A WEAK REVERSE HOLDER INEQUALITY FOR CALORIC
MEASURE

ALYSSA GENSCHAW AND STEVE HOFMANN

AssTtrACT. Following a result of Bennewitz-Lewis for non-doubling harmonic
measure, we prove a criterion for non-doubling caloric measure to satisfy a weak
reverse Holder inequality on an open set Q C R™!, assuming as a background
hypothesis only that the essential boundary of Q satisfies an appropriate para-
bolic version of Ahlfors-David regularity (which entails some backwards in time
thickness). We also show that the weak reverse Holder estimate is equivalent
to solvability of the initial Dirichlet problem with “lateral” data in L?, for some
p < oo, in this setting.
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1. INTRODUCTION

It is well known that for a Lipschitz domain €, the Dirichlet problem for a diver-
gence form uniformly elliptic equation Lu = —divAVu = 0, with data in L?(0Q),
is solvable for some 1 < p < oo if and only if elliptic-harmonic measure for L is
absolutely continuous with respect to surface measure and the Poisson kernel satis-
fies a reverse Holder condition with exponent p’; see [Ke] and the references cited
there. In particular, in the case that L is the Laplacian, the Poisson kernel satisfies
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an L? reverse Holder inequality, and therefore the Dirichlet problem is solvable
with data in L*(9Q) (see [Dal).

In this paper we prove a parabolic version of a result of Bennewitz-Lewis [BL],
who gave a criterion for nondoubling harmonic measure to satisfy a weak-A., con-
dition, or equivalently, for the Poisson kernel to satisfy a weak reverse Holder
condition; see Definition 1.29 below. To put this work in context, we recall that
David-Jerison [DJ] and Semmes [S] proved that harmonic measure w on the bound-
ary of an NTA domain with Ahlfors-David regular boundary is A, with respect to
surface measure. The idea of the approach in [DJ] is first to prove a geometric re-
sult, whereby domains satisfying a certain two sided interior and exterior thickness
condition (that is, the two sided “Corkscrew” condition), and having ADR bound-
aries, could be approximated in a “Big Pieces” sense by Lipschitz sub-domains. As
a consequence, by the maximum principle combined with the fundamental result
of [Da], one obtains a certain local ampleness property of the harmonic measure
(see (1.5) below for the parabolic version), which may then, in the presence of the
Harnack chain condition, be self-improved to give the A, property.

In [BL], the authors show that this self-improvement procedure, i.e., the passage
from local ampleness of harmonic measure to quantitative absolute continuity, can
still be executed, even in the absence of the Harnack chain condition, and as a
consequence are able to extend the result of [DJ] and [S], in an appropriate way,
to much more general domains. They are able to conclude only that harmonic
measure is weak-A, with respect to surface measure, but on the other hand, this
conclusion is best possible: their results apply to domains in which harmonic mea-
sure need not be doubling (in particular, to the case that the domain satisfies a
uniform interior big pieces of Lipschitz graph condition and an interior corkscrew
condition, but no connectivity property, such as the Harnack chain condition).

The goal of the present paper is to extend the results of [BL] to the parabolic
setting. As regards geometric hypotheses, we assume only that Q ¢ R™*! is an open
set whose boundary satisfies an appropriate version of a parabolic Ahlfors-David
regularity condition. In particular, we impose no connectivity hypothesis, such as
a parabolic Harnack chain condition. We may then consider the initial-Dirichlet
problem with “lateral” data in L”, in subdomains of the form QT =Qnf{t > T},
for appropriate fixed times 7. We shall return to the latter point below.

We shall consider the heat operator
(1.1 Ly:=0,-V-V,

where V-V is the usual Laplacian in R", acting in the space variables. With a caveat,
to be discussed momentarily, our results may apply more generally to divergence
form parabolic operators

(1.2) L:=98;,-divA(X, 1)V,
defined in an open set Q c R™*! as described above, where A is n x n, real, L™, and
satisfies the uniform ellipticity condition

n+1

(13) WP < AXDED = ) AKX D, Ml <27,

ij=1
for some A4 > 0, and for all £ € R”, and a.e. (X,r) € Q. We do not require that
the matrix A(X, ¢) be symmetric. We reference the paper by Moser [M], where the
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results are stated under an assumption of symmetry, but in fact symmetry is not
needed: see [DK], [SSSZ], [QX].

Some comments are in order. As mentioned above, there is a caveat when apply-
ing our results to variable coefficient operators, namely that at present it appears to
be an open problem to construct parabolic measure for such operators, in the very
general class of domains that we consider here. To do so first requires that one can
solve, in an appropriate sense, the Dirichlet problem with continuous data, so that
parabolic measure can be constructed via Riesz representation. One can construct
Perron solutions (as a supremum of subsolutions) but then, to apply the Riesz repre-
sentation theorem, one needs linearity of the solution map (i.e., the map that sends
data f to the value of the solution at a given point (X, ¢) in the domain). For the heat
equation this works, since it is known that continuous functions on the parabolic
boundary (or, to be more precise, on the “essential boundary”’; see Definition 1.11)
are resolutive for the heat equation (see [W1] or [W2]), and therefore the solution
map is linear. On the other hand, for more general parabolic operators, linearity
of the solution map would follow if one could solve the continuous Dirichlet prob-
lem, in the sense of Definition 1.17 below. A rather general result in this direction
was obtained in [CDK], where the authors assume an exterior measure condition,
backwards in time (see [CDK, Definition 1.3]). Otherwise, it would suffice to have
a Wiener criterion to ensure continuity up to the parabolic boundary, along with
enough solutions in a class to which the Wiener criterion can be applied; to our
knowledge, there are versions of the parabolic Wiener test that apply to Perron
solutions either for the heat equation [La], [EG], or to divergence form parabolic
equations with C* or C I_Dini coefficients [GL], [FGL], respectively; or, in the
case of general divergence form parabolic operators, to some class of weak solu-
tions (either the class V, [BiM], or W2 [GZ)). Tt appears to be an open problem
to construct solutions of the latter sort, say for data that is Lipschitz with compact
support, except in cylindrical domains [LSU], in Lip(1,1/2) domains [BHL], and
in parabolic Reifenberg flat domains [BW]. Thus, our results will apply without
further qualification to the heat equation, or to operators with C'-Dini coefficients,
but at present, they will apply to general divergence form parabolic operators only
if one is given a priori that the classical Dirichlet problem, with continuous data,
is solvable. We observe that the capacitary conditions in [BiM, GZ] hold in our
setting: they follow from the time-backwards version of ADR (Definition 1.22)
that we assume; the obstacle to our applying these Wiener criteria, is the lack of
solutions.

Before stating our main theorem, we briefly introduce some of the concepts
and notation to be used. All additional terminology used in the statement of the
theorem, and not discussed here or above, will be defined precisely in the sequel.
For now, we note that all distances and diameters are taken with respect to the
parabolic distance (1.15), and that §(X, ¢) := dist((X, 1), 9.€2), where 9, denotes
the essential boundary (see Definition 1.11 below) of an open set Q C R™!. We
further note that “surface measure” o~ on the quasi-lateral boundary' %, is defined

IThis comprises all but the initial part of the essential boundary, and all but the terminal part of the
singular boundary; see Definition 1.11. It may seem more natural to expect that “surface measure”
should be defined on the lateral boundary, rather than on the quasi-lateral boundary; in the present
work, the ADR condition that we impose will imply that in some sense, the non-lateral parts of the
quasi-lateral boundary are fairly negligible: in particular the singular boundary will exist only at the
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by do = dods, where doy = ?{"‘llzx, the restriction of (n — 1)-dimensional
Hausdorff measure to the time slice X, := X N {¢ = s}.

We note that for an arbitrary open set Q c R"*!, caloric measure may be con-
structed via the PWB method, since continuous functions on the essential boundary
are resolutive; see [W1] or [W2, Chapter §].

For a sufficiently large (and eventually fixed) constant K, given (X, t) € Q, set

(1.4) Ox: = Q((X,0,K16(X,1),  Axs:=0x/NE,

where in general the parabolic cube Q((X, 1), r) is defined as in (1.10) below. Even-
tually, we shall fix K| in (1.4) large enough, depending only on the constants in
Lemma 2.2.

For (X, t) € Q, and Ax, defined as in (1.4), we shall say that caloric (or parabolic)
measure w*' is locally ample on Ay;, or more precisely, (8, 8)-locally ample, if
there exists constants 6, 5 € (0, 1) such that

(1.5) o(E) 2 (1 -)o(Ax) = N(E) = wi(E) 28,

where E C Ay, is a Borel set. We observe that if (1.5) holds for some K; = K > 2,
then it also holds with K1 = K’ > K, for some &' = 8'(8, K, K’,n, ADR). Thus, we
may always fix a larger value of K, at our convenience.

Set Tyin :=Inf{T : QN {t = T} # 0} (note that we may have T,,;, = —0).

The main result of this paper is the following. Precise definitions of terminology
may be found in the sequel.

Theorem 1.6. Let Q c R™! be an open set whose quasi-lateral boundary X is
globally ADR. Let (xq, 1) € X, and let 0 < r < \/tg — Tpin/(8n). Assume that T is
time-backwards ADR on Ay, = 2N Qs,(x0, ty), and suppose that there are constants
0, B € (0,1), and a value of K1 > 2 in (1.4), such that caloric measure w** satisfies
the (0, B)-local ampleness condition (1.5) on Ax; for each (X, t) € QN Oa(x0, fo).

Then there exist constants C > 1, vy > 0, such that if (Yo, so) € Q \ Qar(x0, 1),
then WY < o on L N Qy(x0, 1), with dw¥* /do = h satisfying

1/(1+y)
(1.7) (p_"_l f f h”%la) < Cp! f f hdo
Ap(y,s) Aop(y,9)

= Cp™" " (Agp(y, 9))

whenever (y, s) € X and Q2,(y, s) C Q(xo, t9), where Ay(y, s) = O,(y, s) N X, and
AZp(ya s) = Q2p(y, s)NZ.

Moreover, the same result applies to the parabolic measure associated to a uni-
formly parabolic divergence form operator L, provided that the continuous Dirich-
let problem is solvable for L in Q (see Definition 1.17) (in particular, this is true if
the coefficients are C'-Dini).

To clarify matters, we remark that by the ADR hypothesis on X (see Defini-
tion 1.20), we have that p*! ~ o(Ap(y,8)) = 0(A(y,s)). The time-backwards

terminal time of Q, hence the quasi-lateral boundary will be a subset of the essential boundary; the
quasi-lateral boundary then becomes a natural substitute for the lateral boundary. We shall return to
this point below: see Definitions 1.11, 1.20, and 1.22, and Remarks 1.25 and 1.26.
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ADR condition is an enhanced version of ADR, which entails some thickness of
backwards in time; see Definition 1.22, and Remarks 1.24, 1.26, and 1.28.

Similar results in the parabolic setting have previously been established under
the more restrictive assumptions that 1) L is the heat operator and the lateral bound-
ary of the domain is given locally as the graph of a function ¥(x, f) which is Lips-
chitz in the space variable, and has a 1/2-order time derivative in parabolic BMO
[LM]?, 2) Q = {(x0,x,7) € (0,00) x R"! xR} is a half-space and the coefficients
of L satisfy a certain Carleson measure regularity property [HL], and 3) L is the
heat operator and either Q is a parabolic Reifenberg flat domain [HLN], or Q is a
parabolic chord-arc domain [NS]; in each of these settings, Q2 enjoys a parabolic
version of the Harnack Chain condition, which entails a rather strong quantitative
version of connectivity. As mentioned above, the elliptic analogue of our result
was proved in [BL], without any connectivity hypothesis. The new contribution of
the present paper is to dispense with all connectivity assumptions, both qualitative
and quantitative, in the parabolic setting. The elliptic version obtained in [BL] has
proved to be useful in various applications, see, e.g., [HLe] and [HM]. We shall
discuss two applications of our work in the sequel (see Section 5).

The paper is organized as follows. In the remainder of this section, we present
some basic notations and definitions. In Section 2, we state four lemmas which we
then use to prove Theorem 1.6; we also state Theorem 2.10, concerning the equiv-
alence between the weak-A., property and L? solvability of the initial-Dirichlet
problem. In Section 3 we prove Lemma 2.7, and in Section 4 we prove Theorem
2.10. In Appendix A we prove a Bourgain-type estimate (Lemma 2.2), and in Ap-
pendix B we prove Holder continuity at the boundary (Lemma 2.5). In Appendix
C, we prove a technical fact about the essential boundary (Lemma 1.14).

Notation and Definitions. For a set A ¢ R"*!, we define
(1.8) Tyin(A) :=inf{T : AN{t=T}# 0}, Tpax(A):=sup{T :AN{t=T}+0}

(note: it may be that 7,;,(A) = —oo, and/or that T),,(A) = +00). In the special case
that A = Q, an open set that has been fixed, we will simply write Ty, = Tpin(€2)
and Tmax = max(Q)-

Definition 1.9 (Parabolic cubes). An (open) parabolic cube in R” X R with center
X, 0):

(1.10)  0/(X,1) := OQ((X, 1), 1)

={s) eR'XR: X, - Vi <r, 1<i<n t-r’<s<t+r}).

With a mild abuse of terminology, we refer to r as the “parabolic sidelength” (or
simply the “length”) of Q,(X, ). We shall sometimes simply write Q, to denote a
cube of parabolic length r, when the center is implicit, and for Q = Q,, we shall
write £(Q) = r.

2For domains whose lateral boundary is given locally as a graph, the 1/2 order derivative in BMO
condition of [LM] is in the nature of best possible: there is a counterexample of Kaufmann and Wu
[KW], with ¢ € Lip,, in the time variable.
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We also consider the time-backward and time-forward versions:

0 (X,0,r) =0, (X,n)

={(V,s) eR'"XR:|X;=Yil<r,1<i<n,t—r"<s<t,

0" ((X,0,r):= O (X,1)
={(Y, ) ER'XR:|IX;—Yi|<r,1<i<n,t<s<t+r}.

Definition 1.11 (Classification of boundary points). Following [L], given an
open set Q c R™!, we define its parabolic boundary P as

PQ = {(x,1) € 0Q: ¥r >0, 07 (x,1) meets R™'\ Q.
The bottom boundary, denoted BC, is defined as

BQ :={(x,1) € PQ: A& > 0 such that QF (x,1) C Q}.
The lateral boundary, denoted SQ, is defined as SQ := PO\ BAO.

Following [W1, W2], we also define the normal boundary, denoted 9,0, to
be equal to the parabolic boundary in a bounded domain, while in an unbounded
domain, we append the point at infinity: 0, = PQU{co}. The abnormal boundary
is defined as 9,Q := 0Q \ 0,,Q, thus:

04Q = {(x,1) € 9Q : & > 0 such that O, (x,7) C Q}.
The abnormal boundary is further decomposed into 9,Q = 9,QUJ,Q (the singular
boundary and semi-singular boundary, respectively), where
05Q :={(x,1) € 9,2 : A& > 0 such that Q) (x,1) N Q =0},
and
05sQ = {(x,1) € 0,Q : Y r>0 Qf(x,1) meets Q}.
The essential boundary 0.2, is defined as
(1.12) 0.Q = 9,Q U 0;,Q = 0Q\ 9,Q
(where we replace 0Q by 9Q U {oo} if Q is unbounded). Finally, we define the
quasi-lateral boundary X to be

0Q, if Ty = —0o and Thpgyx =

113 T 0Q\ (B, , if Tyin > —00 and Typgy =
' C ] 4\ 0,1, if Thax < 00 and Ty, = —00
0Q\ ((BQ)TW U (aSQ)TW) , Af —00 < Tyin < Thpax < .

where (BQ)r,,, is the time slice of BQ with t = T,,;,, and (0,Q)7,,,, is the time slice

of 9,Q with t = T,,,,. Observe that for a cylindrical domain Q = U X (Tpin, Tinax),
with U ¢ R" a domain in the spatial variables, then £ would simply be the usual
lateral boundary.

Caloric measure is supported on the essential boundary; see [Su], or [W1, W2].

For future reference, we record here the following fact.

Lemma 1.14. The essential boundary 0,Q, and the quasi-lateral boundary X, are
closed sets.

We defer the proof of this lemma to Appendix C.
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We use the letters ¢, C to denote harmless positive constants, not necessar-
ily the same at each occurrence, which depend only on dimension and the
constants appearing in the hypotheses of the theorems (which we refer to
as the “allowable parameters™). We shall also sometimes write a < b and
a = b to mean, respectively, thata < Cb and 0 < ¢ < a/b < C, where the
constants ¢ and C are as above, unless explicitly noted to the contrary.

We shall use lower case letters x, y, z, etc., to denote the spatial component
of points on the boundary 0Q, and capital letters X, Y, Z, etc., to denote the
spatial component of generic points in R”*! (in particular those in Q).

For the sake of notational brevity, we shall sometimes also use boldface
capital letters to denote points in space time R"*!, and lower case boldface
letters to denote points on 9Q; thus,

X=X1, Y=(s), and x=(x,0), y=0,s),

e We shall orient our coordinate axes so that time runs from left to right.
e H? denotes d-dimensional Hausdorff measure.
e For A c R™! let Ay := {(X,f) € A : t = s} denote the time slice of A with

(1.16)

t=s.

We let do = doyds denote the “surface measure” on the quasi-lateral
boundary X, where doy := ?(”‘llzx, and X; is the time slice of X, with
t = 5. See Remark 1.25 for some clarifying comments.

The parabolic norm of a vector X € R**! is defined as

IXI| = 1CX, Ol = 1X] + 142,

and we refer to the distance induced by this norm as the parabolic distance.
If X € Q, we set 6(X) := dist(X, d,Q2), the parabolic distance to the essen-
tial boundary.

For a set A ¢ R™!, we shall write diam(A) to denote the diameter of A
with respect to the parabolic distance, i.e.,

diam(A) := sup [IX-Y].
(X,Y)eAxA

Given a Borel measure y, and a Borel set A ¢ R", with positive and finite
M measure, we set fA fdu = u(A)! fA fdu; if A is a subset of space-time

R"!, we then write ff, fdu := u(A)™" [[, F(X.0) du(X,1).
A “surface cube” on X is defined by

A=QNnZ,
where Q is a parabolic cube centered on X, or more precisely,
A = Ar(x7 t) = Qr(x’ t) N Z s

with (x,¢) € . We note that the “surface cubes” are not the same as the
dyadic cubes of M. Christ [Ch] on X; we apologize to the reader for the
possibly confusing terminology.

Definition 1.17. We define the following boundary value problems. The second is
relevant only in the case that 7,;, = —oo.

I. Continuous Dirichlet Problem:
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Lu =0inQ
(D){ g, = f € Ce(9:2)
u €C(QUIQD).
If Q is unbounded, we further specify that limxj— . #(X) = 0. Here, we interpret
the statement uls,o = f € C.(0,L2) to mean that
(X’tl)ll)l%w) uX,1) = f(y,s), ) €0,Q,

and

Iim w(X,?) = ,S), ,8) € 05502
(XJ)H(W)( )=f0n8),  (,s) €0

If the preceeding problem is solvable for all f € C.(0.L2), then we say that the
“continuous Dirichlet problem is solvable for L.”

II. L? Dirichlet Problem:
Lu =0inQ
(D)p{ uy =fell®
N.aueLP(Z).

III. Continuous Initial-Dirichlet Problem:

Lu =0inQ" :=Qn{t>T}
uX, T) =0inQr=Qn{r=T}

ulyr = feC(2")
ueCQMuo,Q".

Here, X7 denotes the quasi-lateral boundary of the domain Q7. The statement
ulsr = f € C.(Z") is intepreted as in problem I, and if Q7 is unbounded, we
further specity that limyxj—e #(X) = 0.

IV. L? Initial-Dirichlet Problem:
Lu =0inQ7 :=Qn{r>T)
uX, T) =0inQr=Qn{r=T}
uyr = feLPED)
N.u e LP(ET).

In problems II and IV, the statement uls = f € LP(Z) (resp., ulsr = f € LP(ZT)) is
understood in the sense of parabolic non-tangential convergence. We shall discuss
this issue, as well as the precise definition of the non-tangential maximal function
N.u, in the sequel. In problems III and IV, the statement u(X, T) = 0 in Qr means
that u vanishes continuously on Q7.

(I-D)

(I-D),

Definition 1.18. (Caloric and Parabolic Measure) Let Q c R"*! be an open set.
Let u be the PWB solution (see [W1], [W2, Chapter 8]) of the Dirichlet problem
for the heat equation, with data f € C.(0.£2). By the Perron construction, for
each point (X,1) € Q, the mapping f +— u(X,t) is bounded, and by the resolu-
tivity of functions f € C(9,Q) (see [W2, Theorem 8.26]), it is also linear. The
caloric measure with pole (X, 7) is the probability measure w** given by the Riesz
representation theorem, such that

(1.19) u(X,t) = f £, 5)dw™(y, 5).
0.Q

For a general divergence form parabolic operator L as in (1.2)-(1.3), parabolic mea-
sure W' = wf’t may be defined similarly, provided that the continuous Dirichlet

problem is solvable for L.
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Definition 1.20. (ADR) (aka Ahlfors-David regular [in the parabolic sense]). Let
Q c R"™!. We say that the quasi-lateral boundary X is globally ADR (or just ADR)
if there is a constant My such that for every parabolic cube Q, = Q,(x, 1), centered
on X, and corresponding surface cube A, = Q, N X, with r < diam(Q),

1
(1.21) ﬁr’”l < o (A) < Mor™' .
0

We also say that £ is ADR on a surface cube A = Q N Z, if there is a constant
My such that (1.21) holds for every surface cube A, = O, N X, with Q, € Q and
centered on X.

Definition 1.22. (Time-Backwards ADR, aka TBADR) Given a parabolic cube
Q centered on X, and corresponding surface cube A = QN X, we say that X is time-
backwards ADR on A if it is ADR on A, and if, in addition there exists a constant
b > 0 such that

(1.23) brtl < o(AY),
forevery A, = O, N X, where O, C Q is centered at some point (x, ¢) € X.

If X is time-backwards ADR on every A = X N Q,(xo, tp), for all (xg, %) € Z,
and for all r with 0 < r < g — Tpnin/(44/n), then we shall simply say that X is
(globally) time-backwards ADR (and we shall refer to such A as “admissible”; note
that if 7),,;, = —oo, then there is no restriction on r, and in that case every surface
cube is admissible).

Remark 1.24. The assumption of some backwards in time thickness, as in Defini-
tion 1.22, is rather typical in the parabolic setting. See, e.g., the backwards in time
capacitary conditions in [La], [EG], [GL], [FGL], [GZ], [BiM]. Moreover, it is not
hard to verify that by the result of [EG] (or of [GL], [FGL]), time-backwards ADR
on some surface cube A implies parabolic Wiener-type regularity of each point in A
(and thus global time-backwards ADR implies regularity of the parabolic boundary
PQ).

Remark 1.25. By [W2, Theorem 8.40], the abnormal boundary 9,Q is contained
in a countable union of hyperplanes orthogonal to the f-axis. Moreover, the same
is true for the bottom boundary B, since its image under the change of variable
t — —t is contained in J,Q*, for the domain Q* obtained from Q by the same
change of variable. Thus, o(8Q) = 0 = 0(9,Q).

Remark 1.26. The time-backwards ADR condition rules out pathologies like a ver-
tical face (with time running from left to right horizontally) on X. In particular,
05sQ = 0 = 0,Q\ {t = Ty}, at least locally on any surface cube A on which
TBADR holds, and thus d,Q = 9,Q = PQ = X on such A. Moreover, under the
hypotheses of Theorem 1.6, BQ N A,(xo, tp) is fairly negligible: by Remark 1.25,
this set has o measure zero, and thus by the conclusion of Theorem 1.6, it also has
caloric/parabolic measure zero.

Remark 1.27. The significance of the admissibility constraint is as follows. Recall
that 6(Y) := dist(Y, 9,Q2), where the distance is of course the parabolic distance.
We note that, by elementary geometry and (1.13) (i.e., the definition of X), for
(x0,19) € Z, and for all Y € Q N Q,(xp, #9), assuming the global time-backwards
ADR property and using the observations in Remark 1.26, we have that

r < At = Toin/(@Vn) = §(Y) = dist(Y, X).
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Remark 1.28. We will show, in Claim 1 of Appendix A, that time-backwards ADR
yields an apparently stronger property: specifically, we show that if X is time-
backwards ADR on A = A, = £ N Q(xo, ty), then (1.23) continues to hold (with
a slightly different constant) with A replaced by A7 N {r < 1o — (ar)?}, and hence
also by X N O (xo, 0 — (ar)?), for some uniform a € (0, 1/2).

Definition 1.29. (A, weak-A, and weak-RH,). Given a closed parabolic ADR
set E ¢ R™! and a surface cube Ag := Qp N E, we say that a Borel measure u
defined on E belongs to weak-Ax(Ag) if for each surface cube A = QO N E, with

20 < Qo,

o(F)
a(A)
We recall that, as is well known, the condition u € weak-A(Ag) is equivalent to

the property that 4 <« o in Ap, and that for some ¢ > 1, the Radon-Nikodym
derivative k := du/do satisfies the weak reverse Holder estimate

1/q
(1.31) (Hkqdcr) < CH kdo ~ "2 A= 0nE. with 20 € 0o.
A 20 o(A)

We shall refer to the inequality in (1.31) as an “RH,” estimate, and we shall say
that k € RH,(Ao) if k satisfies (1.31).

If (1.30) holds with u(A) in place of u(2A), for all @ c Qp, then we say that
U € Ax(Ao).

0
(1.30) u(F) < C( ) UQRA), for every Borel set F' C A.

2. LEMMAS AND PrROOF OoF THEOREM 1.3

In this section, we state four lemmas which when combined allow us to prove
Theorem 1.3. We also state Theorem 2.10. We recall that ¥ denotes the quasi-
lateral boundary; see Definition 1.11 and (1.13). In the sequel, L is either the heat
operator, or else a divergence form parabolic operator for which the continuous
Dirichlet problem is solvable in Q (in particular, this is true if L has C'-Dini coef-
ficients), and w = wy is the associated caloric/parabolic measure.

Let a > 0 be the constant mentioned in Remark 1.28. In the sequel, Q will
always denote an open set in R"*!, with quasi-lateral boundary X. Given a fixed
time T < oo, we set

2.1) E(T):={X.)eR™" : t<T}.

Lemma 2.2 (Parabolic Bourgain-type Estimate). Let (xg,%y) € X, and let 0 < r <
Vto = Trin/(4Nn). Assume that X is time-backwards ADR on A, := Q,(xo, ) N Z.
Then there exists My,n > 0 such that for all (X,t) € QML, N Q,

1

W (A = YA NET)) > 7,
where QMilr = O((xo, o), Milr)’ and T := Tmax(QMilr) =1p + (aMl_lr)z'

Remark 2.3. The proof of the Bourgain-type estimate can be found in Appendix
A. We remark that this estimate could probably also be derived using capacitary
methods found in [EG]. We give a direct proof adapting Bourgain’s argument to
the parabolic setting.
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Remark 2.4. We also obtain a Bourgain-type estimate for supersolutions; see Ap-
pendix B.

Given a fixed time 7', and a cube Q, centered on X, we set Q, := O, N Q, and
Q.(T) := Q, N E(T), with E(T) defined as in (2.1).

The following lemma is a consequence of the supersolution version of Lemma
2.2. The proof will be given in Appendix B.

Lemma 2.5. Let (xo,t0) € %, and fix r with 0 < r < \{tg — Tpin/(8yn). Set
0O, = 0Q/(x0,t0), Oz := Oor(x0,10), and suppose that T is time-backwards ADR
on Ay := Qo NZ. Let u be the parabolic measure solution corresponding to
non-negative data f € C.(0,Q), with f = 0 on Ay,. Then for some a > 0,

s\ 1f
Vo <c . Y(XeQ,
u(Y, 1) < ( r ) |02 N E(T))| szm)u o

where T := Tyax(Qy) = 1o + 2, and where the constants C and « depend only on
n, A, and the ADR and time-backwards ADR constants.

We observe that in the sequel, it will suffice to have a slightly less sharp version
of Lemma 2.5, in which Q;,(T) is replaced by the larger set Q,,; see the proof of
Theorem 2.10 in Section 4 below.

Remark 2.6. We now fix K, in (1.4) to be K| := 20a~'M,, where M|, a are the
constants from Lemma 2.2 (so that in turn, « is the constant in Remark 1.28). With
this choice of Kj, we then define Oy, and Ay, as in (1.4). Our assumption in
Theorem 1.6 is that (6, 8)-local ampleness holds for some value of K; > 2. If
this K exceeds the value defined above, then we simply take M larger. On the
other hand, as noted previously, if (6, 8)-local ampleness holds for a smaller value
of K; > 2 than that defined above, then it also holds for larger K (for a possibly
different value of ). In any case, we are at liberty to fix K| as above.

Lemma 2.7. Let (xo,19) € I, and let 0 < r < \to — Tpin/(8/n). Suppose that =
is time-backwards ADR on Ay, 1= Qa.(x0,%9) N 2. Suppose further that there exist
constants 6, 5 € (0, 1), such that wX! satisfies the (0, 8)-local ampleness condition
(1.5) on Ay, for each (X, 1) € Q N Oz (x0, to).

Then given € > 0, there exists n = n(e,n), 0 <n < 1 and C, = C(e,n) > 1 such
that for any Borel set F' C Ay,, with o(F) > (1 — n)o(Aay), we have

(2.8) WS (A (X0, 10)) < €™ (Aar(x0, 10)) + Cew™ (F),
whenever (Y, s) € Q\ Q4,(x0, ty).

Lemma 2.7 is in some sense the main result of this paper. Along with the next
lemma, it underlies the proof of Theorem 1.6.

Lemma 2.9. Let X be a closed ADR set with constant My. Let u be a positive
Borel measure on R"™ with support contained in %, and u(X) < 1. Suppose for
some (x,t) € X, r > 0, there exists €|, > 0,C| > 1 such that

H(Qp(z, 1)) < eu(Q2p(z, 7)) + C1u(P),
whenever P C Ayy(z,7) := LN Q2,(z, 7) is a Borel set with

o(P) 2 (1 =) 0(Agp(z, 7))
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and (z,7) € Zwith Q2,(z,7) C Q(x, ).
If e = e1(n, My) > 0 is small enough, then there exists C = C(n, My, C1,0),

1<C <o,y =y MyCy,0) > 0 and a Borel measurable function g such that
du/do = g on £ N Q,(x,t) while

1/(+y)
(p—n—l ff gl+ydo_) < Cp—n—l ff ng'
(2, T)NZ 02p(z,7)NZ

= Cp" 1 (022, 7).

Lemma 2.9 is a purely real variable result and therefore the proof can be readily
adapted from the elliptic version given in [BL, Lemma 3.1]. We omit the details.

Proof of Theorem 1.6. Fix Q,(xo, ty) with (xg,%9) € X, > 0, and let (¥, s) € Q \
Q4r(x0,19). Then for all Q,(z, 7) such that Q»,(z, 7) C Q,(x¢, 7o) we see that (¥, s) €
Q\ Qu4p(z,7). Therefore Lemma 2.7 applies in each such Q,(z,7) and if we set
i = ", then u satisfies Lemma 2.9 with C; = C(e;) and ¢ = n(e;) (here we are
using Lemma 1.14). Applying Lemma 2.9 we obtain Theorem 1.6. m|

Before proceeding further, let us make the following geometric observation. Set
Ro := diam(X). Then there is a constant ¢, depending only on dimension and
ADR, such that Ty,0r — Tiin = cR(z). Indeed, suppose first that Ry < oo, and set
2 := Tpax—Tmin. Then X is contained in a closed rectangle in R™! with dimensions
Ro X ... X Rg x 12, of volume (Ro)"r*>. We may then cover X by a collection {Qi},- of
cardinality at most C(Ry/r)", where for each i, Qi is a parabolic cube of sidelength

r, centered on X. By the ADR property, since X has diameter Ry, we have

R s o)< o@Zno)s (_0) el
i r
Thus r = Ry, as claimed.

Next, suppose that Ry = co, but that Tyux — Tonin =: r? < co. Then for any fixed
(x0,19) € X, and any R € (r, o), the surface cube Ag(xg,#y) := QOgr(x0,%) N X is
contained in a rectangle with dimensions R X ... X R X r2, and volume R"r*>. We
may then repeat the previous argument to see that » > R, and then let R — oo.

In the sequel, we shall continue to use the notation Ry := diam(X).

We now formulate the equivalence between the weak-A., property of parabolic
measure, and L? solvability of the initial-Dirichlet problem.

Theorem 2.10. Let L be a divergence form parabolic operator defined on Q. Sup-
pose that X is globally time-backwards ADR, and assume further that if Ry = oo,
then T,,;, = —oo. Then TFAE:

(1) For every xy € (0, 1), there is an exponent g > 1, possibly depending on
Ko, such that 0 < o, and kK = dw"* |do satisfies the reverse Holder
estimate

1/q Y,s
S(2A)
2.11 kY’squ') < g S o~ YA
. (JGE( ) © Joa a(A)

on every A = XN Q,(xo, to), with to — Tyin > K()R(z) and r < \/koRo/2, and
Sfor all (Y, s) € Q\ Qu,(x0, ty), uniformly for all such A and (Y, s).
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(2) For every k1 € (0,1), there is an exponent p < oo, possibly depending on
k1, such that if To — Toin > K1R2, and f € C.(X) with compact support in
270, then the parabolic measure solution u of the initial-Dirichlet (resp.,
Dirichlet) problem for L in Q = QT with T = Typin > —co (resp., in Q if
T = —c0), with data f, satisfies for all (x,1) € 10,

2.12) Nau(x, 1) Seg (MAFIPYx 1)V

where M denotes the parabolic Hardy-Littlewood maximal operator on .

(3) For every k1 € (0, 1), there is an exponent p < oo, possibly depending on
K1, such that if To — Tyin = k1 R2, then the initial-Dirichlet problem for L is
L? solvable in Q10 with the estimate INullrrz) Sy 1fllrcs)-

Furthermore, for appropriately related kg, k1, the exponents q in (1), and p in (2)
and (3), satisfy the duality relationship p = q/(q — 1).

Here N.u denotes the non-tangential maximal function, of course taken with
respect to parabolic cones. Precise definitions will be given in Section 4.

We note that we are implicitly assuming here, as above, that the continuous
Dirichlet problem is solvable for L; we know that this is true if L is the heat opera-
tor, or a divergence form parabolic operator with C'-Dini coefficients: see Remarks
1.24 and 1.26.

A few words of explanation are in order. In less austere settings, say in Lips-
chitz cylinders or even Lip(1,1/2) domains, the equivalence between L” solvabil-
ity of the initial-Dirichlet problem and the A, property of w, is well-known (see,
e.g., [N, Theorem 4.3]: for such a domain Q, with 7,;,(Q2) > —oco, one may con-
sider the initial-Dirichlet problem in Q = QT T = T,,in(Q), and then prove the
main implication (1) implies (2) (or something essentially equivalent, namely that
N.u ~ M, f, where M, is the Hardy-Littlewood maximal operator with respect
to parabolic measure at some fixed pole) either by using Harnack’s inequality and
the Harnack chain property to move from an arbitrary point in a non-tangential
“cone” to a time forward point, or by extending backwards in time, either by even
reflection of the domain across the hyperplane {t = T,,;,}, or simply by extending
the time-slice Qr, . backwards in time as a cylinder. In the more general setting
considered in the present paper, neither of these technical devices is available, and
that is why we work in an ambient domain 2, and then solve the initial-Dirichlet
problem in subdomains Q7 with 7' — T}, 2 RZ.

We mention that in Theorem 2.10, we consider only the issue of L” solvability,
i.e, existence of solutions with L? estimates; we do not address the question of
uniqueness.

3. Proor oF LEmMMmA 2.7

Proof of Lemma 2.7. The proof is an adaption of the argument in [BL] to the par-
abolic setting. The principal new difficulty is the time lag inherent in parabolic
problems.

Fix € > 0, r > 0, and (xo, fp) € Z, with 0 < r < V1o — Tynin/(8+/n), and suppose
that X is TBADR on A, = Ay (xo,19) = Q2-(xp,fy) N Z. Observe that if (2.8) is
true for some € > 0, then it is true for all € > €. Thus, we may suppose that € < ¢
for some sufficiently small but fixed ¢ > 0.
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Recall that 6(Y) := dist(Y, d.Q), where the distance is of course the parabolic
distance. Replacing Q, by 05, in Remark 1.27, we have

(B.1) r< \tg = Tomin/8Yn) = 8(Y) =dist(Y,Z), YYeQn Qs(x0,1).

Thus, by hypothesis, we shall be working in a regime where 6(Y) = dist(Y, X).
Moreover, we note that in this regime, i.e., for (¥, s) € Q N O»,(xo, ty), we have

(3.2) dist ((Y, ), %) = 8(Y, 5) =~ dist (Y, 5),0Q), if s < to — (ar)?,

(Y, 5) € QN Oy(x0, t9), hence by Remark 1.26,
(3.3) 0,Y,5)NdQ =0, 0<p<r/2, (¥,5)€ QN Q3/2(x0,1).

since (xp,fo) € X implies that #y < T,,4c. Let us further note that s < T4y, for

We shall use these facts repeatedly in the sequel, often implicitly.

Let M be a large positive constant to be chosen later. Since it suffices to work
with suitably small €, we may suppose that e < M~2. Let j be the greatest integer

< MJe. Let
. 5+ k
rp=-+—|r
4 4j)°
, 5 k+1
==+ — | r,
4 4j
— 5 k+1/2
3.4 == .
G4 Tt (4+ ry )
Then define

Ui = Qp (x0,70) \ Qp; (x0,%0), and Sy := 907 (xo,70) N Q2.
for1 <k < j-1. Note that S c Uy and U C Q%r(xo,to) for each k.

Lete :=

9 ¢ andlet F C Ay, with
M,

o(F) =2 (1 =mo(Az),

where = n(e) > 0 will be chosen momentarily. We begin with two preliminary
observations.
Remark 3.5. First, assume that (Y7, s1) € Q%r(xo, tp) with
€ €
< oY < .
400" = 050 < 567
Recalling (1.4) and Remark 2.6, we set Qy, 5, := Q((Y1, s1), 20%5(Y1, s1)), so that
Ay, 5, = 2N Qy, s,, and note that Qy, 5, C Q%r(xo, tp). Then for 17(€) small enough,
c(FNQy.s)=0-00(Ay, ).

Hence, by the local-ampleness assumption, setting C = 1/, we have

’ ’

€
< oY, <
200" =09 = 1507

Remark 3.7. Next, suppose that (Y, s) € S, with 6(Y, s) < €'r/200. Then

(3.6) Co"™(F) 21, (Y1,51)€ 01,(x0,70) N (Y, ) : b

Ors = O((Y, 5). 20%6@ ) C Up.
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By Lemma 2.2,
0™ (QysnE) 21,
and therefore,
(3.8) WU 21,
for (Y,5) € Sy N{(Y,s): 6(Y,s) < €'r/200}.
We now consider several cases. Recall that we have oriented our coordinate axes

so that time runs from left to right. Given a cube Q = Q,(xo, 19), we shall use the
terminology “back face of the boundary of O to denote the left-most face of 90,

i.e., the face with t = 7y — p?.
Case 1. There is a point (Yp, so) on the back face of S such that 6(Yp, s9) = 220 r.
Then
’ 6,
3.9 < 6(Yg, 50 — c17°) < ,
(3.9 100" (Yo, s0 — c17%) 00"

’

4
where ¢ 1= (;ﬁ) .and (Yo, 50 = ¢17%) € Q1,(xo, fo). Hence, by (3.6),

Cw¥o0=ar (F) > 1.

Claim 1. In the scenario of Case 1, given € > 0, there exists a uniform constant C,
such that

’

200"

(3.10) Cw™(F)>1, VYs)eSin{¥,s):6,s) > b

6/

200"

Proof of Claim 1. Let (Y, s) € §j with 6(Y, s) >

’

1a. 6(V,s) <
Case 1a. 6(Y,s) < 100

dence on €).

( > ) >

S x. Consider the parabola, call it C(Yy,Y), with vertex (¥p, so — c1r?), which opens
to the right, contains the point (Y, s), and has aperture 1/, with

r. Note that s > sg, since (¥, so) lies on the back face of

_s—=(s —c1r?) cir?

>
Yo-Y? Y=Y~

Cq.

Of course, if ¥ = Yy, then the parabola degenerates, and C(Yy,Y) is just a hori-
zontal line, parallel to the #-axis. In any case, we start at the point (¥, s) and move
backward on C(Yy,Y), stopping the first time that we reach a point (Zp, 79) with
6(Zy, 19) = €r/100. We eventually find such a point, since 6(Y,s) > €'r/100 >
8(Yo, so — c17?), by the scenario of Case 1b and (3.9). Note that by (3.3), all the
points on C(Yy,Y) between (and including) (Y, s) and (Zy, 79) lie in Q, and thus in
particular (3.6) holds with (Y1, s1) = (Zy, 7¢). Moreover, since ||(Y, s)—(Zy, 7o)l S 7,
and 6(Z, 1) 2 r for every (Z,7) € C(Yy,Y) between (Y, s) and (Zy, 79), again using
(3.3), we can construct a Harnack path joining (Zy, 79) to (¥, s) along C(Yy,Y), to
obtain (3.10) by Harnack’s inequality [M, Theorem 1]. This proves Claim 1. ]
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Case 2. For every point (¥, s) on the back face of S, we have 6(Y, s) > €'r/200.

In this case, we slide the back face of S forward in time until we reach, for the
first time, a point (Yy, so) with (Y, s9) = €'r/200. Note that necessarily,

(3.11) so < inf{r : (x,1) € Ax(xo, o) for some x} — (¢'r/200)?
(otherwise, we would have stopped sooner when sliding the back face forward). In
particular, by Remark 1.28,

So < fp— (ar)2 .
If we denote the boundary of the resulting rectangle by §;, then by construction
(Yo, 50) is on the back face of S . Since (3.2) holds for the point (Yo, 59), we may

then repeat the argument in Case 1, but with S in place of S;. Consequently, we
have the following.

Remark 3.12. Estimate (3.10) holds, provided either that

’ ’

€ ’
: >
zoor}’ or (Y,s)eS; n{(Y.,s) 6(Y,s)_200r},

in the scenarios of Case 1 and Case 2, respectively. Moreover, in Case 2, t = so on
the back face ofS,’(, and by (3.11), so < ¢ for any (x, 1) € A.(xo,f0) = Or(x0, 1) N Z.

(Y,s) € Sx N{(Y,5) : 6(Y,5) >

Case 3. For every (Y, s) on the back face of S, we have 6(Y, s) < €'r/200.
In turn, there are two sub-cases.
Case 3a: For every point (Y, s) on S, we have §(Y, s) < €'r/200. In this case, the

scenario of Remark 3.7 applies to every point (Y, s) € S, and therefore (3.8) holds

for all points on S.

r.
200
Recall that S = 40, (xo, 1), where 7, = (5/4 + (k + 1/2)/(4))) r. Consider the

part of O (xo,p) where 1 —’r\k2 < s <ty — r? and call this region EC Note that

Case 3b. There exists a point (Y*, s*) on Sy, with 6(Y*, s*) =

|’I7<|. ~ "2, Cover Iy by a union of pairwise non-overlapping half-closed sub-cubes
{Q'};, such that €'r < [(Q) < 2€'r.

Claim 2: For € small enough, at least one of the sub-cubes Q' misses  (and thus
also 9Q by (3.1) and the fact that 7y < T4x)-

Assume the claim momentarily. Then there exists a point (Z,7) € Q' such that
6(Z,7) >> €'r/200. In the present scenario, 6(Y, s) < €r/200 for every (¥, s) on the
back face of S, thus, there exist § with s = 7 —Tkz < §<T,and §(Z,3) = €r/200.
If we shrink S by sliding the back face forward, increasing the time coordinate
of the back face to §, and denote the boundary of the resulting rectangle by S7,
then by construction, (Z, §) lies on the back face of S,’C. We can therefore follow
the argument given in Cases 1 and 2, with (Z, §) playing the role of (¥, sg), to
find that Remark 3.12 continues to apply in Case 3b as well. We note in particular
that by construction # = § on the back face of S/, and § < 1y — r> < ¢, for all
(x, 1) € Or(x0,10) N X.

Proof of Claim 2. Suppose not. Then every Q' meets X. Hence there exists ‘another
parabolic cube Q' such that Q' > Q', I(Q") = 4I(Q') and the center of Q' is on
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Z. By a rudimentary covering lemma argument, there exists a pairwise disjoint
subcollection {Q'/} j» with cardinality # Q') I #{Q'};, such that

|Jso' > o =T
j i

Let FI; be a fattened version of 7;(, of comparable dimensions, such that [ J; éif C Zc
Then using disjointness and upper ADR, we obtain

(3.13) > (@7 n3) <ol NE) < Mer™ .

J
Using lower ADR, we obtain

(3.14) D (@1 NE) 2 MO (€™,

J

where as above, #{éif} = cardinality of {Q'/}. However,

+2
~ (6/)—}1—2

#HOU) ~ #O') ~

~ (E’}")n+2
Therefore (3.14) becomes

n+1

+1
>> Mor'™,

(3.15) D@ nD) 2 (@A

J

E,
for € ~ € small enough, contradicting (3.13). |

Combining Remarks 3.7 and 3.12, and our observation that the latter remark
continues to hold in Case 3b, we see that for (Y, s) € S (in Cases 1 and 3a), or
(¥, s) € §}, (in Cases 2 and 3b),

1 < CO¥S(Up) + Cew™(F).

Moreover, letting #; denote the value of 7 on the back face of Sy or S, as appropri-
ate, we see that in every case, f;, < f for every (x,1) € A,(xg, ty) := Qr(xp, 1) N Z.
Consequently, by the weak maximum principle,

(3.16) W (A (x0, 1)) < Cw™ (Uy) + Cew™(F),

for every (Y, s) € Qi := (Q\Ry)N{s > #}, where Ry is the closed cube, or rectangle,
whose boundary is given by S or § l’( In addition, in every case, f; < fo — (ar)?,
and Ry C Qq,(xp, fo), so in particular, in (3.16), we may take

(Y, 5) € (Q\ Qar(x0,70)) N {s > to — (ar)}.
For (Y, s) in the latter set, we sum (3.16) in k to obtain
€W (A (X0, 10)) < Cw™ (g, (x0, 1)) + Cew™(F),

since the sets Uy, are disjoint and are all contained in Q»,(xo, fo), and the cardinality
of the index set {k} is of the order 1/e. We now multiply by € to reach the conclusion
of the lemma in the special case that s > oy — (ar)?.

Let us now remove the latter restriction. Recall that the set E(T') is defined in
(2.1). Observe that t > ) — r2 for every (x,1) € Ay(xp,ty), so thatif s < 7y — P,
then w*(A,(x9,19)) = 0, and there is nothing to prove. It therefore remains to
treat the case fo — 2 < s < o — (ar)®. In this case, by an elementary covering

argument, we may cover the set A,(xg, fo) N E(s) by a collection of surface cubes
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(A, Ai = Qi NZ, where A; = Ac(xi, 1), with (x;,1;) € X, 1; < 5, and where ¢
is a universal constant chosen small enough that 2Q; C Q»,(xo, tp); moreover, this
can be done in such a way that the cardinality N of the collection is bounded by a
universal constant (depending on dimension). Thus, choosing " > 0 small enough,
depending on ¢ and our previous choice of 7, we have that for F C Ay, (xo, tp),

o(F) > (1 =)o (Axr(x0,10)) = o(FN2A)>(1-n)0c(2A).

Since s > t; (hence in particular s > ; — (acr)?), we may therefore apply the
previously treated special case to each A;, to deduce that

W™ (Ax(x0,10)) = " (A(x0, 10) N E(s))

N N N
< > WM @A) <€) WA +C Y W (F N 24
i=1 i=1 i=1

< New"S (Mg (x0, 1)) + NCew™ (F).

O

4. Proor oF THEOREM 2.10

Proof of Theorem 2.10. Recall that either L is the heat operator, or else we assume
that the continuous Dirichlet problem is solvable for L in Q; in either case then, the
associated caloric/parabolic measure w = wy, exists.

The main step in the proof is to show that (1) implies (2). We turn our attention
to this matter first. The implication (2) implies (3) follows routinely from the den-
sity of C.(Z) in LP(Z), and the self-improvement property of weak-reverse Holder
weights. We omit the details, except to mention that in order for the non-tangential
convergence to hold in a non-vacuous way, one should impose some extra assump-
tion to guarantee that the “cones” defined in (4.3) below are non-empty at infinitely
many scales less than one, o~ almost everywhere on X; an interior corkscrew condi-
tion is more than enough. The implication (3) implies (1) will be proved at the end
of this section.

(1) implies (2). Recall that Ry := diam(X) € (0,c0]. We assume that for every
ko € (0, 1), and for each A = Q,(xp, o) N X, with (xo, ) € Z, to — Tyin = K()R% and
r < \KoRo/2, and for all (Y, s) € Q\ Q4,(x0, %), we have w** < ¢ in A, and there
exists some ¢ > 1 such that k% € weak-RH (A), with uniform constants, i.e. (2.11)
holds for the Radon-Nykodym derivative k*** := dw"* /do-, with ¢ and the implicit
constants independent of A and (Y, s); equivalently, w** € weak-A(A), with uni-
form control of the constants. Let x; € (0, 1), and set xy := k1/100. Suppose that
To — Thin > Kle = IOOK()R(Z). Let f be continuous on d,LQ2, with compact sup-
port in X270, and let u be the parabolic measure solution of the continuous Dirichlet
problem (see Definition 1.17) for L with data f, in Q. For convenience, we shall
treat the case T),;;, > —oo; the proof in the case T,,;,, = —oo is similar, but slightly

simpler, and we leave the details to the interested reader.
Our goal is to show that for p = ¢/(g — 1), and for all (x, 1) € 7o,

4.1) Nou(x, 1) £ (MAFP e, 1)'7P
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where M denotes the parabolic Hardy-Littlewood maximal operator on X, and
hence that (1) implies (2).

To this end, we begin by defining non-tangential “cones” and maximal func-
tions, as follows. First, we fix a collection of parabolic closed Whitney cubes cov-
ering 2, and we denote this collection by “W. We also fix a constant v > 0 small
enough so that, for each Whitney cube I, its concentric parabolic dilate /* := (1+v)/
also satisfies the Whitney properties. We will denote the collection of analogously
fattened Whitney cubes “W*.

Given (x,1) € X, set
4.2) W, t):={ €W :diam(l) < 10Ry and dist((x, 1), ) < 100 diam(/)},

and define the (possibly disconnected) non-tangential “cone” with vertex (x, f) by

(4.3) T(x,1) = int[ | I*] ,

IeW(x,1)

where int(A) denotes the interior of the set A. For a continuous u defined on €, the
non-tangential maximal function of u is defined by

4.4) N.au(x,t) ;== sup |u(Y,s)|.
(Y,5)ET(x,1)
We now turn to the proof of (4.1).

Splitting f into its positive and negative parts, we may suppose without loss of
generality that f > 0, hence also u > 0. Let (x,f) € X and fix (Yo, s9) € T(x,1).
Then (Yy, so) € I, for some Iy € ‘W(x, ) such that

4.5) r = 6(Yo, so) ~ diam(lp) = [|(x, 1) — (Yo, so)l| -
Of course, by definition of W(x, ) we have r < KRy, for some sufficiently large
universal constant K.

Let

Qo := Q((x.0).7), Qk:=2Qo=0Q((x.0,2"r), k=12.3..,
and define corresponding surface cubes and subdomains:
(4.6) A:=0rnNXE, Q:=0,NQ, k=>0.

Define a continuous partition of unity > ;-o¢x = 1 on Z, such that 0 < ¢ < 1 for
all £ > 0, with

4.7) supp(¢o) C Ay =: Ro, supp(ex) C Ri := Ao \ Ar, k> 1.

Set fr := for, and let u; be the solution of the initial-Dirichlet problem in or = Q,
T = Ty, with initial data (at time ¢t = T,,;,) equal to zero, and data f; on X.
Observe that since we are treating the case Ty, > —oo, and hence by assumption
diam(X) = Ry < oo, the boundary annulus Ry, k > 1, is empty if 2kr > Ry; for such
k, we have that f;, and hence uy, are identically zero. Thus, we may restrict our
attention to those k for which 287 < Ry, so that u = 20<k<log,(Ro/r) Uk 10 €2 (it may
happen that » > Ry, but in that case only the term k£ = 0 appears in the sum, and the
following proof may be simplified considerably; we omit the very routine details).

Let us first observe that for each k > 0, and (Y, s) € Q,

(4.8) up(Y, s) = ff filz, T) dw™(z, 7).
R {To<t}
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Indeed, since f is supported in 70, it follows that uy is zero for s < T.

We now fix a sufficiently large integer N to be chosen momentarily, and we
claim that
N
49) D (Yo, 50) S (M(fP) 0 0)!17

k=0

To see this, we begin by recalling that by assumption, T — T}, > IOOKQR%, and by
construction, r < KRy, for a suitably large universal constant K. We may therefore
cover Qn+2 N{(X,7) : Ty < 7} by a collection ¥ of pairwise disjoint half-open
parabolic cubes of parabolic sidelength br, where b is a sufficiently small number
to be chosen momentarily, in particular with 0 < b < +/ko/(100K).

Let ¥ := {0 € o : O meets X}, and for each Q € F, let Q. be a cube centered
at (x.,t.) € X, containing Q, of parabolic sidelength £(Q.) = 5¢(Q) = 5br, so that
20, c 100Q. Then for b suitably small, (Yy, sg) € Q \ 40, by (4.5). Thus, setting
A = Q.NZ, we note that by hypothesis, we may apply the reverse Holder estimate
(2.11) with A = A, and with (Y, s) = (Yp, s9). Let F. denote the collection of all
such Q..

Since Zf{vzo Sk is supported in Ayip = On42 N X, we then have that

N
Yty < Y [[ fendoien
=0 Q.. VYA

« 3o ff o) (ff yar)
s (f "

0.€F

where in the last step we have used the fact noted above: that the weak reverse
Holder estimate (2.11) may be applied to each A, uniformly. Now by the ADR
property, 0(An13) = 0(AN+2) ®nnkx O(As), and by construction, we may sup-
pose that each A, is contained in Ay,3. Consequently, for each A, we have

H 1o s . 170 50 MOTIED.
Ay Ans3

Since card(7,) < C(N, n, b), with b in turn depending only on ky and K, the claimed
bound (4.9) now follows.

Next, we claim that for k > N + 1, with N chosen large enough,
(4.10) (Yo, 50) $ 275 (M(f7)(x, 1) 17
from which the desired bound (4.1) follows immediately, since (Yp, s¢) is an arbi-
trary point in Y(x, f).

Recall that € is defined in (4.6). We now fix N, depending only on the implicit
constants in (4.5), such that (¥p, so) € Qu_;. Having fixed N, we will allow implicit
and generic constants to depend on N without noting such dependence explicitly.

Fork > N + 1, set
Wy :={l € W: I meets Qr_n}.
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Note that for N chosen large enough, depending only on the Whitney construc-
tion, we have that

.11 U ' c Qus.

Since f; vanishes in Ag, by Lemma 2.5, we have
4.12)  w(Yo, s0) s 274240 f f TR RPN f f .
Qk’N IGWk Y

Note that for each I € ‘W, by the definition of I*, we may fix a point (Y;, s7) € oI*
such that s; > T; + v&(I)%. Note also that in particular, (Yy, sy) € Qk_3, by (4.11).

For every (Y, s) € I, by (4.8) we then have that by Harnack’s inequality,

ur(Y, 5) = f f filz, ) dw™(z,7) < f f filz, D) dw"1(z,7) .
Rkﬁ{T0<T} Rkﬂ{T()<T}

Recall that since we are treating the case T, > —oco, Ry < oo, we need only
consider k such that

2kr < Ry < V(T = Tpnin)/(100k0) .

We now choose a collection of surface cubes Fj, = {Af.‘ = Qi.‘ N X};, of parabolic
sidelength K(Qf) = ko 2%r/100, whose union covers R, N {T < 7}. Note that we
may do this in such a way that each Af C Ag+3 \ Ax—1, and the cardinality of ¥ is at
most C(n, kp), uniformly in k. Note further that by construction, the reverse Holder
estimate (2.11) may be applied uniformly in each Ai.‘ € Fx, with pole at (Y, sp).
Consequently, for each I € Wy,

4.13 < |I , 1) dw’(z,
( >ffluk<||;ff¥fk<zr>w @)
1/p . 1/q
<|I A H Pd H ks g
<||;k0( ’)( d U] ( ) U]

1/p
Y ( HA k f”d(f) S I MUY 0)'7
Fr i

where in the last step we have used the bound on card(¥%), along with ADR and
the fact that diam(Af) =y, diam(Az,3). Note that (4.11) implies in particular that
Drew, M S (2kryn+2, Plugging estimate (4.13) into (4.12), we therefore obtain the
claimed bound (4.10), and hence that (1) implies (2).

(3) implies (1). We again treat only the case T}, > —o0, Ry < oo, as the proof in
the case T,,;, = —oo is similar, but simpler. Fix o € (0, 1), and a point (xg, fg) € Z,
with tg — Tyin = K()R%. Let 0 < r < 4/koRo/2, and set A = Q,(xo, fp) N X. Our goal
is to show that the reverse Holder estimate (2.11) holds for this A, and to this end,
it is actually enough to verify (2.11) uniformly for each A’ = Q. (x1,t)) N X C A,
with (x1, 1) € A, where ¢ is a fixed small positive number to be chosen. Indeed, the
reverse Holder estimate for all such A’, with pole (Y, s) € Q \ Qu4,(x0, tp), implies
that for A, with constants depending on €. In turn, by Lemma 2.7 and Lemma 2.9,
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it is enough to show that there are uniform constants 6, 8 € (0, 1) such that for every
(X, 1) € Ooer(x1,11) N Q, if E C Ay, is a Borel set,

(4.14) o(E)2 (1 -0 o(Ax,) = w™(E) 2B,

where as above, Ay, := XN Q0x, =X N O(X, 1), 20%6(& 1)).

We fix A’ and (X, ) as above. Let (£,7) € X be a touching point for (X, 1), i.e.,
(X, 1) = ||(X, 1) — (%, 1)||l. We now choose & small enough, depending on M1, a, and
Ko, such that for (X, 1) € Qyer(x1, 1) N Q, where (x1,1;) € A is the center of A’, we
have 200M,6(X, t)/a < +/koRo/1000, and also

A

min(t — Tyin, t — Tiin, Tmin(A/) = Thmin, Tmin(AX,l) = Tin) > KORé/2 .

Set k1 = k9/100, and set Ty := Ty + KlRé. Let f € C.(Ax,) be non-negative,
with || fllz»zy < 1. By assumption, the solution u to the initial-Dirichlet problem in
Q' with data f, enjoys the estimate

(4.15) IN:ullrrsy <o WfllLr) =i 1s
for some p < 0.

Set ' := 6(X,1)/10. Let I € W be a Whitney cube containing (X, 7), and note
that I € ‘W(z, 1), for every (z,7) € A” := Q,(%,7) N T (see (4.2)) and therefore

1/p
u,s) < (J[ (N.u)? do) , Y, er
A//

(see (4.3)-(4.4)). Thus, by [M, Theorem 3], we have

1/p 1/p
ulX,t) < (ﬁ (u(K S))dedS) < ( (N.u)? dO’) < 8(X, t)—(n+1)/p 7
l* A’/

where in the last step we have applied the lower ADR estimate to A”, and used
(4.15). In turn, taking a supremum over all non-negative f € C.(Ax,) such that
l/1l, < 1, we obtain by Riesz representation that

1/q
(4.16) ( f f (kX”)qda) < 8(X, 1) Ip
Axy

withg = p/(p - 1).
We now claim that the latter estimate implies (4.14), for suitable 6, 8 € (0, 1), in
which case we are done. To prove this claim, note first that by ADR,

(4.17) o(Axy) = 6(X, 0"

Let E C Ay, satisfy the left hand estimate in (4.14), and set A := Ax;\ E, for 8 > 0
to be chosen, so that

(4.18) 0(A) < 00(Ax,) .
Then

1/q
WwS(A) < o(A)P ( f f (kx’f)" dcr)
Ax,

< O'(A)l/p(S(X, t)—(”+1)/l? < /P ~ 91/PwX,I(AXJ),
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where in the last three steps we have used (4.16)-(4.18), and then Lemma 2.2.
Taking complements, and using Lemma 2.2 once again, for 6§ small enough we
obtain (4.14). m|

5. Two APPLICATIONS

In this section, we briefly discuss two applications of our main result, Theorem
1.6. The first is an extension of a result proved in [NS]. We refer to [NS] for
definitions of the terms not previously defined in the present paper.

Theorem 5.1. Let Q c R"! satisfy a time-synchronized two cubes condition, and
suppose that T is parabolic uniformly rectifiable (in particular X is globally ADR).
Then caloric measure w satisfies a local weak-A condition with respect to o,
equivalently, w < o and the Radon-Nikodym derivative dw/do verifies the weak
Reverse Holder condition (1.7).

A few remarks are in order. In [NS], the authors obtain a similar result, but
assuming in addition that Q satisfies a parabolic Harnack Chain condition. Our
Theorem 1.6 allows us to dispense with the latter connectivity assumption in The-
orem 5.1. The conclusion in [NS] is that w satisfies an A, condition (which entails
doubling) with respect to o, but in the absence of connectivity the non-doubling
weak-A./weak Reverse Holder conclusion is best possible. We remark that the
aforementioned result of [NS], and our Theorem 5.1, are the parabolic analogues
of results proved in [DJ] and in [BL], respectively.

The hypotheses of the theorem correspond to the case Ty, = —00, Tiax = 0.
A sketch of the proof is as follows. One first invokes the deep fact proved in [NS,
Theorem 1.2] that under the hypotheses of Theorem 5.1, one obtains an interior
“big pieces” approximation (see [INS] for the precise definition), analogous to that
proved in the elliptic setting in [DJ], by domains of the sort considered in [LM]. By
the result of [LM], plus a standard maximum principle argument, one obtains the
(6, 8)-local ampleness condition 1.5. In addition, it is not difficult to show that in
the presence of ADR, the time-synchronized two cubes condition of [NS] implies
global time-backwards ADR (in fact, it implies a time-symmetric version of ADR,
in which one has thickness both in A; and in A}). At this point, the conclusion
follows by Theorem 1.6.

A second application of Theorem 1.6 will appear in our forthcoming joint paper
[GH]. We state the result here, but refer the reader to that paper for details.

Theorem 5.2. Let Q ¢ R™!, whose quasi-lateral boundary X is globally ADR and
time-backwards ADR. Suppose that the Dirichlet problem is “BMO-solvable” in
Q. Then caloric measure w satisfies a local weak-As condition with respect to o,
equivalently, w < o and the Radon-Nikodym derivative dw/do verifies the weak
Reverse Holder condition (1.7).

The result is a parabolic version of the main theorem of [HLe], which in turn
entailed removing all connectivity hypotheses (in particular, the Harnack Chain
condition), from earlier elliptic results of [DKP] and [Z]. We refer to [GH] for a
precise formulation of the BMO-solvability statement in the parabolic setting.
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AprPENDIX A. PROOF OF BOURGAIN-TYPE ESTIMATE, LEMMA 2.2

Proof. Let (xq, 1) € Z,and let 0 < Mr < \tg — Tpnin/(4+/n), where our goal is now,
equivalently, to show that wX!(Ay, N E(T)) > 1, for all (X, 1) € Qur/a(x0,10) N Q,
with X time-backwards ADR on Ay = Qprr(x0,10) N X, and M is a large enough
constant depending only on A, n and ADR (including time-backwards ADR). Here,
E(T) is defined as in (2.1), with T = Tyax(Qur/2(x0, t0)) = to + (ar)?/4. We then
obtain the conclusion of Lemma 2.2 with M; = 2M.

We continue to assume either that L is the heat operator, or that the continuous
Dirichlet problem is solvable in Q for L.

Claim 1. There exist numbers a € (0,1/2) and b € (0, 1), depending only on n
and ADR (including the time-backwards ADR constants), such that if X is time-
backwards ADR on A = A, = £ N Q,(xo, ty), then

(A.1) (T(Q;(xo, to — (ar)®) N Z) > O'(Ar_ N {t <fo— (ar)z}) > bt
Proof of Claim 1. Observe that

Q; (x0.t0 — (@) > 07 Nt < 19— (@r?} .

Thus, the first inequality in (A.1) is trivial, so we need only prove the second. Set
D, = 07 (x0,10) N {ty — (ar)> <t < 1p) and take @ = 27, where m > 1 will
be chosen large enough. We then decompose @, into sub-cubes, with parabolic
length ar, all of equal size, and denote these cubes by Q! . As the n-dimensional
measure of the face of each QZ, with ¢ = 1y is (ar)", and the n-dimensional measure
of the face of Q; (xo, fp), again with ¢ = o, is 7", there are a™" such sub-cubes Q' .
Hence,

a*n
— i
(Dar - U Qar'
i=1

By upper ADR of Q' N X, this yields in turn that

—n

a
c(ENd,) < M Z(ar)"“ < Moar™.
=1

Therefore, if we choose a < (2My)~ !¢, where ¢ is the constant in the definition of
time-backwards ADR,

(A.2) o(ENd,) < %cr”“ < %0’(2 N Q; (x0, 1)) -
Consequently, since Q7 (xo,1) \ ®or = Q7 N {t <fy— (ar)z},
o (A7 nft <10 = @?}) = o (2N (QF (x0.10) \ Dar)
> %O‘(E N Q5 (xo, 1p)) > %cr””,
where we have used time-backwards ADR in the last step. |

To prove the estimate of Bourgain-type we will use (A.1). We follow the proof
in [Bo], adapting it to the parabolic setting. Set

(A.3) A= Q7 (x0, 10 — (@) N,
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and define
!
(A4) ulX, 1) = f f L(X, 1, y, 5) xz(v, ) dos(y)ds,
—o0 J3,

where ['(X, ¢, Y, s) is the fundamental solution of L. In [QX], the authors prove the
following inequality:

1 NIX =y
WGXP (‘? Xi=s) < T(X,1,,9)
N X — yI?
A5 <N ~ |
( ) = (l _ S)n/2 Xp( N(t — S) Xit>s)

where N depends on dimension and A.

Remark A.6. In fact, in [QX], the authors obtain this inequality in the more general
situation that the non-symmetric part of the coefficient matrix A belongs to BMO.

Claim A.7. The function u defined in (A.4) satisfies the following properties: there
exist constants C; and ¢, depending only on ADR, A, and #n, such that

(1) uis continuous in R™!, Lu =0in Q, and u = O for {r : 1 < to — fTrz}.

(2) 0 <u < CyrinR™ 1,

(3) u(X,1) > cor, for (X, 1) € Qurjp N Q, where Qur/a 1= Qur/a(X0, o).

(4) (X, 1) < CyM™"r, for (X, 1) € Q\ Qurj2. Where Qa2 := O ((x0. 10), %7).

Property (1) follows by definition of u, and the fact that (ar)*> < r*/4. Let us
now verify the remaining properties.

Proof of property (2). Certainly, u > 0, by definition. To prove the upper bound
for u, we first note that

(A.8) IX,t,y,8) Spa X =y, t=slI™",

as one may readily derive from (A.5) and the definition of the parabolic distance;
we omit the details.

Next, we split u as follows:

ulX,t) = fj:F(X, t,y,s)do(y,s)
A

=ff; Fd0'+ff; I'do =: I+11I.
AN{[|X—y,t—s||<r} AN{[|X—y,t—s|>r}

By (A.8), the integrand in term /7 is at most Cr™", hence,
115 r "o s r " < Cr,

by upper ADR, where C = C(ADR, n, A).
In term I, we will dyadically decompose A:=AN{IX - v, t — || S r}. Define

Ap={Ons) e A: 27 r < IX =y, 1= sl <275}
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As A C A, we can use upper ADR on Ay, along with (A.8), to obtain the following

estimate:
<) [ vty
k=0 YAk
<y e*nT f f do(y, )
k=0 Ak
s Z(Z—k—lr)—n(z—kr)n+l S Cr,
k=0
where C = C(ADR, n, 1). ]

Proof of property (3). As (y,s) € A and (X,1) € Q¢ N Q, we have that
to— (ar)? —r* < s <ty — (ar)?,
7 1( Y <t<ty+ 1( )?
0 4 ar 0 4 ar)-.

Hence

1 5
t—s<ty+ Z—l(ar)2 —(th — (ar)2 - r2) = Z—l(ar)2 +r*, and

1 3
t—s>1t)— —(ar)2 —(th — (ar)z) = —(ar)z.
4 4
Overall, this gives us that f — s ~ 72, with implicit constants depending on a. Since
|X — xo| < rand [y — xg| < r, by the triangle inequality we have |X — y| < r, hence,
—1X —y|2 > —r.

Combining the above estimates, as well as using ADR, we obtain that

1 NIX -y
o [ e G et

[ ool 2o

>r "O'(A) > > oor,

by (A.1) and the definition of A (A.3), where ¢ = cp(n, ADR, 1) > 0 (recall that by
Claim 1, a depends only on n, ADR and time-backwards ADR). |
Proof of property (4). As (y,s) € A and (X,1) € Q\ QOwmr/2, we have that

X, 1) = 3, Il = [ICX. 1) = (xo. 1)1 = [I(x0. 0) = . | = leMr = Cr| 2 M,

provided that M is chosen sufficiently large. Combining the latter estimate with
(A.8), we have

u(X, 1) Sp1 (Mr) "o (A) < CM ™,
where Ci = C1(n,ADR, ). O

1
Claim A.9. Seti(X,1) := —
-

u(X,t)— sup u] . Then i satisfies the following:
Q\Qur2
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(i) @ is continuous in R™! Li = 0in Q, and & < 0 in Q \ Owmr/2, and in
{t:t<ty—32r2
(i) |@(X, 1| < 2C; in Q.
(i) a(X,1) > %cz for (X, 1) € Qurj2 N Q, provided M is large enough.

Indeed, property (i) follows immediately from Claim A.7, property (1), and the
definition of i; property (ii) from Claim A.7, property (2), and property (iii) from
Claim A.7, properties (3) and (4). We omit the routine details.

Recall that E(T) is defined as in (2.1), with T := Tyux(Qur/2) = to + (ar)?/4.
Claim 2. w*'(Ay, N E(T)) 2 (X, 1), for
X, 0) €Q:=QN QyyppN{t:1>19—572/4NET).

Proof of Claim 2. Let0 <& < r. Set Q, := QNE(T —¢). Observe that by property
(1) and the definition of €,

PQ, C (it <0} U (Qura NENET)) C {i < 0}U (Ay, N E(T)) .

The claim then follows with Q, in place of Q, by property (ii) and the weak maxi-
mum principle. The full claim follows by letting € — 0, |

Note that Qur» N Q € Q, since to — (ar)?/4 < t < T in Qg,. By Claim A9,
property (iii), we have that (X, ) > %cz for (X,1) € Qurj2 N Q. Thus, for such
(X, 1), by Claim 2 we obtain

1
32 SAX0 S WS (Apy).

This finishes the proof with n ~ ¢;. m|

AprPENDIX B. ProOF oF HOLDER CONTINUITY AT THE BOUNDARY, LEMMA 2.5

As above, given a cube Q, centered on X, and a fixed time 7', we set Q0 := Q,NC,
and Q,(T) := Q, N E(T), where we recall that E(T) is defined in (2.1). We first
state a version of Bourgain’s lemma for supersolutions.

Lemma B.1 (Parabolic Bourgain-type Estimate for supersolutions). Let (xg, fy) €
%, andlet 0 < r < \tg — Typin/(4\n). Set Oy := Qr(x0,10), Qur/pt, = Q(x0, 10), i
and define

T = Tmax(Qar/Ml) =1+ (aMl_lr)z .
Assume that X is time-backwards ADR on A, := Q,NZ. Then there exists Mi,n > 0
such that if w is a non-negative supersolution in Q.(T), withw > 1 on A, N E(T)
in the sense that

liminf w(X,5)> 1, (y,5) €A, NET),
X,0—(,5)

then
wX,t)>n, VX1 €Qum,.

The proof is identical to that of Lemma 2.2: replace r by Mr (with 2M = M),
build the same auxiliary solutions u# and i, and then apply the weak maximum
principle as before. We omit the details.

We next establish the following Holder continuity statement for subsolutions.
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Lemma B.2. Suppose that X is time-backwards ADR on Qy, := Q»,(xo, ty), with
(x0,10) € Zand 0 < r < 'ty — Tpnin/(8\n). Then there exists C = C(n,ADR),a =
a(n,ADR) > 0, such that if v is a non-negative subsolution in Q.(T1), which
vanishes continuously on Ay, N E(Ty) := Oy N XN E(Ty), then

v(Y, 1) SC((S(L’:Q) M), Y, 1)eQ,,

where Ty := Tyax(Q)) = to + 1%, and M(©v) := SUPQ,, (1)) V-

Proof of Lemma B.2. If M(v) = oo, there is nothing to prove, so we may assume
that M(v) < oo. Normalize v so that M(v) < 1,andsetw :=1—v. Then0 <w <1
in Q3,/2(T1), and w = 1 on Ay, N E(T1). Then by Lemma B.1, there exists M, > 0
such that w(Y, r) > n, and therefore

v, <1—-n, YX0e Qg (x,l) Q.

Iterating, and using the fact that similar estimates hold with Q3,/2(xo, fp) replaced
by O,2(x1, 1), for (x1, 1) € A.(xo, o), we obtain the conclusion of the lemma. 0O

Proof of Lemma 2.5 (Holder Continuity at the Boundary). Set
T1 = Tiax(Qr(x0,10) = to + 1°,
Set M(u) := supq, ) u. The first step is to establish the estimate
oY1)
r

@
(B.3) u(¥,n < C( ) M), V(1) €Q,,
where u is the parabolic measure solution with non-negative data f € C.(9,L2), with
f =0on Ay,. If Lis adivergence form parabolic operator for which the continuous
Dirichlet problem is solvable, then estimate (B.3) is a special case of Lemma B.2,
since a non-negative solution is in particular a non-negative subsolution.

On the other hand, suppose now that L is the heat operator. In this case, we
need not assume a priori solvability of the continuous Dirichlet problem; rather
we shall use Lemma B.2, and the Perron construction (see [W2, Chapter 8]). By
resolutivity of C(9,£2), the caloric measure solution is the Perron (more precisely,
PWB) solution, and is given by

u:sup{v: ve.[jf},

where, since f > 0, without loss of generality the lower class L consists of all
non-negative subcaloric v satisfying

limsup v(X,1) < f(y,5), (,5) € 0,0,

X.N—=(y.5)
and

limsup v(X,?) < f(y,5), (,5) €0 Q.
X.N-(y,s%)

In particular, since Ay, € £ C 0,Q (recall that 9;,,Q N Ay, = 0, by the time-
backwards ADR assumption; see Remark 1.26), we have
0 < limsup v(X,1) < f(y,5) =0, (,5) € Ay,
X.0—(,5)
for all v € Ly. Thus, each such v vanishes continuously on A,,, and therefore
Lemma B.2 may be applied to any v € L.
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If M(u) = oo, then (B.3) is trivial, so after normalizing, we may suppose that
M(u) < 1. By the PWB construction, we then have M(v) := SUPQ,, (1) V < 1, for
all ve Ly. Given &€ > 0, and a point (Y, ) € Q,, we may choose v € L such that

ul, ) <v¥,nH+e.

Applying Lemma B.2 to v, with M(v) < 1, and letting £ — 0, we obtain (B.3).

With (B.3) in hand, it remains to replace M(u) by an integral average. To this
end, we first observe that u vanishes continuously on A,,. Indeed, in the case that
the continuous Dirichlet problem is solvable for L, this fact holds by assumption.
On the other hand, in the case that L is the heat operator, or an operator with
C'-Dini coefficients, we may use the time-backwards ADR assumption (and the
Wiener-type criterion of [EG], or of [FGL]) to deduce that every point in A, is
regular (see Remark 1.24). Thus, in either case, u# vanishes continuously on Aj,.
We may then extend ¥ = 0 in Oy, \ ﬁ, and we call this extension it. Observe that
it > 0 and i is a subsolution in Qy,. Therefore, by local boundedness [M, Theorem
3], recalling that T = T, (Q,) = to + %, we obtain

(B.4) Mu)= sup @< ff h=Crn? f f u.
Q32NE(T) 02NE(T) (1)

We note that Theorem 3 in [M] is stated with an L” average, p > 2, on the right
hand side of the inequality, but in hindsight, this may be sharpened to an L! av-
erage, using a well-known self-improving property of weak reverse Holder esti-
mates. O

AprpPENDIX C. ProOF oF LEMMA 1.14

Proof of Lemma 1.14. We prove that the essential boundary 9,2 and quasi-lateral
boundary X are closed sets. In the case of d,€, by definition it is equivalent to
show that the singular boundary 0,Q is relatively open in 0Q. To this end, fix
Xg = (x0, %) € J5Q2, and note that by definition, there is an £ > 0 such that

Q; = 0;(x0)cQ, and Qf :=Qf(xg) cR""\ Q.
Since Qf is open, we therefore have that
OF Cint®""\ Q) =: Qey,

where int(A) denotes the interior of A. Consequently, if x = (x,) € dQ N O,
where Q. := Q.(Xp), then X lies on the interface between Q; and Qf, i.e., on the
time-slice (Q;);,. It follows that for any such x, there is an &’ = &’(x) > 0 such that

0.,x)cQ, and Q.(x)cR™\Q,

i.e., X € 0,Q, by definition, and thus d,Q is relatively open, as desired.

To see that X is closed, we first note that (0,Q)r,,, is relatively open in 09, by
the preceeding argument. Thus, we need only observe in addition that the time
slice (BQ)r,,, is also relatively open in 0Q (assuming that 7,;, > —oo; otherwise
there is nothing to prove). But this follows directly from the fact that under the
change of variable r — —¢, which maps ) into an open set that we denote Q*, the

time-slice (BQ)r,,,, is mapped onto (0,Q%)7,,. ). O

min
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