,2iαt) f dµ. Altogether, we have

|t−1[Pt( f − fB(x,αt))](y)| .α
( ∞∑

j=0

e−C4 j

4n j

)
[Mµ(|∇ f |p)(x)]1/p

. [Mµ(|∇ f |p)(x)]1/p,

which proves (3.7) when cB(x,αt) =
ffl

B(x,αt) f . The proof when cB(x,αt) =
ffl

B(x,αt) f dµ

follows as above by replacing fB(x,αt) with f̃B(x,αt), since (2.5) can still be applied.

To prove (3.8) and (3.9), suppose that η > 0. The Gaussian kernel estimate for

e−tLµ in (3.5) implies that t∂tPt f (y) has an integral kernel W̃t2(y, z) satisfying

|W̃t2(y, z)| ≤ C1

µ(B(y, t))
exp

(
−C2
|y − z|2

t2

)

and the conservation property
´

Rn W̃t2(y, z) dµ(y) = 0 for all z ∈ Rn and t > 0. This
follows from Theorem 5 in [CR2], where the assumption that A is symmetric can
be removed as per the remarks preceding this lemma. Therefore, we may write

|∂tPt f (y)| = t−1

∣∣∣∣
ˆ

Rn

W̃t2(y, z)[ f (z) − fB(x,ηt)] dµ(z)

∣∣∣∣
and a change of variables implies that

sup
(y,t)∈Γη(x)

|∂tPt f (y)| = sup
(y,t)∈Γ(x)

t−1

∣∣∣∣
ˆ

Rn

ηW̃(t/η)2(y, z)[ f (z) − fB(x,t)] dµ(z)

∣∣∣∣ .

We can then obtain (3.8) by following the proof of (3.7) with α = 1 in order to
show that this is bounded by [Mµ(|∇ f |p)(x)]1/p, since the doubling property of µ
ensures that

|ηW̃(t/η)2(y, z)| ≤
C1,η

µ(B(y, t))
exp

(
−C2,η

|y − z|2

t2

)

for some positive constants C1,η and C2,η that depend on η. We obtain (3.9) as an

immediate consequence of (3.8) and the fact that η−1∂tPηt = (∂sPs)|s=ηt.

To prove (3.10), let η > 0, set uηt := Pηt f and choose a non-negative function

Φ ∈ C∞c (B(y, 2ηt)) such that Φ ≡ 1 on B(y, ηt) and |∇xΦ| . (ηt)−1. Let c > 0 denote
a constant that will be chosen later. The definition of Lµ implies that
 

B(y,ηt)

|∇xPηt f |2 dµ ≤ 1

µ(B(y, ηt))

ˆ

Rn

|∇xuηt|2Φ2 dµ

.
1

µ(B(y, ηt))

ˆ

Rn

〈A∇xuηt,∇x(uηt − c)〉Φ2

=
1

µ(B(y, ηt))

ˆ

Rn

{
〈A∇xuηt,∇x[(uηt − c)Φ2]〉−2〈A∇xuηt,∇xΦ(uηt − c)〉Φ

}

.
1

µ(B(y, ηt))

ˆ

Rn

{
(Lµuηt)(uηt − c)Φ2 + |∇xuηt||∇xΦ||(uηt − c)Φ|

}
dµ

≤ 1

µ(B(y, ηt))

ˆ

B(y,2ηt)

(
1

2η2t
|∂tuηt||uηt − c|Φ2 + |∇xuηt||∇xΦ||uηt − c|Φ

)
dµ
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=: I + II.

Now fix c := f̃B(x,3ηt). To estimate I, we use Cauchy’s inequality and the doubling
property of µ, combined with the fact that B(x, ηt) ⊆ B(y, 2ηt) ⊆ B(x, 3ηt), to obtain

I .

 

B(x,3ηt)

(
|η−1∂tuηt|2 + (ηt)−2|uηt − f |2 + (ηt)−2| f − f̃B(x,3ηt)|2

)
dµ =: I1 + I2 + I3.

It is immediate that I1 ≤ Mµ(|η−1N
η
∗ (∂tPηt f )|2)(x), whilst the semigroup property

|uηt(z) − f (z)| =
∣∣∣∣
ˆ ηt

0

∂sus(z) ds

∣∣∣∣ ≤ ηtN∗(∂sus)(z)

implies that I2 . Mµ(|N∗(∂sus)|2)(x), and the L2
µ-Poincaré inequality in (2.5) shows

that I3 . Mµ(|∇ f |2)(x), hence

I ≤ Mµ(|η−1Nη
∗ (∂tPηt f )|2)(x) + Mµ(|N∗(∂sus)|2)(x) + Mµ(|∇ f |2)(x).

To estimate II, we use Cauchy’s inequality with ε > 0 to obtain

II .
ε

µ(B(y, ηt))

ˆ

Rn

|∇xuηt|2Φ2 dµ + ε−1(I2 + I3).

A sufficiently small choice of ε > 0 allows the ε-term to be subtracted, yielding
 

B(y,ηt)

|∇xPηt f |2 dµ . I + II . Mµ(|η−1Nη
∗ (∂tPηt f )|2 + |N∗(∂tPt f )|2 + |∇ f |2)(x),

which, combined with (3.8) and (3.9), implies (3.10). �

The pointwise estimates in Lemma 3.6 have the following corollary.

Corollary 3.11. Let n ≥ 2 and suppose that A ∈ E(n, λ,Λ, µ) for some constants

0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn. If η > 0, then

µ
(
{x ∈ Rn : |Nη

∗ (∂tPt f )(x)| > κ}
)
.η κ

−2‖∇ f ‖2L2
µ(Rn,Rn),(3.12)

µ
(
{x ∈ Rn : |η−1Nη

∗ (∂tPηt f )(x)| > κ}
)
. κ−2‖∇ f ‖2L2

µ(Rn,Rn),(3.13)

µ
(
{x ∈ Rn : |Ñη

∗,µ(∇xPηt f )(x)| > κ}
)
. κ−2‖∇ f ‖2L2

µ(Rn,Rn),(3.14)

for all κ > 0 and f ∈ W1,2
µ (Rn), where the implicit constants depend only on n, λ,

Λ and [µ]A2 , as well as on η in (3.12).

Proof. Estimates (3.12) and (3.13) follow respectively from (3.8) and (3.9), in the
case p = 2, since Mµ satisfies the weak-type estimate in (3.1). To prove (3.14), note
that there exists 1 < q < 2 such that µ is an Aq-weight on Rn (see, for instance,
Section 3 in Chapter V of [S2]). Therefore, combining (3.10) in the case p = q

with (3.1) and noting that 2/q > 1, we obtain

µ
(
{x ∈ Rn : |Ñη

∗,µ(∇xPηt f )(x)| > κ}
)
. κ−2

(
‖Mµ(|∇ f |q)‖2/q

L
2/q
µ (Rn)

+ ‖∇ f ‖2L2
µ(Rn,Rn)

)

. κ−2‖∇ f ‖2L2
µ(Rn,Rn)

for all κ > 0 and f ∈ W1,2
µ (Rn) (since W1,2

µ (Rn) ⊆ W
1,q
µ,loc(Rn)), as required. �
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4. The CarlesonMeasure Estimate

The purpose of this section is to prove the Carleson measure estimate (1.4) in
Theorem 1.3. We adopt the strategy outlined at the end of Section 3.1 in [HKMP],
although the crucial technical estimate, stated here as Theorem 4.10, is not at all
an obvious extension of the uniformly elliptic case. Moreover, establishing the
Carleson measure estimate directly allows us to avoid “good-λ” inequalities and

thus apply a change of variables based on the W
1,2
0,µ-Hodge decomposition in (2.10),

instead of the W
1,2+ε
0 -version (for a sufficiently small ε > 0) required in [HKMP].

The technical result in Theorem 4.10 establishes (1.4) on certain “big pieces”
of all cubes. The passage to the general estimate ultimately follows from the self-
improvement property for Carleson measures in Lemma 2.22. This requires, how-
ever, that the Carleson measure estimate on the full gradient ∇u of a solution u can
be controlled by the same estimate on its transversal derivate ∂tu, which is the con-
tent of Lemma 4.2. We briefly postpone the statement and proof of Lemma 4.2 and
Theorem 4.10, however, in order to deduce Theorem 1.3 from those results below.

In contrast to the previous two sections, the results here concern solutions of the
equation div(A∇u) = 0 in open sets Ω ⊆ Rn+1

+ when n ≥ 2 and A is a t-independent
coefficient matrix that satisfies (1.1) for some 0 < λ ≤ Λ < ∞ and an A2-weight µ
on Rn. In particular, in Section 2, weighted Sobolev spaces were defined on open
sets in Rd and matrix coefficients A ∈ E(d, λ,Λ, µ) were considered for all d ∈ N.
Those results also hold here on open sets in the upper half-space with the weight
µ(x, t) := µ(x) and the coefficients A(x, t) := A(x) for all (x, t) ∈ Rn+1, since then
[µ]A2(Rn+1) = [µ]A2(Rn) and A ∈ E(n+1, λ,Λ, µ). In particular, the solution space

W
1,2
µ,loc(Ω) is defined and the regularity estimates in (2.16), (2.17) and (2.18) hold

when Ω ⊆ Rn+1
+ .

We will also use, without reference, the well-known fact that if u is a solution of
div(A∇u) = 0 in Ω ⊆ Rn+1

+ , then ∂tu is also a solution in Ω. In particular, to see that

∂tu is in W
1,2
µ,loc(Ω), a Whitney decomposition of Ω reduces matters to showing that

∂tu is in W1,2
µ (R) for all cubes R ⊂ Ω satisfying `(R) < 1

2 dist(R, ∂Ω). To this end,

define the difference quotients Dh
i u(X) := 1

h
[u(X + hei) − u(X)] for all X ∈ R and

h < dist(R, ∂Ω), where ei is the unit vector in the ith-coordinate direction in Rn+1.
The t-independence of the coefficients implies that Dh

n+1u is a solution in R, so we

use the identity Dh
n+1(∂iu) = ∂i(D

h
n+1u) and Caccioppoli’s inequality to obtain

¨

R

|Dh
n+1(∂iu)|2 dµ ≤

¨

R

|∇(Dh
n+1u)|2 dµ . `(R)2

¨

2R

|Dh
n+1u|2 dµ

≤ `(R)2

¨

2R

|∂tu|2 dµ =: K ∀h < dist(R, ∂Ω),

where the implicit constant depends only on n, λ, Λ and [µ]A2 , and the final bound

holds uniformly in h because u is in W1,2
µ (R) (see Lemma 7.23 in [GT]). We can

then use Lemma 7.24 in [GT] to deduce that ∂tu is in W1,2
µ (R) with the estimate

‖∂i∂tu‖2L2
µ(R)
= ‖∂t∂iu‖2L2

µ(R)
≤ K for all i ∈ {1, . . . , n+1}, as required. Note that

the proofs of Lemmas 7.23 and 7.24 in [GT] extend immediately to the weighted
context considered here because C∞(R) is still dense in W1,2

µ (R).
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Proof of Theorem 1.3 from Lemma 4.2 and Theorem 4.10. Let Q ⊂ Rn denote a
cube and suppose that u ∈ L∞(Rn+1

+ ) solves div(A∇u) = 0 in Rn+1
+ . It follows

a fortiori from Theorem 4.10 that there exist constants C, c0 > 0 and, for each cube
Q′ ⊆ Q, a measurable set F′ ⊂ Q′ such that µ(F′) ≥ c0µ(Q′) and

1

µ(Q′)

ˆ l(Q′)

0

ˆ

F′
|t∂tu(x, t)|2 dµ(x)

dt

t
≤ C‖u‖2∞,

where C and c0 depend only on n, λ, Λ and [µ]A2 .

The coefficient matrix A is t-independent, so ∂tu is also a solution and thus
the degenerate version of Moser’s estimate in (2.16), followed by Caccioppoli’s
inequality, shows that ‖t∂tu‖∞ . ‖u‖∞. Moreover, the degenerate version of the
de Giorgi–Nash Hölder regularity for solutions in (2.17) shows that

|t∂tu(x, t) − t∂tu(y, t)| .
(
|x − y|

t

)α
‖t∂tu‖∞ . ‖u‖∞

(
|x − y|

t

)α

for all x, y ∈ Q and t > 0, where all of the implicit constants and the exponent
α > 0 depend only on n, λ, Λ and [µ]A2 . Therefore, we may apply Lemma 2.22

with {vt, α, β0, η, β} := {(t∂tu)2, α,C‖u‖2∞, c0,C‖u‖2∞} to obtain

(4.1)
1

µ(Q)

ˆ `(Q)

0

ˆ

Q

|t∂tu(x, t)|2 dµ(x)
dt

t
. ‖u‖2∞,

where the implicit constant depends only on n, λ, Λ and [µ]A2 . This estimate holds
for all cubes Q, so by Lemma 4.2, we conclude that (1.4) holds. �

We now dispense with the following lemma, which was used in the proof of
Theorem 1.3 above to reduce to a Carleson measure estimate on the transversal
derivative of solutions. The proof is adapted from Section 3.1 of [HKMP].

Lemma 4.2. Let n ≥ 2 and consider a cube Q ⊂ Rn. If A is a t-independent

coefficient matrix that satisfies the degenerate bound and ellipticity in (1.1) for

some constants 0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn, then any solution

u ∈ L∞(4Q × (0, 4`(Q))) of div(A∇u) = 0 in 4Q × (0, 4`(Q)) satisfies
ˆ `(Q)

0

ˆ

Q

|t∇u(x, t)|2 dµ(x)
dt

t
.

ˆ 4`(Q)

0

ˆ

4Q

|t∂tu(x, t)|2 dµ(x)
dt

t
+ µ(Q)‖u‖2∞,

where the implicit constant depends only on n, λ, Λ and [µ]A2 .

Proof. Let 0 < δ < 1/2 and set ΦQ(t) := Φ (t/`(Q)), where Φ : R → [0, 1]
denotes a C∞-function such that Φ(t) = 1 for all 2δ ≤ t ≤ 1 whilst Φ(t) = 0 for all
t ≤ δ and t ≥ 2. Integrating by parts with respect to the t-variable and noting that
‖∂tΦ‖L∞([1,2]) . 1 whilst ‖∂tΦ‖L∞([δ,2δ]) . 1/δ, we obtain

I : =

ˆ

Q

ˆ 2`(Q)

0

|∇u(x, t)|2ΦQ(t)t dtdµ(x)

h

ˆ

Q

ˆ 2`(Q)

0

∂t

(
|∇u(x, t)|2ΦQ(t)

)
t2dtdµ(x)

.

ˆ

Q

ˆ 2`(Q)

0

〈∇∂tu(x, t),∇u(x, t)〉ΦQ(t)t2dtdµ(x)
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+

ˆ

Q

 2`(Q)

`(Q)

|∇u(x, t)|2 t2dtdµ(x) +

ˆ

Q

 2δ`(Q)

δ`(Q)

|∇u(x, t)|2 t2dtdµ(x)

=: I′ + I′′ + I′′′.

For the term I′, we apply Cauchy’s inequality with an arbitrary ε > 0, to obtain

I′ ≤ εI + 1

ε

ˆ

Q

ˆ 2`(Q)

0

|∇∂tu(x, t)|2 t3dtdµ(x).

For the term I′′, we apply Caccioppoli’s inequality, the doubling property of µ and
the fact that t ≈ `(Q) in the domain of the integration, to obtain

I′′ h `(Q)

ˆ

Q

ˆ 2`(Q)

`(Q)

|∇u(x, t)|2dtdµ(x)

.
1

`(Q)

ˆ

2Q

ˆ 5`(Q)/2

`(Q)/2

|u(x, t)|2dtdµ(x)

. µ(Q)‖u‖2∞.

For the term I′′′, the same reasoning shows that I′′′ . µ(Q)‖u‖2∞. We now fix ε > 0,
depending only on allowable constants, such that altogether

I .

ˆ

Q

ˆ 2`(Q)

0

|∇∂tu(x, t)|2 t3dtdµ(x) + µ(Q)‖u‖2∞,

which is justified since I < ∞ by Caccioppoli’s inequality and the support of ΦQ.

To complete the estimate, we let {W j : j ∈ J} denote a collection of Whitney

boxes (from a Whitney decomposition of Rn+1
+ ) such that W j∩(Q × (0, 2`(Q))) , Ø

and
∑

j∈J 12W j
(x, t) . 1. The coefficient matrix A is t-independent, so ∂tu is also

a solution of div(A∇u) = 0 in each set W j, hence we may apply Caccioppoli’s
inequality in combination with the fact that t h l(W j) in W j, to obtain
ˆ `(Q)

2δ`(Q)

ˆ

Q

|t∇u(x, t)|2 dµ(x)
dt

t
.

∑

j∈J

¨

W j

|∇∂tu(x, t)|2 t3dtdµ(x) + µ(Q)‖u‖2∞

.

∑

j∈J

l(W j)

¨

2W j

|∂tu(x, t)|2 dtdµ(x) + µ(Q)‖u‖2∞

.

ˆ 4`(Q)

0

ˆ

4Q

|t∂tu(x, t)|2 dµ(x)
dt

t
+ µ(Q)‖u‖2∞,

where the implicit constants do not depend on δ. The final result is then obtained
by applying Fatou’s lemma to estimate the limit as δ approaches 0. �

The remainder of this section is dedicated to the proof of the crucial technical
estimate, Theorem 4.10, that was used to prove Theorem 1.3. The proof adapts the
change of variables from Section 3.2 of [HKMP] to the degenerate elliptic case.
This is used to pull-back solutions to certain sawtooth domains where the Carleson
measure estimate can be verified by reducing matters to the vertical square function
estimates in Theorem 2.12, which we recall were obtained from the solution of
the Kato problem in [CR3]. The following technical lemma, which reprises the
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notation Pt := e−t2Lµ for Lµ := − divµ( 1
µ
A∇) andA ∈ E(n, λ,Λ, µ) as in (2.6) and

Lemma 3.6, will be used to justify these changes of variables.

Lemma 4.3. Let n ≥ 2 and suppose that A ∈ E(n, λ,Λ, µ) for some constants

0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn. Let Q ⊂ Rn denote a cube and

suppose that f : 5Q → Rn is a measurable function such that 1
µ

f ∈ L∞(5Q). Let

φ ∈ W
1,2
0,µ(5Q) and suppose that div(A∇φ) = div f in 5Q. If κ0 > 0, 0 < η < 1/2

and x0 ∈ Q satisfy Λ(η, φ,A)(x0) ≤ κ0, where

(4.4) Λ(η, φ,A) := η−1Nη
∗ (∂tPηtφ) + N∗(∂tPtφ) + [Mµ(|∇xφ|2)]1/2 + D∗,µφ,

then

(4.5) |∂tPηtφ(x)| ≤ ηκ0 ∀(x, t) ∈ Γη(x0)

and

(4.6) |(I − Pηt)φ(x)| . η(κ0 + ‖ 1
µ

f‖∞)t ∀(x, t) ∈ Γη(x0) ∩ (2Q × (0, 4`(Q))),

where the implicit constant depends only on n, λ, Λ and [µ]A2 .

Proof. Suppose that κ0 > 0, 0 < η < 1/2 and x0 ∈ Q satisfy Λ(η, φ,A)(x0) ≤ κ0. It
follows a fortiori that η−1N

η
∗ (∂tPηtφ)(x0) ≤ κ0, so (4.5) holds for all (x, t) ∈ Γη(x0).

To prove (4.6), first note that the properties of the semigroup imply that

(4.7) |(I − Pηt)φ(x0)| =
∣∣∣∣
ˆ ηt

0

∂sPsφ(x0) ds

∣∣∣∣ ≤ ηtκ0

for all t > 0, since N∗(∂sPsφ)(x0) ≤ κ0. Now let (x, t) ∈ Γη(x0)∩ (2Q× (0, 4`(Q))).

We set φx0,ηt :=
ffl

B(x0,2ηt) φ(y)dy and apply estimate (3.7) with α = 2 to obtain

(4.8) |Pηt(φ − φx0,ηt)(x)| . ηt[Mµ(|∇xφ|2)(x0)]1/2 ≤ ηtκ0.

Next, since div(A∇(φ − φ(x0))) = div(A∇φ) = div f in 5Q, and since 0 < η < 1/2
ensures that B(x0, 2ηt) ⊆ 5Q, we may apply the degenerate version of Moser’s
estimate for inhomogeneous equations in (2.20) to obtain

|φ(x) − φ(x0)| .
(
 

B(x0,2ηt)

|φ(y) − φ(x0)|2 dµ(y)

)1/2

+ ηt‖ 1
µ

f‖∞

. ηt(D∗,µφ(x0) + ‖ 1
µ

f‖∞)

. ηt(κ0 + ‖ 1
µ

f‖∞).

(4.9)

Combining estimates (4.7), (4.8) and (4.9), we obtain

|(I − Pηt)φ(x)| ≤ |φ(x) − φ(x0)| + |(I − Pηt)φ(x0)|
+ |Pηt(φ − φx0,ηt)(x0)| + |Pηt(φ − φx0,ηt)(x)|

. η(κ0 + ‖ 1
µ

f‖∞)t,

which proves (4.6), as the implicit constant depends only on n, λ, Λ and [µ]A2 . �

We now present the main technical result of this section. The proof is adapted
from Section 3.2 of [HKMP], although some arguments have been simplified as
detailed at the beginning of this section, and the additional justification required in
the degenerate elliptic case has been emphasized.
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The strategy of the original proof in [HKMP] was motivated in-part by the fact
that integration by parts is sufficient to establish the required estimate in the case
when A has a certain block upper-triangular structure. A key idea in [HKMP] was
to account for the presence of lower-triangular coefficients c (and upper-triangular

coefficients) by decomposing them according to a W
1,2+ε
0 -Hodge decomposition.

This was done locally on a given cube Q and the idea has been adapted here. First,

the W
1,2
0,µ-Hodge decomposition c15Q = µh − A∗||∇ϕ is introduced in (4.13), where

A|| is the n × n submatrix of A shown in (4.12). After integrating by parts, the
divergence-free component µh provides valuable cancellation, whilst the adapted
gradient vector field A∗||∇ϕ facilitates a reduction to the square function estimates

in Theorem 2.12, which are implied by the solution to the Kato problem in [CR3],

for the boundary operator L∗||,µ := − divµ( 1
µ

A∗||∇x).

The latter estimates, however, require that L∗||,µ acts on the range of P∗t := e
−t2L∗||,µ

and this is arranged by initially making the Dhalberg–Kenig–Stein-type pull-back
t 7→ t−(I−P∗ηt)ϕ(x) so that the lower-triangular coefficients become µh−A∗||∇xP∗ηtϕ.

This change of variables is justified by choosing η > 0 small enough so that the
pull-back is bi-Lipschitz in t. Once this is in place, a set F is introduced that con-
tains a “big piece” of Q and on which the various maximal functions in Lemma 4.3
are bounded. The integration on F × (0, `(Q)) is then performed by introducing a
smooth test function Ψδ that equals 1 on F × (2δ`(Q), 2`(Q)) and is supported on
a certain truncated sawtooth domain Ωη/8,Q,δ over F, where δ > 0 is an arbitrary
(small) parameter that provides for a smooth truncation in the t-direction near the
boundary of Rn+1

+ . The main integration by parts is then performed in (4.32). The
two principal terms S1 and S2 arise from the tangential and transversal integration
by parts, respectively, where the former is taken with respect to the measure µ and
thus requires additional justification from the uniformly elliptic case. These and
numerous error terms are then shown to be appropriately under control.

Theorem 4.10. Let n ≥ 2 and consider a cube Q ⊂ Rn. If A is a t-independent

coefficient matrix that satisfies the degenerate bound and ellipticity in (1.1) for

some constants 0 < λ ≤ Λ < ∞ and an A2-weight µ on Rn, then for any solution

u ∈ L∞(4Q × (0, 4`(Q))) that solves div(A∇u) = 0 in 4Q × (0, 4`(Q)), there exist

constants C, c0 > 0 and a measurable set F ⊂ Q such that µ(F) ≥ c0µ(Q) and

(4.11)
1

µ(Q)

ˆ `(Q)

0

ˆ

F

|t∇u(x, t)|2 dµ(x)
dt

t
≤ C‖u‖2∞,

where C and c0 depend only on n, λ, Λ and [µ]A2 .

Proof. We begin by expressing the matrix A and its adjoint A∗ (which is just the
transpose At, since the matrix coefficients are real-valued) in the following form

(4.12) A =

[
A|| b

ct d

]
, A∗ =

[
A∗|| c

bt d

]
,

where A|| denotes the n × n submatrix of A with entries (A||)i, j := Ai, j, 1 ≤ i, j ≤ n,
whilst b := (Ai,n+1)1≤i≤n is a column vector, ct := (An+1, j)1≤ j≤n is a row vector and
d := An+1,n+1 is a scalar.
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Now consider a cube Q ⊂ Rn. The aim is to construct a set F ⊂ Q with the
required properties. To this end, we apply the Hodge decomposition from (2.10) to
the space L2

µ(5Q,Rn) in order to write

(4.13) 1
µ

c15Q = − 1
µ

A∗||∇ϕ + h, 1
µ

b15Q = − 1
µ

A||∇ϕ̃ + h̃,

where ϕ, ϕ̃ ∈ W
1,2
µ,0(5Q) and h, h̃ ∈ L2

µ(5Q,Rn) are such that divµ h = divµ h̃ = 0 and

 

5Q

(
|∇ϕ(x)|2 + |h(x)|2

)
dµ(x) .

 

5Q

∣∣∣∣
c(x)

µ

∣∣∣∣
2

dµ(x) . 1,(4.14)

 

5Q

(
|∇ϕ̃(x)|2 + |h̃(x)|2

)
dµ(x) .

 

5Q

∣∣∣∣
b(x)

µ

∣∣∣∣
2

dµ(x) . 1.(4.15)

We extend each of ϕ, ϕ̃,h, h̃ to functions onRn by setting them equal to 0 onRn\5Q.

In Sections 2 and 3, we investigated the operators Lµ := − divµ( 1
µ
A∇) and

Pt := e−t2Lµ for arbitrary coefficient matricesA in E(n, λ,Λ, µ). We now set

L||,µ := − divµ( 1
µ

A||∇x), Pt := e−t2L||,µ ,

L∗||,µ := − divµ( 1
µ

A∗||∇x), P∗t := e
−t2L∗||,µ

(4.16)

in order to apply those results in the casesA = A|| andA = A∗|| .

We now introduce two constants κ0, η > 0, which will be fixed shortly, and recall
the function Λ(η, φ,A) from (4.4) to define the set F ⊂ Q by

(4.17) F :=
{

x ∈ Q : Λ(η, ϕ, A∗||)(x) + Λ(η, ϕ̃, A||)(x)

+ Ñη
∗,µ(∇xP∗ηtϕ)(x) + Ñη

∗,µ(∇xPηtϕ̃)(x) ≤ κ0

}
.

Applying the weak-type bounds in (3.1), (3.3), (3.13) and (3.14) followed by the
estimates from the Hodge decomposition in (4.14) and (4.15), we obtain

µ(Q \ F) . κ−2
0

(
‖∇ϕ‖2L2

µ(Rn,Rn) + ‖∇ϕ̃‖
2
L2
µ(Rn,Rn)

)
. κ−2

0 µ(Q),

where the implicit constants depend only on n, λ, Λ and [µ]A2 . This allows us to
now fix κ0 > 1 and some constant c0 > 0 such that µ(F) ≥ c0µ(Q), where both κ0

and c0 depend only on the allowed constants, and thus are independent of η.

We now fix the value of η as follows. First, for 0 ≤ α ≤ 4 and β > 0, let

Ωβ :=
⋃

x∈F
Γβ(x), Ωβ,Q,α := Ωβ∩

(
2Q×(α`(Q), 4`(Q))

)
and Ωβ,Q := Ωβ,Q,0

denote the sawtooth domains in Rn+1
+ spanned by cones centered on F of aperture β.

Next, note that the properties of the Hodge decomposition in (4.13) imply that
− div(A∗||∇ϕ) = div(c15Q) and − div(A||∇ϕ̃) = div(b15Q) in 5Q. Therefore, we now

fix 0 < η < 1/2 in accordance with (4.5) and (4.6) such that

(4.18) max
{
|∂tP

∗
ηtϕ(x)|, |∂tPηtϕ̃(x)|

}
≤ ηκ0 < 1/8 ∀(x, t) ∈ Ωη
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and

max
{
|(I − P∗ηt)ϕ(x)|, |(I − Pηt)ϕ̃(x)|

}

. η
(
κ0 +max

{
‖ 1
µ

c‖∞, ‖ 1
µ

b‖∞
})

t . ηκ0t < t/8 ∀(x, t) ∈ Ωη,Q,
(4.19)

where η and the implicit constants depend only on n, λ, Λ and [µ]A2 .

It remains to prove (4.11). We will achieve this by changing variables in the
transversal direction using the mapping t 7→ τ(x, t), with x ∈ Rn fixed, defined by

τ(x, t) := t − (I − P∗ηt)ϕ(x)

and having Jacobian denoted by

(4.20) J(x, t) := ∂tτ(x, t) = 1 + ∂tP
∗
ηtϕ(x).

In order to justify such changes of variables, we note from (4.18) and (4.19) that

(4.21)
7t

8
< τ(x, t) <

9t

8
and

7

8
< J(x, t) <

9

8
∀(x, t) ∈ Ωη,Q.

In particular, for each x ∈ F and 0 ≤ α ≤ 1/8, this implies that the mapping
t 7→ τ(x, t) is bi-Lipschitz in t on (2α`(Q), 2`(Q)) with range

(4.22) (4α`(Q), `(Q)) ⊆ τ(x, ·)
(
(2α`(Q), 2`(Q))

)
⊆ (α`(Q), 4`(Q)).

Moreover, for each 0 < β ≤ η, the mapping (x, t) 7→ ρ(x, t) defined by

ρ(x, t) := (x, τ(x, t)) = (x, t + P∗ηtϕ(x) − ϕ(x))

is bi-Lipschitz in t on Ωβ,Q with range

(4.23) Ω8β/9,Q ⊆ ρ(Ωβ,Q) ⊆ Ω8β/7,Q.

Now consider a bounded solution u satisfying div(A∇u) = 0 in 4Q × (0, 4`(Q)).
The pull-back u1 := u ◦ ρ is in L∞(Ωη,Q) and div(A1∇u1) = 0 in Ωη,Q, where

A1 :=

[
JA|| b + A||∇xϕ − A||∇xP∗ηtϕ

(µh − A∗||∇xP∗ηtϕ)t 〈Ap,p〉/J

]

and

(4.24) p(x, t) :=

[
∇xτ(x, t)
−1

]
=

[
∇xP∗ηtϕ(x) − ∇xϕ(x)

−1

]
.

Our statement that div(A1∇u1) = 0 in Ωη,Q does not mean that A1 satisfies (1.1),

only that u1 ∈ W
1,2
µ,loc(Ωη,Q) and that

´

R
n+1
+
〈A1∇u1,∇Φ〉 = 0 for all Φ ∈ C∞c (Ωη,Q).

To prove this, we combine the pointwise identity

(4.25) 〈A ((∇u) ◦ ρ) , (∇v) ◦ ρ〉J = 〈A1∇(u ◦ ρ),∇(v ◦ ρ)〉 ∀v ∈ W
1,2
0,µ(ρ(Ωη,Q))

with the change of variables (x, t) 7→ ρ(x, t) on Ωη,Q, which is justified because ρ is
bi-Lipschitz in t on Ωη,Q with range ρ(Ωη,Q) ⊂ 4Q× (0, 4`(Q)) by (4.23). Also, we
note for later use that ‖1Ωη,Qu1‖∞ ≤ ‖u‖∞ and, using (4.21), that

(4.26) |∇u1| .
∣∣∣∣
[
∇xu1 − (∇xτ)(∂tu1)/J

(∂tu1)/J

]∣∣∣∣ + |∇xτ||∂tu1| = |(∇u) ◦ ρ| + |∇xτ| |∂tu1|

on Ωη,Q.

Next, in order to work with the pull-back solution u1, we consider an arbitrary
constant 0 < δ ≤ 1/8 and define a smooth cut-off function Ψδ adapted to Ωη,Q
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as follows. Let δF(x) := dist(x, F), fix a C∞-function Φ : R → [0, 1] satisfying

Φ(t) = 1 when t < 1
16 and Φ(t) = 0 when t ≥ 1

8 , and then define

Ψδ(x, t) := Φ

(
δF(x)

ηt

)
Φ

(
t

32`(Q)

)(
1 − Φ

(
t

16δ`(Q)

))
∀(x, t) ∈ Rn+1

+ .

This function is designed so thatΨδ ≡ 1 on F× (2δ`(Q), 2`(Q)), and since η < 1/2,
we have suppΨδ ⊆ Ωη/8,Q,δ and

(4.27) |∇x,tΨδ(x, t)| . 1E1(x, t)

t
+
1E2(x, t)

`(Q)
+
1E3(x, t)

δ`(Q)
∀(x, t) ∈ Ωη/8,Q,δ,

where

E1 :=
{

(x, t) ∈ 2Q × (0, 4`(Q)) : ηt/16 ≤ δF(x) ≤ ηt/8
}
,

E2 := 2Q × (2`(Q), 4`(Q)),

E3 := 2Q × (δ`(Q), 2δ`(Q)).

In contrast to Section 3.2 in [HKMP], the cut-off function Ψδ introduced here
incorporates an additional truncation in the t-direction at the boundary. This is
done to simplify subsequent integration by parts arguments, since it ensures that
Ψδ vanishes on the boundary of Rn+1

+ . For later purposes, it is also convenient to
isolate the following general fact here.

Remark 4.28. For each k ∈ Z, let D
η
k denote the grid of dyadic cubes Q′ ⊂ Rn

such that η2−k/64 ≤ diam Q′ < η2−k/32. If C0 > 0 and (vt)t>0 is a collection of
non-negative measurable functions such that

sup
t∈[2−k ,2−k+1]

 

Q′
vt(x) dµ(x) ≤ C0 ∀k ∈ Z, ∀Q′ ∈ Dηk ,

then

(4.29)

¨

R
n+1
+

(
1E1(x, t)

t
+
1E2(x, t)

`(Q)
+
1E3(x, t)

δ`(Q)

)
vt(x) dµ(x)dt . C0µ(Q),

where the implicit constant depends only on n, λ, Λ and [µ]A2 . To see this, first
observe that since δF is a Lipschitz mapping with constant 1, we have

Q(1) × [2−k, 2−k+1] ⊆ Ẽ1 :=
{

(x, t) ∈ 4Q × (0, 4`(Q)) :
ηt

C
≤ δF(x) ≤ Cηt

}
,

Q(2) × [2−k, 2−k+1] ⊆ 4Q × (`(Q), 8`(Q)),

Q(3) × [2−k, 2−k+1] ⊆ 4Q × ((δ/2)`(Q), 4δ`(Q))

whenever Ei ∩ (Q(i) × [2−k, 2−k+1]) , Ø and i ∈ {1, 2, 3}. The estimate in (4.27) and
the doubling property of µ then imply that the left side of (4.29) is bounded by

C0


∑

k∈Z

∑

Q′∈Dηk

ˆ 2−k+1

2−k

ˆ

Q′
1

Ẽ1
dµ

dt

t
+C

 8`(Q)

`(Q)

µ(Q) dt +C

 4δ`(Q)

(δ/2)`(Q)

µ(Q) dt




. C0

(
ˆ

4Q

ˆ C
η
δF (x)

1
Cη
δF (x)

dt

t
dµ(x) + µ(Q)

)
. C0µ(Q),

as required.
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We now proceed to prove (4.11). First, note that it suffices to show that

(4.30) sup
0<δ≤1/8

ˆ `(Q)

4δ`(Q)

ˆ

F

|t∇u(x, t)|2 dµ(x)
dt

t
. ‖u‖2∞µ(Q),

since we may then obtain (4.11) by using Fatou’s lemma to pass to the limit as δ
approaches 0. To this end, we use (4.22), followed by the bi-Lipschitz in t change
of variables t 7→ τ(x, t) on (δ`(Q), 2`(Q)) for each x ∈ F, estimate (4.21) and
identity (4.25), to obtain

ˆ `(Q)

4δ`(Q)

ˆ

F

|t∇u(x, t)|2 dµ(x)
dt

t
.

ˆ

F

ˆ `(Q)

4δ`(Q)

〈A∇u,∇u〉 tdtdx

.

ˆ

F

ˆ 2`(Q)

2δ`(Q)

〈A1∇u1,∇u1〉 tdtdx

≤
¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt.

Thus, in order to prove (4.30) and ultimately (4.11), it suffices to show that

(4.31)

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt . ‖u‖2∞µ(Q) ∀0 < δ ≤ 1/8,

where the implicit constant depends only on n, λ, Λ and [µ]A2 .

Next, we recall that div(A1∇u1) = 0 in Ωη,Q, noting that u1Ψ
2
δt ∈ W

1,2
0,µ(Ωη,Q),

and then integrate by parts to obtain
¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt = −1

2

¨

R
n+1
+

〈A1∇(u2
1),∇(Ψ2

δt)〉 dxdt

= −1

2

¨

R
n+1
+

〈∇(u2
1), 1

µ
A∗1en+1〉Ψ2

δ dµdt − 1

2

¨

R
n+1
+

〈A1∇(u2
1),∇(Ψ2

δ)〉 tdxdt

=
1

2

¨

R
n+1
+

u2
1(L∗||,µP∗ηtϕ)Ψ2

δ dµdt +
1

2

¨

R
n+1
+

u2
1∂t(〈Ap,p〉/J)Ψ2

δ dxdt

− 1

2

¨

R
n+1
+

〈A1∇(u2
1),∇(Ψ2

δ)〉 tdxdt +
1

2

¨

R
n+1
+

u2
1〈en+1, A1∇(Ψ2

δ)〉 dxdt

=: S1 + S2 + E1 + E2,

(4.32)

where en+1 := (0, ..., 0, 1) denotes the unit vector in the t-direction. In particular,
note that the tangential integration by parts

ˆ

Rn

〈∇x(u2
1),h − 1

µ
A∗||∇xP∗ηtϕ〉Ψ2

δ dµ =

ˆ

Rn

u2
1 divµ[(h − 1

µ
A∗||∇xP∗ηtϕ)Ψ2

δ] dµ,

with respect to the measure µ, is justified by the definition of the operator divµ,

since P∗ηtϕ ∈ Dom(L∗||,µ) and divµ h = 0 imply that (h− 1
µ

A∗||∇xP∗ηtϕ)Ψ2
δ ∈ Dom(divµ)

(recall (2.8), (2.9) and (4.16)). Meanwhile, the transversal integration by parts
ˆ ∞

0

∂t(u
2
1)(〈Ap,p〉/J)Ψ2

δ dt = −
ˆ ∞

0

u2
1∂t[(〈Ap,p〉/J)Ψ2

δ] dt

is justified because Ψδ vanishes on the boundary of Rn+1
+ .
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We proceed to prove that, for all σ ∈ (0, 1), each term in (4.32) is controlled by

(4.33) S1 + S2 + E1 + E2 . σ

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ−1‖u‖2∞µ(Q),

where the implicit constant depends only on n, λ, Λ and [µ]A2 . Estimate (4.31) will
then follow by fixing a sufficiently small σ ∈ (0, 1), depending only on allowed
constants, to move the integral in (4.33) to the left side of (4.32). This is justified
because the integral in (4.33) is finite by Caccioppoli’s inequality and the fact that
Ψδ vanishes in a neighbourhood of the boundary of Rn+1

+ (suppΨδ ⊆ Ωη/8,Q,δ).
We now prove (4.33) in three steps to complete the proof.

Step 1: Estimates for the error terms E1 and E2 in (4.32).

We first apply Cauchy’s inequality with σ to write

E1 ≤
∣∣∣∣
1

2

¨

R
n+1
+

〈A1∇(u2
1),∇(Ψ2

δ)〉 tdxdt

∣∣∣∣

= 2

∣∣∣∣
¨

R
n+1
+

〈A1∇u1,∇Ψδ〉u1Ψδ tdxdt

∣∣∣∣

. σ

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ−1

¨

R
n+1
+

u2
1〈A1∇Ψδ,∇Ψδ〉 tdxdt

=: σ

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ−1E′1.

We then use µh = c15Q + A∗||∇ϕ from (4.13), the degenerate bound in (1.1) for A,

the bound ‖1Ωη,Qu1‖∞ . ‖u‖∞ and the estimate for ∇Ψδ from (4.27) to obtain

E′1 + E2 . ‖u‖2∞
¨

Ωη/8,Q

(
1E1

t
+
1E2

`(Q)
+

1E3

δ`(Q)

)(
1 + |∇x(I − P∗ηt)ϕ|2

)
dµdt,

where (4.27) ensures that |∇(Ψ2
δ)| and |∇Ψδ|2t can be controlled in the same manner.

In order to apply Remark 4.28 with vt = 1Ωη/8,Q(1+ |∇x(I−P∗ηt)ϕ|2), we observe that

if k ∈ Z, Q′ ∈ Dηk and Ωη/8,Q,δ ∩ (Q′ × [2−k, 2−k+1]) , Ø, then there exists x0 ∈ F

such that Q′ ⊆ ∆(x0, η2−k) ⊆ CQ′, where ∆ is used to denote balls in Rn, hence

(4.34) Q′ × [2−k, 2−k+1] ⊆ Ωη,2Q,δ/4

and the doubling property of µ implies that

(4.35)

 

Q′
|∇x(I − P∗ηt)ϕ|2 dµ .

 

∆(x0,ηt)

|∇xP∗ηtϕ|2 dµ +

 

∆(x0,η2−k)

|∇xϕ|2 dµ

.
[
Ñη
∗,µ(∇xP∗ηtϕ)(x0)

]2
+ Mµ(|∇xϕ|2)(x0) . κ2

0 . 1 ∀t ∈ [2−k, 2−k+1],

where in the last line we used the definition of the set F in (4.17) and the weighted

maximal operators Ñ∗,µ and Mµ from Section 3. It thus follows from (4.29) that

E′1 + E2 . ‖u‖2∞µ(Q), so altogether we have

(4.36) E1 + E2 . σ

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ−1‖u‖2∞µ(Q) ∀σ ∈ (0, 1).

Step 2: Estimates for the term S1 in (4.32).
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We note that ∂tP
∗
ηt = −2η2tL∗||,µP∗ηt on L2

µ(Rn) and integrate by parts in t to write

S1 =
1

2

¨

R
n+1
+

u2
1(L∗||,µP∗ηtϕ)Ψ2

δ dµdt

= −1

2

¨

R
n+1
+

u2
1∂t(L

∗
||,µP∗ηtϕ)Ψ2

δ tdµdt +
1

2η2

¨

R
n+1
+

(u1∂tu1)(∂tP
∗
ηtϕ)Ψ2

δ dµdt

+
1

2η2

¨

R
n+1
+

u2
1(∂tP

∗
ηtϕ)Ψδ∂tΨδ dµdt =: S′1 + S′′1 + S′′′1 ,

where there is no boundary term because Ψδ vanishes on the boundary of Rn+1
+ .

To estimate S′′′1 , we use the definition of the set F in (4.17), the estimate for
|∇Ψδ| from (4.27), and Remark 4.28 in the case vt ≡ 1, to obtain

S′′′1 . ‖u‖2∞
¨

Ωη/8,Q

Nη
∗ (∂tP

∗
ηtϕ) |∂tΨδ| dµdt . ηκ0‖u‖2∞µ(Q) . ‖u‖2∞µ(Q).

To estimate S′1, we observe that ∂t(L
∗
||,µP∗ηtϕ) = L∗||,µ(∂tP

∗
ηtϕ), since ϕ ∈ W

1,2
µ,0(Rn)

and ∂tP
∗
ηt = −2η2tP∗ηtL

∗
||,µ on the dense subset Dom(L∗||,µ) of W

1,2
0,µ(Rn) (note also that

t∇xP∗ηt and hence its adjoint are bounded operators on L2
µ, as can be seen from the

proof of Theorem 2.12). We then apply Cauchy’s inequality with σ to write

S′1 ≤
∣∣∣∣
¨

R
n+1
+

L∗||,µ(∂tP
∗
ηtϕ)u2

1Ψ
2
δ tdµdt

∣∣∣∣

.

∣∣∣∣
¨

R
n+1
+

〈 1
µ

A∗||∇x(∂tP
∗
ηtϕ),∇xu1〉u1Ψ

2
δ tdµdt

∣∣∣∣

+

∣∣∣∣
¨

R
n+1
+

〈 1
µ

A∗||∇x(∂tP
∗
ηtϕ),∇xΨδ〉u2

1Ψδ tdµdt

∣∣∣∣ =: J +K

. σ

¨

R
n+1
+

|∇xu1|2Ψ2
δ tdµdt + (σ−1 + 1)

¨

R
n+1
+

u2
1|∇x∂tP

∗
ηtϕ|2Ψ2

δ tdµdt

+

¨

R
n+1
+

u2
1 |∇xΨδ|2 tdµdt =: σS′11 + (σ−1 + 1)S′12 + S′13,

(4.37)

where the integration by parts in x, with respect to the measure µ, is justified by the
definition of the operator L∗||,µ (recall (2.8), (2.9) and (4.16)). The terms J and K

are highlighted above for reference in Step 3.

To estimate S′13, we use the estimate for |∇Ψδ| from (4.27) and Remark 4.28 in

the case vt ≡ 1, to obtain S′13 . ‖u‖2∞µ(Q).

To estimate S′12, we observe that ∇x∂tP
∗
ηt = −2η2t∇xL∗||,µP∗ηt on L2

µ(Rn) and then

apply the vertical square function estimate from (2.14) followed by the W
1,2
0,µ(5Q)-

Hodge estimate for ϕ from (4.14) to obtain

S′12 .

¨

R
n+1
+

u2
1|∇x∂tP

∗
ηtϕ|2Ψ2

δ tdµdt . ‖u‖2∞
¨

R
n+1
+

|t2∇xL∗||,µP∗ηtϕ|2 dµ
dt

t

. ‖u‖2∞‖∇ϕ‖2L2
µ(Rn,Rn) . ‖u‖

2
∞µ(Q).

The terms S′11 and S′′1 will now be estimated together. We again apply Cauchy’s
inequality with σ, followed by the vertical square function estimate from (2.13)
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with Lµ = L∗||,µ and the W
1,2
0,µ(5Q)-Hodge estimate for ϕ from (4.14) to obtain

σS′11 + S′′1 . σ

¨

R
n+1
+

|∇xu1|2Ψ2
δ tdµdt +

∣∣∣∣
¨

R
n+1
+

(u1∂tu1)(∂tP
∗
ηtϕ)Ψ2

δ dµdt

∣∣∣∣

. σ

¨

R
n+1
+

|∇u1|2Ψ2
δ tdµdt + σ−1‖u‖2∞

¨

R
n+1
+

|∂tP
∗
ηtϕ|2 dµ

dt

t

. σ

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ

¨

R
n+1
+

|∇xτ|2|∂tu1|2Ψ2
δ tdµdt + σ−1‖u‖2∞µ(Q),

where we combined the pointwise estimates for ∇u1 and J from (4.26) and (4.21)
with identity (4.25) and the ellipticity of A to deduce the final inequality.

We use the dyadic decomposition from Remark 4.28 to write
¨

R
n+1
+

|∇xτ|2|∂tu1|2Ψ2
δ tdµdt ≤

∑

k∈Z

∑

Q′∈Dηk

ˆ 2−k+1

2−k

ˆ

Q′
1Ωη,Q,δ |∇xτ|2|∂tu1|2 tdµdt.(4.38)

Observe that if k ∈ Z, Q′ ∈ Dηk and Ωη/8,Q,δ ∩ (Q′ × [2−k, 2−k+1]) , Ø, then as in

(4.34) and (4.35), it holds that Q′ × [2−k, 2−k+1] ⊆ Ωη,2Q,δ/4 and
 

Q′
|∇xτ(x, t)|2 dµ(x) . κ2

0 ∀t ∈ [2−k, 2−k+1].

Also, we have 7
8 t < τ(x, t) < 9

8 t and J(x, t) h 1 on Q′ × [2−k, 2−k+1] by (4.21), so
the degenerate version of Moser’s estimate in (2.16) and t-independence show that

sup
x∈Q′
|∂tu1(x, t)|2 = sup

x∈Q′
|J(x, t)∂τu(x, τ(x, t))|2 .

 

2Q′

 2t

t/2

|∂su(y, s)|2 dsdµ(y)

for all t ∈ [2−k, 2−k+1]. In particular, note that

2Q′ × [2−k−1, 2−k+2] ⊆ Ω∗ :=

{
(y, s) ∈ Rn+1

+ : δF(y) <
5ηs

8
,
δ

2
`(Q) < s < 8`(Q)

}
,

since there exists (x0, t0) ∈ Q′ × [2−k, 2−k+1] satisfying δF(x0) < 1
8ηt0, whence

δF(y) < diam(2Q′) +
1

8
ηt0 ≤

5

16
η2−k ≤ 5

8
ηs ∀y ∈ 2Q′ and s ≥ 2−k−1,

whilst δ`(Q) < t0 < 4`(Q) implies that [2−k, 2−k+1] ⊆ ((δ/2)`(Q), 8`(Q)).

The observations in the preceding paragraph show that (4.38) is bound by

∑

k∈Z

∑

Q′∈Dηk

ˆ 2−k+1

2−k

(
 

Q′
|∇xτ|2dµ

)(
ˆ

2Q′

ˆ 2t

t/2

|∂su(y, s)|2 1Ω∗(y, s) dsdµ(y)

)
dt

.

∑

k∈Z

∑

Q′∈Dηk

ˆ 2−k+2

2−k−1

ˆ

2Q′
|∂su(y, s)|2 1Ω∗(y, s) sdµ(y)ds

.

(
¨

Ω∗∗
|∂su(y, s)|2 sdµ(y)ds +

¨

Ω∗\Ω∗∗
|∂su(y, s)|2 sdµ(y)ds

)
:=M + E,

where we used the fact that
∑

k∈Z
∑

Q′∈Dηk
12Q′×[2−k−1,2−k+2] . 1Rn+1

+
and introduced

Ω∗∗ :=
{

(y, s) ∈ Rn+1
+ : δF(y) < ηs/18, 4δ`(Q) < s < `(Q)

}
.
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To estimate the main term M, we use (4.21)-(4.23) to observe that

ρ−1(Ω∗∗) ⊆ Ω η
16
∩ (2Q × (2δ`(Q), 2`(Q))).

Thus, since Ψδ ≡ 1 on these sets, the change of variables (y, s) 7→ ρ(y, s) gives

M .

¨

R
n+1
+

|(∂tu) ◦ ρ|2 JΨ2
δ tdµdt .

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt,

where we used identity (4.25) and the ellipticity of A to deduce the final inequality.

To estimate the error term E, recall that the degenerate version of Moser’s esti-
mate in (2.16), followed by Caccioppoli’s inequality, ensures that ‖s∂su‖∞ . ‖u‖∞.
Thus, by the definition of Ω∗ \Ω∗∗ and the doubling property of µ, we obtain

E . ‖u‖2∞
ˆ

2Q

(
ˆ 18

η
δF (y)

8
5η δF (y)

ds

s
+

ˆ 8`(Q)

`(Q)

ds

s
+

ˆ 4δ`(Q)

(δ/2)`(Q)

ds

s

)
dµ(y) . ‖u‖2∞µ(Q).

This shows that σS′11 + S′′1 . σ
˜

R
n+1
+
〈A1∇u1,∇u1〉Ψ2

δ tdxdt + σ−1‖u‖2∞µ(Q),

hence

(4.39) S1 . σ

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ−1‖u‖2∞µ(Q) ∀σ ∈ (0, 1).

Step 3: Estimates for the term S2 in (4.32).

We observe that since A is t-independent it is possible to write

2S2 =

¨

R
n+1
+

u2
1∂t(〈Ap,p〉/J)Ψ2

δ dxdt

=

¨

R
n+1
+

u2
1∂t(1/J)〈Ap,p〉Ψ2

δ dxdt +

¨

R
n+1
+

(u2
1/J)〈∂tp, A

∗p〉Ψ2
δ dxdt

+

¨

R
n+1
+

(u2
1/J)〈Ap, ∂tp〉Ψ2

δ dxdt =: I + II + III.

To estimate I, we recall the Jacobian J(x, t) = 1+∂tP
∗
ηtϕ(x) from (4.20) and then

integrate by parts in t to write

I = −
¨

R
n+1
+

u2
1

∂2
t P∗ηtϕ

J2
〈Ap,p〉Ψ2

δ dxdt

=

¨

R
n+1
+

∂t(u
2
1)
∂tP
∗
ηtϕ

J2
〈Ap,p〉Ψ2

δ dxdt +

¨

R
n+1
+

u2
1

∂tP
∗
ηtϕ

J2
∂t(〈Ap,p〉)Ψ2

δ dxdt

+

¨

R
n+1
+

u2
1∂tP

∗
ηtϕ ∂t(J−2)〈Ap,p〉Ψ2

δ dxdt +

¨

R
n+1
+

u2
1

∂tP
∗
ηtϕ

J2
〈Ap,p〉∂t(Ψ

2
δ) dxdt

=: I1 + I2 + I3 + I4,

where there is no boundary term because Ψδ vanishes on the boundary of Rn+1
+ .
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To estimate I1, we recall that J h 1 on suppΨδ ⊆ Ωη/8,Q,δ by (4.21) and then
apply Cauchy’s inequality with σ to obtain

|I1| . σ
¨

R
n+1
+

|∂tu1|2|p|2Ψ2
δ tdµdt

+ σ−1

¨

R
n+1
+

u2
1|∂tPηtϕ|2|p|2Ψ2

δ dµ
dt

t
=: σI′1 + σ

−1I′′1 .

(4.40)

To estimate I′1, recall that |p|2 = 1+ |∇xτ|2 by the definition of p in (4.24), so we
follow the treatment of (4.38) above to obtain

I′1 .

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + ‖u‖2∞µ(Q).

To estimate I′′1 , recall that ‖1Ωη,Qu1‖∞ . ‖u‖∞ and use the dyadic decomposition
from Remark 4.28 to obtain

I′′1 . ‖u‖2∞
∑

k∈Z

∑

Q′∈Dηk

‖∂tP
∗
ηtϕ‖2L∞(Q′×[2−k ,2−k+1])

ˆ 2−k+1

2−k

ˆ

Q′
|p|2Ψ2

δ dµ
dt

t

. ‖u‖2∞
∑

k∈Z

∑

Q′∈Dηk

µ(Q′)‖∂tP
∗
ηtϕ‖2L∞(Q′×[2−k ,2−k+1])

. ‖u‖2∞
∑

k∈Z

∑

Q′∈Dηk

µ(Q′)

 2−k+2

2−k−1

 

2Q′
|∂tP

∗
ηtϕ|2 dµdt

. ‖u‖2∞
∑

k∈Z

∑

Q′∈Dηk

ˆ 2−k+2

2−k−1

ˆ

2Q′
|∂tP

∗
ηtϕ|2 dµ

dt

t

. ‖u‖2∞
¨

R
n+1
+

|tL∗||,µe
−t2L∗||,µϕ|2 dµ

dt

t

. ‖u‖2∞‖∇ϕ‖2L2
µ(Rn,Rn) . ‖u‖

2
∞µ(Q),

(4.41)

where the second line uses the pointwise bound |p|2Ψ2
δ ≤ 1Ωη/8,Q,δ(1+|∇x(I−P∗ηt)ϕ|2)

and estimate (4.35), the third line uses the parabolic version of the degenerate

Moser-type estimate in (2.16) (see Theorem B in [F]), noting that v := ∂t(e
−tL∗||,µϕ)

solves ∂tv = −L∗||,µv whilst |∂tP
∗
ηtϕ(x)| . |t v(x, η2t2)|, and the final line uses the ver-

tical square function estimate from (2.13) with Lµ = L∗||,µ and the W
1,2
0,µ(5Q)-Hodge

estimate for ϕ from (4.14).

To estimate I2, we again use the bound J h 1 on suppΨδ ⊆ Ωη/8,Q,δ from (4.21),
and then recall the definition p := (∇x(P∗ηt − I)ϕ,−1) from (4.24) to obtain

(4.42) |I2| .
¨

R
n+1
+

u2
1|∇x∂tP

∗
ηtϕ|2Ψ2

δ tdµdt +

¨

R
n+1
+

u2
1|∂tP

∗
ηtϕ|2|p|2Ψ2

δ dµ
dt

t
.

The first integral in (4.42) is the same as S′12 from (4.37) whilst the second integral

is the same as I′′1 from (4.40), hence |I2| . ‖u‖2∞µ(Q).
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To estimate I3, we use the bound |∂tP
∗
ηtϕ| < 1/8 guaranteed by (4.18) to deduce

that |∂t(J−2)| = |∂t(1 + ∂tP
∗
ηtϕ)−2| . |∂2

t P∗ηtϕ| on suppΨδ ⊆ Ωη/8,Q,δ and write

|I3| .
¨

R
n+1
+

u2
1|∂tP

∗
ηtϕ|2|p|2Ψ2

δ dµ
dt

t
+

¨

R
n+1
+

u2
1|∂2

t P∗ηtϕ|2|p|2Ψ2
δ tdµdt =: I′3 + I′′3

To estimate I′3, we note that it is the same as I′′1 from (4.40), thus I′3 . ‖u‖2∞µ(Q).

To estimate I′′3 , we follow the estimates and justification provided for (4.41),

noting in addition that ∂tv = ∂
2
t (e−tL∗||,µϕ) solves ∂t(∂tv) = −L∗||,µ(∂tv), to obtain

I′′3 . ‖u‖2∞
∑

k∈Z

∑

Q′∈Dηk

‖t∂2
t P∗ηtϕ‖2L∞(Q′×[2−k ,2−k+1])

ˆ 2−k+1

2−k

ˆ

Q′
|p|2Ψ2

δ dµ
dt

t

. ‖u‖2∞
∑

k∈Z

∑

Q′∈Dηk

µ(Q′)‖ |tL∗||,µP∗ηtϕ| + |t2∂t(L
∗
||,µP∗ηtϕ)| ‖2

L∞(Q′×[2−k ,2−k+1])

. ‖u‖2∞
∑

k∈Z

∑

Q′∈Dηk

µ(Q′)

 2−k+2

2−k−1

 

2Q′
(|tL∗||,µP∗ηtϕ|2 + |t2∂t(L

∗
||,µP∗ηtϕ)|2) dµdt

. ‖u‖2∞
¨

R
n+1
+

|tL∗||,µP∗ηtϕ|2 dµ
dt

t
+ ‖u‖2∞

¨

R
n+1
+

|t2∇x,t(L
∗
||,µP∗ηtϕ)|2 dµ

dt

t

. ‖u‖2∞‖∇ϕ‖2L2
µ(Rn,Rn) . ‖u‖

2
∞µ(Q),

where the second line uses |∂2
t P∗ηtϕ| . |∂t(tL

∗
||,µP∗ηtϕ)| . |L∗||,µP∗ηtϕ| + |t∂t(L

∗
||,µP∗ηtϕ)|,

the third line uses |L∗||,µP∗ηtϕ(x)| = |v(x, η2t2)| and |∂t(L
∗
||,µP∗ηtϕ)(x)| . |t(∂tv)(x, η2t2)|,

and the final line uses the vertical square function estimates from (2.13) and (2.14)
with Lµ = L∗||,µ, hence |I3| . ‖u‖2∞µ(Q)

To estimate I4, we use |∂tP
∗
ηtϕ| . 1, J h 1 and |p|2 ≤ (1+ |∇x(I − P∗ηt)ϕ|2), which

hold on suppΨδ ⊆ Ωη/8,Q,δ by (4.18), (4.21) and (4.24), to reduce to the estimate

obtained for E′1 + E2, hence |I4| . ‖u‖2∞µ(Q).

To estimate II, we use the definition p := (∇x(P∗ηt − I)ϕ,−1) from (4.24) to note
that ∂tp = (∇x∂tP

∗
ηtϕ, 0) and use the Hodge decomposition from (4.13) to write

〈∂tp, A
∗p〉 = 〈∇x∂tP

∗
ηtϕ, A

∗
||∇x(P∗ηt−I)ϕ − c〉 = 〈∇x∂tP

∗
ηtϕ, A

∗
||∇xP∗ηtϕ − µh〉(4.43)

for all x ∈ 5Q and t > 0. Using this and recalling that divµ h = 0, it follows that

II =

¨

R
n+1
+

(u2
1/J)〈∇x∂tP

∗
ηtϕ, A

∗
||∇xP∗ηtϕ − µh〉Ψ2

δ dxdt

=

¨

R
n+1
+

(u2
1/J)(∂tP

∗
ηtϕ)(L∗||,µP∗ηtϕ)Ψ2

δ dµdt

−
¨

R
n+1
+

∂tP
∗
ηtϕ〈∇x(u2

1/J), A∗||∇xP∗ηtϕ − µh〉Ψ2
δ dxdt

−
¨

R
n+1
+

(u2
1/J)∂tP

∗
ηtϕ〈∇x(Ψ2

δ), A
∗
||∇xP∗ηtϕ − µh〉 dxdt

=: II1 + II2 + II3,

(4.44)
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where the integration by parts in x, with respect to the measure µ, is justified by the
definition of the operator L∗||,µ (recall (2.8), (2.9) and (4.16)).

To estimate II1, we use J h 1 and L∗||,µP∗ηtϕ = −(2η2t)−1∂tP
∗
ηtϕ to show that it

can be treated the same way as I′′1 in (4.40), without |p|2, hence |II1| . ‖u‖2∞µ(Q).

To estimate II2, we use J h 1, |∇x(J−1)| = |∇x(1 + ∂tP
∗
ηtϕ)−1| . |∇x∂tP

∗
ηtϕ| and

apply Cauchy’s inequality inequality with σ to obtain

|II2| . σ
¨

R
n+1
+

|∇xu1|2Ψ2
δ tdµdt +

¨

R
n+1
+

u2
1|∇x∂tP

∗
ηtϕ|2Ψ2

δ tdµdt

+ (σ−1 + 1)

¨

R
n+1
+

u2
1|∂tP

∗
ηtϕ|2(|∇xP∗ηtϕ|2 + |h|2)Ψ2

δ dµ
dt

t
.

(4.45)

The first integral is the same as S′11 from (4.37) whilst the remaining two integrals

are the same as those that bound I2 in (4.42), except (|∇xP∗ηtϕ|2 + |h|2) replaces |p|2.
This factor is controlled in the same way, however, since the Hodge decomposition

in (4.13) implies that |h|2 = | 1
µ

c15Q+
1
µ

A∗||∇xϕ|2 . 1+ |∇xϕ|2, so by (4.35) we obtain

|II2| . σ
¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ−1‖u‖2∞µ(Q).

To estimate II3, we use J h 1 and Cauchy’s inequality to write

|II3| .
¨

R
n+1
+

u2
1|∇xΨδ|2 tdµdt +

¨

R
n+1
+

u2
1|∂tP

∗
ηtϕ|2(|∇xP∗ηtϕ|2 + |h|2)Ψ2

δ dµ
dt

t

The first term above is the same as S′13 in (4.37) whilst the remaining term is the

same as the last integral in (4.45), hence |II3| . ‖u‖2∞µ(Q).

To estimate III, we observe by analogy with (4.43) that

〈Ap, ∂tp〉 = 〈A||∇x(P∗ηt − I)ϕ − b,∇x∂tP
∗
ηtϕ〉

= 〈A||∇x(P∗ηtϕ − ϕ) + A||∇xϕ̃ − µh̃,∇x∂tP
∗
ηtϕ〉

= 〈A||∇x[(P∗ηtϕ − ϕ) − (Pηtϕ̃ − ϕ̃)] + A||∇xPηtϕ̃ − µh̃,∇x∂tP
∗
ηtϕ〉

for all x ∈ 5Q and t > 0 and then write

III =

¨

R
n+1
+

(u2
1/J)〈∇x[(P∗ηtϕ − ϕ) − (Pηtϕ̃ − ϕ̃)], A∗||∇x∂tP

∗
ηtϕ〉Ψ2

δ dxdt

+

¨

R
n+1
+

(u2
1/J)〈A||∇xPηtϕ̃ − µh̃,∇x∂tP

∗
ηtϕ〉Ψ2

δ dxdt =: III1 + III2.

To estimate III1, we integrate by parts in x with respect to the measure µ to write

III1 =

¨

R
n+1
+

(u2
1/J)[(P∗ηtϕ − ϕ) − (Pηtϕ̃ − ϕ̃)](L∗||,µ∂tP

∗
ηtϕ)Ψ2

δ dµdt

−
¨

R
n+1
+

[(P∗ηtϕ − ϕ) − (Pηtϕ̃ − ϕ̃)]〈∇x(u2
1Ψ

2
δ/J), A∗||∇x∂tP

∗
ηtϕ〉 dxdt

=: III′1 + III′′1 ,

which is justified by the definition of L∗||,µ (recall (2.8), (2.9) and (4.16)).
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To estimate III′1, we use Hardy’s inequality (see, for instance, page 272 in [S1])

to observe, for the semigroups Pt ∈ {e−t2L∗||,µ , e−t2L||,µ}, the estimate

ˆ ∞

0

|Pηt f − f |2 dt

t3
≤
ˆ ∞

0

(
ˆ ηt

0

|∂sPs f | ds

)2
dt

t3
.

ˆ ∞

0

|∂tPt f |2 dt

t
∀ f ∈ L2

µ(Rn).

We then recall that ‖1Ωη,Qu1‖∞ . ‖u‖∞ and J h 1 on suppΨδ ⊆ Ωη/8,Q,δ to obtain

|III′1| . ‖u‖2∞
ˆ

Rn

ˆ ∞

0

(|P∗ηtϕ − ϕ| + |Pηtϕ̃ − ϕ̃|) |L∗||,µ∂tP
∗
ηtϕ| dtdµ

. ‖u‖2∞
ˆ

Rn

(
ˆ ∞

0

|P∗ηtϕ − ϕ|2 + |Pηtϕ̃ − ϕ̃|2
dt

t3

)1/2(ˆ ∞

0

|t2L∗||,µ∂tP
∗
ηtϕ|2

dt

t

)1/2

dµ

. ‖u‖2∞
(
¨

R
n+1
+

|∂tP
∗
t ϕ|2 + |∂tPtϕ̃|2 dµ

dt

t

)1/2(¨

R
n+1
+

|t2∂tL
∗
||,µP∗ηtϕ|2 dµ

dt

t

)1/2

. ‖u‖2∞(‖∇ϕ‖2L2
µ(Rn,Rn) + ‖∇ϕ̃‖

2
L2
µ(Rn,Rn))

1/2‖∇ϕ‖L2
µ(Rn,Rn) . ‖u‖2∞µ(Q),

where the final line uses the vertical square function estimates from (2.13)-(2.14)

forLµ ∈ {L∗||,µ, L||,µ} and the W
1,2
0,µ(5Q)-Hodge estimates for ϕ, ϕ̃ from (4.14)-(4.15).

To estimate III′′1 , recall that |P∗ηtϕ−ϕ| . t and |Pηtϕ̃−ϕ̃| . t on suppΨδ ⊆ Ωη/8,Q,δ
by (4.19), whilst J h 1 and |∇x(J−1)| . |∇x∂tP

∗
ηtϕ|, so distributing ∇x over u2

1, Ψ2
δ

and 1/J yields terms that can be controlled in the same way J, K and S′12 in (4.37).

To estimate III2, note that the estimates used to control ϕ and Pηtϕ also hold for

ϕ̃ and Pηtϕ̃ by (4.14)-(4.15) and (4.18)-(4.19), whilst divµ h = divµ h̃ = 0 by (4.13),
hence III2 can be estimated in the same way as II in (4.44).

This gives |III′′1 |+ |III2| . σ
˜

R
n+1
+
〈A1∇u1,∇u1〉Ψ2

δ tdxdt+σ−1‖u‖2∞µ(Q), hence

(4.46) S2 . σ

¨

R
n+1
+

〈A1∇u1,∇u1〉Ψ2
δ tdxdt + σ−1‖u‖2∞µ(Q) ∀σ ∈ (0, 1).

We combine (4.36), (4.39) and (4.46) to obtain (4.33), as required. �

5. Solvability of the Dirichlet Problem

This section is dedicated to the proof of Theorem 1.2. We first consider the
construction and properties of a degenerate elliptic measure ωX for degenerate el-
liptic equations div(A∇u) = 0 in the upper half-space, where X = (x, t) ∈ Rn+1

+

and n ≥ 2. The t-independent coefficient matrix A is assumed throughout to satisfy
the degenerate bound and ellipticity in (1.1) for some constants 0 < λ ≤ Λ < ∞
and an A2-weight µ on Rn. This is necessary as the literature only seems to treat
bounded domains whilst the passage to unbounded domains in the uniformly el-
liptic case (see Section 10 in [LSW] and [HK]) relies on a global version of the
Sobolev embedding in (2.4), which is not known for A2-weights in general. The
degenerate elliptic measure is then shown to be in the A∞-class with respect to µ
on the boundary Rn in Theorem 5.30 and the solvability of the Dirichlet problem
follows in Theorem 5.34. These results together prove Theorem 1.2.
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5.1. Boundary estimates for solutions. We require some estimates for solutions
near the boundary ∂Σ of a bounded Lipschitz domain Σ ⊂ Rn (see Section 2 of
[CFMS] for the standard definition). These estimates require some regularity on the
domain boundary but no attempt is made here to obtain the minimal such regularity,
as the focus is to define and analyse a degenerate elliptic measure on Rn.

The Lipschitz regularity of the boundary ∂Σ ensures that the smooth class C∞(Σ)
and the Lipschitz class C0,1(Σ) are both dense in W1,2

µ (Σ) (see Theorem 3.4.1
in [Mo] and page 29 in [KS]). This allows the usual definition, for E ⊆ ∂Σ

and u ∈ W1,2
µ (Σ), whereby u ≥ 0 on E in the W1,2

µ (Σ)-sense means there exists

a sequence u j in C0,1(Σ) that converges to u in W1,2
µ (Σ) with u j(x) ≥ 0 for all

x ∈ E. This induces definitions for inequalities ≤, ≥ and =, between functions
and/or constants, on E in the W1,2

µ (Σ)-sense (see, for instance, Definition 5.1 in

[KS]). Moreover, with sup∂Σ u := inf{k ∈ R : u ≤ k on ∂Σ in the W1,2
µ (Σ)-sense}

and inf∂Σ := − sup∂Σ(−u), the weak maximum principle holds (see Theorem 2.2.2
in [FKS]), and the strong version follows by the Harnack inequality in (2.18) (see
Corollary 2.3.10 in [FKS]).

We can now state a Hölder continuity estimate and a Harnack inequality for
certain solutions near the boundary. For a cube Q ⊂ Rn, recall the corkscrew point
XQ := (xQ, `(Q)) and denote the Carleson box in Rn+1

+ by TQ := Q×(0, `(Q)). Also,

recall that µ(x, t) := µ(x), so dµ(x, t) = µ(x)dxdt, for (x, t) ∈ Rn+1. If u ∈ W1,2
µ (T2Q)

is a solution of div(A∇u) = 0 in T2Q, and u = 0 on 2Q in the W1,2
µ (T2Q)-sense, then

(5.1) |u(x, t)| .
(

t

`(Q)

)α( 

T2Q

|u|2 dµ

)1/2

∀(x, t) ∈ TQ,

and if, in addition, u ≥ 0 almost everywhere on T2Q, then

(5.2) u(X) . u(XQ) ∀X ∈ TQ,

where α is from (2.17) and the implicit constants depend only on n, λ, Λ and [µ]A2 .
Estimate (5.1) follows from standard reflection arguments and the interior Hölder
continuity estimate in (2.17), as observed on page 102 in [FKS]. Estimate (5.2) can
then be deduced from (5.1) and the interior Harnack inequality in (2.18), as in the
uniformly elliptic case (see the proof of Theorem 1.1 in [CFMS], which does not
use the assumption therein that A is symmetric).

5.2. Definition and properties of degenerate elliptic measure. For X ∈ Rn+1,
x ∈ Rn and r > 0, we use B(X, r) := {Y ∈ Rn+1 : |Y −X| < r} to denote balls in Rn+1

and ∆(x, r) := {y ∈ Rn : |x| < r} to denote balls in Rn, where ∆(x, r) is identified
with the surface ball B((x, 0), r) ∩ ∂Rn+1

+ in Rn+1. For each R > 0, consider the

bounded Lipschitz domain ΣR := B(0,R)∩Rn+1
+ with Lipschitz constant at most 1.

For each X ∈ ΣR, the degenerate elliptic measure ωX
R is the measure on ∂ΣR, as

defined on page 583 in [FJK2], such that u(X) =
´

∂ΣR
h dωX

R solves the Dirichlet

problem for continuous boundary data h ∈ C(∂ΣR) in the sense that div(A∇u) = 0
in ΣR and u ∈ C(ΣR) with u|∂ΣR

= h.

We now define the degenerate elliptic measure on Rn. If f ∈ Cc(Rn), fix R0 > 0
such that supp f ⊆ ∆(0,R0) and set f equal to zero on Rn+1

+ , so then f ± ∈ C(∂ΣR)
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for all R ≥ R0, where f ±(X) := max{± f (X), 0}, thus

u±R(X) :=

ˆ

∂ΣR

f ± dωX
R ∀X ∈ ΣR

solve the Dirichlet problem as above in ΣR for all R ≥ R0. The maximum principle
then implies that u±R1

(X) ≤ u±R2
(X), whenever R0 ≤ R1 ≤ R2 and X ∈ ΣR1 , and that

supR>0 ‖u±R‖∞ ≤ ‖ f ‖∞. This allows us to define

(5.3) u(X) := lim
R→∞

[u+R(X) − u−R(X)] ∀X ∈ Rn+1
+

and since the mapping f 7→ u(X) is a positive linear functional on Cc(Rn), the
Riesz Representation Theorem implies that there exists a regular Borel probability
measure (the degenerate elliptic measure) ωX on Rn such that u(X) =

´

Rn f dωX .

The function u from (5.3) solves div(A∇u) = 0 in Rn+1
+ . To prove this, note

that ‖u‖∞ ≤ ‖ f ‖∞, so for each compact set K ⊂ Rn+1
+ , the Hölder continuity of

solutions in (2.17) ensures the equicontinuity required to apply the Arzelà–Ascoli
Theorem and extract a subsequence uR j

that converges to u uniformly on K. This

combined with Caccioppoli’s inequality shows that uR j
converges to u in W1,2

µ (K),

hence u ∈ W
1,2
µ,loc(Rn+1

+ ). Moreover, if ϕ ∈ C∞c (Rn+1
+ ) and K = suppϕ ⊂ ΣR, then

(5.4)

∣∣∣∣
ˆ

K

〈A∇(u − uR),∇ϕ〉
∣∣∣∣ ≤ Λ‖∇ϕ‖∞µ(K)1/2‖u − uR‖W1,2

µ (K)
,

from which it follows that
´

R
n+1
+
〈A∇u,∇ϕ〉 = 0, as required.

We note by (5.3) that, when restricted to any bounded Borel subset of Rn, the
measures ωX

R converge weakly to ωX , so Theorem 1 on page 54 of [EG] shows that

(5.5) ωX(U) ≤ lim inf
R→∞

ωX
R(U), ωX(K) ≥ lim sup

R→∞
ωX

R(K), ωX(B) = lim
R→∞

ωX
R(B)

for all bounded open sets U ⊂ Rn, all compact sets K ⊂ Rn, and all bounded Borel
sets B ⊂ Rn such that ωX(∂B) = 0. This construction of the degenerate elliptic
measure also provides for the following expected properties.

Lemma 5.6. If X0, X1 ∈ Rn+1
+ and E ⊆ Rn is a Borel set, then ωX0(E) = 0 if

and only if ωX1(E) = 0. Moreover, the non-negative function u(X) := ωX(E) is a

solution of div(A∇u) = 0 in Rn+1
+ and the boundary Hölder continuity estimate

(5.7) |u(x, t)| .
(

t

`(Q)

)α
u(XQ) ∀(x, t) ∈ TQ

holds on all cubes Q such that 2Q ⊆ Rn \E, where α is from (2.17) and the implicit

constants depend only on n, λ, Λ and [µ]A2 ,

Proof. The proof follows that of Lemma 1.2.7 in [K], except we must account for
the fact that the solution to the Dirichlet problem in Rn+1

+ defined by (5.3) requires
boundary data to have compact support, which is easily done as we now show.
Suppose that ωX0(E) = 0 and that K ⊆ E is a compact set. The regularity of
the measure implies that ωX0(K) = 0 and, for each ε > 0, there exists a bounded
open set U ⊃ K such that ωX0(U) < ε. In particular, we may assume that U is
bounded because K is compact, so by Urysohn’s Lemma there exists g ∈ Cc(Rn)
such that g(x) = 1 on K, 0 ≤ g(x) ≤ 1 on U, and supp g ⊂ U. It follows that
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u(X) =
´

Rn g dωX is the solution to the Dirichlet problem in Rn+1
+ defined by (5.3)

with boundary data g. Applying the Harnack inequality from (2.18) and connecting
X0 with X1 via a Harnack chain then shows that there exists C > 0, depending on
X0 and X1, such that

ωX1(K) ≤ u(X1) ≤ Cu(X0) ≤ CωX0(U) ≤ Cε ∀ε > 0,

hence ωX1(K) = 0 for all compact sets K ⊆ E, and so ωX1(E) = 0 by regularity.

The proof that u(X) := ωX(E) is a solution of div(A∇u) = 0 in Rn+1
+ also follows

that of Lemma 1.2.7 in [K]. It remains to prove that the boundary Hölder continuity
estimate holds on all cubes Q such that 2Q ⊆ Rn \ E. We first consider when E

is bounded. In that case, let Uδ denote the open δ-neighbourhood of E and set
χε,δ := ϕε ∗ 1Uδ

for all δ > ε > 0, where ϕε(x) := ε−nϕ(x/ε) and ϕ ∈ C∞c (∆(0, 1))
is a fixed non-negative function with

´

Rn ϕ = 1. In particular, since Uδ is open, we

have 1E ≤ 1Uδ
≤ lim infε→0 χε,δ. Consequently, if X = (x, t) ∈ Rn+1

+ , then

(5.8) u(X) = ωX(E) ≤ ωX(Uδ) ≤
ˆ

Rn

lim inf
ε→0

χε,δ dωX ≤ lim inf
ε→0

ˆ

Rn

χε,δ dωX .

The function χε,δ belongs to C∞c (Rn) and thus extends to a function in C∞c (Rn+1).
The construction of the degenerate elliptic measure (see pages 580–583 in [FJK2],
which was the starting point for our extension to the upper half-space above) thus

implies that vε(X) :=
´

Rn χε,δ dωX is in W1,2(T 3
2 Q) and vanishes on 3

2 Q whenever

0 < ε < δ < `(Q)/4, so estimate (5.8) combined with the boundary Hölder conti-
nuity estimate in (5.1) and the boundary Harnack inequality in (5.2) shows that

(5.9) u(x, t) ≤ lim inf
ε→0

vε(x, t) .

(
t

`(Q)

)α
lim inf
ε→0

vε(XQ) ∀(x, t) ∈ TQ.

We now let Uδ,ε denote the open ε-neighbourhood of Uδ, in which case χε,δ ≤ 1Uδ,ε

and vε(X) ≤ ωX(Uδ,ε), so by (5.9) and the regularity of the degenerate elliptic
measure we have

u(x, t) .

(
t

`(Q)

)α
lim inf
ε→0

ωXQ(Uδ,ε) .

(
t

`(Q)

)α
ωXQ(Uδ) ∀(x, t) ∈ TQ.

This proves (5.7) if E is bounded, since the regularity of the measure also implies
that ωXQ(Uδ) approaches ωXQ(E) = u(XQ) as δ approaches 0. If E is not bounded,
then applying (5.7) on the bounded sets Ek := 12k+1Q\2kQE, for k ∈ N, shows that

u(x, t) =

∞∑

k=1

ωX(Ek) .

∞∑

k=1

(
t

`(Q)

)α
ωXQ(Ek) =

(
t

`(Q)

)α
ωXQ(E) ∀(x, t) ∈ TQ,

as required. �

5.3. Preliminary estimates for degenerate elliptic measure. In the uniformly
elliptic case, there is a rich theory for the Green’s function on bounded domains,
and specifically, estimates and connections with elliptic measure (see, for instance,
Theorem 1.2.8 and Corollary 1.3.6 in [K]). This theory also extends to unbounded
domains (see Section 10 in [LSW] and [HK]). In the degenerate elliptic case,
the theory was developed on bounded domains in [FJK1], [FJK2] and [FKS], but
it is not clear if there is always such a Green’s function on unbounded domains.
In particular, the construction in [HK] for the uniformly elliptic case relies on the
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(unweighted) global version of the Sobolev embedding in (2.4), which is not known
for a general A2-weight. In what follows, we combine the properties of the Green’s
function on the bounded domain ΣR := B(0,R) ∩ Rn+1

+ with the limit properties in
(5.5) to deduce estimates for degenerate elliptic measure on Rn. These will be used
to prove Lemma 5.24 and ultimately Theorem 5.30.

For each R > 0, the Green’s function gR : ΣR × ΣR 7→ [0,∞] is constructed by
following Proposition 2.4 in [FJK1]. In particular, for each Y ∈ ΣR, the mapping
X 7→ gR(X,Y) is the Hölder continuous function in ΣR\{Y} that vanishes on ∂ΣR and
satisfies

´

ΣR
〈A∇gR(·,Y),∇Φ〉 = Φ(Y) for all Φ ∈ C∞c (ΣR). As explained on page

583 in [FJK2], these properties are valid on any NTA domain, hence a fortiori

on ΣR. The proofs do not rely on the assumption therein that A is symmetric,
although the symmetry property “gR(X,Y) = gR(Y, X)” is no longer guaranteed, as
g∗R(X,Y) := gR(Y, X) is the Green’s function for the adjoint operator − div(A∗∇).
We will rely on the following two lemmas, which are immediate from Theorem 4
and Lemma 3 in [FJK2], respectively, to estimate the Green’s function gR and the
degenerate elliptic measure ωR on ΣR.

Lemma 5.10. If X,Y ∈ ΣR and |X − Y | < dist(Y, ∂ΣR)/2, then

gR(X,Y) h

ˆ dist(Y,∂ΣR)

|X−Y |

s2

µ(B(Y, s))

ds

s
,

where the implicit constants depend only on n, λ, Λ and [µ]A2 .

Lemma 5.11. If R > 0 and Q is a cube in Rn such that T2Q ⊂ ΣR, then

gR(XQ,Y)

`(Q)
h ωY

R(Q)
`(Q)

µ(TQ)
=
ωY

R(Q)

µ(Q)
∀Y ∈ ΣR \ T2Q,

where the implicit constants depend only on n, λ, Λ and [µ]A2 .

The degenerate elliptic measure ωX
R satisfies the doubling property ωX

R(2Q) ≤
C0ω

X
R(Q) for all cubes Q in Rn such that T2Q ⊂ ΣR and all X ∈ ΣR \ T2Q, where

the doubling constant C0 > 0 depends only on n, λ, Λ and [µ]A2 . This is proved in
Lemma 1 on page 584 of [FJK2] by using the estimates in Lemma 5.11, the Har-
nack inequality in (2.18), and the doubling property of µ. The doubling constant
C0 does not depend on R, which allows us to use the inequalities in (5.5) to show
that the degenerate elliptic measure ωX is locally doubling on Rn, in the sense that

(5.12) ωX(2Q) ≤ lim inf
R→∞

ωX
R(2Q) . lim inf

R→∞
ωX

R( 1
2 Q) ≤ lim sup

R→∞
ωX

R( 1
2 Q) ≤ ωX(Q)

for all cubes Q ⊂ Rn and all X ∈ Rn+1
+ \ T2Q, where the implicit constant is C2

0.

In particular, the doubling property implies that ωX(∂Q) = 0 for all cubes Q ⊂ Rn

(see page 403 in [GR] or Proposition 6.3 in [HM]), so (5.12) actually improves to
ωX(2Q) ≤ C0ω

X(Q), since by the equality in (5.5) we now have

(5.13) ωX(Q) = lim
R→∞

ωX
R(Q)

for all cubes Q ⊂ Rn and all X ∈ Rn+1
+ \ T2Q. This provides the following estimate

for degenerate elliptic measure.

Lemma 5.14. If Q is a cube in Rn, then ωXQ(Q) & 1, where the implicit constant

depends only on n, λ, Λ and [µ]A2 .
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Proof. Let Q denote a cube in Rn and fix R0 > 0 such that T2Q ⊂ ΣR0 . The Hölder
continuity at the boundary in (5.1) and the Harnack inequality in (2.18) imply (see
the proof of Lemma 3 on page 585 in [FJK2]) that

ω
XQ

R (Q) & 1 ∀R ≥ R0,

where the implicit constant depends only on n, λ, Λ and [µ]A2 , and so does not
depend on R. The result follows by using Harnack’s inequality to shift the pole

(from X2Q to XQ) in (5.12)-(5.13) to obtain ωXQ(Q) = limR→∞ ω
XQ

R (Q) & 1. �

The estimates in Lemma 5.11 also imply the following Comparison Principle.
The result is stated on page 585 in [FJK2] and the proof is the same as in the
uniformly elliptic case (see Theorem 1.4 in [CFMS] or Lemma 1.3.7 in [K], neither
of which use the assumption therein that A is symmetric).

Lemma 5.15. (Comparison Principle) Let Q denote a cube in Rn and suppose that

u, v ∈ W1,2
µ (T2Q) ∩ C(T2Q) with u, v ≥ 0 on T2Q . If div(A∇u) = div(A∇v) = 0 in

T2Q and u = v = 0 on 2Q, then

u(X)

v(X)
h

u(XQ)

v(XQ)
∀X ∈ TQ,

where the implicit constants depend only on n, λ, Λ and [µ]A2 .

The following corollary of these preliminaries will be used in Lemma 5.18 to
estimate Radon–Nikodym derivatives of the degenerate elliptic measure.

Lemma 5.16. If Q0 and Q are cubes in Rn such that Q ⊆ Q0, then

ωXQ0 (Q) h
ωX(Q)

ωX(Q0)
∀X ∈ Rn+1

+ \ T2Q0 ,

where the implicit constants depend only on n, λ, Λ and [µ]A2 .

Proof. Let Q ⊂ Q0 be cubes in Rn, suppose that X ∈ Rn+1
+ \ T2Q0 and consider

R > 0 large enough so that X ∈ ΣR and T4Q0 ⊂ ΣR. Lemma 5.11 shows that

ωX
R(Q0) `(Q0) h µ(Q0) gR(XQ0 , X),

ωX
R(Q) `(Q) h µ(Q) gR(XQ, X)

ω
X3Q0
R (Q) `(Q) h µ(Q) gR(XQ, X3Q0).

If u(Y) = gR(Y, X) and v(Y) = gR(Y, X3Q0), then div(A∇u) = div(A∇u)v = 0 in T2Q0

and u = v = 0 on 2Q0, so the Comparison Principle in Lemma 5.15 shows that

gR(XQ, X)

gR(XQ, X3Q0)
=

u(XQ)

v(XQ)
h

u(XQ0)

v(XQ0)
=

gR(XQ0 , X)

gR(XQ0 , X3Q0)
.

Also, Lemma 5.10 shows that gR(XQ0 , X3Q0) h `(Q0)/µ(Q0), so together we obtain

ωX
R(Q)

ωX
R(Q0)

h
gR(XQ, X)

gR(XQ0 , X)

µ(Q)

`(Q)

`(Q0)

µ(Q0)
h

gR(XQ, X3Q0)

gR(XQ0 , X3Q0)

µ(Q)

`(Q)

`(Q0)

µ(Q0)
h ω

X3Q0
R (Q).

The Harnack inequality from (2.18) then shows that ωX
R(Q) h ωX

R(Q0)ω
XQ0
R (Q) and

the result follows by using (5.13) to estimate the limit as R approaches infinity. �



38 STEVE HOFMANN, PHI LE, ANDREW J. MORRIS

If X, X0 ∈ Rn+1
+ , then Lemma 5.6 shows that ωX and ωX0 are mutually abso-

lutely continuous, so the Lebesgue differentiation theorem for the locally doubling
measure ωX0 implies that the Radon–Nikodym derivative of ωX satisfies

(5.17) K(X0, X, y) :=
dωX

dωX0
(y) = lim

s→0

ωX(Q(y, s))

ωX0(Q(y, s))
ωX0-a.e. y ∈ Rn,

where Q(y, s) denotes the cube in Rn with centre y and side length s. The following
decay estimate for the kernel function K extends Lemma 2 on page 584 in [FJK2].
It is the final property of degenerate elliptic measure needed to prove Lemma 5.24.

Proposition 5.18. If Q0 and Q are cubes in Rn such that Q ⊆ Q0, then

K(XQ0 , XQ, y) .
1

ωXQ0 (Q)
max

{
|y − xQ|
`(Q)

, 1

}−α
ωXQ0 -a.e. y ∈ Q0,

where α>0 from (2.17) and the implicit constant depend only on n, λ, Λ and [µ]A2 .

Proof. Let Q ⊆ Q0 denote cubes in Rn and fix J ∈ N such that 2J−1Q ⊆ Q0 ⊆ 2JQ.
If y ∈ Q, then Lemma 5.16 and the Harnack inequality in (2.18) show that

ωXQ(Q(y, s)) h
ωX2Q0 (Q(y, s))

ωX2Q0 (Q)
h
ωXQ0 (Q(y, s))

ωXQ0 (Q)

whenever 0 < s < dist(y,Rn \ Q). If y ∈ 2 jQ \ 2 j−1Q for some j ∈ {1, . . . , J}, then
the boundary Hölder continuity estimate in (5.7) combined with Lemma 5.16 and
the Harnack inequality in (2.18) show that

ωXQ(Q(y, s)) .

(
`(Q)

2 j−2`(Q)

)α
ω

X
2 j−2Q(Q(y, s)) h

(
`(Q)

|y − xQ|

)α
ωXQ0 (Q(y, s))

ωXQ0 (2 jQ)

whenever 0 < s < dist(y,Rn \ (2 jQ \ 2 j−2Q)), where α > 0 from (2.17) and the
implicit constants depend only on n, λ, Λ and [µ]A2 . The result follows by using
these two estimates to bound the limit as s approaches zero in (5.17). �

5.4. The A∞-estimate for degenerate elliptic measure. We now combine the
properties of degenerate elliptic measure with good ε0-coverings for sets, as intro-
duced in [KKoPT] and defined below (see also [KKiPT]), to construct bounded
solutions that satisfy the truncated square function estimate in Lemma 5.24. This
result, combined with the Carleson measure estimate from Theorem 1.3, allows us
to prove the A∞-estimate for the degenerate elliptic measure in Theorem 5.30. This
avoids the need to apply the method of ε-approximability, as was done in [HKMP],
and so simplifies the proof in the uniformly elliptic case.

Let D(Rn) denote the standard collection {2k( j + [0, 1]n) : k ∈ Z, j ∈ Zn} of all
closed dyadic cubes S in Rn. For each S ∈ D(Rn) and η = 2−K , where K ∈ N,
define D(S ) := {S ′ ∈ D(Rn) : S ′ ⊆ S } and

(5.19) D
η(S ) := {S ′ ∈ D(S ) : `(S ′) = 2−K`(S )},

so Dη(S ) is precisely the set of all dyadic descendants of S at scale 2−K`(S ).

Definition 5.20. Suppose that Q0 is a cube in Rn. If ε0 > 0, k ∈ N, Q ⊆ Q0 is a
cube and E ⊆ Q, then a good ε0-cover of E of length k in Q is a collection {Ol}kl=1

of nested open sets that satisfy E ⊆ Ok ⊆ Ok−1 ⊆ . . . ⊆ O1 ⊆ Q and each of which



CARLESON MEASURE ESTIMATES AND THE DIRICHLET PROBLEM 39

has a decomposition Ol = ∪∞i=1S l
i given by a collection {S l

i}i∈N ⊆ D(Rn) of dyadic
cubes with pairwise disjoint interiors such that

(5.21) ωX2Q0 (Ol ∩ S l−1
i ) ≤ ε0 ω

X2Q0 (S l−1
i ) ∀i ∈ N, ∀l ∈ {2, . . . , k}.

Let us record a few important consequences of this definition that will be needed.
It is proved on page 243 in [KKoPT] that for each i ∈ N and l ∈ {2, . . . , k}, there

exists a unique j ∈ N such that S l
i is a proper subset of S l−1

j , thus `(S l
i) ≤ 1

2`(S
l−1
j ).

Also, for m ∈ {2, . . . , k}, iterating (5.21) as in Lemma 2.5 of [KKoPT] shows that

(5.22) ωX2Q0 (Ol ∩ S m
i ) ≤ εl−m

0 ωX2Q0 (S m
i ) ∀i ∈ N, ∀l ∈ {m, . . . , k}.

In the uniformly elliptic case, the following result is Lemma 2.3 from [KKiPT].
The proof extends to the degenerate elliptic case, since it only relies on the fact that
the degenerate elliptic measure ωX2Q0 is doubling when restricted to the cube Q0.

Lemma 5.23. Suppose that Q0 is a cube in Rn. If ε0 > 0, then there exists δ0 > 0,

depending only on ε0, n, λ, Λ and [µ]A2 , such that the following property holds:

If Q ⊆ Q0 is a cube and E ⊆ Q0 such thatωX2Q0 (E) ≤ δ0, then there exists a good

ε0-cover of E of length k in Q for some natural number k h log(ωX2Q0 (E))/log ε0,

where the implicit constants depend only on n, λ, Λ and [µ]A2 .

We can now prove the following lemma by adapting the proof in [KKiPT] to the
degenerate elliptic case. The original argument has also been somewhat modified.

Lemma 5.24. Suppose that Q0 is a cube in Rn. If M ≥ 1, then there exists δM > 0,

depending only on M, n, λ, Λ and [µ]A2 , such that the following property holds:

If Q ⊆ Q0 is a cube and E ⊆ Q and ωX2Q0 (E) ≤ δM, then there is a Borel subset

B of Rn such that the solution u(X) := ωX(B) of div(A∇u) = 0 in Rn+1
+ satisfies

M ≤
ˆ γ`(Q)

0

ˆ

∆(x,γt)

|t∇u(y, t)|2 dµ(y)

µ(∆(x, t))

dt

t
∀x ∈ E,

where γ > 0 is a constant that depends only on n, λ, Λ and [µ]A2 .

Proof. We introduce three constants ε0, δ, η ∈ (0, 1) that will be chosen with δ ≤ δ0,
where δ0 is determined by ε0 as in Lemma 5.23, and η = 2−K for some K ∈ N.
Therefore, if E ⊆ Q ⊆ Q0 and ωX2Q0 (E) ≤ δ, then there exists a good ε0-cover of
E of length k in Q such that k h log(ωX2Q0 (E))/ log ε0. This cover is denoted by
{Ol}kl=1 with Ol = ∪∞i=1S l

i as in Definition 5.20, and for each such cube S l
i, a dyadic

descendant S̃ l
i in Dη(S l

i) that contains the centre of S l
i is now fixed and

(5.25) Õl := ∪∞i=1S̃ l
i,

where we note that `(S̃ l
i) = η`(S

l
i) in accordance with (5.19).

We claim that there exists a Borel subset B of Rn such that 1B =
∑k

m=2 1Õ j−1\O j
.

To see this, suppose that
∑k

m=2 1Õ j−1\O j
(x) , 0 and let l0 denote the smallest integer

l ∈ [2, k] such that 1
Õl−1\Ol

(x) = 1. It must hold that x ∈ Õl0−1 \Ol0 , so then x < Ol0 ,

which implies that x < Ol and x < Õl for all l ≥ l0, hence 1
Õl−1\Ol

(x) = 0 for all

l > l0 and the claim follows.
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We now aim to choose ε0, η ∈ (0, 1) such that u(X) := ωX(B) on Rn+1
+ satisfies

(5.26) |u(XηS l
i
) − u(X

ηŜ l
i
)| & 1 ∀Ŝ l

i ∈ Dη(S l
i), ∀i ∈ N, ∀l ∈ {1, . . . , k},

where the implicit constant depends only on the allowed constants n, λ,Λ and [µ]A2 ,

and if xl
i and x̂l

i denote the centres of S l
i and Ŝ l

i, then the relevant corkscrew points

are precisely XηS l
i
= (xl

i, η`(S
l
i)) and X

ηŜ l
i
= (x̂l

i, η
2`(S l

i)). To this end, we proceed

to obtain estimates for u(XηS l
i
) and u(X

ηŜ l
i
).

To estimate u(XηS l
i
), write

u(XηS l
i
) =

ˆ

Rn\S l
i

1B dω
X
ηS l

i +

ˆ

S l
i

1B dω
X
ηS l

i =: I + II.

The boundary Hölder continuity in (5.7) shows that I ≤ ω
X
ηS l

i (Rn \ S l
i) ≤ C0η

α,
where C0, α > 0 depend only on the allowed constants. To estimate II, write

II =

l∑

j=2

ˆ

S l
i

1
Õ j−1\O j

dω
X
ηS l

i +

k∑

j=l+2

ˆ

S l
i

1
Õ j−1\O j

dω
X
ηS l

i +

ˆ

S l
i

1
Õl\Ol+1

dω
X
ηS l

i

=: II1 + II2 + II3.

First, observe that II1 = 0, since if m ∈ {2, . . . , l}, then S l
i ⊆ Ol ⊆ O j and so

(Õ j−1 \ O j) ∩ S l
i = Ø. To estimate II2, the kernel function representation in (5.17)

and estimates in Proposition 5.18, the local doubling property of the degenerate
elliptic measure in (5.12) and property (5.22) of the good ε0-covering, show that

II2 =

k∑

j=l+2

ˆ

(Õ j−1\O j)∩S l
i

K(X2Q0 , XηS l
i
, y) dωX2Q0 (y)

≤
Cη

ωX2Q0 (S l
i)

k∑

j=l+2

ωX2Q0

(
(Õ j−1 \ O j) ∩ S l

i

)

≤
Cη

ωX2Q0 (S l
i)

k∑

j=l+2

ωX2Q0 (O j−1 ∩ S l
i)

≤
Cη

ωX2Q0 (S l
i)

k∑

j=l+2

ε
j−1−l
0 ωX2Q0 (S l

i) ≤ Cηε0/(1 − ε0),

where the constant Cη > 0 depends only on η and the allowed constants.

To estimate II3, observe that S l
i∩ Õl = S̃ l

i by the definition of Õl in (5.25), hence

II3 =

ˆ

S̃ l
i

dω
X
ηS l

i −
ˆ

S̃ l
i∩Ol+1

dω
X
ηS l

i =: II′3 − II′′3 .

The term II′′3 is estimated in the same way as II2 above to show that

II′′3 ≤
Cη

ωX2Q0 (S l
i)
ωX2Q0 (Ol+1 ∩ S̃ l

i) ≤
Cη

ωX2Q0 (S l
i)
ωX2Q0 (Ol+1 ∩ S l

i) ≤ Cηε0.
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We estimate II′3 from above and below. First, note that XηS l
i
= (xl

i, η`(S
l
i)), xl

i ∈ S̃ l
i

and `(S̃ l
i) = η`(S l

i), so ω
X
ηS l

i (S̃ l
i) h ω

X
S̃ l

i (S̃ l
i) by the Harnack inequality in (2.18),

whilst ω
X

S̃ l
i (S̃ l

i) & 1 by Lemma 5.14. Thus, there exists c0 ∈ (0, 1) depending only

on the allowed constants such that II′3 = ω
X
ηS l

i (S̃ l
i) ≥ c0. Next, choose a different

dyadic descendant S
˜

l
i , S̃ l

i in Dη(S l
i) that contains the centre of S l

i. The preceding

argument shows that ω
X
ηS l

i (S
˜

l
i) ≥ c0, whilst ω

X
ηS l

i (S
˜

l
i ∩ S̃ l

i) ≤ ω
X
ηS l

i (∂S̃ l
i) = 0, hence

c0 ≤ II′3 = ω
X
ηS l

i (S̃ l
i) = 1 − ω

X
ηS l

i (Rn \ S̃ l
i) ≤ 1 − ω

X
ηS l

i (S
˜

l
i) ≤ 1 − c0.

The above estimates together show that if ε0 ∈ (0, 1/2), then

(5.27) c0 ≤ u(XηS l
i
) ≤ C0η

α + 3Cηε0 + 1 − c0.

To estimate u(X
ηŜ l

i
), write

u(X
ηŜ l

i
) =

ˆ

Rn\Ŝ l
i

1B dω
X
ηŜ l

i +

ˆ

Ŝ l
i

1B dω
X
ηŜ l

i =: Î + Î I

as well as

Î I =

l∑

j=2

ˆ

Ŝ l
i

1
Õ j−1\O j

dω
X
ηŜ l

i +

k∑

j=l+2

ˆ

Ŝ l
i

1
Õ j−1\O j

dω
X
ηŜ l

i +

ˆ

Ŝ l
i

1
Õl\Ol+1

dω
X
ηŜ l

i

=: Î I1 + Î I2 + Î I3.

The arguments used to estimate I, II1 and II2 show that Î ≤ ω
X
ηŜ l

i (Rn \ Ŝ l
i) ≤ C0η

α,

Î I1 = 0 and Î I2 ≤ Cηε0/(1 − ε0). To estimate Î I3, observe that

Ŝ l
i ∩ (Õl \ Ol+1) = (Ŝ l

i ∩ S̃ l
i) \ Ol+1,

where either ω
X
ηŜ l

i (Ŝ l
i ∩ S̃ l

i) = 0 and Î I3 = 0, or Ŝ l
i = S̃ l

i and

Î I3 =

ˆ

Ŝ l
i

dω
X
ηŜ l

i −
ˆ

Ŝ l
i∩Ol+1

dω
X
ηŜ l

i =: Î I
′
3 − Î I

′′
3 .

The boundary Hölder continuity estimate in (5.7) shows that

Î I
′
3 = ω

X
ηŜ l

i (Ŝ l
i) = 1 − ω

X
ηŜ l

i (Rn \ Ŝ l
i) ≥ 1 −C0η

α

whilst repeating the arguments used to estimate II′′3 shows that

Î I
′′
3 ≤

Cη

ωX2Q0 (Ŝ l
i)
ωX2Q0 (Ol+1 ∩ Ŝ l

i) ≤
Cη

ωX2Q0 (S l
i)
ωX2Q0 (Ol+1 ∩ S l

i) ≤ Cηε0.

These estimates together show that if ε0 ∈ (0, 1/2), then either

(5.28) 0 ≤ u(X
ηŜ l

i
) ≤ C0η

α + 3Cηε0 or u(X
ηŜ l

i
) ≥ 1 −

(
C0η

α +Cηε0

)
.

The estimates (5.27) and (5.28) together imply that

|u(XηS l
i
) − u(X

ηŜ l
i
)| ≥ c0 − 2C0η

α − 4Cηε0.

We thus obtain (5.26) by first choosing η ∈ (0, 1) so that 2C0η
α ≤ c0/4 and then

choosing ε0 ∈ (0, 1/2) (depending on η) so that 4Cηε0 ≤ c0/4. These choices of η
and ε0, which depend only on the allowed constants, are now fixed.
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To complete the proof, suppose that M ≥ 1 and x ∈ E, and recall that δ ∈ (0, δ0)
remains to be chosen, where δ0 is now fixed by our choice of ε0 as in Lemma 5.23.
First, fix a cube S k in {S k

i }i∈N such that x ∈ S k. The remarks after Definition 5.20

then imply that for each l ∈ {1, . . . , k − 1}, there exists a unique cube S l in {S l
i}i∈N

such that x ∈ S l and S l+1 ⊂ S l, thus `(S l+1) ≤ 1
2`(S

l). Next, for each l ∈ {1, . . . , k},
fix a dyadic descendant Ŝ l in Dη(S l) such that x ∈ Ŝ l.

Observe that, for some τ ∈ (0, 1) sufficiently close to 1 and depending only on
η, the corkscrew points XηS l and X

ηŜ l both belong to the dilate τQl
η of the cube

Ql
η := {(y, t) ∈ Rn+1

+ : |y − x|∞ < ( 1
2 +

η2

4 )`(S l), η2

2 `(S
l) < t < (1 + η2)`(S l)}

with `(Ql
η) = (1 + η2

2 )`(S l). Therefore, if cl :=
ffl

Ql
η

u, then the Moser-type estimate

in (2.16), the Poincaré inequality in (2.5) and the doubling property of µ show that

|u(XηS l) − u(X
ηŜ l)|2 . |u(XηS l) − cl|2 + |u(X

ηŜ l) − cl|2

. ‖u − cl‖2
L∞(τQl

η)

.η

 

Ql
η

|u − cl|2 dµ

. `(Ql
η)

2

 

Ql
η

|∇u|2 dµ

.
`(S l)

µ
(
∆(x, (1 + η2

2 )`(S l))
)
ˆ

Ql
η

|∇u|2 dµ

.

¨

Ql
η

|t∇u(y, t)|2 dµ(y)

µ(∆(x, t))

dt

t
.

(5.29)

Iterating the bound `(S l+1) ≤ 1
2`(S

l) shows that `(S l′) ≤ 2l−l′`(S l) when l′ ≥ l.

This implies that the collection {Q1
η, . . . ,Q

k
η} has the bounded intersection property

whereby for each l ∈ {1, . . . , k}, there are at most 3+ 2 log2( 1
η2 + 1)) such cubes Ql′

η

satisfying Ql′
η ∩ Ql

η , Ø. This allows us to sum estimate (5.29) over l ∈ {1, . . . , k}
and then apply (5.26) to obtain

k .η

¨

∪k
l=1Ql

η

|t∇u(y, t)|2 dµ(y)

µ(∆(x, t))

dt

t
.

ˆ γ`(Q)

0

ˆ

∆(x,γt)

|t∇u(y, t)|2 dµ(y)

µ(∆(x, t))

dt

t

for some γ > 0 that depends only on η > 0 and thus only on the allowed constants.

To conclude, recall that k h log(ωX2Q0 (E)−1)/ log(1/ε0) ≥ log(1/δ)/ log(1/ε0),
since ωX2Q0 (E) ≤ δ < 1. Therefore, the result follows by choosing δ ∈ (0, δ0] such
that M ≤ log(1/δ), since δM := δ depends only on M and the allowed constants. �

We now combine the above technical lemma with the Carleson measure estimate
from Theorem 1.3 to prove the main A∞-estimate for degenerate elliptic measure.

Theorem 5.30. Suppose that Q0 is a cube in Rn. If X ∈ Rn+1
+ \TQ0 and ω := ωXbQ0

denotes the degenerate elliptic measure restricted to Q0, then ω ∈ A∞(µ) and the

following equivalent properties hold:
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(1) For each ε ∈ (0, 1), there exists δ ∈ (0, 1), depending only on ε, n, λ, Λ

and [µ]A2 , such that the following property holds: If Q ⊆ Q0 is a cube and

E ⊆ Q such that ω(E) ≤ δω(Q), then µ(E) ≤ εµ(Q).
(2) The measure ω is absolutely continuous with respect to µ and there exists

q ∈ (1,∞) such that the Radon–Nikodym derivative k := dω/dµ satisfies,

on all surface balls ∆ ⊆ Q0, the reverse Hölder estimate

(
 

∆

kq dµ

)1/q

.

 

∆

k dµ,

where q and the implicit constant depend only on n, λ, Λ and [µ]A2 .

(3) There exist C, θ > 0, depending only on n, λ, Λ and [µ]A2 , such that

ω(E) ≤ C

(
µ(E)

µ(Q)

)θ
ω(Q)

for all cubes Q ⊆ Q0 and all Borel sets E ⊆ Q.

Proof. It is well-known that (1)–(3) are equivalent (see Theorem 1.4.13 in [K]).
Moreover, by Lemma 5.16, it suffices to prove (1) when X = X2Q0 . In that case,
by Lemma 5.24, the Carleson measure estimate in Theorem 1.3, Fubini’s Theorem
and the doubling property of µ, it follows that for each M ≥ 1, there exists δM > 0,
depending only on M and the allowed constants, such that the following property
holds: If Q ⊆ Q0 is a cube and E ⊆ Q such that ω(E) ≤ δMω(Q), then there exists
a solution u of the equation div(A∇u) = 0 in Rn+1

+ with ‖u‖∞ ≤ 1 such that

Mµ(E) ≤
ˆ

E

ˆ γ`(Q)

0

ˆ

∆(x,γt)

|t∇u(y, t)|2 dµ(y)

µ(∆(x, t))

dt

t
dµ(x)

.

ˆ γ̃`(Q)

0

ˆ

γ̃Q

|t∇u(y, t)|2 dµ(y)
dt

t
. µ(Q),

where the implicit constants and γ̃ > γ > 0 depend only on the allowed constants.
Therefore, if ε ∈ (0, 1), we choose M(ε) ≥ 1 and thus δM(ε) ∈ (0, 1), depending
only on ε and the allowed constants, such that µ(E) ≤ εµ(Q), as required. �

5.5. The square function and non-tangential maximal function estimates. The
L

p
µ(Rn)-norm equivalence between the square function S u and the non-tangential

maximal function N∗u of solutions u in Theorem 1.5 is now a corollary of the main
A∞-estimate for the degenerate elliptic measure in Theorem 5.30. This was proved
by Dahlberg, Jerison and Kenig in Theorem 1 of [DJK], which actually provides the
more general result in Theorem 5.31 below. In particular, the degenerate elliptic
case is treated on page 106 of [DJK], noting that the normalisation u(X0) = 0
assumed therein is actually only required for the so-called N . S -estimate.

Theorem 5.31. Suppose thatΦ : [0,∞)→ [0,∞) is an unbounded, non-decreasing,

continuous function withΦ(0) = 0 andΦ(2t) ≤ CΦ(t) for all t > 0 and some C > 0.

If div(A∇u) = 0 in Rn+1
+ , then

ˆ

Rn

Φ(S u) dµ .

ˆ

Rn

Φ(N∗u) dµ,
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and if, in addition, u(X0) = 0 for some X0 ∈ Rn+1
+ , then

ˆ

Rn

Φ(N∗u) dµ .

ˆ

Rn

Φ(S u) dµ,

where the implicit constants depend only on X0, Φ, n, λ, Λ and [µ]A2 .

The next result is also a consequence of the main A∞-estimate in Theorem 5.30.
It will allow us to construct solutions to the Dirichlet problem (D)p,µ as integrals

of L
p
µ(Rn)-boundary data with respect to degenerate elliptic measure.

Lemma 5.32. Suppose that 1
p
+ 1

q
= 1, where q ∈ (1,∞) is the reverse Hölder

exponent from Theorem 5.30. If X = (x, t) ∈ Rn+1
+ , then the Radon–Nikodym

derivative k(X, ·) := dωX/dµ is in L
q
µ(Rn) and

ˆ

Rn

k((x, t), y)q dµ(y) . µ(∆(x, t))1−q.

Moreover, if f ∈ L
p
µ(Rn) and u(X) :=

´

Rn f (y) dωX , then ‖N∗u‖Lp
µ(Rn) . ‖ f ‖Lp

µ(Rn).

The implicit constant in each estimate depends only on n, λ, Λ and [µ]A2 .

Proof. Suppose that X = (x, t) ∈ Rn+1
+ . The proof of Proposition 5.18 shows that

k((x, t), y) . 2− jα k((x, 2 jt), y)

ω(x,2 jt)(∆(x, 2 jt))
∀y ∈ ∆(x, 2 jt) \ ∆(x, 2 j−1t), ∀ j ∈ N.

Applying the reverse Hölder estimate from Theorem 5.30 then shows that
ˆ

Rn

k((x, t), y)q dµ(y)

=

ˆ

∆(x,t)

k((x, t), y)q dµ(y) +

∞∑

j=1

ˆ

∆(x,2 jt)\∆(x,2 j−1t)

k((x, t), y)q dµ(y)

. µ(∆(x, t))1−q +

∞∑

j=1

2− jαqµ(∆(x, 2 jt))1−q
. µ(∆(x, t))1−q.

To obtain the non-tangential maximal function estimate, it suffices to consider
the case when f ≥ 0, since in general we may then decompose f = f + − f − into its
positive and negative parts f +, f − ≥ 0. To this end, suppose that x0 ∈ Rn and that
X = (x, t) ∈ Rn+1

+ in order to write

f = f1∆(x0,2t) +

∞∑

j=1

f1∆(x0,2 j+1t)\∆(x0,2 jt) =:

∞∑

j=0

f j

and define

u j(X) :=

ˆ

Rn

f j(y) dωX(y) =

ˆ

Rn

f j(y) k(X, y) dµ(y).

The self-improvement property of the reverse Hölder estimate from Theorem 5.30
(see Theorem 1.4.13 in [K]) implies that there exists an exponent r > q such that

(5.33)

(
 

∆

k((x, t), y)r dµ(y)

)1/r

.

 

∆

k((x, t), y) dµ(y) ≤ 1

µ(∆)

for all surface balls ∆ ⊆ ∆(x, t/2).
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Now suppose that X = (x, t) ∈ Γ(x0). To estimate u0, we apply the interior
Harnack inequality in (2.18) followed by Hölder’s inequality and (5.33) to obtain

u0(x, t) h u0(x, 6t) ≤
ˆ

∆(x0,2t)

f (y) k((x, 6t), y) dµ(y)

≤
(
ˆ

∆(x0,2t)

|k((x, 6t), y)|r dµ(y)

)1/r (ˆ

∆(x0,2t)

f (y)r′ dµ(y)

)1/r′

. µ(∆(x0, 2t))−1/r′
(
ˆ

∆(x0,2t)

f (y)r′ dµ(y)

)1/r′

≤ [Mµ( f r′)(x0)]1/r′ .

To estimate u j when j ∈ N, we apply the boundary Hölder continuity estimate
from (5.7) and then proceed as in the estimate above to obtain

u j(x, t) .
( t

2 jt

)α
u j(x0, 2

jt) h 2− jαu j(x0, 2
j+2t)

≤ 2− jα

ˆ

∆(x0,2 j+1t)

f (y) k((x0, 2
j+2t), y) dµ(y)

≤ 2− jα

(
ˆ

∆(x0,2 j+1t)

k((x0, 2
j+2t), y)r dµ(y)

)1/r (ˆ

∆(x0,2 j+1t)

f (y)r′ dµ(y)

)1/r′

. 2− jα

(
 

∆(x0,2 j+1t)

f (y)r′dµ(y)

)1/r′

≤ 2− jα[Mµ( f r′)(x0)]1/r′ .

The above estimates together show that N∗u(x0) . [Mµ( f r′)(x0)]1/r′ for all x0 ∈ Rn,
and since r′ < q′ = p, it follows that ‖N∗u‖Lp

µ
. ‖ f ‖Lp

µ
, as required. �

We conclude the paper by using the preceding lemma to obtain solvability of
the Dirichlet problem (D)p,µ. A uniqueness result is also obtained but only for
solutions that converge uniformly to 0 at infinity. This restriction does not appear
in the uniformly elliptic case (see Theorem 1.7.7 in [K]). It arises here because of
the absence of a Green’s function for degenerate elliptic equations on unbounded
domains (see Section 5.3) and it is not clear to us whether this can be improved.

Theorem 5.34. Suppose that 1
p
+ 1

q
= 1, where q ∈ (1,∞) is the reverse Hölder

exponent from Theorem 5.30. The Dirichlet problem for L
p
µ(Rn)-boundary data is

solvable in the sense that for each f ∈ L
p
µ(Rn), there exists a solution u such that

(D)p,µ





div(A∇u) = 0 in Rn+1
+ ,

N∗u ∈ L
p
µ(Rn),

limt→0 u(·, t) = f ,

where the limit converges in L
p
µ(Rn)-norm and in the non-tangential sense whereby

limΓ(x)3(y,t)→(x,0) u(y, t) = f (x) for almost every x ∈ Rn. Moreover, if f has compact

support, then there is a unique solution u of (D)p,µ that converges uniformly to 0 at

infinity in the sense that limR→∞ ‖u‖L∞(Rn+1
+ \B(0,R)) = 0.
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Proof. Suppose that f ∈ L
p
µ(Rn) and define u(X) :=

´

Rn f dωX for all X ∈ Rn+1
+ .

We first prove that div(A∇u) = 0 in Rn+1
+ . Let ( f j) j denote a sequence in Cc(Rn)

that converges to f in L
p
µ(Rn) and consider the solutions u j(X) :=

´

Rn f j dωX . The

Lq(Rn)-estimate for the Radon–Nikodym derivative dωX/dµ from Lemma 5.32 and
the doubling property of µ show that ‖u j − u‖L∞(K) .µ,K ‖ f j − f ‖Lp

µ(Rn) for all j ∈ N
and any compact set K ⊂ Rn+1

+ , so u j converges to u in L2
µ,loc(Rn). Moreover,

Cacioppoli’s inequality and the arguments preceding (5.4) show that u j converges

to a solution v in W
1,2
µ,loc(Rn), so then u = v is a solution in Rn+1

+ as required .

The non-tangential maximal function estimate ‖N∗u‖Lp
µ(Rn) . ‖ f ‖Lp

µ(Rn) is given

by Lemma 5.32. To prove the non-tangential convergence to the boundary datum,

first recall that u j ∈ C(Rn+1
+ ) with u j|Rn := f j, so limΓ(x)3(y,t)→(x,0) u j(y, t) = f j(x)

(see Section 5.2). We combine this fact with the bound

|u(y, t) − f (x)| ≤ |u(y, t) − u j(y, t)| + |u j(y, t) − f j(x)| + |( f j − f )(x)|
to obtain

lim sup
Γ(x)3(y,t)→(x,0)

|u(y, t) − f (x)| ≤ |N∗(u − u j)(x)| + |( f − f j)(x)|

for all x ∈ Rn. For any η > 0, we then apply Chebyshev’s inequality and the
non-tangential maximal function estimate from Lemma 5.32, to show that

µ
({

x ∈ Rn : lim sup
Γ(x)3(y,t)→(x,0)

|u(y, t) − f (x)| > η
})

≤ µ({x ∈ Rn : N∗(u − u j)(x) > η/2}) + µ({x ∈ Rn : |( f − f j)(x)| > η/2})

. η−p
(
‖N∗(u − u j)‖pLp

µ(Rn)
+ ‖ f − f j‖pLp

µ(Rn)

)

. η−p‖ f − f j‖pLp
µ(Rn)

.

It follows, since f j converges to f in L
p
µ(Rn), that limΓ(x)3(y,t)→(x,0) u(y, t) = f (x) for

almost every x ∈ Rn, as required. The norm convergence limt→0 ‖u(·, t) − f ‖Lp
µ(Rn)

then follows by Lebesgue’s dominated convergence theorem.

It remains to prove that u is the unique solution satisfying lim|X|→∞ ‖u(X)‖∞ = 0
when f has compact support. In that case, fix R0 > 0 such that f is supported in the
surface ball ∆(0,R0). If X ∈ Rn+1

+ and |X| > 2R0, then the reverse Hölder estimate
in Theorem 5.30 shows that

|u(X)| ≤
ˆ

∆(0,R0)

| f (y)| k(X, y) dµ(y)

≤ ‖ f ‖Lp
µ(Rn)

(
ˆ

∆(0,|X|/2)

k(X, y)q dµ(y)

)1/q

. ‖ f ‖Lp
µ(Rn)µ(∆(0, |X|/2))1/q

 

∆(0,|X|/2)

k(X, y) dµ(y)

≤ ‖ f ‖Lp
µ(Rn)µ(∆(0, |X|/2))−1/p,

whilst limR→∞ µ(∆(0,R)) = ∞, since µ is in the A∞-class with respect to Lebesgue
measure on Rn, thus limR→∞ ‖u‖L∞(Rn+1

+ \B(0,R)) = 0. The maximum principle allows

us to conclude that any solution of (D)p,µ with this decay must be unique. �
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