CARLESON MEASURE ESTIMATES AND THE DIRICHLET
PROBLEM FOR DEGENERATE ELLIPTIC EQUATIONS
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ABsTRACT. We prove that the Dirichlet problem for degenerate elliptic equations
div(AVu) = 0 in the upper half-space (x,#) € R**! is solvable when n > 2 and
the boundary data is in L£(R") for some p < oo. The coefficient matrix A is
only assumed to be measurable, real-valued and #-independent with a degener-
ate bound and ellipticity controlled by an A,-weight u. It is not required to be
symmetric. The result is achieved by proving a Carleson measure estimate for
all bounded solutions in order to deduce that the degenerate elliptic measure is
in A, with respect to the pu-weighted Lebesgue measure on R”. The Carleson
measure estimate allows us to avoid applying the method of e-approximability,
which simplifies the proof obtained recently in the case of uniformly elliptic co-
efficients. The results have natural extensions to Lipschitz domains.
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1. INTRODUCTION

We consider the Dirichlet boundary value problem for the degenerate elliptic
equation div(AVu) = 0 in the upper half-space R"*! when n > 2 and which we
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make precise below. The boundary R” x {0} is identified with R"” and we adopt the
notation X = (x, ¢) for points X € RTI with coordinates x € R" and ¢ € (0, 00). The
gradient V := (V,, d;) and divergence div := div, +9, are with respect to all (n+ 1)-
coordinates. The coeflicient A denotes an (n + 1) X (n + 1)-matrix of measurable,
real-valued and #-independent functions on R’fl. The matrix A(x) := A(x, 1) is not
required to be symmetric. We suppose that there exist constants 0 < 4 < A < o
and an Aj-weight i on R” such that the degenerate bound and ellipticity

(1.1) KAE Ol < Ap(IEIZ] and  (AE, &) > Ap(x)lEr

hold for all £, € R"*! and almost every x € R”. We use (-, -) and | - | to denote the
Euclidean inner-product and norm. An A,-weight u on R” refers to a non-negative
locally integrable function u : R" — [0, co] such that

1 ! !
ny .= Tl d 101 (%) d >
(s = sup (|Q| /QW‘) x) <|QI /Qu(x) x) )

where sup,, denotes the supremum over all cubes Q in R" with volume |Q]. We
also use y to denote the measure u(Q) := |, 0 u(x) dx and consider the Lebesgue
space Lﬁ(R”) with the norm ||f||L5(Rn) = (fRn Lf1P dﬂ)l/l’ for all p € [1, 00). There
is also the notation f, f du := u(Q)~" [, f du whilst f, f := 101" [, f(x) dx.

If u is identically 1, then A is called uniformly elliptic. The solvability of the
Dirichlet problem for general non-symmetric coefficients in that case was obtained
only recently by Hofmann, Kenig, Mayboroda and Pipher in [HKMP]. The result
in dimension n = 1 had been obtained previously by Kenig, Koch, Pipher and
Toro in [KKoPT]. These results assert that for each uniformly elliptic coefficient
matrix A, there exists some p < oo for which the Dirichlet problem is solvable
for LP-boundary data. Conversely, counterexamples in [KKoPT] show that for
each p < oo, there exists a uniformly elliptic coefficient matrix A for which the
Dirichlet problem is not solvable for L”-boundary data. In contrast, solvability of
the Dirichlet problem for symmetric coefficients in the uniformly elliptic case is
well-understood, and we mention only that it was obtained by Jerison and Kenig
in [JK] for L”-boundary data when 2 < p < oo.

The solvability of the Dirichlet problem in the uniformly elliptic case has also
been established for a variety of complex coefficient structures (see, for instance,
[AS, HKMP, HMM]). A significant portion of that theory was recently extended
to the degenerate elliptic case by Auscher, Rosén and Rule in [ARR] for L>-
boundary data. That extension did not include, however, the results for general
non-symmetric coefficients in [HKMP]. This paper complements the progress
made in [ARR] by extending the solvability obtained for the Dirichlet problem
in [HKMP] to the degenerate elliptic case.

For solvability on the upper half-space R"*!, the A,-weight u on R” is extended
to the r-independent Aj-weight u(x, ¢) := u(x) on R™! (and (] a, ey = []ay@m)-
We then say that u is a solution of the equation div(AVu) = 0 in an open set

Q c R™! when u € WJ:IZOC(Q) and fRTl(AVu, V@) = 0 for all smooth com-

pactly supported functions ® € C7°(€2). The solution space is the local u-weighted

Sobolev space W;’IZOC defined in Section 2. The convergence of solutions to bound-

ary data is afforded by estimates for the non-tangential maximal function N.u of
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solutions u, defined by

(Nau)(x) := sup |u(y,nl  VYx€eR",
(r0)el(x)
where the cone I'(x) := {(y,7) € RT‘ tly— x| < t}. If p € (1, 0), then the Dirichlet
problem for L/;(R")-boundary data, or simply (D) py» 18 said to be solvable when
for each f € L (R™), there exists a solution u such that

div(AVu) = 0 in R"*1,
(D)p,/z N.u € Lﬁ(Rn)a
lim; o u(-, 1) = f,

where the limit is required to converge in L;(R")-norm and in the non-tangential
sense whereby limr(y)s(y,n—(x,0) u(y, 1) = f(x) for almost every x € R". Note that
this definition of solvability is distinct from well-posedness, which requires that
such solutions are unique. We are able to obtain a uniqueness result for solutions
that converge uniformly to O at infinity, but the question of well-posedness more
generally remains open (see Theorem 5.34 and the preceding discussion).

A non-negative Borel measure w on a cube Qg in R” is said to be in the A,-class
with respect to u, written w € A (u), when there exist constants C, 6 > 0, which
we call the Ao (Qp)-constants, such that

u(E)\°
E)<C|—=
W) = (ﬂ(Q)) Q)

for all cubes Q C Qg and all Borel sets E € Q. This is a scale-invariant version
of the absolute continuity of w with respect to p. It is well-known, at least in the
uniformly elliptic case, that solvability of the Dirichlet problem for L”-boundary
data for some p < oo is equivalent to the property that an adapted harmonic measure
(elliptic measure) belongs to A, with respect to the Lebesgue measure on R” (see
Theorem 1.7.3 in [K]). In the degenerate case, an adapted harmonic measure wX,
which we call degenerate elliptic measure, can also be defined at each X € R*!
(see Section 5). We prove that this degenerate elliptic measure is in A, with respect
to u and then deduce the solvability of (D), stated in the theorem below. This
requires the notation associated with cubes Q in R" whereby x¢ and €(Q) denote
the centre and side length of Q, respectively, and Xp := (xg, {(Q)) denotes the
corkscrew point in R”*! relative to Q.

Theorem 1.2. If n > 2 and the t-independent coefficient matrix A satisfies the
degenerate bound and ellipticity in (1.1) for some constants 0 < A < A < oo and
an Ax-weight p on R", then there exists p € (1,00) such that (D), is solvable.
Moreover, on each cube Q in R", the degenerate elliptic measure w = w*2|Q
satisfies w € A (1) with As(Q)-constants that depend only on n, A, A and [p]a,.

In contrast to the proof of solvability in the uniformly elliptic case in [HKMP],
we avoid the need to apply the method of e-approximability by first establishing the
Carleson measure estimate in the theorem below. This crucial estimate facilitates
the main results of the paper. The connection between the Carleson measure esti-
mate and solvability was first established in the uniformly elliptic case by Kenig,



4 STEVE HOFMANN, PHI LE, ANDREW J. MORRIS

Kirchheim, Pipher and Toro in [KKiPT], and we follow their approach here, adapt-
ing it to the degenerate elliptic setting (see Lemma 5.24 below). In particular, the
A-property of degenerate elliptic measure is obtained by combining the Carleson
measure estimate (1.4) with the notion of good e-coverings introduced in [KKoPT].

Theorem 1.3. [f n > 2 and the t-independent coefficient matrix A satisfies the

degenerate bound and ellipticity in (1.1) for some constants 0 < A < A < oo and
an Ay-weight u on R", then any solution u € L®(R™") of div(AVu) = 0 in R
satisfies the Carleson measure estimate

" Vv 24, C
<
(Q)/ /It u(x, 1) ,U(X) [

where C depends only onn, A, A and [u]a,.

(1.4) sup

Using the Carleson measure estimate in this way allows us to bypass the need
to establish norm-equivalences between the non-tangential maximal function N.u
and the square function S u of solutions u, defined by

) duly) dr\'? ;
Su)(x) = <//1“(x) [tVu(y, 1)| AGLD) 1 ) VYx eR",

where the surface ball A(x, ) := {y € R" : [y — x| < ¢}. It was shown by Dahlberg,
Jerison and Kenig in [DJK], however, that such estimates are a consequence of the
As-property of degenerate elliptic measure, which provides the following result.

Theorem 1.5. If n > 2 and the t-independent coefficient matrix A satisfies the
degenerate bound and ellipticity in (1.1) for some constants 0 < A < A < oo and

an As-weight 1 on R", then any solution of div(AVu) = 0 in R™! satisfies
||Su||Lv(Rn) < CIIN*ulle(Rn ¥p € (0, ),

and if, in addition, u(Xy) = 0 for some Xo € R, then
INoadll g, < ClIS ullypn, — Yp € (0, 00),

where C depends only on Xy, p, n, A, A and [u]a,.

The paper is structured as follows. Technical preliminaries concerning weights
and degenerate elliptic operators are in Section 2 whilst estimates for weighted
maximal operators are in Section 3. The Carleson measure estimate in Theorem 1.3
is obtained in Section 4. The degenerate elliptic measure is constructed in Section 5
and then the A-estimates in Theorem 1.2 are deduced as part of Theorem 5.30.
The square function and non-tangential maximal function estimates in Theorem 1.5
are included in the more general result in Theorem 5.31 whilst the solvability of
the Dirichlet problem in Theorem 1.2 is finally deduced in Theorem 5.34, where a
uniqueness result is also obtained.

We state and prove our results in the upper half-space, but we note that they
extend immediately to the case that the domain is the region above a Lipschitz
graph, by a well-known pull-back technique which preserves the #-independence
of the coefficients. In turn, our results concerning the A -property of degenerate
elliptic measure may then be extended to the case of a bounded star-like Lipschitz
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domain, with radially independent coefficients, by a standard localization argument
using the maximum principle.

The convention is adopted whereby C denotes a finite positive constant that
may change from one line to the next. For a, b € R, the notation a < b means that
a < Cb whilsta = b means that a < b < a. We write a <, b when a < Cb and we
wish to emphasize that C depends on a specified parameter p.

2. PRELIMINARIES

We dispense with some technical preliminaries concerning general A ,-weights u
for p € (1, ) and degenerate elliptic operators on R" for n € N. All cubes Q and
balls B in R" are assumed to be open (except in Section 5.4 where the standard
dyadic cubes S in D(R") are assumed to be closed to provide genuine coverings of
R™). For @ > 0, let «Q and aB denote the concentric dilates of Q and B respectively.
For x € R" and r > 0, define the ball B(x,r) := {y €e R" : [y— x| < r}. An A,-weight
refers to a non-negative locally integrable function ¢ on R" with the property that
[1]a,@n = supg (fQ ,u)(fQ;f”(P‘l))IF1 < oo. The measure associated with
such a weight satisfies the doubling property

(2.1) w@B) < [pla, "’ p(B)
for all @ > 1 (see, for instance, Section 1.5 in Chapter V of [S2]).

For an open set Q € R", the Sobolev space W,l "P(Q) is defined as the completion,
in the ambient space Lﬁ (Q), of the normed space of all f € C*(Q) with finite norm

p o— p P
22) gy = [V ds [ 1971 < oo

The embedding of the completion W,i’p (Q) in L(Q) relies on the A ,-property of
the weight (to the extent that it implies both x and p~/®~1 are in L], (Q)), which
ensures that if (f;); is a W,l’p (Q)-Cauchy sequence in C*(QQ) converging to 0 in
Lﬁ(Q), then (f;); converges to 0 in W,i’p (Q)-norm (see Section 2.1 in [FKS]).
Therefore, since C*(2) is dense in Wﬁ’p (Q), the gradient extends to a bounded
operator V : Wﬁ’p Q) — Lﬁ(Q, R™), thereby extending (2.2) to all f € W,i’p Q).
The Sobolev space Wéf(ﬂ) is defined as the closure of C°(€2) in Wj’p (Q). It can
be shown that Wé;f(R") = Wj’p (R™) by following the proof in the unweighted case
from Proposition 1 of Chapter V in [S1] but instead using Lemma 2.2 in [ARR] to
deduce the convergence of the regularization in L}(R"). The local space W;:{:)C(Q)

is then defined as the set of all f € LZJOC(Q) such that f € W,l’p (€Y') for all open

sets Q" with compact closure Q' ¢ Q (henceforth denoted Q' cc Q). Finally, the
weighted Sobolev and Poincaré inequalities obtained for continuous functions in
Theorems 1.2 and 1.5 in [FKS] have the following immediate extensions.

Theorem 2.3. Let n > 2 and suppose that B C R" denotes a ball with radius r(B).
If p € (1,00) and 1 is an A,-weight on R", then there exists 6 > 0 such that

. 1/(p(;25 +6)) 1/p
(2.4) (f | 1P o) du) < r(B) (f IV £17 dﬂ)
B B
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for all f € Wo''(B), and

1/p 1/p
2.5) (]i G = cal? dﬂ) < 1(B) <][B VAP du)

forall f e W,i’p (B)and cp € { fB fdu, fB f } where the implicit constants depend
only on n, p and [u]a,. The estimates also hold when the ball B and the radius r(B)
are replaced by a cube Q and the sidelength €(Q).

For n € N, constants 0 < 4 < A < co and an Az-weight y on R", let E(n, A, A, 1)
denote the set of all n X n-matrices ‘A of measurable real-valued functions on R”
satisfying the degenerate bound and ellipticity

(2.6) KAWE O < Au()IEl] and  (ANXE, €) = Au(x)lEl

for all £, € R" and almost every x € R". These properties allow us to define
L0 :Dom(L,0) C Lfl(Q) - LZ(Q) as the maximal accretive operator in Lﬁ(Q)
associated with the bilinear form defined by

@) alh9) = [ (AL = [ LAV du

forall f,g € Wolﬁ(Q). The domain of £, o is dense in Lﬁ(Q), and in particular
Dom(L,,0) = {f € Wyn(Q) : supyece(y laa(f O/ llgliza) < oo},

with

) | Lunhrgdu=satr.o

for all f € Dom(L, o) and g € Wéﬁ (€). It is equivalent to define £, o as the com-

position — divﬂ,g(}lﬂV) of unbounded operators, where —div, o is the adjoint V*
of the closed densely-defined operator V : Wé:j Q) C Li(Q) - L,%(Q’ R™), that is

(2.9) / (—div,of)gdu= / (£, Vg) du
Q Q

for all f € Dom(div, o) := Dom(V*) and g € Wg;j(g). In view of (2.7) and (2.8),
we have the formal identities div,, o = i divouand L, o = - i divg(AV).

Now let Q = Q for some cube Q c R" and denote the space of bounded linear
functionals on W(l)ﬁ (Q) by W, L’Z(Q). The inclusions Wé,’j(Q) cL2Qc W(;’L’Z(Q)
are interpreted in the standard way by identifying f € Lﬁ(Q) with the functional ¢

defined by ¢/(g) := |, o fgduforallge Wéﬁ(Q). Thus, setting

Laof@=ao(fi) and  —div,f(g) = /Q (£, Vg) du

forall f,g € W&ﬁ(Q) and f € L>(Q,R"), we obtain an extension of L0 from (2.8)

to a bounded invertible operator from W&ﬁ(Q) onto W, L’Z(Q), and an extension of
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div,, o from (2.9) to a bounded operator from Lﬁ(Q) into Wi, /11,2(Q)‘ The surjectivity
of L, o relies on (2.4) and the Lax-Milgram Theorem. These definitions imply that

IV Ly divyio fll2 0.z S Ifll20)
forallf € Lﬁ(Q, R™). The topological direct sum or W1 2(Q) Hodge decomposition
2 . 1,2 2 T _
(2.10) L0, R" = {/llﬂVg (g EWy (Q)} the L,(0, R") : divy,oh = 0}

follows by writing f = —7ﬂvz o divof+(f+ lﬂVL o divof) = fﬂVg +h,
since then div, o h = leﬂ,Q f - Lﬂ,Q.[Z#’Q div, o f = 0. This decomposition also
extends to ij(Q, R™) for all p € [2,2 + €) and some € > 0 by recent work of Le
in [L], although we do not need it here.

Now let Q = R" and consider div, := div, g asin (2.9) so L, := — divﬂ(iﬂV)
is maximal accretive, thus having a maximal accretive square root £}/2, in Lﬁ (R™).
The solution of the Kato square root problem in [AHLMT] was recently extended

to degenerate elliptic equations by Cruz-Uribe and Rios in [CR3]. This shows that
g ptic eq y
L2 £l 2@ = IVl for all f € Wi2(@R"), hence Dom(L}/?) = Wi2(R").

The operator £, is also injective and type-S .+ in Lﬁ(R”) for some w € (0,7/2),
so it has a bounded H*(S g, )-functional calculus in Lﬁ(R”) for each 6 € (w,n),
where Sg, 1= {z € C\ {0} : |argz| < ). See Section 2.2 of [A] for the uniformly
elliptic case and Theorems F and G in [ADM] for the general theory. An equivalent
property is the validity of the quadratic estimate

@.11) AIW%MMW <o  Vf € LRY

for each holomorphic  on S, satisfying [/(z)| < min{|z|*, |z} for some @, 8 > 0,
where the bounded operator (z.L,) on LZ(R”) is defined by a Cauchy integral.
More generally, the relationship between bounded holomorphic functional calculi
and quadratic estimates is developed in the seminal articles [Mc] and [CDMY].
The functional calculus then defines a bounded operator ¢(L,) on LE(R") for
each bounded holomorphic function ¢ on S, and [l(LI| LR L2RY) <o 1¢llco-
Another consequence is that —£,, generates a holomorphic contraction semigroup
(%) zese,,  utoy on L(R"), thus ™4 f € Dom(L,) and d,(e 41 f) = Lye v f
for all f € Lﬁ(R”) and ¢+ > 0. The functional calculus also extends to define
an unbounded operator ¢(L,) on Lﬁ(R”) for each holomorphic function ¢ on S,
satisfying |¢(z)| < max{|z|%, |z| 7} for some @, 8 > 0, but the algebra homomorphism
property of the functional calculus (¢1(L,)$2(L,) = (¢142)(L,)) must then be
interpreted in the sense of unbounded linear operators. This allows us to interpret
both the semigroup and the square root of £, in terms of the functional calculus in
order to justify some otherwise formal manipulations, beginning with (2.15) in the
proof of the following corollary of the solution of the Kato problem in [CR3].

Theorem 2.12. Let n > 1 and suppose that A € &(n, A, A, u) for some constants
0 <A <A < ocoandan Ay-weight u on R". The operator L, := —divﬂ(iﬂV)
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satisfies
- L, dt -
(213) ||t-£pe f”LZ(]R") ||Vf”L2(Rn R")
0
and
a L, dt
(214) “t Vx I'L,ue f”LZ(R” Rn+1) < ”Vf”LZ(Rn R™)
0

forall f € WI}Z(R"), where the implicit constants depend only on n, A, A and [u]a,

Proof. The functional calculus of £, justifies the identity
(2.15) -Eﬂe_ﬂL“f — LL/ZE_IZLHLL/Zf — e—([2/2)£ﬂ£ﬂe—(12/2)£#f

forall f € Dom(.E)/ Zyand ¢ > 0. The first equality in (2.15), the quadratic estimate
in (2.11) and the solution of the Kato problem in [CR3] imply that

_ dt _
L = [ UL e L
P22
1L e
~ IV f17 2z g
|| f”Lﬁ(R Rm)

for all f € Dom(L,/?) = W2(R"), which proves (2.13).
The bounded H* (S, )-functional calculus of £, implies the uniform estimate

dr

2L

27 - 2 2
”tvx,te w4 g”LZ(Rn le) ||tate t gllLﬁ(Rn) + ||the y”L/%(R",R")

2 P )
S NP2 Lue™ 8l + / P(AV e Lig, Ve Lug)
Rn

2 2 p 1 -

S N81Z2 gy + 162 L™ gllzznlle™ gl en,
2

S ||g||L;21(Rn)

for all g € Lﬁ(R”) and ¢ > 0. Thus, the second equality in (2.15) and the vertical
square function estimate in (2.13), which we have already proved imply that

& _2 dt _
/(; ||t2Vx,;£,1e t .[Zuf“%lzl(Rn,Rnn)? < /(; ”t.L e (t /2)£ﬂf”L2(Rn ~ ”VfHLZ(Rn R™)
for all f € W12(R"), which proves (2.14). o

Now let us return to the case when Q C R” is an arbitrary open set and suppose
that f : Q — R" is a measurable function for which if € L*(Q). A solution of
the inhomogeneous equation div(AVu) = divf in Q C R” refers to any function
ue Wli 1200(9) such that fRn (AVu — £, VD) = 0 for all ® € C(2). All solutions u
of the homogeneous equation div(AVu) = 0 in Q are locally bounded and Holder

continuous in the sense that

1/2
(2.16) llull=) < <][ Jul? du)
2B
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and there exists @ > 0 such that

@ 1/2
@1 - u0)l < <'xy'> < f e du) Vx.y € B,
r(B) 28
and if, in addition, u# > 0 almost everywhere on €, there is the Harnack inequality
(2.18) supu < inf u,
B B

for all balls B of radius r(B) such that 2B C Q, where a and the implicit constants
depend only on n, A, A and [u]s,. These properties follow from Corollary 2.3.4,
Lemma 2.3.5 and Theorem 2.3.12 in [FKS] by observing that the proofs do not use
the assumption therein that A is symmetric. The estimates also hold when the balls
B are replaced by (open) cubes O, and also when the dilate 2B is replaced by CoB
for any Cy > 1, provided the implicit constants are understood to depend on Cy.

The following local boundedness estimate for solutions of the inhomogeneous
equation is needed in Lemma 4.3, although only for p = 2. This is a simpler
version of Theorem 8.17 in [GT], which we have adapted to degenerate elliptic
equations. In fact, the result for p > 2 is already proven in [FKS] by combining
Corollary 2.3.4 with estimates (2.3.7) and (2.3.13) therein. The proof is included
here for the readers convenience and since it implies (2.16) as a specical case,
which in turn is the well-known starting point for establishing (2.17).

Theorem 2.19. Let n > 2 and suppose that A € E(n, A, \, 1) for some constants
0 <A< A < ocoandan Ay-weight yuon R". Let Q C R" denote an open set
and suppose that £ : Q — R”" is a measurable function such that /llf e L*(Q). If
p € (1,0) and div(AVu) = divf in Q, then

1/p
(2.20) llullz(B) < (][ [)? dﬂ) +’"(B)||/l1f”L°°(Q)
2B

for all balls B of radius r(B) > 0 such that 2B C Q, where the implicit constant
depends only on p, n, A, A and [u]a,.

Proof. Suppose that div(AVu) = divf in Q and consider a ball B such that 2B C Q.
First, assume that u is non-negative and in L*(2B). Lete > 0, setk = r(B)ll}lf Iz~ )
and i, := u + k + €. Let B, denote the ball concentric to B with radius » > 0 and
recall the index 6 > O from the Sobolev inequality in Theorem 2.3. We claim that
if y € [p,o0) and r(B) < r; < ry < 2r(B), then

1/(y(GE +96)) 2y 1)y
n_ r
@21) f BT du s(y : ) f Wdu|
By, r = B,

where the implicit constant depends only on p, n, 4, A and [u],. To prove (2.21),
fixn € CP(Q) suchthaty : Q — [0,1], = 1 on B,,n =0o0nQ\ B,, and
IVnlles < 2/(r2 = 71). Set B := y — 1 and v := 1%, Note that v € Wy>(Q) with

Vv = 277V7712€ +/377212€_1Vu,

since 0 < € < ite(x) < |[ullz~2B) + k + € < oo for almost every x € 2B, thus

(AVu —£,20Vnily = — | (AVu - £, B~ Vuy.
R}l R}’l
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We then use this identity and Cauchy’s inequality with o > 0 to obtain
/ 2 \Vul? du <a / YAV, Vu)
=281 [ ni(AVu £, V) + / =N, V)
R” R?
<a (p=17! / it (\Vul + | LEDIV | dye + / m# L fIVul du
R? R?
<p o / o d ! \Vul® dy + o / @Vl du
R}‘l R}l
+ [ @l dp+ / (n/r(B)w" dp
Rl’l Rﬂ
+o / P Vul dp+ o™t [ (/rB) ! dpe,
n Rn
where in the second inequality we used the assumption that 8 :=y—1> p—1 and

in the final inequality we used the fact that | ,llf | < k/r(B) < u/r(B) on Q. Next,
choose o > 0 small enough, depending only on p, A4 and A, to deduce that

1
/ e Vul* dyt <pan / #VR + (/r(B) du s ——— / # dy,
By R (7'2 - I"]) B,

where in the final inequality we used the fact that r(B) > r, — r;. Now combine
this estimate with the Sobolev inequality (2.4) and recall that § := y — 1 to obtain

1/(;25+6)
(f A du) s VR
B,, B

"

<(B+ 1>r1>2][ VP dy

By,

2
r

<(s25) £,
rn—rn B

n

where the implicit constants depend only on p, n, A, A and [u]4,, proving (2.21).
We now apply the Moser iteration technique to prove (2.20). Set y := %5 +6

1/
and define ®(q, r) := ( fBr T d,u> ! for g, r > 0. Estimate (2.21) implies that

rl 2y
D(yx, ) < <C7> O(y,72)
r—r
where C depends only on p, n, A, A and [u]4,, and it follows by induction that

D(py™, (1 + 27™)r(B)) < (4Cp)» 20X (2x)7 Zi0 7 @, 21(B)) < D(p, 2r(B))

for all m € N. This shows that

l/p
74 du)
B

el = lim ©(px™,r(B)) s ®(p,2r(B)) = (i
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and therefore

1/p l/p
ey < Nl < <][ i dy) < (][ u? dﬂ) 4 HBM ooy + €
2B 2B

for all € > 0, which implies (2.20).

Finally, it remains to remove the assumption that u is non-negative and bounded.
This is achieved by setting . := max{u,0} + k + € and 1, := —min{u,0} + k + €
respectively and in each case adjusting the proof above to incorporate the truncated
test function v := n>hy (i, )ite, where

() A x<N+k+e,
X) .=
N (N+k+ef !, x>N+k+e.

We leave the standard details to the reader. O

The following self-improvement property for Carleson measures will be used in
conjunction with the local Holder continuity estimate for solutions in (2.17). The
result is proved in the unweighted case in Lemma 2.14 in [AHLT]. In that proof,
the Lebesgue measure on R” can in fact be replaced by any doubling measure,
since the Whitney decomposition of open sets can be adapted to any such measure
(see, for instance, Lemma 2 in Chapter I of [S2]). The result below then follows.

Lemma 2.22. Let n > 1 and suppose that u is an Ay-weight on R". Let a, Sy > 0

and suppose that (v;);~0 is a collection of Holder continuous functions on a cube
QO c R” satisfying

t

for all x,y € Q. If there exists n € (0,1], 8 > 0 and, for each cube Q" C Q, a
measurable set F' C Q' such that

0<vi(x)<Bo and |vi(x)—v:(y)<PBo (Ix - yl)

1 [l dt
W@y and o [ [ o <p
19" Jo F’ t

then “0)
1 dt
T AL PR

where the implicit constant depends only on a, 1, n and [u],.

3. ESTIMATES FOR MAXIMAL OPERATORS

We obtain estimates for a variety of maximal operators (M,;, D ,, N and NZ#)
adapted to an A>-weight u and degenerate elliptic operators £, := — div,l(}lﬂV)
on R" for n > 2. These will be used to prove the Carleson measure estimate from
Theorem 1.3 in Section 4. We first define the maximal operators M,, and D, , by

M) = sup ]i N,

r>0

) 12
D80 1= sup (7[ G du(y)>
r>0 B(x,r) X )7|
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forall f € LIII’IOC(R”), g€ W;”IZOC(R”) and x € R". The usual unweighted and centred

Hardy-Littlewood maximal operator is abbreviated by M. The maximal operator
M, is bounded on Lj;(R") for all p € (1, c0) and satisfies the weak-type estimate

3.1) p(lx € R M fl > &) S €l VK> O

forall f € L}I(R") (see, for instance, Theorem 1 in Chapter I of [S2]). There is also
the following weak-type estimate for the maximal operator D, .

Lemma 3.2. Letn > 2. If u is an Ay-weight on R", then
(33 p(eR D> k) S AU gy VE> O

forall f € Wll’z(R"), where the implicit constant depends only on n and [u]a,.

Proof. If f € C?(R"), then a version of Morrey’s inequality (see, for instance,
Theorem 3.5.2 in [Mo]) shows that

If(x) = fWl
lx =yl
for almost every x,y € R”, hence

D.yuf(x) s MV + (M MV )P (%)
Estimate (3.3) then follows from the weak-type bound for M, in (3.1), the fact that

M is bounded on Lﬁ(R") (see, for instance, Theorem 1 in Chapter V of [S2]) and
the density of C*(R") in W, 2(R"). O

< M(VH(x) + M(VF)(y)

)1/2

We now define the non-tangential maximal operators N and ﬁi’,ﬂ, for n > 0, by

1/2

Nlu(x):= sup |u(y,0)l,  NLy(x):= sup ( ][ vz, du(z))
(.0ely(x) (.0l (x) B(y.nt)

for all measurable functions u, v on R’fl (such that v(-, 1) € LZJOC(R”) fora.e. > 0)

and x € R", where I';)(x) := {(y,?) € RT‘ : [y—x| < nt} is the conical non-tangential

approach region in R™*! with vertex at x and aperture 7.

Now suppose that A € &E(n, 4, A, i), as defined by (2.6). In particular, since A
has real-valued coefficients, there exists an integral kernel W;(x, y) such that

(3.4) ) = [ W0 duo
Rn
for all f € Li(R”), and there exists constants Cy, C, > 0 such that
C lx—y |2
(3.5) [Wi(x, )| £ ——F—exp <—C2
’ p(B(x, VD) :

forall7 > O and x,y € R"*. This was proved by Cruz-Uribe and Rios for f € C°(R")
under the assumption that A is symmetric (see Theorem 1 and Remark 3 in [CR2]).
The symmetry assumption can be removed, however, by following their proof and
applying the Harnack inequality for degenerate parabolic equations obtained by
Ishige in Theorem A of [I], which does not require symmetric coefficients, instead
of the version recorded in Proposition 3.8 of [CR1]. The results also extend to
fe Lﬁ (R™) by density, Schur’s Lemma and the doubling property of u.
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We now consider the semigroup generated by £, := — divﬂ(iﬂV) with elliptic
homogeneity (¢ replaced by %) and denoted by P; := ¢ Lu in the estimates below.

Lemma 3.6. Let n > 2 and suppose that A € &, A, A, ) for some constants
0 <A< A <ooandan Ay-weight uon R". Let p € (1, 00) and suppose that u is
also an A,-weight on R". If x e R", n > 0 and a > 1, then

(3.7) i )I(nt)‘l[f‘)m(f — cBaan) IO Sa [Mu(VFIP) ()P
,0)€l (X

forall f € W,l’p (R") and cpx,anr) € {fB(x’m]t) f du, fB(xﬂm) f } and

(3.8) INT@PL)D <y [Mu(V PP,
(3.9) I NTO Py )P < IM(VFIP)(x)TP,
(3.10) IN2 (VP )P < My (IM(VFIP)IP) (x) + Mu(IV 1)),

forall f € W1 2(R™) N w! 10C(R”), where the implicit constants depend only on n,
A A, p, [ula, and [1]a,, as well as on «a in (3.7) and on n in (3.8).

Proof. Let x € R", (y,1) € I"(x), f € WyA(R") N w! e R, o) = fpiy f and
fB(x’,) : fB(x’t) f du. To prove (3.7), it sufﬁces to assume thaty = 1 and @ > 1. We
set Co(?) := B(x, at) and define the dyadic annulus C (1) := B(x, 2/af)\B(x, 2/ Lat)
for all j € N. The Gaussian kernel estimates in (3.4) and (3.5) imply that

P — faran) IO = 17! 2 (1, D) = fBiran] du(z)

3 ly - zI
¢ x,at d = I
<2 M(B(y,t)) ci0 p< 2 )'f (@) = fBan| du(z) = Z

Jj=0 j=0

To estimate Iy, note that B(x, ar) C B(y, (1 + a)t) and apply the doubling property
of u, followed by the Lf-Poincaré inequality in (2.5) with cp = fB(X’m) f, to obtain

1/p
o5 ™ O~ fiusanl 2 (f v du> < MO .
B(x,at) B(x,at)
To estimate /;, for each j € N, expand f(z) — fB(xar as a telescoping sum to write
-C@H a2 B, 2a) ( ][ PET TRy
u(B(y, 1)) B(x,2/at) J = Thxian| du

J
+ Z |fB(x,2fat) - fB(x,Zi’lat)l + |fB(x,at) - fB(x,m)|>

i=1

IjSCle

o C22 - 1 (BO, (1 + 2a)) Zl:t_l][ \f = Focezian| di
2lat
wBO.0) o Jaaa

| 1/p
< O a1 (1 4 g gyn Z 2y (7[ VAP dﬂ)
B(x,2iat)

i=0



14 STEVE HOFMANN, PHI LE, ANDREW J. MORRIS

<o &Y AIML(V F1PY(01VP,

where the second inequality relies on the inclusion B(x, 2/at) € B(y, (1 + 2/a)r),
whilst the third inequality uses the doubling property of ¢ in (2.1) with p = 2, and

the L}-Poincaré inequality in (2.5) with cg = fB(x,zim) f du. Altogether, we have

o0

P - Foxan]O) S (Z e-C4"4"f> (M 1P < [V F1P) P,

j=0
which proves (3.7) when cp(y.ar) = fB(x’m) f- The proof when cp(y.ar) = fB(x’m) fdu
follows as above by replacing fp(x,qar) With fB(x,m), since (2.5) can still be applied.

To prove (3.8) and (3.9), suppose that » > 0. The Gaussian kernel estimate for
¢4 in (3.5) implies that 19,2, f(v) has an integral kernel W(y, z) satisfying

~ Ci ly — 2
Wa(y, ) < mexp (—Cz ) >

and the conservation property fRn W,z (v,2) du(y) = 0 for all z € R" and ¢ > 0. This
follows from Theorem 5 in [CR2], where the assumption that A is symmetric can
be removed as per the remarks preceding this lemma. Therefore, we may write

/R ) W0, DLF@) = facenn ] du)

and a change of variables implies that

0P ) =1

sup |0,Pf()I = sup ! ’/ nﬁ/(,/,,)z(y, @) = foen] du@)| -
(Dl (x) (.0)el(x) R7

We can then obtain (3.8) by following the proof of (3.7) with @ = 1 in order to
show that this is bounded by [M,(|Vf IP)(x)]"/?, since the doubling property of u
ensures that

- Ciy ly — z)?
|77W(t/7])2(y’ 7)) < (B(y ) eXp < C27] %)
for some positive constants Cy, and C», that depend on 1. We obtain (3.9) as an
immediate consequence of (3.8) and the fact that 7'9,P, at = (OsP)s=n:-

To prove (3.10), let 7 > 0, set u,; := ¥, f and choose a non-negative function
® € C2(B(y,2nt)) such that ® = 1 on B(y,n¢) and |V, D| (nt)‘l. Let ¢ > 0 denote
a constant that will be chosen later. The definition of £, implies that

1
VP, fPdu< ———— [ Vi ®*d
]{wnn Pl i uBGy. o) Jau' T H

1

s [
u(B(y,nt)) Jgn
1

B ﬂ(B(y 1) Jr

< m / {(-L/lur]t)(unt C)(DZ + vaunt”V (D”(“nt - C)(Dl} du

1
G —
u(B(y,nt) Jpey,2m0) (2772f

(A sty V(s — €)) D

(A sty Vo [ty — DY =2( AV sttyr, V@ — €)) D}

10stpillitgs = €D + [V gty [V Doty — C|‘1>>
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=1+l

Now fix ¢ := fB(x,3,7t). To estimate /, we use Cauchy’s inequality and the doubling
property of i, combined with the fact that B(x, nt) C B(y, 2nt) C B(x, 3nt), to obtain

Is ][ (™" Bty + ()2 lutge = 1 + G0 2Uf = Foceaml’) dpe =2 1 + I + L.
B(x,3n1)
It is immediate that I < M#(ln‘lNZ 0Py f)lz)(x), whilst the semigroup property

nt
/ Osus(z) ds
0

implies that I, < M,,(IN.(dsu,)|*)(x), and the L}-Poincaré inequality in (2.5) shows
that I < M,(IVfI*)(x), hence

lune(2) = f(2)] = < MmN (O5us)(2)

1< My(In7"NTOPu HIP)(X) + Mu(IN(D5u)P)(x) + MV f1*)(x).

To estimate /1, we use Cauchy’s inequality with € > 0 to obtain

€
1< / IV it ©% dp + €' (I + I3).
uBG. ) Ja

A sufficiently small choice of € > 0 allows the e-term to be subtracted, yielding
f VP f1P dut < 1+ 11 5 My(y™ ' NI@ Py /I + IN@P I + VD)),
B(y.nt)
which, combined with (3.8) and (3.9), implies (3.10). m]

The pointwise estimates in Lemma 3.6 have the following corollary.

Corollary 3.11. Let n > 2 and suppose that A € E(n, A, \, ) for some constants
0 <A< A <ooandan Ay-weight uonR". Ifn > 0, then

(3.12) p(lx R INJ@PN@) > K1) Sy &IV AT gy
(3.13)  p(x e Ry NIOPy D) > k1) S KV AL g oy
(3.14) p({x € R" 1 N2 (VaPp )| > &}) < 672V f||§ﬁ(Rn’Rn),

forallk > 0and f € WJ’Z(R”), where the implicit constants depend only on n, A,
A and []a,, as well as on i in (3.12).

Proof. Estimates (3.12) and (3.13) follow respectively from (3.8) and (3.9), in the
case p = 2, since M, satisfies the weak-type estimate in (3.1). To prove (3.14), note
that there exists 1 < g < 2 such that u is an A -weight on R" (see, for instance,
Section 3 in Chapter V of [S2]). Therefore, combining (3.10) in the case p = ¢
with (3.1) and noting that 2/g > 1, we obtain

p(lx € R NI (VP NEON > 1) 5 62 (VA L+ 19 2 )
‘U

-2 2
S K “VfHL;%(R",R")

forallk >0and f € WJ’Z(R”) (since W;’Z(R”) cwha

w,loc (Rn))’ as required. ]
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4. Tue CARLESON MEASURE ESTIMATE

The purpose of this section is to prove the Carleson measure estimate (1.4) in
Theorem 1.3. We adopt the strategy outlined at the end of Section 3.1 in [HKMP],
although the crucial technical estimate, stated here as Theorem 4.10, is not at all
an obvious extension of the uniformly elliptic case. Moreover, establishing the
Carleson measure estimate directly allows us to avoid “good-A” inequalities and

thus apply a change of variables based on the Wolﬁ -Hodge decomposition in (2.10),

instead of the Wé’2+5—version (for a sufficiently small € > 0) required in [HKMP].

The technical result in Theorem 4.10 establishes (1.4) on certain “big pieces”
of all cubes. The passage to the general estimate ultimately follows from the self-
improvement property for Carleson measures in Lemma 2.22. This requires, how-
ever, that the Carleson measure estimate on the full gradient Vu of a solution u can
be controlled by the same estimate on its transversal derivate d;u, which is the con-
tent of Lemma 4.2. We briefly postpone the statement and proof of Lemma 4.2 and
Theorem 4.10, however, in order to deduce Theorem 1.3 from those results below.

In contrast to the previous two sections, the results here concern solutions of the
equation div(AVu) = 0 in open sets Q C R"*! when n > 2 and A is a t-independent
coeflicient matrix that satisfies (1.1) for some 0 < 1 < A < oo and an Ay-weight u
on R". In particular, in Section 2, weighted Sobolev spaces were defined on open
sets in R? and matrix coeflicients A € &(d, A, A, ) were considered for all d € N.
Those results also hold here on open sets in the upper half-space with the weight
u(x, 1) ;= u(x) and the coefficients A(x, ?) := A(x) for all (x,?) € R™1 since then
(1) a, ety = [y and A € En+1,4,A,p). In particular, the solution space

Wli’lzoc(Q) is defined and the regularity estimates in (2.16), (2.17) and (2.18) hold

when Q C R*1.
We will also use, without reference, the well-known fact that if u is a solution of
div(AVu) = 0in Q C R"*!, then d,u is also a solution in Q. In particular, to see that

Oqu is in WJ’IZOC(Q), a Whitney decomposition of € reduces matters to showing that

Osu 18 In WJ’Z(R) for all cubes R C Q satisfying £(R) < % dist(R, Q). To this end,
define the difference quotients Df.’u(X) = %[u(X + he;) — u(X)] for all X € R and
h < dist(R, dQ), where ¢; is the unit vector in the ith-coordinate direction in R"*!.
The t-independence of the coefficients implies that Dz 414 18 a solution in R, so we
use the identity Dfl’ 1 Oiu) = d;(D", ,u) and Caccioppoli’s inequality to obtain

n+1

[ 1Pk dus [ 9Olof au s e@? [ kg du
R R 2R

< ((R)? // Oul? du =K  Vh < dist(R, dQ),
2R

where the implicit constant depends only on n, 4, A and [u]4,, and the final bound

holds uniformly in /4 because u is in W;’Z(R) (see Lemma 7.23 in [GT]). We can
then use Lemma 7.24 in [GT] to deduce that d;u is in WI}Z(R) with the estimate
100y = 10:0itll7y ) < K for all i € {1,...,n+1}, as required. Note that
the proofs of Lemmas 7.23 and 7.24 in [GT] extend immediately to the weighted
context considered here because C*(R) is still dense in Wﬁ’z(R).
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Proof of Theorem 1.3 from Lemma 4.2 and Theorem 4.10. Let Q C R”" denote a
cube and suppose that u € L(R"*!) solves div(AVu) = 0 in R"*!. It follows
a fortiori from Theorem 4.10 that there exist constants C, ¢o > 0 and, for each cube
Q' C Q, ameasurable set F’ c Q’ such that u(F’) > cou(Q’) and

! /Z(Q/)/ |t0,u(x, 1)* dy >@<cn 112
w@) Jo o Jp SO

where C and ¢y depend only on n, A, A and [ul4,.

The coeflicient matrix A is t-independent, so d,u is also a solution and thus
the degenerate version of Moser’s estimate in (2.16), followed by Caccioppoli’s
inequality, shows that |[#0;ullcc < |lullec. Moreover, the degenerate version of the
de Giorgi—Nash Holder regularity for solutions in (2.17) shows that

e = y1\* lx—y\*
|t0,u(x, 1) — 10u(y, DI < < ; - ) l£0:ulleo < llullo ( ” Y )

for all x,y € Q and ¢t > 0, where all of the implicit constants and the exponent
a > 0 depend only on n, 4, A and [u]a,. Therefore, we may apply Lemma 2.22
with (v, @, Bo. 1, B} := {(t0;u)?, a, Cllul|%,, co, Cllul[%,} to obtain

1 [4(9)] 5 dt 5
@.1) o [ [ atof duo <
p@Jo  Joo KT
where the implicit constant depends only on n, 4, A and [u]4,. This estimate holds
for all cubes Q, so by Lemma 4.2, we conclude that (1.4) holds. O

We now dispense with the following lemma, which was used in the proof of
Theorem 1.3 above to reduce to a Carleson measure estimate on the transversal
derivative of solutions. The proof is adapted from Section 3.1 of [HKMP].

Lemma 4.2. Let n > 2 and consider a cube Q C R". If A is a t-independent
coefficient matrix that satisfies the degenerate bound and ellipticity in (1.1) for
some constants 0 < A < A < oo and an Ay-weight u on R", then any solution
ue L>4Q0 x(0,44(0))) of div(AVu) = 0 in 4Q x (0,4£(Q)) satisfies

«Q) 5 dt 449 ) dt 2
/ / [tVu(x, )|” du(x)— < / / [t0,u(x, DI” du(x)— + p(Q)llulls,
0 0 t 0 40 t

where the implicit constant depends only on n, A, A and [u]a,.

Proof. Let 0 < 6 < 1/2 and set ®p(?) := O (¢/{(Q)), where ® : R — [0, 1]
denotes a C*°-function such that ®(¢) = 1 for all 26 < ¢ < 1 whilst ®(¢) = 0 for all
t < ¢ and ¢t > 2. Integrating by parts with respect to the #-variable and noting that
”8;(D||Loo([1’2]) < 1 whilst ”at(DHLoo([(j’z(g]) < 1/6, we obtain

20(Q)
I:= / / \Vu(x, 1) o(t)t dedu(x)
0Jo
20Q)
= / / 0: (IVu(x, 1)* @o(1)) dtdu(x)
0Jo

26(0)
< / / (Vou(x, 1), Vu(x, t)) @D dtdu(x)
0Jo
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20(Q) 266(Q)
+ / ][ \Vu(x, 1)) Pdrdu(x) + / ][ \Vu(x, 1) Pdtdu(x)
0 JUQ) 0 J Q)

=T +1" +1".

For the term I, we apply Cauchy’s inequality with an arbitrary € > 0, to obtain

1 20(Q)
I'<el+ - / / IVO,u(x, N Pdidu(x).
€ 0Jo

For the term 1", we apply Caccioppoli’s inequality, the doubling property of u and
the fact that  ~ £(Q) in the domain of the integration, to obtain

26(0)
I = (Q) / / Vatx, OPdidu()
Q JUQ)

1 560)/2 »
<
<1 /2 ) /KW (e, P drdp(x)
< u(Q)llull,.

For the term I’ the same reasoning shows that I'”” < 1(O)|lull>,. We now fix € > 0,
depending only on allowable constants, such that altogether

26(0)
1< / / Vou(x, O Pdtdu(x) + p(Qllull,
0Jo

which is justified since I < co by Caccioppoli’s inequality and the support of @g.

To complete the estimate, we let {W; : j € J} denote a collection of Whitney
boxes (from a Whitney decomposition of R?*!) such that W;n(Q x (0,24(Q))) # D
and ) jes Low,(x,0) < 1. The coefficient matrix A is #-independent, so 9,u is also
a solution of div(AVu) = 0 in each set W;, hence we may apply Caccioppoli’s
inequality in combination with the fact that = I(W;) in W}, to obtain

«Q) d
/ / Vu DR du(0 S <3 // VO,u(x, D £ dtdu(x) + p(Q)llullZ,
2500 J 0 t g M

< S01w) [ 1ot duduca) + w@lul

jeJ
4£(0) .t )
< / / 0, O () %L + (@)l
0 40 t

where the implicit constants do not depend on ¢. The final result is then obtained
by applying Fatou’s lemma to estimate the limit as ¢ approaches 0. O

The remainder of this section is dedicated to the proof of the crucial technical
estimate, Theorem 4.10, that was used to prove Theorem 1.3. The proof adapts the
change of variables from Section 3.2 of [HKMP] to the degenerate elliptic case.
This is used to pull-back solutions to certain sawtooth domains where the Carleson
measure estimate can be verified by reducing matters to the vertical square function
estimates in Theorem 2.12, which we recall were obtained from the solution of
the Kato problem in [CR3]. The following technical lemma, which reprises the
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notation P; := e Lu for L, =~ divu(lllﬂV) and A € E(n, 4, A, u) as in (2.6) and
Lemma 3.6, will be used to justify these changes of variables.

Lemma 4.3. Let n > 2 and suppose that A € &(n, A, A, ) for some constants

0 <A< A < ooandan Ay-weight u on R". Let Q C R" denote a cube and
suppose that f : 50 — R" is a measurable function such that ﬁf € L=(5Q). Let

¢ € Wy2(5Q) and suppose that div(AVe) = divf in 5Q. If kg > 0,0 < 5 < 1/2
and xg € Q satisfy A(n, ¢, A)(xp) < ko, where

@4 A0LG,A) = 17 NIOPud) + N.OPig) + MV 1" + D0,

then

4.5) 0:Ppp(Ol <o V(x, 1) € Ty(x0)

and

(4.6) (I =Pp)p(0)| < nlko + III%flloo)t Y(x,1) € I'y(xo) N (2Q % (0,44(Q))),

where the implicit constant depends only on n, A, A and [p]a,.

Proof. Suppose that kg > 0,0 <1 < 1/2 and x¢ € Q satisty A1, ¢, A)(xp) < kp. It

follows a fortiori that n™ ' NI (8;P$)(x0) < ko, s0 (4.5) holds for all (x, ) € ' (xo).
To prove (4.6), first note that the properties of the semigroup imply that

nt
4.7) (7 = Pro)d(x0)l = /0 9sPsp(x0) ds

for all ¢ > 0, since N.(0,P¢)(x0) < ko. Now let (x, 1) € T';)(x0) N (2Q x (0,4£(Q))).
We set ¢y = fB(xo’zm ¢(y)dy and apply estimate (3.7) with @ = 2 to obtain

(4.8) Pi(B — Gro.n) O < LML (1V 1P (x0)]'? < nto.

Next, since div(AV(¢ — ¢(xp))) = div(AVe) = divfin 50, and since 0 < n < 1/2
ensures that B(xp,2nt) € 50, we may apply the degenerate version of Moser’s
estimate for inhomogeneous equations in (2.20) to obtain

< ntko

1/2
60 - ¢l < (][ 609 — $x0)P du(y)) 47l
B(xo,2n1)

< (D p(x0) + Il fllo)
< (ko + 115, flloo).
Combining estimates (4.7), (4.8) and (4.9), we obtain
(I = Pp)p(0)] < [¢(x) = P(xo)l + |1 = Py (x0)]
+ Pri(@ = Pxo ) (X0)| + [Pri(@ = o) ()]

< ko + 1 flleo)t,

4.9

which proves (4.6), as the implicit constant depends only on n, A, A and [u]s,. O

We now present the main technical result of this section. The proof is adapted
from Section 3.2 of [HKMP], although some arguments have been simplified as
detailed at the beginning of this section, and the additional justification required in
the degenerate elliptic case has been emphasized.
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The strategy of the original proof in [HKMP] was motivated in-part by the fact
that integration by parts is sufficient to establish the required estimate in the case
when A has a certain block upper-triangular structure. A key idea in [HKMP] was
to account for the presence of lower-triangular coefficients ¢ (and upper-triangular
coefficients) by decomposing them according to a W5’2+€—H0dge decomposition.
This was done locally on a given cube Q and the idea has been adapted here. First,
the Wéfl—Hodge decomposition ¢lsp = uh — A Vg is introduced in (4.13), where
Ay is the n X n submatrix of A shown in (4.12). After integrating by parts, the
divergence-free component ph provides valuable cancellation, whilst the adapted
gradient vector field AV facilitates a reduction to the square function estimates
in Theorem 2.12, which are implied by the solution to the Kato problem in [CR3],
for the boundary operator LIT,u = —div,( iAl"[Vx).

27
The latter estimates, however, require that L; 4 acts on the range of P} 1= ¢’ L

and this is arranged by initially making the Dhalberg—Kenig—Stein-type pull-back
t>t—(1 —P;‘ﬂ)tp(x) so that the lower-triangular coefficients become ,uh—AITV xP;‘;,go.
This change of variables is justified by choosing 7 > 0 small enough so that the
pull-back is bi-Lipschitz in . Once this is in place, a set F is introduced that con-
tains a “big piece” of Q and on which the various maximal functions in Lemma 4.3
are bounded. The integration on F' X (0, £(Q)) is then performed by introducing a
smooth test function W that equals 1 on F' X (26¢(Q), 2¢£((Q)) and is supported on
a certain truncated sawtooth domain Q3 9 s over F, where 6 > 0 is an arbitrary
(small) parameter that provides for a smooth truncation in the #-direction near the
boundary of R”*!, The main integration by parts is then performed in (4.32). The
two principal terms S; and S, arise from the tangential and transversal integration
by parts, respectively, where the former is taken with respect to the measure ¢ and
thus requires additional justification from the uniformly elliptic case. These and
numerous error terms are then shown to be appropriately under control.

Theorem 4.10. Let n > 2 and consider a cube Q C R". If A is a t-independent
coefficient matrix that satisfies the degenerate bound and ellipticity in (1.1) for
some constants 0 < A < A < oo and an Ay-weight u on R”, then for any solution
u € L*(A4Q x (0,4€(Q))) that solves div(AVu) = 0 in 40 X (0,4€(Q)), there exist
constants C, co > 0 and a measurable set F C Q such that u(F) > cou(Q) and

1 19 dt
@.11) o [ [l dun < ce,
u(Q) Jo F t
where C and co depend only on n, A, A and [u]a,.

Proof. We begin by expressing the matrix A and its adjoint A* (which is just the
transpose A', since the matrix coefficients are real-valued) in the following form

_ A|| b . Al lc
w) as[A]. waflile].

where A| denotes the n X n submatrix of A with entries (A));; := A;j,1 <i,j <n,
whilst b := (A;,+1)1<i<n is a column vector, ¢' := (Ant1,j)1<j<n 18 a row vector and
d 1= Ap+1.0+1 1S a scalar.
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Now consider a cube O ¢ R". The aim is to construct a set F C Q with the
required properties. To this end, we apply the Hodge decomposition from (2.10) to
the space LZ (50,R") in order to write

(4.13) Lelsp = —1aivo+h,  lblsp=-1a4VG+h,

where ¢, € W §(50) and h,h € LX(5Q, R") are such that div, h = div, h = 0 and

2

@.14) ][ (IV<p(x)I2+Ih(X)I2>du(X)$][ O o < 1,
50 501 H
- b(x) |?
(4.15) ][ (|V¢(x)|2+|h<x>|2)du<x>s][ U () < 1.
50 501 M

We extend each of ¢, ¢, h, h to functions on R” by setting them equal to 0 on R"\50.
In Sections 2 and 3, we investigated the operators £, := —div,( iﬂv) and

P, = e~ Lu for arbitrary coefficient matrices A in E(n, A, A, 1r). We now set

Ly = _diVﬂ(/llAIIVx)’ P, = 6_[2L””‘,

(4 16) * . 1 4% * —l‘zL*

L”,/l = - le#(ﬁA”Vx), P[ =e [l

in order to apply those results in the cases A = Aj and A = A

We now introduce two constants &g, 7 > 0, which will be fixed shortly, and recall
the function A(, ¢, A) from (4.4) to define the set F C Q by

17) Fi={xe 0: AGLe. AN + AGLE AW
+ N (ViPl)(x) + N (V< Pp@)(x) < ko }

Applying the weak-type bounds in (3.1), (3.3), (3.13) and (3.14) followed by the
estimates from the Hodge decomposition in (4.14) and (4.15), we obtain

O\ F) < 57 (I35 ) + VPR 0 0 ) < K57H(Q),

where the implicit constants depend only on n, A, A and [u]a,. This allows us to
now fix kg > 1 and some constant ¢y > 0 such that u(F) > cou(Q), where both kg
and co depend only on the allowed constants, and thus are independent of 7.

We now fix the value of 7 as follows. First, for 0 < @ <4 and 8 > 0, let
Q= T, Qa0 =0 (20x(l(0),460)) and Qg = Qo0

denote the sawtooth domains in R”*! spanned by cones centered on F of aperture 3.
Next, note that the properties of the Hodge decomposition in (4.13) imply that
- diV(AlTVgo) = div(clsp) and —div(A; V) = div(b1sp) in 5Q. Therefore, we now
fix 0 < 7 < 1/2 in accordance with (4.5) and (4.6) such that

(4.18) max {16, P;,0(x)], 10:Pu@(0)|} <mro < 1/8  V(x,1) € Q,
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and

“19) max {|(1 = Py )@l [(I = Pp)@(x)|}
< (ko + max {llellco, 1blleo } )7 < 0t < /8 VY(x,1) € Q0

where 1 and the implicit constants depend only on n, A, A and [1]4, .

It remains to prove (4.11). We will achieve this by changing variables in the
transversal direction using the mapping ¢ — 7(x, ), with x € R" fixed, defined by

T(x, 1) ==t — (I = Pp)p(x)
and having Jacobian denoted by
(4.20) J(x,0) 1= 87 (x, 1) = 1 + 0, Py, p(x).

In order to justify such changes of variables, we note from (4.18) and (4.19) that

7 7
4.21) gt <1(x,1) < % and o <J(n0) < % V(x,1) € Q0.

In particular, for each x € F and 0 < « < 1/8, this implies that the mapping
t — 1(x,t) is bi-Lipschitz in t on (2af(Q), 2£(Q)) with range

(4.22) (4al(Q), €(Q)) € T(x, ) (2al(Q),26(Q))) < (al(Q),4L(Q)).

Moreover, for each 0 < 8 < 1, the mapping (x, t) — p(x, ¢) defined by
p(x, 1) == (x, 7(x, 1) = (x, 1 + Ppep(x) — (%))

is bi-Lipschitz in  on Qg ¢ with range

(4.23) Qgs/9,0 € p(€28,0) € Q8p/7,0-

Now consider a bounded solution u satisfying div(AVu) = 0 in 40 X (0,4£(Q)).
The pull-back uy := u o pisin L*(Q, o) and div(A;Vu;) = 0in Q,, o, where
A = JA) | b+ AV — A VP
(uh = AjV Pl o) | (Ap.p)/J

and

(4.24) p(x, 1) := [VXT_(T’ t)] = [VXP’*’ISD(X_)I_ wa(x)] .

Our statement that div(A;Vu;) = 0in Q, ¢ does not mean that A satisfies (1.1),

only that uy € Wt (Q0) and that [g, (A1 Vi, VO) = 0 for all & € C2(Q,,0).

To prove this, we combine the pointwise identity

(4.25) (A((Vu) 0 p). (V) o p)J = (A1V(uop), V(vop))  ¥ve Wyr(p(Qy0)
with the change of variables (x, ) = p(x, 1) on Q, o, which is justified because p is
bi-Lipschitz in 7 on €, o with range p(£,, o) C 40 x (0,4£(Q)) by (4.23). Also, we
note for later use that [|[1q, ,u1lle < [lullo and, using (4.21), that

|:qu1 - (VxT)(atul)/]:|

(4.26) |Vuil < +[VarllOun| = [(Vu) o pl + V7] 10,11

(Our)/J

on Q.

Next, in order to work with the pull-back solution u#;, we consider an arbitrary
constant 0 < ¢ < 1/8 and define a smooth cut-off function ¥s adapted to Q, o
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as follows. Let 0r(x) := dist(x, F), fix a C*-function ® : R — [0, 1] satisfying

®(t) = 1 when t < % and ®(¢r) = 0 when ¢ > ;3 and then define

L or(x) t _ 4 n+l1
Folwn “q)( n >(D (326(@) (1 ® (1665(@)) YD e

This function is designed so that W5 = 1 on F X (26€(Q), 2£(Q)), and since < 1/2,

we have supp W5 C Q5 0 s and

]1E| (xa t) + ]lEz(x’ t) + 1E3(X, t)
t Q) 66(Q)

(4.27)  Viu¥s(x, 0l <

Y(x,1) € Q8,056

where

Ey = {(x,1) €20 % (0,44(Q)) : nt/16 < §F(x) < nt/8},
E3 1= 20 X (20(Q), 4((Q)),
E3 :=20Q X (60(Q), 26¢(Q)).

In contrast to Section 3.2 in [HKMP], the cut-off function ¥s introduced here
incorporates an additional truncation in the #z-direction at the boundary. This is
done to simplify subsequent integration by parts arguments, since it ensures that
W5 vanishes on the boundary of R"*!. For later purposes, it is also convenient to
isolate the following general fact here.

Remark 4.28. For each k € Z, let ID)Z denote the grid of dyadic cubes Q' c R”
such that 727%/64 < diam Q" < n27%/32. If Cy > 0 and (v;);» is a collection of
non-negative measurable functions such that

sup ][ vi(x) du(x) < Co VkeZ, VO eD!,
te [Q—k’z—kﬂ ] 4
then
1k, (x,0) ]lEz(x 1) ]153()6, 1)
(4.29) //R ( : Ll B > v() du(x)dt 5 Cop(Q),

where the implicit constant depends only on n, A, A and [u]s,. To see this, first
observe that since 6 is a Lipschitz mapping with constant 1, we have

oD x 2%, 271 C E, = {(x, f) € 40 X (0,4£(0)) - %t < 6p(x) < an} ,
0@ x 275,271 C 40 x (¢(0), 8L(Q)),
0P x 275,278 € 40 x ((5/2)L(Q), 45¢(0))

whenever E; N (QY x[27%,27%1]) # @ and i € {1,2,3}. The estimate in (4.27) and
the doubling property of u then imply that the left side of (4.29) is bounded by

dt 84(Q) 466(Q)
ZZ/ /,ﬂgld,ut+C7€ ,u(Q)dt+C][ w(Q) dt

keZ o EDU Q) 6/2)6(Q)

,]5F(x)
(/ /5<> du(X)+u(Q)> < Cou(Q),

as required.

- k+1
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We now proceed to prove (4.11). First, note that it suffices to show that
«Q) ) dt )
(4.30) sup / / [eVu(x, DI dp(x)— < lullu(Q),
0<6<1/8 J4s0(0) JF t

since we may then obtain (4.11) by using Fatou’s lemma to pass to the limit as ¢
approaches 0. To this end, we use (4.22), followed by the bi-Lipschitz in # change
of variables t — 7(x,t) on (6¢(Q),2¢(Q)) for each x € F, estimate (4.21) and
identity (4.25), to obtain

“«Q) dt “«Q)
/ / 1tVu(x, H* du(x)— < / / (AVu, Vu) tdtdx
450(Q) JF t F J4se)

200)
$// (A1Vuy,Vuy) tdtdx
F J260(Q)

< / (AVuy, Vuy W3 tdxdt.
RT»I
Thus, in order to prove (4.30) and ultimately (4.11), it suffices to show that
(4.31) / (A1Vuy, Vu1>‘If§ tdxdt < ||M||Zoﬂ(Q) Y0 <6 < 1/8,
R’frl

where the implicit constant depends only on n, A, A and [u]4,.

Next, we recall that div(A;Vu;) = 0 in Q, o, noting that ul‘I’gt € Wéﬁ(Q,,,Q),
and then integrate by parts to obtain

1
//R AV, Vi ¥ advdr = = / (ALY (), V(220 dxdr

Ri+l
1 . 1
Ry n
4.32 1 . 1
(4.32) _ 3 // ]u%(L”,yP,,,cp)‘Pﬁ dudt + 3 // Iu%@,((Ap, p)/ Y2 dxdt
R R+
1 2 2 1 5 )
o o (A1V(u), V(¥5)) tdxdt + 3 uilen+1,A1V(¥5)) dxdt
=S +S+E| + Ep,

where e,+1 := (0,...,0, 1) denotes the unit vector in the #-direction. In particular,
note that the tangential integration by parts

(Va(u}), h = LAIV Py o)W dy = / uy divy[(h = LAIV . Pr @)W du,

n

R)‘l
with respect to the measure u, is justified by the definition of the operator div,,
since P,";,go € Dom(Ll*Ii#) and div, h = 0 imply that (h— iAﬁVxP;;tgo)‘I’% € Dom(div,)
(recall (2.8), (2.9) and (4.16)). Meanwhile, the transversal integration by parts

/O 8, (ud)((Ap, p)/J)¥3 dt = — /0 uid,[((Ap, p)/J)¥3] dt

is justified because Ws vanishes on the boundary of R*+!,
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We proceed to prove that, for all o € (0, 1), each term in (4.32) is controlled by
(433) S;+S,+E +E; < 0'// (A\Vuy, Vuy W3 tdxdt + o ||ul 2 u(Q),
Rﬁ“

where the implicit constant depends only on n, A, A and [u]a,. Estimate (4.31) will
then follow by fixing a sufficiently small oo € (0, 1), depending only on allowed
constants, to move the integral in (4.33) to the left side of (4.32). This is justified
because the integral in (4.33) is finite by Caccioppoli’s inequality and the fact that
W5 vanishes in a neighbourhood of the boundary of R’}r“ (supp W¥s C €2,/8,0.6)-

We now prove (4.33) in three steps to complete the proof.
Step 1: Estimates for the error terms E; and E; in (4.32).

We first apply Cauchy’s inequality with o to write

E1<

1
5 / (A V), V(¥3)) tdxdt
2 RTI

=2 ‘/ (A1Vuy, V¥s)u Vs tdxdt
RT’I

<o // (A\Vuy, Vu )2 tdxdt + o // Ut A Vs, VWs) tdxdt
RK‘H 1+1

= 0'// (A\Vuy, Vu Y3 tdxdt + o 'Ef.
R:l:Fl

We then use ph = ¢lsp + AﬁV(p from (4.13), the degenerate bound in (1.1) for A,
the bound ||1q, ,#1lle < [lulle and the estimate for V¥5 from (4.27) to obtain

, 1g 1g 1g ’
Ei+E; g ||u||§o // (1 + z 4 2 ) 1+ |V - P)el|") dudt,
: Qe \ 1 LQ)  SLQ) (14190 = Pl

where (4.27) ensures that IV(‘I’(%)I and [VW;|?¢ can be controlled in the same manner.
In order to apply Remark 4.28 with v, = ]lg,] o1 HIV(I= P;‘]t)gp|2), we observe that
ifk€Z, Q €D/ and Q305N (Q x[275,27%1]) + @, then there exists xg € F
such that Q" C A(xg, 727%) € CQ’, where A is used to denote balls in R”, hence
(4.34) Q' x 275,271 € 0,50.54

and the doubling property of u implies that

@35 190 Pyl dus |
o A

A7 s« 2 —k A—
S [N1L(V2Pro)(x0)] " + Mu(IVepl)(x0) s kg s 1 Ve [275,27¢),

R

(x0.1t) A(xp,727F)

where in the last linfi we used the definition of the set F in (4.17) and the weighted
maximal operators N, , and M, from Section 3. It thus follows from (4.29) that
E| + E; < [[ull2u(Q), so altogether we have

(436) E|+E, <o // (A\Vuy, Vu Y3 tdxdt + o ulZu(Q) Vo € (0,1).
RT—I

Step 2: Estimates for the term Sy in (4.32).
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We note that 9, P;, = _antLlT, Py on Lﬁ(R”) and integrate by parts in ¢ to write

1 * *
S1= 2 //,,+1 u%(l‘ﬁ,ﬂpnt‘ﬁ)\y?g dudt
"2 //R 0L, Py ¥ tdpdt + 5 5 //R Tl(m@m)(@Pm@\yé dudt

: : 4 44 "
+ 27;72 //Rn+1 u%(a,P,,ttp)‘I’aa,‘Pé dudt =: S1 + S1 +87,

where there is no boundary term because s vanishes on the boundary of R*+!,

To estimate S7’, we use the definition of the set F' in (4.17), the estimate for
|[VWs| from (4.27), and Remark 4.28 in the case v; = 1, to obtain

ST < Ilull, // N(0,P;0) 10, % dudt < miollullZp(Q) < llull2(Q).
Qus.0

To estimate S, we observe that 8,(L|*|‘#P;;,¢p) = Lﬁ#(atP;;ttp), since ¢ € Wli’é R

and (9,P,’;t = —27]2tP;;tL|"|‘# on the dense subset Dom(LlT’H) of Wé,ﬁ(R”) (note also that

1V P, and hence its adjoint are bounded operators on L2, as can be seen from the
proof of Theorem 2.12). We then apply Cauchy’s inequality with o to write

//R Lj (i Pp)ut¥3 tdpud

/ 1<iAﬁVx(atP;;z<P), qu1>u1‘P(25 tdudt
R+

’
S| <

<

4.37) + =J+K

// ATV P), V. sy ¥ tdud

R

< a-// 1 IV [? \}% tdudt + (' + 1)// 1 ”%WxatP;,tplz‘Pé dudt
RY* m

+// ut |V s tdudt =: 08}, + (' + 1S, + 83,
n+1

where the integration by parts in x, with respect to the measure y, is justified by the
definition of the operator LIT,# (recall (2.8), (2.9) and (4.16)). The terms J and K
are highlighted above for reference in Step 3.

To estimate S5, we use the estimate for [V'¥;| from (4.27) and Remark 4.28 in
the case v; = 1, to obtain S5 < Nl 2, 12(Q).

To estimate S',, we observe that V XG,P;’;, = 2’1V xLﬁiﬂP;‘ﬂ on Lﬁ(R”) and then
apply the vertical square function estimate from (2.14) followed by the W&’j 50)-

Hodge estimate for ¢ from (4.14) to obtain
* * * dt
s [ 0P e <, [ 1PTL Pl

< NIV Ty g 2y  MlZp(Q).

The terms S}, and S will now be estimated together. We again apply Cauchy’s
inequality with o, followed by the vertical square function estimate from (2.13)
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with £, = Ly u and the Wl 2(5 0)-Hodge estimate for ¢ from (4.14) to obtain

oS, +S) <o // V1 [> W3 tdudt + // (u10;u1)(3, Py )V dudt
RTrl n++1

_ . dt
<o // VPG tdpedt + ol // 0Pl du—
Rll+

<o / (AVuy,Vu, )¥32 tdxdt + o // IV 721001 P2 tdudt + o ull2u(Q),
Rn+l Rn+1

where we combined the pointwise estimates for Vi and J from (4.26) and (4.21)
with identity (4.25) and the ellipticity of A to deduce the final inequality.

We use the dyadic decomposition from Remark 4.28 to write
(4.38) // VP10 Y5 tdpdt <> / / 10, 0|Vt 10,1 tdpdt.
keZ gre D'i
Observe that if k € Z, Q" € D} and Q505 N (Q' X [27%,27%1]) # @, then as in
(4.34) and (4.35), it holds that Q" x [27%,27%*1]1 € Q, 5 5/4 and
][ Vor(x, O du(x) s x5 Ve [275,270),
Ql

Also, we have ¢ < 7(x,1) < gt and J(x,) = 1 on Q' x [27%,27**1] by (4.21), s0
the degenerate version of Moser’s estimate in (2.16) and #-independence show that

sup Byt (v, D = sup [J(x, )ds(x, 7(x, D) <][ ][ By, )P dsdya(y)
xeQ’ xeQ’ 20’

forall r € [27%,27%1]. In particular, note that

20/ x 271 27K 21 c F o= {(y 5) € R™: 6x(y) < ff(Q) <s< 8€(Q)}

8

since there exists (xg, fg) € Q' x [27%,27%+1] satisfying dp(xp) < gﬂlo, whence
1 5 5

Or(y) < diam(2Q’) + gTﬂO < Erﬂ < gns Vy€2Q and s > 2751,

whilst 6£(Q) < ty < 4£(Q) implies that [27%, 27511 C ((6/2)£(Q), 8£(Q)).
The observations in the preceding paragraph show that (4.38) is bound by

2k+1 2t
Y3 / (][ |er|2du> < / / 95y, )P e 0 5) dsdﬂ(y)> dt
0 20 Ji2

keZ gre D”

>N

kezZ o eD"

< < // 105u(y, $) sdu(y)ds + // 10,u(y, s)* sd,u(y)ds) =M +E,
o ana

where we used the fact that ), ., > gen! Lagrxpa+1 21421 S Tgaer and introduced

Q" = {(,5) e R 5p(y) < mps/18, 466(Q) < s < €(Q)} .

2= k+2

/ By, ) Ly (v 5) sdu(y)ds
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To estimate the main term M, we use (4.21)-(4.23) to observe that
p~H Q) € QN (20 % (260(0), 2L(0))).

Thus, since W5 = 1 on these sets, the change of variables (y, s) — p(y, s) gives

M< // |(Bsut) 0 p* T W3 tdudt < // (A\Vuy, Vuy Y3 tdxdt,
R'rrl RTrl

where we used identity (4.25) and the ellipticity of A to deduce the final inequality.

To estimate the error term E, recall that the degenerate version of Moser’s esti-
mate in (2.16), followed by Caccioppoli’s inequality, ensures that ||s0;u||co < ||1]]co-
Thus, by the definition of Q* \ Q** and the doubling property of u, we obtain

B 5 (y) d 80(Q) 460(0)

n s ds ds

E < |jul, / / —+ / — + / — | du®y) < lullZu(Q).
20 Sor) S Q) S ©6/26Q) S

5n

This shows that o8}, + S < o [[ou(A1Vur, Vu)¥5 1dxdt + o lullZu(Q),
hence

(439 S < 0'/ (AVuy, Vu Y3 tdxdt + o ulZu(Q) Vo €(0,1).
RT-I

Step 3: Estimates for the term S; in (4.32).
We observe that since A is t-independent it is possible to write

28, = // 20,((Ap, p)/ Y2 dxdi
R’rrl
= // ud,(1/J)(Ap, p)¥3 dxdt + // (U} | 1)(0:p, A"p)¥2 dxdt
R’IH T—l

+ // (u? | J)(Ap, ;p)¥3 dxdt =: T+ 11 + 11
RT—I

To estimate I, we recall the Jacobian J(x, ) = 1 +8tPj;t<p(x) from (4.20) and then
integrate by parts in ¢ to write

d?P;
I=— // 22 Ap, YW didr
RT—]

J?
= //R )= 5 (AP, Y5 duxdt + //R o ’J’Z” 0,((Ap, )W dxdt

- - 0P
¥ //R i0,Pye 0, )(AP, P)¥; dxdi + //R (AR PO (F]) dxdr

211+IQ+I3+I4,

where there is no boundary term because s vanishes on the boundary of R*+!,
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To estimate I, we recall that J/ = 1 on supp¥s C €505 by (4.21) and then
apply Cauchy’s inequality with o to obtain

Ll so // 10,1 *pI*V3 tdpdt
n+l
(4.40) *

— dt ’ 1y
- ‘// 0Py PP d = o+ 0T
RI+

To estimate I, recall that [p|* = 1 +|V,7|? by the definition of p in (4.24), so we
follow the treatment of (4.38) above to obtain

// I<Aqu1,Vu1>‘I’(; tdxdt + lull3,1(Q).
Rll+

To estimate I, recall that |[1¢, ,u1lle < |lull and use the dyadic decomposition
from Remark 4.28 to obtain
/ P93

/’ < “M“ Z Z ||at n[(p”Lw(Q/X[z k - k+1])/

kezZ o eD"

2- k+1

SlZ > > QN0 Pl gt a1y,

keZ Q/GDZ
2- k+2
SRS > we) f f 0,5l dudi
(4-41) keZ Q’GD”
2= k+2 dl‘
SRS S [ [ re

kezZ o eD”

2 —ery, o o dl
< llull, // oL e Fagl? du
RK‘H t

2 2 2
S ”u”ooHV‘p”Lﬁ(Rn’Rn) S ||u||oo/~1(Q)a

where the second line uses the pointwise bound pP¥i<1 Q.05 (1 IV —P:;t)(p|2)
and estimate (4.35), the third line uses the parabolic version of the degenerate
Moser—type estimate in (2.16) (see Theorem B in [F]), noting that v := = dy(e”’ "w)
solves d,v = v whilst |8tP*t<p(x)| < |tv(x, n?#?)|, and the final line uses the ver-

and the Wéj(S 0)-Hodge

|| M
tical square function estimate from (2.13) with £, = Ly

Il
estimate for ¢ from (4.14).

To estimate I», we again use the bound J = 1 on supp ¥s C Q5 0 s from (4.21),
and then recall the definition p := (Vx(Pfﬂ — )¢, —1) from (4.24) to obtain

* . dt
@) s [ R0 e [ dior Pl ad

The first integral in (4.42) is the same as S/, from (4.37) whilst the second integral
is the same as I}’ from (4.40), hence [I| < ||u|| Q).
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To estimate I3, we use the bound |0,P,,¢| < 1/8 guaranteed by (4.18) to deduce
that |8,(J=%)| = |6,(1 + 8,P},) 2| < |07 P}l on supp Ws € Q8 0,5 and write

. dt « ’ 7
5] < //R 0P PIpPYE du— + //]R 0y P IR rdudt = 15 + 15

To estimate I3, we note that it is the same as I}’ from (4.40), thus I} < ||u||gou(Q).
To estimate I3, we follow the estimates and justification provided for (4.41),
noting in addition that 8, = 8%(e”"Hu ) solves 8,(8;v) = —L? (d;), to obtain

2 2 2
<l S S 62P 6l oo i /2

keZ o EDZ

SIlZ > > @O Pyl + 1204 Li P o gt 2411,

*
¥

dt
/ IpI¥5 du—
o t

2—k+1

—k

keZ Q/GDZ
27k+2
S (e ]f ]é (L, Pyl + 1P 0L, Pryp)P) dpds
kezZ Q/GDZ o

e dt . dt
< Nl // UL, Pl ™ + Ilull, // 12V (L P du™
R’_;I_+l t Rﬁ” t
2 2 2
< W1 50 5y S (),

where the second line uses |8,2P;;,<p| < IG,(tLl"l"ﬂP,’;,go)| < |L|T,,4P;;z‘/’| + |t<9,(Lﬁ’#P;k],<p)|,

the third line uses |Lj  Py,@(x)| = [v(x, p*%)] and 3,(Lj Py @)(X)| < 11(@v)(x, 7)),
and the final line uses the vertical square function estimates from (2.13) and (2.14)

with £, = Li , hence T3] < [[ul31(Q)

To estimate 14, we use [0, Py < 1,J = 1 and IpP? < (1+|V(I - P;,)golz), which
hold on supp ¥s € Q80,5 by (4.18), (4.21) and (4.24), to reduce to the estimate
obtained for E] + E,, hence [I4] < (|l ? u(Q).

To estimate II, we use the definition p := (V(P;, — )¢, —1) from (4.24) to note
that 9,p = (V,0:P;,¢,0) and use the Hodge decomposition from (4.13) to write

(4.43) <(9tp,A*p> = <antP;>;t‘p9A|TVx(P;;t_I)90 -c) = <antP;t‘p>A|TVxP;;t‘P — uh)

for all x € 5Q and 7 > 0. Using this and recalling that div,, h = 0, it follows that

In = / )T 01 Py, ATV, Pryip — )3 dixd
R
= ] IO P
R
4.44 * -
R

- / D)0 Pyo (V). ATV (Prygp — ah) dixclr
RI

=1 +1II, + II3,
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where the integration by parts in x, with respect to the measure y, is justified by the
definition of the operator Lﬁ’# (recall (2.8), (2.9) and (4.16)).

To estimate I}, we use J = 1 and Lﬁ#Pf],go = —(27721‘)‘16,Pf],g0 to show that it

can be treated the same way as I} in (4.40), without |p|2, hence |II;| < ||u||§o,u(Q).

To estimate Iy, we use J ~ 1, [V.(J™)| = [V.(1 + 8,P;0) "' | < V0Pl and
apply Cauchy’s inequality inequality with o to obtain

Ih| < o // IV a1 P2 tdudt + // IV 0, Py P2 tdpud
n+l n+l
(4.45) ; o "
+(@ '+ 1) // 10 P (V< Pyl + IhI)YG du—.
R

The first integral is the same as S}, from (4.37) whilst the remaining two integrals
are the same as those that bound I, in (4.42), except (|V fo],golz +h?) replaces |p|2.
This factor is controlled in the same way, however, since the Hodge decomposition
in (4.13) implies that |h|*> = |ic115Q + /%Aﬁvmz < 14|V, so by (4.35) we obtain

L <o / (A Viar, V)22 tdxdt + o [l Pu(Q).
Rirrl

To estimate II3, we use J = 1 and Cauchy’s inequality to write
y . dt
5] < // 1 WV Ws)? tdudr + // 1 1110 Py o> (IV < Pyl + [h*) W5 dp—
R+ R+

The first term above is the same as S’; in (4.37) whilst the remaining term is the
same as the last integral in (4.45), hence [II3| < ||u||§oy(Q).

To estimate III, we observe by analogy with (4.43) that
(AP, 8,p) = (AVA(P}, — D¢ — b, V. 3,P}0)
= (A\Va(Pyp = @) + AV, — pth, V.3, Py 0)
= AV Py — ) = (P = §)] + AV Py — 11, V.0, Py 0)
for all x € 5Q and ¢ > 0 and then write
Il = // l(u% JIXV(Pyp = @) = (P — §)), Al V10, P p)¥5 dxdt
R
+ / W} AN Py — ph, V0, Py ¥3 doxdt =: T + 1L,
RT—]

To estimate III;, we integrate by parts in x with respect to the measure u to write

111,

] ORI = ) = (P = 2L} 0¥

- // [(Pop =) = (P = DXV W3 /). Aj V0, Py} dxdt
R1¥

: I + IO,

which is justified by the definition of LIT,/: (recall (2.8), (2.9) and (4.16)).
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To estimate III}, we use Hardy’s inequality (see, for instance, page 272 in [S1])

. 2 )
to observe, for the semigroups #; € {e ! Lu,u, e~ i)

o [ ™ ar [ dt
| -2 [ [opaas) s [ omt v e e,
0 ! 0 0 t 0 t

We then recall that ||1g

, the estimate

nolt1lleo S llullo and J = 1 on supp Ws € Q8 0,5 to obtain

G < i, [ [ Py = o1+ 1P = D IL; 0Py did
R* JO

) o0 ) Lt 1/2 © , d 1/2
sllullw/ (/O IPosp = ¢l™ + [Py — ¢l p) (/O "Ly , 0 Pyl t) du
. N ar\ 2 o dar\ 2
< Mlullz, ( // 1|afth|2+|atPt¢|2dut) ( // 1|z26tLu,qusolzdut>
R R+

< Il UV o gy + IV ) IVl ey lalGa(Q).

where the final line uses the vertical square function estimates from (2.13)-(2.14)

for £, € {Lﬁ’#, L)} and the W&’ﬁ(SQ)—Hodge estimates for ¢, @ from (4.14)-(4.15).

To estimate III}, recall that |P},¢—¢| < tand |Ppip—¢l < tonsuppWs € Q5.0
by (4.19), whilst J = 1 and [V (J7))| < [V.8,P;,¢l, so distributing V, over uf, ¥;
and 1/J yields terms that can be controlled in the same way J, K and S, in (4.37).

To estimate III,, note that the estimates used to control ¢ and P,¢ also hold for
¢ and Py, by (4.14)-(4.15) and (4.18)-(4.19), whilst div, h = div,, h=0 by (4.13),
hence III, can be estimated in the same way as Il in (4.44).

This gives Y| + L] S 0 [[gue1 (A1 Vi, Vuy)¥? tdxdt + o= ||ull%,u(Q), hence

(446) S, <o // (A Vuy, Vu Y3 tdxdt + o ulZu(Q) Vo €(0,1).
RT’I

We combine (4.36), (4.39) and (4.46) to obtain (4.33), as required. m]

5. SOLVABILITY OF THE DIRICHLET PROBLEM

This section is dedicated to the proof of Theorem 1.2. We first consider the
construction and properties of a degenerate elliptic measure w* for degenerate el-
liptic equations div(AVu) = 0 in the upper half-space, where X = (x,7) € R*!
and n > 2. The r-independent coefficient matrix A is assumed throughout to satisfy
the degenerate bound and ellipticity in (1.1) for some constants 0 < 1 < A < o0
and an A,-weight u on R". This is necessary as the literature only seems to treat
bounded domains whilst the passage to unbounded domains in the uniformly el-
liptic case (see Section 10 in [LSW] and [HK]) relies on a global version of the
Sobolev embedding in (2.4), which is not known for A;-weights in general. The
degenerate elliptic measure is then shown to be in the A-class with respect to u
on the boundary R" in Theorem 5.30 and the solvability of the Dirichlet problem
follows in Theorem 5.34. These results together prove Theorem 1.2.
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5.1. Boundary estimates for solutions. We require some estimates for solutions
near the boundary 0% of a bounded Lipschitz domain ¥ c R" (see Section 2 of
[CEMS] for the standard definition). These estimates require some regularity on the
domain boundary but no attempt is made here to obtain the minimal such regularity,
as the focus is to define and analyse a degenerate elliptic measure on R".

The Lipschitz regularity of the boundary X ensures that the smooth class C®(Z)
and the Lipschitz class C%!(Z) are both dense in W,}’Z(E) (see Theorem 3.4.1
in [Mo] and page 29 in [KS]). This allows the usual definition, for E C 0X
and u € W}2(Z), whereby u > 0 on E in the W}*(Z)-sense means there exists
a sequence u; in C%!(T) that converges to u in W;’Z(Z) with u;(x) > 0 for all
x € E. This induces definitions for inequalities <, > and =, between functions
and/or constants, on E in the W;’Z(Z)—sense (see, for instance, Definition 5.1 in
[KS]). Moreover, with supys u := inf{k € R : u < k on dZ in the WI}Z(Z)—sense}
and infgy := — supgs(—u), the weak maximum principle holds (see Theorem 2.2.2
in [FKS]), and the strong version follows by the Harnack inequality in (2.18) (see
Corollary 2.3.10 in [FKS]).

We can now state a Holder continuity estimate and a Harnack inequality for
certain solutions near the boundary. For a cube O c R", recall the corkscrew point
X = (x0, €(Q)) and denote the Carleson box in RTI by Tp := 0%(0, £(Q)). Also,
recall that u(x, 1) := u(x), s0 du(x, t) = p(x)dxdr, for (x,1) € R"!. If u € W;*(T20)
is a solution of div(AVu) = 0in T5¢p, and u = 0 on 2Q in the W;’Z(TQQ)-SGHSC, then

N 1/2
G.D lu(x, 0] < <> ][ Jul® dy V(x,0) € To,
«) \Jn, e
and if, in addition, # > 0 almost everywhere on T»(, then
(5.2) u(X) < u(Xp) VX €Ty,

where « is from (2.17) and the implicit constants depend only on n, 4, A and [1]4, .
Estimate (5.1) follows from standard reflection arguments and the interior Holder
continuity estimate in (2.17), as observed on page 102 in [FKS]. Estimate (5.2) can
then be deduced from (5.1) and the interior Harnack inequality in (2.18), as in the
uniformly elliptic case (see the proof of Theorem 1.1 in [CFMS], which does not
use the assumption therein that A is symmetric).

5.2. Definition and properties of degenerate elliptic measure. For X € R"*!,
xeR"and r > 0, we use B(X, r) := {Y € R"™! : |Y — X| < r} to denote balls in R**!
and A(x,r) := {y € R" : |x|] < r} to denote balls in R”, where A(x, r) is identified
with the surface ball B((x,0),r) N OR"*! in R**!. For each R > 0, consider the
bounded Lipschitz domain 2z := B(0, R) N R™*! with Lipschitz constant at most 1.
For each X € Zp, the degenerate elliptic measure wj is the measure on 9%, as
defined on page 583 in [FJK2], such that u(X) = f 9%k h dwif solves the Dirichlet
problem for continuous boundary data 7 € C(0Xg) in the sense that div(AVu) = 0
in X and u € C(Zg) with ulys, = h.

We now define the degenerate elliptic measure on R". If f € C.(R"), fix Ry > 0
such that supp f € A(0, Rp) and set f equal to zero on RT], so then f* € C(0ZR)
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for all R > Ry, where f*(X) := max{+f(X), 0}, thus

us(X) = frdwy VX e
0XR
solve the Dirichlet problem as above in Zy for all R > Ry. The maximum principle
then implies that uy (X) < ug, (X), whenever Ry < R| < R; and X € Xg,, and that
SUPgsq gl < Il flleo. This allows us to define

(5.3) u(X) := lim [0 —uz(X)] VX € R}

and since the mapping f — u(X) is a positive linear functional on C.(R"), the
Riesz Representation Theorem implies that there exists a regular Borel probability
measure (the degenerate elliptic measure) w* on R” such that u(X) = f]R” fdwX.

The function u from (5.3) solves div(AVu) = 0 in Rﬁ”. To prove this, note
that [|ullcc < [|flleo, SO for each compact set K C R’fl, the Holder continuity of
solutions in (2.17) ensures the equicontinuity required to apply the Arzela—Ascoli
Theorem and extract a subsequence ug; that converges to « uniformly on K. This

combined with Caccioppoli’s inequality shows that ug, converges to « in Wﬁ’z(K ),
hence u € Wj:ﬁ)c(R’fl). Moreover, if ¢ € CX(R™*!) and K = supp ¢ C Zg, then

5.4 /K(AV(M —ug), Vo)

< AlV@lloopt(K) Il = urlly12 -

from which it follows that fRTl (AVu, Vo) = 0, as required.

We note by (5.3) that, when restricted to any bounded Borel subset of R”, the

measures wy converge weakly to w*, so Theorem 1 on page 54 of [EG] shows that

(5.5) *(U) < lim inf wy(U), o*(K) = limsupwh(K), w*(B)= Jim wi(B)
—00 R—sc0 —00

for all bounded open sets U c R", all compact sets K C R", and all bounded Borel

sets B c R” such that w¥X(08) = 0. This construction of the degenerate elliptic

measure also provides for the following expected properties.

Lemma 5.6. If Xo,X; € R™! and E C R" is a Borel set, then w*°(E) = 0 if
and only iwa‘ (E) = 0. Moreover, the non-negative function u(X) := wX(E) is a
solution of div(AVu) = 0 in R and the boundary Hélder continuity estimate

(5.7) lu(x, )| < <€(IQ)> uXg)  V(xf)eTy

holds on all cubes Q such that 2Q C R\ E, where « is from (2.17) and the implicit
constants depend only on n, A, A and [u]a,,

Proof. The proof follows that of Lemma 1.2.7 in [K], except we must account for
the fact that the solution to the Dirichlet problem in R”*! defined by (5.3) requires
boundary data to have compact support, which is easily done as we now show.
Suppose that wX°(E) = 0 and that K C E is a compact set. The regularity of
the measure implies that wX(K) = 0 and, for each € > 0, there exists a bounded
open set U D K such that w*0(U) < €. In particular, we may assume that U is
bounded because K is compact, so by Urysohn’s Lemma there exists g € C.(R")
such that g(x) = 1on K, 0 < g(x) < 1 on U, and suppg c U. It follows that
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u(X) = [g. g dw* is the solution to the Dirichlet problem in R’ defined by (5.3)
with boundary data g. Applying the Harnack inequality from (2.18) and connecting
Xo with X via a Harnack chain then shows that there exists C > 0, depending on
Xo and X7, such that

WM (K) < u(Xy) < Cu(Xp) < Cw™(U) < Ce  Ve>0,
hence w*1(K) = 0 for all compact sets K C E, and so WX (E) =0 by regularity.
The proof that u(X) := wX(E) is a solution of div(AVu) = 0 in RTI also follows
that of Lemma 1.2.7 in [K]. It remains to prove that the boundary Holder continuity
estimate holds on all cubes Q such that 2Q € R” \ E. We first consider when E
is bounded. In that case, let Us denote the open d-neighbourhood of E and set
Xes = @e * Ly, for all 6 > € > 0, where p(x) := € "¢(x/€) and ¢ € C°(A(0, 1))
is a fixed non-negative function with fRn ¢ = 1. In particular, since Us is open, we
have 1 < 1y, < liminf._ ycs. Consequently, if X = (x,7) € R**!, then
(5.8)  u(X) = WwX(E) < X(Uy) < / liminf yes dw® < liminf / Xeo do.
R7 € n

e—0
The function y.s belongs to C°(R") and thus extends to a function in C‘;"(R"”).
The construction of the degenerate elliptic measure (see pages 580-583 in [FIK2],
which was the starting point for our extension to the upper half-space above) thus
implies that v¢(X) := fR" Xes dwX is in WI’Z(T% Q) and vanishes on %Q whenever
0 < e <8 <(Q)/4, so estimate (5.8) combined with the boundary Holder conti-
nuity estimate in (5.1) and the boundary Harnack inequality in (5.2) shows that

(5.9) u(x, 1) < liminf ve(x. 1) < ({{@) liminfve(Xp) Y(x.1) € To.

We now let Us e denote the open e-neighbourhood of Us, in which case yes < 1y,
and ve(X) < ¥ (Use), so by (5.9) and the regularity of the degenerate elliptic

measure we have
a

u(x,t) < ({)(r@) liléll)iélfa)XQ(U(g’e)S <€(tQ)> w*e(Us) V(x,1) € Tgp.

This proves (5.7) if E is bounded, since the regularity of the measure also implies
that w*¢(Uy) approaches wX2(E) = u(Xgp) as 6 approaches 0. If E is not bounded,
then applying (5.7) on the bounded sets Ey := lyk1\oxoE, for k € N, shows that

(o) (o) [ a t a

u(x,H = Yy W (EQ) s () W (Ey) = () wXe(E) Y(x,1) € Ty,
; ,; “Q (Q

as required. O

5.3. Preliminary estimates for degenerate elliptic measure. In the uniformly
elliptic case, there is a rich theory for the Green’s function on bounded domains,
and specifically, estimates and connections with elliptic measure (see, for instance,
Theorem 1.2.8 and Corollary 1.3.6 in [K]). This theory also extends to unbounded
domains (see Section 10 in [LSW] and [HK]). In the degenerate elliptic case,
the theory was developed on bounded domains in [FIK1], [FJK2] and [FKS], but
it is not clear if there is always such a Green’s function on unbounded domains.
In particular, the construction in [HK] for the uniformly elliptic case relies on the
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(unweighted) global version of the Sobolev embedding in (2.4), which is not known
for a general A;-weight. In what follows, we combine the properties of the Green’s
function on the bounded domain X¢ := B(0,R) N R™*! with the limit properties in
(5.5) to deduce estimates for degenerate elliptic measure on R”. These will be used
to prove Lemma 5.24 and ultimately Theorem 5.30.

For each R > 0, the Green’s function gg : g X g > [0, c0] is constructed by
following Proposition 2.4 in [FIK1]. In particular, for each Y € Xg, the mapping
X  gr(X,Y) is the Holder continuous function in X\ {Y} that vanishes on Xz and
satisfies f2R<AVgR(-, Y),VO) = O(Y) for all ® € C°(Zg). As explained on page
583 in [FJK2], these properties are valid on any NTA domain, hence a fortiori
on Xz. The proofs do not rely on the assumption therein that A is symmetric,
although the symmetry property “gr(X,Y) = gr(¥, X)” is no longer guaranteed, as
gr(X,Y) = gr(Y,X) is the Green’s function for the adjoint operator — div(A*V).
We will rely on the following two lemmas, which are immediate from Theorem 4
and Lemma 3 in [FJK2], respectively, to estimate the Green’s function gg and the
degenerate elliptic measure wg on Zg.

Lemma 5.10. If X,Y € Xg and |X — Y| < dist(Y, 0Xg)/2, then
dist(Y,0Zr) S2 ds
gr(X,Y) = / —
IX-Y]| H(B(Y,s)) s
where the implicit constants depend only on n, A, A and [u]a,.
Lemma 5.11. IfR > 0 and Q is a cube in R" such that Trg C Zg, then

gr(Xo,Y) _ v o UQ) _ wi(Q)
R o)

where the implicit constants depend only on n, A, A and [u]a,.

VY € Zg \ TZQ,

The degenerate elliptic measure w} satisfies the doubling property wx(2Q) <
Cowg(Q) for all cubes Q in R" such that 7oy C Zg and all X € Xg \ T»p, where
the doubling constant Cy > 0 depends only on n, A4, A and [u]a,. This is proved in
Lemma 1 on page 584 of [FJK2] by using the estimates in Lemma 5.11, the Har-
nack inequality in (2.18), and the doubling property of u. The doubling constant
Cy does not depend on R, which allows us to use the inequalities in (5.5) to show
that the degenerate elliptic measure w* is locally doubling on R”, in the sense that

(5.12) w*(20) < lim inf wE20) < lim inf wp(30) < 1121 supwi(0) < w*(Q)

for all cubes Q € R" and all X € R™"! \ T,,, where the implicit constant is Cg.
In particular, the doubling property implies that wX(dQ) = 0 for all cubes Q C R”"
(see page 403 in [GR] or Proposition 6.3 in [HM]), so (5.12) actually improves to
wX(2Q) < CowX(Q), since by the equality in (5.5) we now have

(5.13) @ (Q) = lim wr(Q)
for all cubes Q c R* and all X € RTI \ T>p. This provides the following estimate
for degenerate elliptic measure.

Lemma 5.14. If Q is a cube in R", then a)XQ(Q) > 1, where the implicit constant
depends only on n, A, A and [u]a,.
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Proof. Let Q denote a cube in R" and fix Ry > 0 such that 7oy C Xg,. The Holder
continuity at the boundary in (5.1) and the Harnack inequality in (2.18) imply (see
the proof of Lemma 3 on page 585 in [FIK2]) that

wp?(@ 21 VYRR,

where the implicit constant depends only on 7, A, A and [u]a,, and so does not
depend on R. The result follows by using Harnack’s inequality to shift the pole

(from X5¢ to Xp) in (5.12)-(5.13) to obtain wXe(Q) = limg_,e0 a);Q(Q) > 1. O

The estimates in Lemma 5.11 also imply the following Comparison Principle.
The result is stated on page 585 in [FIK2] and the proof is the same as in the
uniformly elliptic case (see Theorem 1.4 in [CFMS] or Lemma 1.3.7 in [K], neither
of which use the assumption therein that A is symmetric).

Lemma 5.15. (Comparison Principle) Let Q denote a cube in R" and suppose that
u,v e WJ’Z(TQQ) N C(Tag) with u,v > 0 on Tag . If div(AVu) = div(AVv) = 0 in
Trpandu =v =0o0n2Q, then
uX) _ u(Xp)
v(X)  v(Xp)

where the implicit constants depend only on n, A, A and [u]a,.

VX € TQ,

The following corollary of these preliminaries will be used in Lemma 5.18 to
estimate Radon—Nikodym derivatives of the degenerate elliptic measure.

Lemma 5.16. If Qg and Q are cubes in R" such that Q C Q, then

w*(Q)
wX(Qo)

where the implicit constants depend only on n, A, A and [u]a,.

w0 (Q) = VX € R™\ Tap,,

Proof. Let Q C Qg be cubes in R”, suppose that X € R’}f] \ T>p, and consider
R > 0 large enough so that X € X and T4, C Xg. Lemma 5.11 shows that

wh(Q0) €(Q0) = u(Qo) gr(Xgy» X)»
Wi (Q) U(Q) = 1(Q) gr(X0, X)

W' (Q) Q) = 1(Q) gr(Xo, Xsg,).
If u(Y) = gr(Y, X) and v(Y) = gr(¥, X39,), then div(AVu) = div(AVu)v = 0 in Tg,
and # = v = 0 on 2Qy, so the Comparison Principle in Lemma 5.15 shows that
8r(Xg,X) _ uXg) _u(Xg)) _ 8r(Xg),X)
8r(X0,X30,)  v(Xg) v(Xg,)  8r(Xg,. X30,)
Also, Lemma 5.10 shows that gr(Xo,, X30,) = €(Qo)/u(Qo), so together we obtain

WX(Q) _ gr(Xg,X) p(Q) €(Q0) _ 8r(Xg,X30,) H(Q) E(Q0) _
W¥(Q0) ~ gr(Xgy, X) €Q) 1(Q0) ~ gr(Xgy, Xag,) HQ) i(Q0)

The Harnack inequality from (2.18) then shows that w% Q)= w% (Qo)w;fgo (Q) and
the result follows by using (5.13) to estimate the limit as R approaches infinity. O

wy?(Q).
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If X,Xy € R""!, then Lemma 5.6 shows that w* and w*° are mutually abso-
lutely continuous, so the Lebesgue differentiation theorem for the locally doubling
measure w*° implies that the Radon-Nikodym derivative of w* satisfies
dwX ¥ (00, 5))

— 1 s XO
P P T o M
where Q(y, s) denotes the cube in R” with centre y and side length s. The following
decay estimate for the kernel function K extends Lemma 2 on page 584 in [FJK2].
It is the final property of degenerate elliptic measure needed to prove Lemma 5.24.

5.17) KXo, X,y) :=

-a.e. y e R",

Proposition 5.18. If Qg and Q are cubes in R" such that Q C Qy, then

1 ly — xol
KXo Xo = ) max{ «o)

where a >0 from (2.17) and the implicit constant depend only on n, A, A and [p]a,.

—a
l} wX-g.e. y € Q,

Proof. Let Q C Qg denote cubes in R” and fix J € N such that 2/-1'Q c Qo € 2/0Q.
If y € O, then Lemma 5.16 and the Harnack inequality in (2.18) show that

w0 (Q(y. 5) _ 0 (00, 5))
w0 (Q) W' (Q)

whenever 0 < s < dist(y,R” \ Q). If y € 2/Q \ 2/71Q for some j € {1, ..., J}, then
the boundary Holder continuity estimate in (5.7) combined with Lemma 5.16 and
the Harnack inequality in (2.18) show that

X « \* x,., _ (U " 0 Q0. 5)
@05 () o~ (5255) g

whenever 0 < s < dist(y, R" \ (2/Q \ 2/72Q)), where @ > 0 from (2.17) and the
implicit constants depend only on n, 4, A and [u]4,. The result follows by using
these two estimates to bound the limit as s approaches zero in (5.17). O

w*(Q(y, ) =

5.4. The A, -estimate for degenerate elliptic measure. We now combine the
properties of degenerate elliptic measure with good €)-coverings for sets, as intro-
duced in [KKoPT] and defined below (see also [KKiPT]), to construct bounded
solutions that satisfy the truncated square function estimate in Lemma 5.24. This
result, combined with the Carleson measure estimate from Theorem 1.3, allows us
to prove the A-estimate for the degenerate elliptic measure in Theorem 5.30. This
avoids the need to apply the method of e-approximability, as was done in [HKMP],
and so simplifies the proof in the uniformly elliptic case.

Let D(R") denote the standard collection {2%( J+10,11) : ke Z,j e Z" of all
closed dyadic cubes S in R”. For each § € D(R") and n = 27X, where K € N,
define D(S) :={S" e DR") : S’ C S} and
(5.19) D(S) :={S" e D(S): &(S") =27K¢e(s)),
so D(S) is precisely the set of all dyadic descendants of S at scale 27K¢(S).
Definition 5.20. Suppose that Qg isacube in R". If g > 0,k € N, Q C Qpis a

cube and E C Q, then a good €y-cover of E of length k in Q is a collection {01}5‘:1
of nested open sets that satisfy £ C Oy € Ox—1 € ... € O € Q and each of which
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has a decomposition O; = U2 le given by a collection {Sf}ieN C D(R") of dyadic
cubes with pairwise disjoint interiors such that

(5.21) w0 (0;NSTY < w0y VieN, Vie(2,... k).

Let us record a few important consequences of this definition that will be needed.
It is proved on page 243 in [KKoPT] that for eachi € N and / € {2,...,k}, there
exists a unique j € N such that S} is a proper subset of S’ thus £(S}) < 3€(S').
Also, form € {2, ..., k}, iterating (5.21) as in Lemma 2.5 of [KKoPT] shows that

(5.22) w0 (0;N ST < w0 VieN, Vie{m,... k).

In the uniformly elliptic case, the following result is Lemma 2.3 from [KKiPT].
The proof extends to the degenerate elliptic case, since it only relies on the fact that
the degenerate elliptic measure w2 is doubling when restricted to the cube Q.

Lemma 5.23. Suppose that Qy is a cube in R". If €y > 0, then there exists 6¢g > 0,
depending only on €, n, A, A and [u]a,, such that the following property holds:

IfQ C Qqisacubeand E C Q such that w**% (E) < 8, then there exists a good
€y-cover of E of length k in Q for some natural number k = log(a)XzQO (E))/log e,
where the implicit constants depend only on n, A, A and [u]a,.

We can now prove the following lemma by adapting the proof in [KKiPT] to the
degenerate elliptic case. The original argument has also been somewhat modified.

Lemma 5.24. Suppose that Qg is a cube in R". If M > 1, then there exists 63 > 0,
depending only on M, n, A, A and [ula,, such that the following property holds:

If Q C Qq is a cube and E C Q and w**® (E) < 8y, then there is a Borel subset
B of R" such that the solution u(X) := w*(B) of div(AVu) = 0 in R"*! satisfies

YU(©) duty) dr
M < / / 1Vu(y, PR _dt g
0 Alxiyt) H(A(x, 1)) t

where 'y > 0 is a constant that depends only on n, A, A and [u]a,.

Proof. We introduce three constants €, 6,7 € (0, 1) that will be chosen with ¢ < d,
where & is determined by € as in Lemma 5.23, and n = 27K for some K € N.
Therefore, if E C Q C Qg and w*?(E) < 6, then there exists a good €-cover of
E of length k in Q such that k = 10g(wX290 (E))/log €. This cover is denoted by
{Ol}‘l":1 with O; = U2\ S f as in Definition 5.20, and for each such cube S 5, a dyadic
descendant S f in D7(S f) that contains the centre of S f is now fixed and
(5.25) 0= U2, S,
where we note that £(S%) = £(S!) in accordance with (5.19).
. . k

We claim that there exists a Borel subset B of R” suchthat 1g =), , 1 3,-1\0;°
To see this, suppose that 2222 1 B\ Oj(x) # 0 and let [y denote the smallest integer
[ € [2, k] such that 15[_1\0/(x) = 1. It must hold that x € 510_1 \Oy,, sothen x ¢ Oy,

which implies that x ¢ O; and x ¢ 5[ for all [ > [y, hence 1 5l_]\01(x) = 0 for all
[ > [y and the claim follows.



40 STEVE HOFMANN, PHI LE, ANDREW J. MORRIS

We now aim to choose €, 77 € (0, 1) such that u(X) := wX(8) on RZ“ satisfies
(5:20)  lu(Xs) —uX,g)l 2 1 VSt eDI(Sh), VieN, Vie{l,... k),

where the implicit constant depends only on the allowed constants n, 4, A and [u]a,,
and if x! and %/ denote the centres of S! and S L, then the relevant corkscrew points
are precisely ang = (xf, né’(Sf)) and Xrﬁf- = (fcf, 1725(5 f)). To this end, we proceed
to obtain estimates for u(ang) and u(Xrﬁf)‘

To estimate u(X,1), write
X5 Xs!
u(X,s1) = Igdw ™ + | lgdw ™ = I+II.
R\S! st

X
The boundary Holder continuity in (5.7) shows that I < w ”Sz]‘(R" \S f) < Con®,
where Co, @ > 0 depend only on the allowed constants. To estimate I/, write

)
— ~ rzS’ S ~ Xrisﬁ
Ir= Z/S, 15, \o; do ™ + Z /, 0;-1\0; de” +/S, 1,0, 4w
j=2 9

j=l+2 i
=11 + 1, + 115.

First, observe that II; = 0, since if m € {2,...,1}, then S! € O, C O; and so
(0 i-1\0)NS; I'= @. To estimate 11, the kernel function representation in (5.17)
and estimates in Proposition 5.18, the local doubling property of the degenerate
elliptic measure in (5.12) and property (5.22) of the good €y-covering, show that

k
h=3% / 5 ,K<X2Q0,an;,y> w2 (y)
S/ ©01\0pns]
C X
< — 20
C
37 a)zQO(O_lﬂS)
= 26 o (s < Creo/(1 - ),
XZQO(SI) 0 0 0

Jj=1+2

where the constant C;; > 0 depends only on 77 and the allowed constants.

To estimate //3, observe that S f N 51 =S f by the definition of 51 in (5.25), hence
! X sl % 17
115 =/ dw st —/N do ™i =11y - I17 .
s SN0
The term /175 is estimated in the same way as /1, above to show that

17 C’] X>0, ol C77 X20 )
113 < Q)XT(Sf)w 0(01+] ﬁSi) < Q)XT(SII)(U 0(01+1 N Sl) < C,IE().
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We estimate //; from above and below. First, note that X, ns! = (xl, né(S l)) x €S; S!

and £(S1) = nt(sh, so w "Sz-(sf.) ~w Sf(Sf) by the Harnack inequality in (2.18),
X~ ~

whilst w Sf‘(Sf) > 1 by Lemma 5.14. Thus, there exists ¢y € (0, 1) depending only

X ; ~
on the allowed constants such that /15 = w "Sﬁ(S f) > ¢o. Next, choose a different
dyadic descendant §! # S!in D"(S!) that contains the centre of S{. The preceding

Xl al : Xosl cal ~ QI Xosl gl
argument shows that w ™i(§}) > co, whilst w "i($; NS5 < w "i(0S}) = 0, hence
X o~ X ~ X
co<I=w"iEH=1-w "I ®\SH<1-w "i(Sh<1-c.
The above estimates together show that if €y € (0, 1/2), then
(5.27) co < u(X,51) < Con® +3Cpep + 1 — co.
To estimate M(Xn§’-)’ write

~

X < .
M(X:S?l):/ ]lew "Sl+/ ]lggda) ,7511_ = 1+1I
P Jrngt 5!

as well as

1

7151 ’ Xn§£
Z/ 5,0, 4 + Z/ 0;1\0; dw" +/S 15,0, 4w
j=2

Jj=l+2
=11, + 11, + I15.
~ X ~ o~
The arguments used to estimate 7, I1; and 7T show that I < w L R™\ S f) < Con%,
II' = 0and I, < Cye/(1 - €). To estimate 113, observe that
SIN 01\ Oup) = (SINSH\ On,

where either w X! (SlﬂSl) =0and I15 = 0, orSl S’and

113 :/ do’ ™! —/ do’ = [Ty~ 11
Sf §£ﬁ01+1

The boundary Holder continuity estimate in (5.7) shows that

~/ X~ ~

=SS = 1-0 S ®\Sh 2 1 - Cop
whilst repeating the arguments used to estimate /75 shows that

Gy

~ C
__n X0 l _=n X l
II; < a)X2Qo(§f)w (01 NS < (uXZQO(Sf)w (01 NSy < C,]E().

These estimates together show that if €y € (0, 1/2), then either
(528)  0<uX,5)<Con” +3Cyep or u(X,5) =1~ (Con+Cyeo) .
The estimates (5.27) and (5.28) together imply that
lu(X Sz) u(Xn§f)| > co —2Con" — 4Cy€.

We thus obtain (5.26) by first choosing 7 € (0, 1) so that 2Con® < c¢o/4 and then
choosing € € (0, 1/2) (depending on 7) so that 4C, & < co/4. These choices of n
and €, which depend only on the allowed constants, are now fixed.
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To complete the proof, suppose that M > 1 and x € E, and recall that § € (0, 6¢)
remains to be chosen, where dy is now fixed by our choice of € as in Lemma 5.23.
First, fix a cube S¥ in {S f‘ }iew such that x € S*. The remarks after Definition 5.20
then imply that for each [ € {1, ...,k — 1}, there exists a unique cube S Lin {S f }ien
such that x € S’ and S™*1 ¢ S/, thus £(S"*1) < 1£(S"). Next, foreach l € {1,...,k},
fix a dyadic descendant Slin D"(S!) such that x € st

Observe that, for some 7 € (0, 1) sufficiently close to 1 and depending only on
1, the corkscrew points X, s and X5t both belong to the dilate TQfI of the cube

2 2
Q= {0 R 1y —xloo < 5 + ST, TS <1 < (1 +pH)eS)
with [(Qﬁl) =(1+ )K(S !). Therefore, if ¢! fQ, u, then the Moser-type estimate
in (2.16), the Poincare inequality in (2.5) and the doubhng property of u show that
u(Xys1) = X5l S uXys0) = P + (X g) = ¢'P

12
S ||l/l - C ||L°°(TQ£])

<y ][ lu— ' du
o)

(5.29) < 002 | W da
Qz

l
1(AG, (1 +5Hsh) /o,

_du(y) dt
Vu(y. 1)
s/%n ) S

Iterating the bound £(S™*1) < 1£(S!) shows that €(S") < 2/-1'¢(S!) when I’ > 1.
This implies that the collection {Q, LS Qf‘l} has the bounded intersection property
whereby foreach/ € {1,...,k}, there are at most 3 + 2 logz(% + 1)) such cubes Qf;

satisfying Qﬁ; N Qfl # . This allows us to sum estimate (5.29) over [ € {1,...,k}
and then apply (5.26) to obtain

Cdu(y) di (719 du(y) dr
ks”// 'N”(y’t)' PA) 1S / /MMW A rvewn

for some y > 0 that depends only on 7 > 0 and thus only on the allowed constants.

To conclude, recall that k = log(w*?2 (E)~")/log(1/e) > log(1/6)/log(1/e),
since w2 (E) < § < 1. Therefore, the result follows by choosing & € (0, 5] such
that M < log(1/6), since 0y := 6 depends only on M and the allowed constants. O

We now combine the above technical lemma with the Carleson measure estimate
from Theorem 1.3 to prove the main A -estimate for degenerate elliptic measure.

Theorem 5.30. Suppose that Qg is a cube inR". If X € R’fl \Tg, and w := wX[ Qo
denotes the degenerate elliptic measure restricted to Qy, then w € Aw(u) and the
following equivalent properties hold:
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(1) For each € € (0, 1), there exists 6 € (0, 1), depending only on €, n, 1, A
and [ula,, such that the following property holds: If Q C Qy is a cube and
E C Q such that w(E) < 6w(Q), then u(E) < eu(Q).

(2) The measure w is absolutely continuous with respect to u and there exists
q € (1, 00) such that the Radon—Nikodym derivative k := dw/du satisfies,
on all surface balls A C Qy, the reverse Holder estimate

1/q
(fra)" <f s
A A

where q and the implicit constant depend only on n, A, A and [u]a,.
(3) There exist C,0 > 0, depending only on n, A, A and [ula,, such that

sc(5) o

for all cubes Q C Qg and all Borel sets E C Q.

Proof. It is well-known that (1)—(3) are equivalent (see Theorem 1.4.13 in [K]).
Moreover, by Lemma 5.16, it suffices to prove (1) when X = X5(,. In that case,
by Lemma 5.24, the Carleson measure estimate in Theorem 1.3, Fubini’s Theorem
and the doubling property of , it follows that for each M > 1, there exists d3; > 0,
depending only on M and the allowed constants, such that the following property
holds: If Q C Qg is a cube and E C Q such that w(E) < dyw(Q), then there exists
a solution u of the equation div(AVu) = 0 in R”“ with ||/l < 1 such that

v{(Q)

_du(y) dt
Mu(E v d
u( )<// /A(m)lt u(y, HAD) T u(x)

y0(Q)
< / / VU0, OF du) ™ < (o),
0 50 !

where the implicit constants and ¥ > y > 0 depend only on the allowed constants.
Therefore, if € € (0,1), we choose M(e) > 1 and thus 6y € (0, 1), depending
only on € and the allowed constants, such that u(E) < eu(Q), as required. |

5.5. The square function and non-tangential maximal function estimates. The
L} /(R")-norm equivalence between the square function Su and the non-tangential
maximal function N.u of solutions u in Theorem 1.5 is now a corollary of the main
A-estimate for the degenerate elliptic measure in Theorem 5.30. This was proved
by Dahlberg, Jerison and Kenig in Theorem 1 of [DJK], which actually provides the
more general result in Theorem 5.31 below. In particular, the degenerate elliptic
case is treated on page 106 of [DJK], noting that the normalisation u(Xp) =
assumed therein is actually only required for the so-called N < S -estimate.

Theorem 5.31. Suppose that @ : [0, c0) — [0, o) is an unbounded, non-decreasing,
continuous function with ®(0) = 0 and ®(2t) < CO(¢) for all t > 0 and some C > 0.
If div(AVu) = 0 in R"™1, then

/ DS u) du < / O(N,u) dy,
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and if, in addition, u(Xo) = 0 for some Xy € R’fl, then

/ DO(N.u) du < / O(Su) du,
n RV!
where the implicit constants depend only on Xy, @, n, A, A and [p]a,.

The next result is also a consequence of the main A -estimate in Theorem 5.30.
It will allow us to construct solutions to the Dirichlet problem (D), , as integrals
of LI(R™)-boundary data with respect to degenerate elliptic measure.

Lemma 5.32. Suppose that % + é = 1, where q € (1,00) is the reverse Holder

exponent from Theorem 5.30. If X = (x,t) € R™!, then the Radon—Nikodym
derivative k(X, ) 1= dw* /du is in LZ(R”) and

/R K060, dy) < (A 1)

Moreover, if | € ij(R”) and u(X) = fRn £(y) dw”, then ||N*M||L5(Rn) < ||f||Lz(Rn).
The implicit constant in each estimate depends only on n, A, A and [u]a,.
Proof. Suppose that X = (x, ) € R™*!. The proof of Proposition 5.18 shows that

k((x,21), y)
w0 (A(x, 271))
Applying the reverse Holder estimate from Theorem 5.30 then shows that

/R k((x, 1), y)? du(y)

k((x,1),y) < 27/@ Yy € A(x, 270\ A(x,2711), Vj e N.

- [ kY [ K61, dua(y)
A(x,1) j=1 Al

(6, 27O\ A(x,2/711)

(o)
< HAGe )7+ T 27 (A, 278) ' 5 p(ACx, ).
j=1
To obtain the non-tangential maximal function estimate, it suffices to consider
the case when f > 0, since in general we may then decompose f = f* — f~ into its
positive and negative parts f*, f~ > 0. To this end, suppose that xop € R" and that
X = (x,1) € R™! in order to write

= Flaman + Z TLamo2i a2 = Z Ji

Jj=1 j=0
and define

0= [ 01 do )= [ F0IK) duc)

The self-improvement property of the reverse Holder estimate from Theorem 5.30
(see Theorem 1.4.13 in [K]) implies that there exists an exponent r > g such that

1/r
(5.33) <]£ k((x,1),y)" dﬂ(y)) < ]ik((x, 1),y) du(y) <
for all surface balls A C A(x, t/2).

u(d)
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Now suppose that X = (x,#) € I'(xg). To estimate ug, we apply the interior
Harnack inequality in (2.18) followed by Holder’s inequality and (5.33) to obtain

o, 1) = wox, 61) < / FOY K, 60),y) du)

A(x0,21)

1/r 1/r
< < / k((x, 61), y)I" dﬂ()’)) < / o du(y)>
Ax0,20) Axo,20)

1/r
< u(A(xg, 26)) 71" < / o du(y)>
A(x0,21)

< [Mu(f) o)

To estimate u; when j € N, we apply the boundary Holder continuity estimate
from (5.7) and then proceed as in the estimate above to obtain

I\ - j '

ﬁ) uj(x0,2°1) = 27 j(x0, 27*%1)

<27 / SO k(x0,27%%0), y) dpa(y)
A(x0,27% 1)

1/r 1/r
<9 ( [ k2. dy(y)) < [ or dy(y))
A(x0,27411) A(x0,27%1r)

) , 1/r
<oin (f SOy dﬂ(y)>
Axo,27%1)
< 27 M (f7 ) (o))"

uj(x,1) < (

The above estimates together show that N.u(xo) < [M,(f ”)(xo)] U for all xg € R”",
and since ' < ¢’ = p, it follows that ||N*u||L5 < ||f||L5, as required. m]

We conclude the paper by using the preceding lemma to obtain solvability of
the Dirichlet problem (D), ,. A uniqueness result is also obtained but only for
solutions that converge uniformly to O at infinity. This restriction does not appear
in the uniformly elliptic case (see Theorem 1.7.7 in [K]). It arises here because of
the absence of a Green’s function for degenerate elliptic equations on unbounded
domains (see Section 5.3) and it is not clear to us whether this can be improved.

Theorem 5.34. Suppose that % + é = 1, where g € (1,0) is the reverse Holder

exponent from Theorem 5.30. The Dirichlet problem for Lﬁ R™M)-boundary data is
solvable in the sense that for each f € LI(R"), there exists a solution u such that

div(AVu) = 0 in R,
(D)p,y N,u € Lﬁ(Rn)’

limy o u(-, 1) = f,
where the limit converges in Lf,’ (R™)-norm and in the non-tangential sense whereby
limr(ys(y,0-x,0) 4y, 1) = f(x) for almost every x € R". Moreover, if f has compact

support, then there is a unique solution u of (D), that converges uniformly to 0 at
infinity in the sense that NMg—eo ||utl] oo g+t o r)) = 0-
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Proof. Suppose that f € LL(R") and define u(X) := [, f dw* for all X € R
We first prove that div(AVu) = 0 in R’fl. Let (f}); denote a sequence in C.(R")
that converges to f in Lﬁ (R™) and consider the solutions u ;(X) := fRn /i dwX. The
LI(R")-estimate for the Radon—Nikodym derivative dw* /du from Lemma 5.32 and
the doubling property of u show that |lu; — ull ~k) <ux IIfj — flle(Rn) forall je N
and any compact set K € R, so u; converges to u in #IOC(R") Moreover,
Cacioppoli’s inequality and the arguments preceding (5.4) show that u; converges
to a solution v in WIL’IZOC(R”), so then u = v is a solution in R’fl as required .

The non-tangential maximal function estimate ||V..u/| 2™ < fIl L2RY) is given
by Lemma 5.32. To prove the non-tangential convergence to the boundary datum,
first recall that u; € CR™1) with ujlrn = fj, 80 imreyse,n-0) i, 1) = fi(x)
(see Section 5.2). We combine this fact with the bound

u(y, 1) = fOI < |uly, 1) — uj(y, O] + |uj(y, 1) = f;(Ol + |(f; = HHX]

to obtain

limsup |u(y, ) = f(O)| < INu(u = up)(0)] + |(f = f)X)]

I'(x)>(y,5)—(x,0)

for all x € R". For any n > 0, we then apply Chebyshev’s inequality and the
non-tangential maximal function estimate from Lemma 5.32, to show that

eR": i u(y, 1) — f(x) >
p({remrs timswp 0~ f01>0})
<u(fx € R" : No(u —uj)(x) > n/2}) + u({x e R" 2 |(f = [0 > n/2})

(Nt = g + 1 = Sl )
<r] p”f f]”LP(Rn

It follows, since f; converges to f in Lﬁ (R™), that limp(y)s(y,n—x,0) u(y, 1) = f(x) for
almost every x € R", as required. The norm convergence lim,_,q ||u(-, #) — f]| %)
then follows by Lebesgue’s dominated convergence theorem.

It remains to prove that u is the unique solution satisfying limx|—e |[u(X)lcc = 0
when f has compact support. In that case, fix Ry > O such that f is supported in the
surface ball A(0,Rp). If X € R’fl and |X| > 2Ry, then the reverse Holder estimate
in Theorem 5.30 shows that

()| < / FONKX.y) du()
A(O,Rp)

1/q
< fllgcee ( / e d,u(y))
A0,1X1/2)

< gy ACO, 1X1/2)) 7[ KX, y) du(y)
A0,1X1/2)

< 1Nz gy (A, X1/2) 7172,
whilst limg_,« (A0, R)) = oo, since u is in the A.-class with respect to Lebesgue

measure on R”, thus limg_, ||u|| Lo®IN\BO,R) = 0. The maximum principle allows
us to conclude that any solution of (D), with this decay must be unique. O
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