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Abstract. Following a result of Bennewitz-Lewis for non-doubling harmonic

measure, we prove a criterion for non-doubling caloric measure to satisfy a weak

reverse Hölder inequality on an open set Ω ⊂ Rn+1, assuming as a background

hypothesis only that the essential boundary of Ω satisfies an appropriate para-

bolic version of Ahlfors-David regularity (which entails some backwards in time

thickness). We also show that the weak reverse Hölder estimate is equivalent

to solvability of the initial Dirichlet problem with “lateral” data in Lp, for some

p < ∞, in this setting.
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1. Introduction

It is well known that for a Lipschitz domainΩ, the Dirichlet problem for a diver-

gence form uniformly elliptic equation Lu = − div A∇u = 0, with data in Lp(∂Ω),

is solvable for some 1 < p < ∞ if and only if elliptic-harmonic measure for L is

absolutely continuous with respect to surface measure and the Poisson kernel satis-

fies a reverse Hölder condition with exponent p′; see [Ke] and the references cited

there. In particular, in the case that L is the Laplacian, the Poisson kernel satisfies
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2 ALYSSA GENSCHAW AND STEVE HOFMANN

an L2 reverse Hölder inequality, and therefore the Dirichlet problem is solvable

with data in L2(∂Ω) (see [Da]).

In this paper we prove a parabolic version of a result of Bennewitz-Lewis [BL],

who gave a criterion for nondoubling harmonic measure to satisfy a weak-A∞ con-

dition, or equivalently, for the Poisson kernel to satisfy a weak reverse Hölder

condition; see Definition 1.29 below. To put this work in context, we recall that

David-Jerison [DJ] and Semmes [S] proved that harmonic measureω on the bound-

ary of an NTA domain with Ahlfors-David regular boundary is A∞ with respect to

surface measure. The idea of the approach in [DJ] is first to prove a geometric re-

sult, whereby domains satisfying a certain two sided interior and exterior thickness

condition (that is, the two sided “Corkscrew” condition), and having ADR bound-

aries, could be approximated in a “Big Pieces” sense by Lipschitz sub-domains. As

a consequence, by the maximum principle combined with the fundamental result

of [Da], one obtains a certain local ampleness property of the harmonic measure

(see (1.5) below for the parabolic version), which may then, in the presence of the

Harnack chain condition, be self-improved to give the A∞ property.

In [BL], the authors show that this self-improvement procedure, i.e., the passage

from local ampleness of harmonic measure to quantitative absolute continuity, can

still be executed, even in the absence of the Harnack chain condition, and as a

consequence are able to extend the result of [DJ] and [S], in an appropriate way,

to much more general domains. They are able to conclude only that harmonic

measure is weak-A∞ with respect to surface measure, but on the other hand, this

conclusion is best possible: their results apply to domains in which harmonic mea-

sure need not be doubling (in particular, to the case that the domain satisfies a

uniform interior big pieces of Lipschitz graph condition and an interior corkscrew

condition, but no connectivity property, such as the Harnack chain condition).

The goal of the present paper is to extend the results of [BL] to the parabolic

setting. As regards geometric hypotheses, we assume only thatΩ ⊂ Rn+1 is an open

set whose boundary satisfies an appropriate version of a parabolic Ahlfors-David

regularity condition. In particular, we impose no connectivity hypothesis, such as

a parabolic Harnack chain condition. We may then consider the initial-Dirichlet

problem with “lateral” data in Lp, in subdomains of the form ΩT = Ω ∩ {t > T },
for appropriate fixed times T . We shall return to the latter point below.

We shall consider the heat operator

(1.1) L0 := ∂t − ∇ · ∇,
where∇·∇ is the usual Laplacian inRn, acting in the space variables. With a caveat,

to be discussed momentarily, our results may apply more generally to divergence

form parabolic operators

(1.2) L := ∂t − div A(X, t)∇,
defined in an open set Ω ⊂ Rn+1 as described above, where A is n×n, real, L∞, and

satisfies the uniform ellipticity condition

(1.3) λ|ξ|2 ≤ 〈A(X, t)ξ, ξ〉 :=

n+1∑

i, j=1

Ai j(X, t)ξ jξi, ‖A‖L∞(Rn) ≤ λ−1,

for some λ > 0, and for all ξ ∈ Rn, and a.e. (X, t) ∈ Ω. We do not require that

the matrix A(X, t) be symmetric. We reference the paper by Moser [M], where the
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results are stated under an assumption of symmetry, but in fact symmetry is not

needed: see [DK], [SSSZ], [QX].

Some comments are in order. As mentioned above, there is a caveat when apply-

ing our results to variable coefficient operators, namely that at present it appears to

be an open problem to construct parabolic measure for such operators, in the very

general class of domains that we consider here. To do so first requires that one can

solve, in an appropriate sense, the Dirichlet problem with continuous data, so that

parabolic measure can be constructed via Riesz representation. One can construct

Perron solutions (as a supremum of subsolutions) but then, to apply the Riesz repre-

sentation theorem, one needs linearity of the solution map (i.e., the map that sends

data f to the value of the solution at a given point (X, t) in the domain). For the heat

equation this works, since it is known that continuous functions on the parabolic

boundary (or, to be more precise, on the “essential boundary”; see Definition 1.11)

are resolutive for the heat equation (see [W1] or [W2]), and therefore the solution

map is linear. On the other hand, for more general parabolic operators, linearity

of the solution map would follow if one could solve the continuous Dirichlet prob-

lem, in the sense of Definition 1.17 below. A rather general result in this direction

was obtained in [CDK], where the authors assume an exterior measure condition,

backwards in time (see [CDK, Definition 1.3]). Otherwise, it would suffice to have

a Wiener criterion to ensure continuity up to the parabolic boundary, along with

enough solutions in a class to which the Wiener criterion can be applied; to our

knowledge, there are versions of the parabolic Wiener test that apply to Perron

solutions either for the heat equation [La], [EG], or to divergence form parabolic

equations with C∞ or C1-Dini coefficients [GL], [FGL], respectively; or, in the

case of general divergence form parabolic operators, to some class of weak solu-

tions (either the class V2 [BiM], or W1,2 [GZ]). It appears to be an open problem

to construct solutions of the latter sort, say for data that is Lipschitz with compact

support, except in cylindrical domains [LSU], in Lip(1,1/2) domains [BHL], and

in parabolic Reifenberg flat domains [BW]. Thus, our results will apply without

further qualification to the heat equation, or to operators with C1-Dini coefficients,

but at present, they will apply to general divergence form parabolic operators only

if one is given a priori that the classical Dirichlet problem, with continuous data,

is solvable. We observe that the capacitary conditions in [BiM, GZ] hold in our

setting: they follow from the time-backwards version of ADR (Definition 1.22)

that we assume; the obstacle to our applying these Wiener criteria, is the lack of

solutions.

Before stating our main theorem, we briefly introduce some of the concepts

and notation to be used. All additional terminology used in the statement of the

theorem, and not discussed here or above, will be defined precisely in the sequel.

For now, we note that all distances and diameters are taken with respect to the

parabolic distance (1.15), and that δ(X, t) := dist((X, t), ∂eΩ), where ∂eΩ denotes

the essential boundary (see Definition 1.11 below) of an open set Ω ⊂ Rn+1. We

further note that “surface measure” σ on the quasi-lateral boundary1 Σ, is defined

1This comprises all but the initial part of the essential boundary, and all but the terminal part of the

singular boundary; see Definition 1.11. It may seem more natural to expect that “surface measure”

should be defined on the lateral boundary, rather than on the quasi-lateral boundary; in the present

work, the ADR condition that we impose will imply that in some sense, the non-lateral parts of the

quasi-lateral boundary are fairly negligible: in particular the singular boundary will exist only at the
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by dσ = dσsds, where dσs := Hn−1|Σs
, the restriction of (n − 1)-dimensional

Hausdorff measure to the time slice Σs := Σ ∩ {t ≡ s}.
We note that for an arbitrary open set Ω ⊂ Rn+1, caloric measure may be con-

structed via the PWB method, since continuous functions on the essential boundary

are resolutive; see [W1] or [W2, Chapter 8].

For a sufficiently large (and eventually fixed) constant K1, given (X, t) ∈ Ω, set

(1.4) QX,t := Q
(
(X, t),K1δ(X, t)

)
, ∆X,t := QX,t ∩ Σ ,

where in general the parabolic cube Q
(
(X, t), r

)
is defined as in (1.10) below. Even-

tually, we shall fix K1 in (1.4) large enough, depending only on the constants in

Lemma 2.2.

For (X, t) ∈ Ω, and ∆X,t defined as in (1.4), we shall say that caloric (or parabolic)

measure ωX,t is locally ample on ∆X,t, or more precisely, (θ, β)-locally ample, if

there exists constants θ, β ∈ (0, 1) such that

σ(E) ≥ (1 − θ)σ(∆X,t) =⇒ ωX,t(E) = ω
X,t
L

(E) ≥ β ,(1.5)

where E ⊂ ∆X,t is a Borel set. We observe that if (1.5) holds for some K1 = K ≥ 2,

then it also holds with K1 = K′ > K, for some θ′ = θ′(θ,K,K′, n, ADR). Thus, we

may always fix a larger value of K1, at our convenience.

Set Tmin := inf{T : Ω ∩ {t ≡ T } , ∅} (note that we may have Tmin = −∞).

The main result of this paper is the following. Precise definitions of terminology

may be found in the sequel.

Theorem 1.6. Let Ω ⊂ Rn+1 be an open set whose quasi-lateral boundary Σ is

globally ADR. Let (x0, t0) ∈ Σ, and let 0 < r <
√

t0 − Tmin/(8
√

n). Assume that Σ is

time-backwards ADR on ∆2r = Σ∩Q2r(x0, t0), and suppose that there are constants

θ, β ∈ (0, 1), and a value of K1 ≥ 2 in (1.4), such that caloric measure ωX,t satisfies

the (θ, β)-local ampleness condition (1.5) on ∆X,t for each (X, t) ∈ Ω ∩ Q2r(x0, t0).

Then there exist constants C ≥ 1, γ > 0, such that if (Y0, s0) ∈ Ω \ Q4r(x0, t0),

then ωY0,s0 � σ on Σ ∩ Qr(x0, t0), with dωY0,s0/dσ = h satisfying

(1.7)

ρ−n−1

"
∆ρ(y,s)

h1+γdσ


1/(1+γ)

≤ Cρ−n−1

"
∆2ρ(y,s)

h dσ

= Cρ−n−1ωY0,s0

(
∆2ρ(y, s)

)
,

whenever (y, s) ∈ Σ and Q2ρ(y, s) ⊂ Qr(x0, t0), where ∆ρ(y, s) = Qρ(y, s) ∩ Σ, and

∆2ρ(y, s) = Q2ρ(y, s) ∩ Σ.

Moreover, the same result applies to the parabolic measure associated to a uni-

formly parabolic divergence form operator L, provided that the continuous Dirich-

let problem is solvable for L in Ω (see Definition 1.17) (in particular, this is true if

the coefficients are C1-Dini).

To clarify matters, we remark that by the ADR hypothesis on Σ (see Defini-

tion 1.20), we have that ρn+1 ≈ σ(∆ρ(y, s)) ≈ σ(∆2ρ(y, s)). The time-backwards

terminal time of Ω, hence the quasi-lateral boundary will be a subset of the essential boundary; the

quasi-lateral boundary then becomes a natural substitute for the lateral boundary. We shall return to

this point below: see Definitions 1.11, 1.20, and 1.22, and Remarks 1.25 and 1.26.
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ADR condition is an enhanced version of ADR, which entails some thickness of Σ

backwards in time; see Definition 1.22, and Remarks 1.24, 1.26, and 1.28.

Similar results in the parabolic setting have previously been established under

the more restrictive assumptions that 1) L is the heat operator and the lateral bound-

ary of the domain is given locally as the graph of a function ψ(x, t) which is Lips-

chitz in the space variable, and has a 1/2-order time derivative in parabolic BMO

[LM]2, 2) Ω = {(x0, x, t) ∈ (0,∞) × Rn−1 × R} is a half-space and the coefficients

of L satisfy a certain Carleson measure regularity property [HL], and 3) L is the

heat operator and either Ω is a parabolic Reifenberg flat domain [HLN], or Ω is a

parabolic chord-arc domain [NS]; in each of these settings, Ω enjoys a parabolic

version of the Harnack Chain condition, which entails a rather strong quantitative

version of connectivity. As mentioned above, the elliptic analogue of our result

was proved in [BL], without any connectivity hypothesis. The new contribution of

the present paper is to dispense with all connectivity assumptions, both qualitative

and quantitative, in the parabolic setting. The elliptic version obtained in [BL] has

proved to be useful in various applications, see, e.g., [HLe] and [HM]. We shall

discuss two applications of our work in the sequel (see Section 5).

The paper is organized as follows. In the remainder of this section, we present

some basic notations and definitions. In Section 2, we state four lemmas which we

then use to prove Theorem 1.6; we also state Theorem 2.10, concerning the equiv-

alence between the weak-A∞ property and Lp solvability of the initial-Dirichlet

problem. In Section 3 we prove Lemma 2.7, and in Section 4 we prove Theorem

2.10. In Appendix A we prove a Bourgain-type estimate (Lemma 2.2), and in Ap-

pendix B we prove Hölder continuity at the boundary (Lemma 2.5). In Appendix

C, we prove a technical fact about the essential boundary (Lemma 1.14).

Notation and Definitions. For a set A ⊂ Rn+1, we define

(1.8) Tmin(A) := inf{T : A∩ {t ≡ T } , ∅} , Tmax(A) := sup{T : A∩ {t ≡ T } , ∅}

(note: it may be that Tmin(A) = −∞, and/or that Tmax(A) = +∞). In the special case

that A = Ω, an open set that has been fixed, we will simply write Tmin = Tmin(Ω)

and Tmax = Tmax(Ω).

Definition 1.9 (Parabolic cubes). An (open) parabolic cube in Rn ×R with center

(X, t):

(1.10) Qr(X, t) := Q((X, t), r)

:= {(Y, s) ∈ Rn × R : |Xi − Yi| < r , 1 ≤ i ≤ n, t − r2 < s < t + r2}.

With a mild abuse of terminology, we refer to r as the “parabolic sidelength” (or

simply the “length”) of Qr(X, t). We shall sometimes simply write Qr to denote a

cube of parabolic length r, when the center is implicit, and for Q = Qr, we shall

write `(Q) = r.

2For domains whose lateral boundary is given locally as a graph, the 1/2 order derivative in BMO

condition of [LM] is in the nature of best possible: there is a counterexample of Kaufmann and Wu

[KW], with ψ ∈ Lip1/2 in the time variable.
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We also consider the time-backward and time-forward versions:

Q−((X, t), r) := Q−r (X, t)

:= {(Y, s) ∈ Rn × R : |Xi − Yi| < r , 1 ≤ i ≤ n , t − r2 < s < t},

Q+((X, t), r) := Q+r (X, t)

:= {(Y, s) ∈ Rn × R : |Xi − Yi| < r , 1 ≤ i ≤ n , t < s < t + r2} .
Definition 1.11 (Classification of boundary points). Following [L], given an

open set Ω ⊂ Rn+1, we define its parabolic boundary PΩ as

PΩ :=
{
(x, t) ∈ ∂Ω : ∀r > 0 , Q−r (x, t) meets Rn+1 \Ω

}
.

The bottom boundary, denoted BΩ, is defined as

BΩ :=
{
(x, t) ∈ PΩ : ∃ ε > 0 such that Q+ε (x, t) ⊂ Ω}

.

The lateral boundary, denoted SΩ, is defined as SΩ := PΩ \ BΩ.

Following [W1, W2], we also define the normal boundary, denoted ∂nΩ, to

be equal to the parabolic boundary in a bounded domain, while in an unbounded

domain, we append the point at infinity: ∂nΩ = PΩ∪{∞}. The abnormal boundary

is defined as ∂aΩ := ∂Ω \ ∂nΩ, thus:

∂aΩ :=
{
(x, t) ∈ ∂Ω : ∃ ε > 0 such that Q−ε (x, t) ⊂ Ω}

.

The abnormal boundary is further decomposed into ∂aΩ = ∂sΩ∪∂ssΩ (the singular

boundary and semi-singular boundary, respectively), where

∂sΩ :=
{
(x, t) ∈ ∂aΩ : ∃ ε > 0 such that Q+ε (x, t) ∩Ω = ∅} ,

and

∂ssΩ :=
{
(x, t) ∈ ∂aΩ : ∀ r > 0 Q+r (x, t) meets Ω

}
.

The essential boundary ∂eΩ, is defined as

(1.12) ∂eΩ := ∂nΩ ∪ ∂ssΩ = ∂Ω \ ∂sΩ

(where we replace ∂Ω by ∂Ω ∪ {∞} if Ω is unbounded). Finally, we define the

quasi-lateral boundary Σ to be

(1.13) Σ :=



∂Ω , if Tmin = −∞ and Tmax = ∞
∂Ω \ (BΩ)Tmin

, if Tmin > −∞ and Tmax = ∞
∂Ω \ (∂sΩ)Tmax

, if Tmax < ∞ and Tmin = −∞
∂Ω \ ((BΩ)Tmin

∪ (∂sΩ)Tmax

)
, if −∞ < Tmin < Tmax < ∞ .

where (BΩ)Tmin
is the time slice ofBΩwith t ≡ Tmin, and (∂sΩ)Tmax

is the time slice

of ∂sΩ with t ≡ Tmax. Observe that for a cylindrical domain Ω = U × (Tmin,Tmax),

with U ⊂ Rn a domain in the spatial variables, then Σ would simply be the usual

lateral boundary.

Caloric measure is supported on the essential boundary; see [Su], or [W1, W2].

For future reference, we record here the following fact.

Lemma 1.14. The essential boundary ∂eΩ, and the quasi-lateral boundary Σ, are

closed sets.

We defer the proof of this lemma to Appendix C.
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• We use the letters c,C to denote harmless positive constants, not necessar-

ily the same at each occurrence, which depend only on dimension and the

constants appearing in the hypotheses of the theorems (which we refer to

as the “allowable parameters”). We shall also sometimes write a . b and

a ≈ b to mean, respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where the

constants c and C are as above, unless explicitly noted to the contrary.

• We shall use lower case letters x, y, z, etc., to denote the spatial component

of points on the boundary ∂Ω, and capital letters X,Y,Z, etc., to denote the

spatial component of generic points in Rn+1 (in particular those in Ω).

• For the sake of notational brevity, we shall sometimes also use boldface

capital letters to denote points in space time Rn+1, and lower case boldface

letters to denote points on ∂Ω; thus,

X = (X, t), Y = (Y, s), and x = (x, t), y = (y, s),

• We shall orient our coordinate axes so that time runs from left to right.

• Hd denotes d-dimensional Hausdorff measure.

• For A ⊂ Rn+1, let As := {(X, t) ∈ A : t ≡ s} denote the time slice of A with

t ≡ s.

• We let dσ = dσsds denote the “surface measure” on the quasi-lateral

boundary Σ, where dσs := Hn−1|Σs
, and Σs is the time slice of Σ, with

t ≡ s. See Remark 1.25 for some clarifying comments.

• The parabolic norm of a vector X ∈ Rn+1 is defined as

‖X‖ = ||(X, t)|| = |X| + |t|1/2,(1.15)

and we refer to the distance induced by this norm as the parabolic distance.

• If X ∈ Ω, we set δ(X) := dist(X, ∂eΩ), the parabolic distance to the essen-

tial boundary.

• For a set A ⊂ Rn+1, we shall write diam(A) to denote the diameter of A

with respect to the parabolic distance, i.e.,

(1.16) diam(A) := sup
(X,Y)∈A×A

‖X − Y‖ .

• Given a Borel measure µ, and a Borel set A ⊂ Rn, with positive and finite

µ measure, we set
>

A
f dµ := µ(A)−1

∫
A

f dµ; if A is a subset of space-time

R
n+1, we then write −−

!
A

f dµ := µ(A)−1
!

A
f (X, t) dµ(X, t).

• A “surface cube” on Σ is defined by

∆ = Q ∩ Σ ,

where Q is a parabolic cube centered on Σ, or more precisely,

∆ = ∆r(x, t) := Qr(x, t) ∩ Σ ,

with (x, t) ∈ Σ. We note that the “surface cubes” are not the same as the

dyadic cubes of M. Christ [Ch] on Σ; we apologize to the reader for the

possibly confusing terminology.

Definition 1.17. We define the following boundary value problems. The second is

relevant only in the case that Tmin = −∞.

I. Continuous Dirichlet Problem:
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(D)



Lu = 0 in Ω

u|∂eΩ = f ∈ Cc(∂eΩ)

u ∈ C(Ω ∪ ∂nΩ) .

IfΩ is unbounded, we further specify that lim‖X‖→∞ u(X) = 0. Here, we interpret

the statement u|∂eΩ = f ∈ Cc(∂eΩ) to mean that

lim
(X,t)→(y,s)

u(X, t) = f (y, s) , (y, s) ∈ ∂nΩ ,

and

lim
(X,t)→(y,s+)

u(X, t) = f (y, s) , (y, s) ∈ ∂ssΩ .

If the preceeding problem is solvable for all f ∈ Cc(∂eΩ), then we say that the

“continuous Dirichlet problem is solvable for L.”

II. Lp Dirichlet Problem:

(D)p



Lu = 0 in Ω

u|Σ = f ∈ Lp(Σ)

N∗u ∈ Lp(Σ) .

III. Continuous Initial-Dirichlet Problem:

(I-D)



Lu = 0 in ΩT := Ω ∩ {t > T }
u(X,T ) = 0 in ΩT = Ω ∩ {t ≡ T }

u|ΣT = f ∈ Cc(ΣT )

u ∈ C(ΩT ∪ ∂nΩ
T ) .

Here, ΣT denotes the quasi-lateral boundary of the domain ΩT . The statement

u|ΣT = f ∈ Cc(ΣT ) is intepreted as in problem I, and if ΩT is unbounded, we

further specify that lim‖X‖→∞ u(X) = 0.

IV. Lp Initial-Dirichlet Problem:

(I-D)p



Lu = 0 in ΩT := Ω ∩ {t > T }
u(X,T ) = 0 in ΩT = Ω ∩ {t ≡ T }

u|ΣT = f ∈ Lp(ΣT )

N∗u ∈ Lp(ΣT ) .

In problems II and IV, the statement u|Σ = f ∈ Lp(Σ) (resp., u|ΣT = f ∈ Lp(ΣT )) is

understood in the sense of parabolic non-tangential convergence. We shall discuss

this issue, as well as the precise definition of the non-tangential maximal function

N∗u, in the sequel. In problems III and IV, the statement u(X,T ) = 0 in ΩT means

that u vanishes continuously on ΩT .

Definition 1.18. (Caloric and Parabolic Measure) Let Ω ⊂ Rn+1 be an open set.

Let u be the PWB solution (see [W1], [W2, Chapter 8]) of the Dirichlet problem

for the heat equation, with data f ∈ Cc(∂eΩ). By the Perron construction, for

each point (X, t) ∈ Ω, the mapping f 7→ u(X, t) is bounded, and by the resolu-

tivity of functions f ∈ C(∂eΩ) (see [W2, Theorem 8.26]), it is also linear. The

caloric measure with pole (X, t) is the probability measure ωX,t given by the Riesz

representation theorem, such that

(1.19) u(X, t) =

"
∂eΩ

f (y, s) dωX,t(y, s).

For a general divergence form parabolic operator L as in (1.2)-(1.3), parabolic mea-

sure ωX,t = ω
X,t
L

may be defined similarly, provided that the continuous Dirichlet

problem is solvable for L.
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Definition 1.20. (ADR) (aka Ahlfors-David regular [in the parabolic sense]). Let

Ω ⊂ Rn+1. We say that the quasi-lateral boundary Σ is globally ADR (or just ADR)

if there is a constant M0 such that for every parabolic cube Qr = Qr(x, t), centered

on Σ, and corresponding surface cube ∆r = Qr ∩ Σ, with r < diam(Ω),

(1.21)
1

M0

rn+1 ≤ σ(∆r) ≤ M0rn+1 .

We also say that Σ is ADR on a surface cube ∆ = Q ∩ Σ, if there is a constant

M0 such that (1.21) holds for every surface cube ∆r = Qr ∩ Σ, with Qr ⊂ Q and

centered on Σ.

Definition 1.22. (Time-Backwards ADR, aka TBADR) Given a parabolic cube

Q centered on Σ, and corresponding surface cube ∆ = Q∩Σ, we say that Σ is time-

backwards ADR on ∆ if it is ADR on ∆, and if, in addition there exists a constant

b > 0 such that

(1.23) brn+1 ≤ σ(∆−r ) ,

for every ∆−r = Q−r ∩ Σ, where Qr ⊂ Q is centered at some point (x, t) ∈ Σ.

If Σ is time-backwards ADR on every ∆ = Σ ∩ Qr(x0, t0), for all (x0, t0) ∈ Σ,

and for all r with 0 < r <
√

t0 − Tmin/(4
√

n), then we shall simply say that Σ is

(globally) time-backwards ADR (and we shall refer to such ∆ as “admissible”; note

that if Tmin = −∞, then there is no restriction on r, and in that case every surface

cube is admissible).

Remark 1.24. The assumption of some backwards in time thickness, as in Defini-

tion 1.22, is rather typical in the parabolic setting. See, e.g., the backwards in time

capacitary conditions in [La], [EG], [GL], [FGL], [GZ], [BiM]. Moreover, it is not

hard to verify that by the result of [EG] (or of [GL], [FGL]), time-backwards ADR

on some surface cube ∆ implies parabolic Wiener-type regularity of each point in ∆

(and thus global time-backwards ADR implies regularity of the parabolic boundary

PΩ).

Remark 1.25. By [W2, Theorem 8.40], the abnormal boundary ∂aΩ is contained

in a countable union of hyperplanes orthogonal to the t-axis. Moreover, the same

is true for the bottom boundary BΩ, since its image under the change of variable

t → −t is contained in ∂aΩ
∗, for the domain Ω∗ obtained from Ω by the same

change of variable. Thus, σ(BΩ) = 0 = σ(∂aΩ).

Remark 1.26. The time-backwards ADR condition rules out pathologies like a ver-

tical face (with time running from left to right horizontally) on Σ. In particular,

∂ssΩ = ∅ = ∂sΩ \ {t ≡ Tmax}, at least locally on any surface cube ∆ on which

TBADR holds, and thus ∂eΩ = ∂nΩ = PΩ = Σ on such ∆. Moreover, under the

hypotheses of Theorem 1.6, BΩ ∩ ∆r(x0, t0) is fairly negligible: by Remark 1.25,

this set has σ measure zero, and thus by the conclusion of Theorem 1.6, it also has

caloric/parabolic measure zero.

Remark 1.27. The significance of the admissibility constraint is as follows. Recall

that δ(Y) := dist(Y, ∂eΩ), where the distance is of course the parabolic distance.

We note that, by elementary geometry and (1.13) (i.e., the definition of Σ), for

(x0, t0) ∈ Σ, and for all Y ∈ Ω ∩ Qr(x0, t0), assuming the global time-backwards

ADR property and using the observations in Remark 1.26, we have that

r <
√

t0 − Tmin/(4
√

n) =⇒ δ(Y) = dist(Y,Σ) .
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Remark 1.28. We will show, in Claim 1 of Appendix A, that time-backwards ADR

yields an apparently stronger property: specifically, we show that if Σ is time-

backwards ADR on ∆ = ∆r = Σ ∩ Qr(x0, t0), then (1.23) continues to hold (with

a slightly different constant) with ∆−r replaced by ∆−r ∩ {t < t0 − (ar)2}, and hence

also by Σ ∩ Q−r (x0, t0 − (ar)2), for some uniform a ∈ (0, 1/2).

Definition 1.29. (A∞, weak-A∞, and weak-RHq). Given a closed parabolic ADR

set E ⊂ Rn+1, and a surface cube ∆0 := Q0 ∩ E, we say that a Borel measure µ

defined on E belongs to weak-A∞(∆0) if for each surface cube ∆ = Q ∩ E, with

2Q ⊆ Q0,

(1.30) µ(F) ≤ C

(
σ(F)

σ(∆)

)θ
µ(2∆) , for every Borel set F ⊂ ∆ .

We recall that, as is well known, the condition µ ∈ weak-A∞(∆0) is equivalent to

the property that µ � σ in ∆0, and that for some q > 1, the Radon-Nikodym

derivative k := dµ/dσ satisfies the weak reverse Hölder estimate

(1.31)

(
−−
"
∆

kqdσ

)1/q

≤ C −−
"

2∆

k dσ ≈ µ(2∆)

σ(∆)
, ∀∆ = Q∩E, with 2Q ⊆ Q0 .

We shall refer to the inequality in (1.31) as an “RHq” estimate, and we shall say

that k ∈ RHq(∆0) if k satisfies (1.31).

If (1.30) holds with µ(∆) in place of µ(2∆), for all Q ⊂ Q0, then we say that

µ ∈ A∞(∆0).

2. Lemmas and Proof of Theorem 1.3

In this section, we state four lemmas which when combined allow us to prove

Theorem 1.3. We also state Theorem 2.10. We recall that Σ denotes the quasi-

lateral boundary; see Definition 1.11 and (1.13). In the sequel, L is either the heat

operator, or else a divergence form parabolic operator for which the continuous

Dirichlet problem is solvable in Ω (in particular, this is true if L has C1-Dini coef-

ficients), and ω = ωL is the associated caloric/parabolic measure.

Let a > 0 be the constant mentioned in Remark 1.28. In the sequel, Ω will

always denote an open set in Rn+1, with quasi-lateral boundary Σ. Given a fixed

time T < ∞, we set

(2.1) E(T ) :=
{
(X, t) ∈ Rn+1 : t < T

}
.

Lemma 2.2 (Parabolic Bourgain-type Estimate). Let (x0, t0) ∈ Σ, and let 0 < r <√
t0 − Tmin/(4

√
n). Assume that Σ is time-backwards ADR on ∆r := Qr(x0, t0) ∩ Σ.

Then there exists M1, η > 0 such that for all (X, t) ∈ Q a
M1

r ∩Ω,

ωX,t(∆r) = ω
X,t(∆r ∩ E(T )

) ≥ η ,
where Q a

M1
r := Q((x0, t0), a

M1
r), and T := Tmax(Q a

M1
r) = t0 + (aM−1

1
r)2.

Remark 2.3. The proof of the Bourgain-type estimate can be found in Appendix

A. We remark that this estimate could probably also be derived using capacitary

methods found in [EG]. We give a direct proof adapting Bourgain’s argument to

the parabolic setting.
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Remark 2.4. We also obtain a Bourgain-type estimate for supersolutions; see Ap-

pendix B.

Given a fixed time T , and a cube Qr centered on Σ, we set Ωr := Qr ∩ Ω, and

Ωr(T ) := Ωr ∩ E(T ), with E(T ) defined as in (2.1).

The following lemma is a consequence of the supersolution version of Lemma

2.2. The proof will be given in Appendix B.

Lemma 2.5. Let (x0, t0) ∈ Σ, and fix r with 0 < r <
√

t0 − Tmin/(8
√

n). Set

Qr := Qr(x0, t0), Q2r := Q2r(x0, t0), and suppose that Σ is time-backwards ADR

on ∆2r := Q2r ∩ Σ. Let u be the parabolic measure solution corresponding to

non-negative data f ∈ Cc(∂eΩ), with f ≡ 0 on ∆2r. Then for some α > 0,

u(Y, t) ≤ C

(
δ(Y, t)

r

)α
1

|Q2r ∩ E(T1)|

"
Ω2r(T1)

u, ∀(Y, t) ∈ Ωr,

where T1 := Tmax(Qr) = t0 + r2, and where the constants C and α depend only on

n, λ, and the ADR and time-backwards ADR constants.

We observe that in the sequel, it will suffice to have a slightly less sharp version

of Lemma 2.5, in which Ω2r(T1) is replaced by the larger set Ω2r; see the proof of

Theorem 2.10 in Section 4 below.

Remark 2.6. We now fix K1 in (1.4) to be K1 := 20a−1M1, where M1, a are the

constants from Lemma 2.2 (so that in turn, a is the constant in Remark 1.28). With

this choice of K1, we then define QX,t and ∆X,t as in (1.4). Our assumption in

Theorem 1.6 is that (θ, β)-local ampleness holds for some value of K1 ≥ 2. If

this K1 exceeds the value defined above, then we simply take M1 larger. On the

other hand, as noted previously, if (θ, β)-local ampleness holds for a smaller value

of K1 ≥ 2 than that defined above, then it also holds for larger K1 (for a possibly

different value of θ). In any case, we are at liberty to fix K1 as above.

Lemma 2.7. Let (x0, t0) ∈ Σ, and let 0 < r <
√

t0 − Tmin/(8
√

n). Suppose that Σ

is time-backwards ADR on ∆2r := Q2r(x0, t0) ∩ Σ. Suppose further that there exist

constants θ, β ∈ (0, 1), such that ωX,t satisfies the (θ, β)-local ampleness condition

(1.5) on ∆X,t for each (X, t) ∈ Ω ∩ Q2r(x0, t0).

Then given ε > 0, there exists η = η(ε, n), 0 < η < 1 and Cε = C(ε, n) ≥ 1 such

that for any Borel set F ⊂ ∆2r, with σ(F) ≥ (1 − η)σ(∆2r), we have

ωY,s(∆r(x0, t0)) ≤ εωY,s(∆2r(x0, t0)) +Cεω
Y,s(F),(2.8)

whenever (Y, s) ∈ Ω \ Q4r(x0, t0).

Lemma 2.7 is in some sense the main result of this paper. Along with the next

lemma, it underlies the proof of Theorem 1.6.

Lemma 2.9. Let Σ be a closed ADR set with constant M0. Let µ be a positive

Borel measure on Rn+1 with support contained in Σ, and µ(Σ) ≤ 1. Suppose for

some (x, t) ∈ Σ, r > 0, there exists ε1, ζ > 0,C1 ≥ 1 such that

µ(Qρ(z, τ)) ≤ ε1µ(Q2ρ(z, τ)) +C1µ(P),

whenever P ⊂ ∆2ρ(z, τ) := Σ ∩ Q2ρ(z, τ) is a Borel set with

σ(P) ≥ (1 − ζ)σ(∆2ρ(z, τ))
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and (z, τ) ∈ Σ with Q2ρ(z, τ) ⊂ Qr(x, t).

If ε1 = ε1(n,M0) > 0 is small enough, then there exists C = C(n,M0,C1, ζ),

1 ≤ C < ∞, γ = γ(n,M0,C1, ζ) > 0 and a Borel measurable function g such that

dµ/dσ = g on Σ ∩ Qr(x, t) while

ρ−n−1

"
Qρ(z,τ)∩Σ

g1+γdσ


1/(1+γ)

≤ Cρ−n−1

"
Q2ρ(z,τ)∩Σ

g dσ

= Cρ−n−1µ
(
Q2ρ(z, τ)

)
.

Lemma 2.9 is a purely real variable result and therefore the proof can be readily

adapted from the elliptic version given in [BL, Lemma 3.1]. We omit the details.

Proof of Theorem 1.6. Fix Qr(x0, t0) with (x0, t0) ∈ Σ, r > 0, and let (Y, s) ∈ Ω \
Q4r(x0, t0). Then for all Qρ(z, τ) such that Q2ρ(z, τ) ⊂ Qr(x0, t0) we see that (Y, s) ∈
Ω \ Q4ρ(z, τ). Therefore Lemma 2.7 applies in each such Qρ(z, τ) and if we set

µ := ωY,s, then µ satisfies Lemma 2.9 with C1 = C(ε1) and ζ = η(ε1) (here we are

using Lemma 1.14). Applying Lemma 2.9 we obtain Theorem 1.6. �

Before proceeding further, let us make the following geometric observation. Set

R0 := diam(Σ). Then there is a constant c, depending only on dimension and

ADR, such that Tmax − Tmin ≥ cR2
0
. Indeed, suppose first that R0 < ∞, and set

r2 := Tmax−Tmin. Then Σ is contained in a closed rectangle inRn+1 with dimensions

R0 × ... × R0 × r2, of volume (R0)nr2. We may then cover Σ by a collection {Qi
r}i of

cardinality at most C(R0/r)n, where for each i, Qi
r is a parabolic cube of sidelength

r, centered on Σ. By the ADR property, since Σ has diameter R0, we have

(R0)n+1
. σ(Σ) ≤

∑

i

σ(Σ ∩ Qi
r) .

(
R0

r

)n

rn+1 .

Thus r & R0, as claimed.

Next, suppose that R0 = ∞, but that Tmax − Tmin =: r2 < ∞. Then for any fixed

(x0, t0) ∈ Σ, and any R ∈ (r,∞), the surface cube ∆R(x0, t0) := QR(x0, t0) ∩ Σ is

contained in a rectangle with dimensions R × ... × R × r2, and volume Rnr2. We

may then repeat the previous argument to see that r & R, and then let R→ ∞.

In the sequel, we shall continue to use the notation R0 := diam(Σ).

We now formulate the equivalence between the weak-A∞ property of parabolic

measure, and Lp solvability of the initial-Dirichlet problem.

Theorem 2.10. Let L be a divergence form parabolic operator defined on Ω. Sup-

pose that Σ is globally time-backwards ADR, and assume further that if R0 = ∞,

then Tmin = −∞. Then TFAE:

(1) For every κ0 ∈ (0, 1), there is an exponent q > 1, possibly depending on

κ0, such that ωY,s � σ, and kY,s := dωY,s/dσ satisfies the reverse Hölder

estimate

(2.11)

(
−−
"
∆

(
kY,s

)q
dσ

)1/q

.κ0 −−
"

2∆

kY,s dσ ≈ ωY,s(2∆)

σ(∆)
,

on every ∆ = Σ ∩ Qr(x0, t0), with t0 − Tmin ≥ κ0R2
0

and r <
√
κ0R0/2, and

for all (Y, s) ∈ Ω \ Q4r(x0, t0), uniformly for all such ∆ and (Y, s).
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(2) For every κ1 ∈ (0, 1), there is an exponent p < ∞, possibly depending on

κ1, such that if T0 − Tmin ≥ κ1R2
0
, and f ∈ Cc(Σ) with compact support in

ΣT0 , then the parabolic measure solution u of the initial-Dirichlet (resp.,

Dirichlet) problem for L in Ω = ΩT with T = Tmin > −∞ (resp., in Ω if

T = −∞), with data f , satisfies for all (x, t) ∈ ΣT0 ,

(2.12) N∗u(x, t) .κ1

(M(| f |p)(x, t)
)1/p

,

whereM denotes the parabolic Hardy-Littlewood maximal operator on Σ.

(3) For every κ1 ∈ (0, 1), there is an exponent p < ∞, possibly depending on

κ1, such that if T0 − Tmin ≥ κ1R2
0
, then the initial-Dirichlet problem for L is

Lp solvable in ΩT0 , with the estimate ‖N∗u‖Lp(Σ) .κ1
‖ f ‖Lp(Σ).

Furthermore, for appropriately related κ0, κ1, the exponents q in (1), and p in (2)

and (3), satisfy the duality relationship p = q/(q − 1).

Here N∗u denotes the non-tangential maximal function, of course taken with

respect to parabolic cones. Precise definitions will be given in Section 4.

We note that we are implicitly assuming here, as above, that the continuous

Dirichlet problem is solvable for L; we know that this is true if L is the heat opera-

tor, or a divergence form parabolic operator with C1-Dini coefficients: see Remarks

1.24 and 1.26.

A few words of explanation are in order. In less austere settings, say in Lips-

chitz cylinders or even Lip(1,1/2) domains, the equivalence between Lp solvabil-

ity of the initial-Dirichlet problem and the A∞ property of ω, is well-known (see,

e.g., [N, Theorem 4.3]: for such a domain Ω, with Tmin(Ω) > −∞, one may con-

sider the initial-Dirichlet problem in Ω = ΩT , T = Tmin(Ω), and then prove the

main implication (1) implies (2) (or something essentially equivalent, namely that

N∗u ≈ Mω f , whereMω is the Hardy-Littlewood maximal operator with respect

to parabolic measure at some fixed pole) either by using Harnack’s inequality and

the Harnack chain property to move from an arbitrary point in a non-tangential

“cone” to a time forward point, or by extending backwards in time, either by even

reflection of the domain across the hyperplane {t ≡ Tmin}, or simply by extending

the time-slice ΩTmin
backwards in time as a cylinder. In the more general setting

considered in the present paper, neither of these technical devices is available, and

that is why we work in an ambient domain Ω, and then solve the initial-Dirichlet

problem in subdomains ΩT with T − Tmin & R2
0
.

We mention that in Theorem 2.10, we consider only the issue of Lp solvability,

i.e, existence of solutions with Lp estimates; we do not address the question of

uniqueness.

3. Proof of Lemma 2.7

Proof of Lemma 2.7. The proof is an adaption of the argument in [BL] to the par-

abolic setting. The principal new difficulty is the time lag inherent in parabolic

problems.

Fix ε > 0, r > 0, and (x0, t0) ∈ Σ, with 0 < r <
√

t0 − Tmin/(8
√

n), and suppose

that Σ is TBADR on ∆2r = ∆2r(x0, t0) = Q2r(x0, t0) ∩ Σ. Observe that if (2.8) is

true for some ε > 0, then it is true for all ε̃ > ε. Thus, we may suppose that ε ≤ ε0

for some sufficiently small but fixed ε0 > 0.
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Recall that δ(Y) := dist(Y, ∂eΩ), where the distance is of course the parabolic

distance. Replacing Qr by Q2r in Remark 1.27, we have

(3.1) r <
√

t0 − Tmin/(8
√

n) =⇒ δ(Y) = dist(Y,Σ) , ∀Y ∈ Ω ∩ Q2r(x0, t0) .

Thus, by hypothesis, we shall be working in a regime where δ(Y) = dist(Y,Σ).

Moreover, we note that in this regime, i.e., for (Y, s) ∈ Ω ∩ Q2r(x0, t0), we have

(3.2) dist
(
(Y, s),Σ

)
= δ(Y, s) ≈a dist

(
(Y, s), ∂Ω

)
, if s < t0 − (ar)2 ,

since (x0, t0) ∈ Σ implies that t0 ≤ Tmax. Let us further note that s < Tmax, for

(Y, s) ∈ Ω ∩ Q2r(x0, t0), hence by Remark 1.26,

(3.3) Q−ρ (Y, s) ∩ ∂sΩ = ∅ , 0 < ρ < r/2 , (Y, s) ∈ Ω ∩ Q3r/2(x0, t0) .

We shall use these facts repeatedly in the sequel, often implicitly.

Let M be a large positive constant to be chosen later. Since it suffices to work

with suitably small ε, we may suppose that ε ≤ M−2. Let j be the greatest integer

≤ M/ε. Let

r∗k =

(
5

4
+

k

4 j

)
r,

r′k =

(
5

4
+

k + 1

4 j

)
r,

r̂k =

(
5

4
+

k + 1/2

4 j

)
r.(3.4)

Then define

Uk := Qr′
k
(x0, t0) \ Qr∗

k
(x0, t0), and S k := ∂Qr̂k

(x0, t0) ∩Ω .
for 1 ≤ k ≤ j − 1. Note that S k ⊂ Uk and Uk ⊂ Q 3

2
r(x0, t0) for each k.

Let ε′ :=
a

MM1

ε, and let F ⊂ ∆2r, with

σ(F) ≥ (1 − η)σ(∆2r) ,

where η = η(ε) > 0 will be chosen momentarily. We begin with two preliminary

observations.

Remark 3.5. First, assume that (Y1, s1) ∈ Q 7
4

r(x0, t0) with

ε′

400
r ≤ δ(Y1, s1) ≤ ε′

100
r .

Recalling (1.4) and Remark 2.6, we set QY1,s1
:= Q

(
(Y1, s1), 20 M1

a
δ(Y1, s1)

)
, so that

∆Y1,s1
= Σ∩QY1,s1

, and note that QY1,s1
⊂ Q 15

8
r(x0, t0). Then for η(ε) small enough,

σ
(
F ∩ QY1,s1

) ≥ (1 − θ)σ (
∆Y1,s1

)
.

Hence, by the local-ampleness assumption, setting C = 1/β, we have

CωY1,s1(F) ≥ 1, (Y1, s1) ∈ Q 7
4

r(x0, t0) ∩ {(Y, s) :
ε′

400
r ≤ δ(Y, s) ≤ ε′

100
r} .(3.6)

Remark 3.7. Next, suppose that (Y, s) ∈ S k, with δ(Y, s) < ε′r/200. Then

QY,s := Q((Y, s), 20
M1

a
δ(Y, s)) ⊂ Uk .
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By Lemma 2.2,

ωY,s(QY,s ∩ Σ) & 1 ,

and therefore,

(3.8) ωY,s(Uk) & 1 ,

for (Y, s) ∈ S k ∩ {(Y, s) : δ(Y, s) < ε′r/200}.

We now consider several cases. Recall that we have oriented our coordinate axes

so that time runs from left to right. Given a cube Q = Qρ(x0, t0), we shall use the

terminology “back face of the boundary of Q” to denote the left-most face of ∂Q,

i.e., the face with t = t0 − ρ2.

Case 1. There is a point (Y0, s0) on the back face of S k such that δ(Y0, s0) =
ε′

200
r.

Then

ε′

400
r ≤ δ(Y0, s0 − c1r2) ≤ ε′

100
r,(3.9)

where c1 :=

(
ε′

200

)4

, and (Y0, s0 − c1r2) ∈ Q 7
4

r(x0, t0). Hence, by (3.6),

CωY0,s0−c1r2

(F) ≥ 1.

Claim 1. In the scenario of Case 1, given ε > 0, there exists a uniform constant Cε

such that

(3.10) Cεω
Y,s(F) ≥ 1, ∀ (Y, s) ∈ S k ∩

{
(Y, s) : δ(Y, s) ≥ ε′

200
r
}
.

Proof of Claim 1. Let (Y, s) ∈ S k with δ(Y, s) ≥ ε′

200
r.

Case 1a. δ(Y, s) ≤ ε′

100
r. Then we are done by (3.6) (in this case with no depen-

dence on ε).

Case 1b. δ(Y, s) >
ε′

100
r. Note that s ≥ s0, since (Y0, s0) lies on the back face of

S k. Consider the parabola, call it C(Y0,Y), with vertex (Y0, s0 − c1r2), which opens

to the right, contains the point (Y, s), and has aperture 1/α, with

α =
s − (s0 − c1r2)

|Y0 − Y |2 ≥ c1r2

|Y − Y0|2
& c1.

Of course, if Y = Y0, then the parabola degenerates, and C(Y0,Y) is just a hori-

zontal line, parallel to the t-axis. In any case, we start at the point (Y, s) and move

backward on C(Y0,Y), stopping the first time that we reach a point (Z0, τ0) with

δ(Z0, τ0) = ε′r/100. We eventually find such a point, since δ(Y, s) > ε′r/100 ≥
δ(Y0, s0 − c1r2), by the scenario of Case 1b and (3.9). Note that by (3.3), all the

points on C(Y0,Y) between (and including) (Y, s) and (Z0, τ0) lie in Ω, and thus in

particular (3.6) holds with (Y1, s1) = (Z0, τ0). Moreover, since ||(Y, s)−(Z0, τ0)|| . r,

and δ(Z, τ) &ε r for every (Z, τ) ∈ C(Y0,Y) between (Y, s) and (Z0, τ0), again using

(3.3), we can construct a Harnack path joining (Z0, τ0) to (Y, s) along C(Y0,Y), to

obtain (3.10) by Harnack’s inequality [M, Theorem 1]. This proves Claim 1. �
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Case 2. For every point (Y, s) on the back face of S k, we have δ(Y, s) > ε′r/200.

In this case, we slide the back face of S k forward in time until we reach, for the

first time, a point (Y0, s0) with δ(Y0, s0) = ε′r/200. Note that necessarily,

(3.11) s0 ≤ inf {t : (x, t) ∈ ∆r(x0, t0) for some x} − (ε′r/200)2

(otherwise, we would have stopped sooner when sliding the back face forward). In

particular, by Remark 1.28,

s0 < t0 − (ar)2 .

If we denote the boundary of the resulting rectangle by S ′
k
, then by construction

(Y0, s0) is on the back face of S ′
k
. Since (3.2) holds for the point (Y0, s0), we may

then repeat the argument in Case 1, but with S ′
k

in place of S k. Consequently, we

have the following.

Remark 3.12. Estimate (3.10) holds, provided either that

(Y, s) ∈ S k ∩
{
(Y, s) : δ(Y, s) ≥ ε′

200
r
}
, or (Y, s) ∈ S ′k ∩

{
(Y, s) : δ(Y, s) ≥ ε′

200
r
}
,

in the scenarios of Case 1 and Case 2, respectively. Moreover, in Case 2, t = s0 on

the back face of S ′
k
, and by (3.11), s0 < t for any (x, t) ∈ ∆r(x0, t0) = Qr(x0, t0)∩Σ.

Case 3. For every (Y, s) on the back face of S k, we have δ(Y, s) < ε′r/200.

In turn, there are two sub-cases.

Case 3a: For every point (Y, s) on S k, we have δ(Y, s) < ε′r/200. In this case, the

scenario of Remark 3.7 applies to every point (Y, s) ∈ S k, and therefore (3.8) holds

for all points on S k.

Case 3b. There exists a point (Y∗, s∗) on S k, with δ(Y∗, s∗) =
ε′

200
r.

Recall that S k = ∂Qr̂k
(x0, t0), where r̂k = (5/4 + (k + 1/2)/(4 j)) r. Consider the

part of Qr̂k
(x0, t0) where t0 − r̂ 2

k
< s < t0 − r2 and call this region Îk. Note that

|̂Ik| ≈ rn+2. Cover Îk by a union of pairwise non-overlapping half-closed sub-cubes

{Qi}i, such that ε′r ≤ l(Qi) ≤ 2ε′r.

Claim 2: For ε small enough, at least one of the sub-cubes Qi misses Σ (and thus

also ∂Ω by (3.1) and the fact that t0 ≤ Tmax).

Assume the claim momentarily. Then there exists a point (Z, τ) ∈ Qi such that

δ(Z, τ) >> ε′r/200. In the present scenario, δ(Y, s) < ε′r/200 for every (Y, s) on the

back face of S k, thus, there exist s̃ with s = t0 − r̂ 2
k
< s̃ < τ, and δ(Z, s̃) = ε′r/200.

If we shrink S k by sliding the back face forward, increasing the time coordinate

of the back face to s̃, and denote the boundary of the resulting rectangle by S ′
k
,

then by construction, (Z, s̃) lies on the back face of S ′
k
. We can therefore follow

the argument given in Cases 1 and 2, with (Z, s̃) playing the role of (Y0, s0), to

find that Remark 3.12 continues to apply in Case 3b as well. We note in particular

that by construction t = s̃ on the back face of S ′
k
, and s̃ < t0 − r2 < t, for all

(x, t) ∈ Qr(x0, t0) ∩ Σ.

Proof of Claim 2. Suppose not. Then every Qi meets Σ. Hence there exists another

parabolic cube Q̃i such that Q̃i ⊃ Qi, l(Q̃i) = 4l(Qi) and the center of Q̃i is on
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Σ. By a rudimentary covering lemma argument, there exists a pairwise disjoint

subcollection {Q̃i j} j, with cardinality #{Qi j} j ≈ #{Qi}i, such that
⋃

j

5Q̃i j ⊃
⋃

i

Qi = Îk

Let Ĩk be a fattened version of Îk, of comparable dimensions, such that
⋃

j Q̃i j ⊂ Ĩk.

Then using disjointness and upper ADR, we obtain

(3.13)
∑

j

σ(Q̃i j ∩ Σ) ≤ σ(Ĩk ∩ Σ) . M0rn+1 .

Using lower ADR, we obtain

(3.14)
∑

j

σ(Q̃i j ∩ Σ) & #{Q̃i j} (ε′r)n+1,

where as above, #{Q̃i j} = cardinality of {Qi j}. However,

#{Q̃i j} ≈ #{Qi} ≈ rn+2

(ε′r)n+2
≈ (ε′)−n−2

Therefore (3.14) becomes

(3.15)
∑

j

σ(Q̃i j ∩ Σ) & (ε′)−n−2(ε′r)n+1 ≈ rn+1

ε′
>> M0rn+1,

for ε′ ≈ ε small enough, contradicting (3.13). �

Combining Remarks 3.7 and 3.12, and our observation that the latter remark

continues to hold in Case 3b, we see that for (Y, s) ∈ S k (in Cases 1 and 3a), or

(Y, s) ∈ S ′
k

(in Cases 2 and 3b),

1 ≤ CωY,s(Uk) +Cεω
Y,s(F).

Moreover, letting tk denote the value of t on the back face of S k or S ′
k
, as appropri-

ate, we see that in every case, tk < t for every (x, t) ∈ ∆r(x0, t0) := Qr(x0, t0) ∩ Σ.

Consequently, by the weak maximum principle,

(3.16) ωY,s(∆r(x0, t0)
) ≤ CωY,s(Uk) +Cεω

Y,s(F),

for every (Y, s) ∈ Ωk := (Ω\Rk)∩{s > tk}, where Rk is the closed cube, or rectangle,

whose boundary is given by S k or S ′
k
. In addition, in every case, tk < t0 − (ar)2,

and Rk ⊂ Q4r(x0, t0), so in particular, in (3.16), we may take

(Y, s) ∈ (
Ω \ Q4r(x0, t0)

) ∩ {s > t0 − (ar)2} .
For (Y, s) in the latter set, we sum (3.16) in k to obtain

ε−1ωY,s(∆r(x0, t0)
) ≤ CωY,s(∆2r(x0, t0)) +Cεω

Y,s(F),

since the sets Uk are disjoint and are all contained in Q2r(x0, t0), and the cardinality

of the index set {k} is of the order 1/ε. We now multiply by ε to reach the conclusion

of the lemma in the special case that s > t0 − (ar)2.

Let us now remove the latter restriction. Recall that the set E(T ) is defined in

(2.1). Observe that t > t0 − r2 for every (x, t) ∈ ∆r(x0, t0), so that if s ≤ t0 − r2,

then ωY,s(∆r(x0, t0)
)
= 0, and there is nothing to prove. It therefore remains to

treat the case t0 − r2 < s ≤ t0 − (ar)2. In this case, by an elementary covering

argument, we may cover the set ∆r(x0, t0) ∩ E(s) by a collection of surface cubes



18 ALYSSA GENSCHAW AND STEVE HOFMANN

{∆i}Ni=1
, ∆i = Qi ∩ Σ, where ∆i = ∆cr(xi, ti), with (xi, ti) ∈ Σ, ti ≤ s, and where c

is a universal constant chosen small enough that 2Qi ⊂ Q2r(x0, t0); moreover, this

can be done in such a way that the cardinality N of the collection is bounded by a

universal constant (depending on dimension). Thus, choosing η′ > 0 small enough,

depending on c and our previous choice of η, we have that for F ⊂ ∆2r(x0, t0),

σ(F) ≥ (1 − η′)σ(
∆2r(x0, t0)

)
=⇒ σ(F ∩ 2∆i) ≥ (1 − η)σ

(
2∆i

)
.

Since s ≥ ti (hence in particular s > ti − (acr)2), we may therefore apply the

previously treated special case to each ∆i, to deduce that

ωY,s(∆r(x0, t0)
)
= ωY,s(∆r(x0, t0) ∩ E(s)

)

≤
N∑

i=1

ωY,s(∆i) ≤ ε
N∑

i=1

ωY,s(2∆i) +Cε

N∑

i=1

ωY,s(F ∩ 2∆i)

≤ NεωY,s(∆2r(x0, t0)
)
+ NCεω

Y,s(F) .

�

4. Proof of Theorem 2.10

Proof of Theorem 2.10. Recall that either L is the heat operator, or else we assume

that the continuous Dirichlet problem is solvable for L in Ω; in either case then, the

associated caloric/parabolic measure ω = ωL exists.

The main step in the proof is to show that (1) implies (2). We turn our attention

to this matter first. The implication (2) implies (3) follows routinely from the den-

sity of Cc(Σ) in Lp(Σ), and the self-improvement property of weak-reverse Hölder

weights. We omit the details, except to mention that in order for the non-tangential

convergence to hold in a non-vacuous way, one should impose some extra assump-

tion to guarantee that the “cones” defined in (4.3) below are non-empty at infinitely

many scales less than one, σ almost everywhere on Σ; an interior corkscrew condi-

tion is more than enough. The implication (3) implies (1) will be proved at the end

of this section.

(1) implies (2). Recall that R0 := diam(Σ) ∈ (0,∞]. We assume that for every

κ0 ∈ (0, 1), and for each ∆ = Qr(x0, t0) ∩ Σ, with (x0, t0) ∈ Σ, t0 − Tmin ≥ κ0R2
0

and

r <
√
κ0R0/2, and for all (Y, s) ∈ Ω \ Q4r(x0, t0), we have ωY,s � σ in ∆, and there

exists some q > 1 such that kY,s ∈weak-RHq(∆), with uniform constants, i.e. (2.11)

holds for the Radon-Nykodym derivative kY,s := dωY,s/dσ, with q and the implicit

constants independent of ∆ and (Y, s); equivalently, ωY,s ∈ weak-A∞(∆), with uni-

form control of the constants. Let κ1 ∈ (0, 1), and set κ0 := κ1/100. Suppose that

T0 − Tmin ≥ κ1R2
0
= 100κ0R2

0
. Let f be continuous on ∂eΩ, with compact sup-

port in ΣT0 , and let u be the parabolic measure solution of the continuous Dirichlet

problem (see Definition 1.17) for L with data f , in Ω. For convenience, we shall

treat the case Tmin > −∞; the proof in the case Tmin = −∞ is similar, but slightly

simpler, and we leave the details to the interested reader.

Our goal is to show that for p = q/(q − 1), and for all (x, t) ∈ ΣT0 ,

(4.1) N∗u(x, t) .
(M(| f |p)(x, t)

)1/p
,
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where M denotes the parabolic Hardy-Littlewood maximal operator on Σ, and

hence that (1) implies (2).

To this end, we begin by defining non-tangential “cones” and maximal func-

tions, as follows. First, we fix a collection of parabolic closed Whitney cubes cov-

ering Ω, and we denote this collection byW. We also fix a constant ν > 0 small

enough so that, for each Whitney cube I, its concentric parabolic dilate I∗ := (1+ν)I

also satisfies the Whitney properties. We will denote the collection of analogously

fattened Whitney cubesW∗.

Given (x, t) ∈ Σ, set

(4.2) W(x, t) := {I ∈ W : diam(I) < 10R0 and dist((x, t), I) ≤ 100 diam(I)},
and define the (possibly disconnected) non-tangential “cone” with vertex (x, t) by

(4.3) Υ(x, t) := int


⋃

I∈W(x,t)

I∗

 ,

where int(A) denotes the interior of the set A. For a continuous u defined on Ω, the

non-tangential maximal function of u is defined by

(4.4) N∗u(x, t) := sup
(Y,s)∈Υ(x,t)

|u(Y, s)|.

We now turn to the proof of (4.1).

Splitting f into its positive and negative parts, we may suppose without loss of

generality that f ≥ 0, hence also u ≥ 0. Let (x, t) ∈ Σ and fix (Y0, s0) ∈ Υ(x, t).

Then (Y0, s0) ∈ I∗
0
, for some I0 ∈ W(x, t) such that

(4.5) r := δ(Y0, s0) ≈ diam(I0) ≈ ||(x, t) − (Y0, s0)|| .
Of course, by definition ofW(x, t) we have r < KR0, for some sufficiently large

universal constant K.

Let

Q0 := Q
(
(x, t), r

)
, Qk := 2kQ0 = Q

(
(x, t), 2kr

)
, k = 1, 2, 3... ,

and define corresponding surface cubes and subdomains:

(4.6) ∆k := Qk ∩ Σ , Ωk := Qk ∩Ω , k ≥ 0 .

Define a continuous partition of unity
∑

k≥0 ϕk ≡ 1 on Σ, such that 0 ≤ ϕk ≤ 1 for

all k ≥ 0, with

(4.7) supp(ϕ0) ⊂ ∆2 =: R0, supp(ϕk) ⊂ Rk := ∆k+2 \ ∆k, k ≥ 1 .

Set fk := fϕk, and let uk be the solution of the initial-Dirichlet problem in ΩT = Ω,

T = Tmin, with initial data (at time t = Tmin) equal to zero, and data fk on Σ.

Observe that since we are treating the case Tmin > −∞, and hence by assumption

diam(Σ) = R0 < ∞, the boundary annulus Rk, k ≥ 1, is empty if 2kr > R0; for such

k, we have that fk, and hence uk, are identically zero. Thus, we may restrict our

attention to those k for which 2kr ≤ R0, so that u =
∑

0≤k≤log2(R0/r) uk in Ω (it may

happen that r > R0, but in that case only the term k = 0 appears in the sum, and the

following proof may be simplified considerably; we omit the very routine details).

Let us first observe that for each k ≥ 0, and (Y, s) ∈ Ω,

(4.8) uk(Y, s) =

"
Rk∩{T0<τ}

fk(z, τ) dωY,s(z, τ) .
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Indeed, since f is supported in ΣT0 , it follows that uk is zero for s ≤ T0.

We now fix a sufficiently large integer N to be chosen momentarily, and we

claim that

(4.9)

N∑

k=0

uk(Y0, s0) .N

(M(
f p)(x, t)

)1/p
.

To see this, we begin by recalling that by assumption, T0 −Tmin ≥ 100κ0R2
0
, and by

construction, r < KR0, for a suitably large universal constant K. We may therefore

cover QN+2 ∩ {(X, τ) : T0 < τ} by a collection F0 of pairwise disjoint half-open

parabolic cubes of parabolic sidelength br, where b is a sufficiently small number

to be chosen momentarily, in particular with 0 < b ≤ √κ0/(100K).

Let F := {Q ∈ F0 : Q meets Σ}, and for each Q ∈ F , let Q∗ be a cube centered

at (x∗, t∗) ∈ Σ, containing Q, of parabolic sidelength `(Q∗) = 5`(Q) = 5br, so that

2Q∗ ⊂ 100Q. Then for b suitably small, (Y0, s0) ∈ Ω \ 4Q∗ by (4.5). Thus, setting

∆∗ := Q∗∩Σ, we note that by hypothesis, we may apply the reverse Hölder estimate

(2.11) with ∆ = ∆∗, and with (Y, s) = (Y0, s0). Let F∗ denote the collection of all

such Q∗.

Since
∑N

k=0 fk is supported in ∆N+2 = QN+2 ∩ Σ, we then have that

N∑

k=0

uk(Y0, s0) ≤
∑

Q∗∈F∗

"
∆∗

f (z, τ) dωY0,s0(z, τ)

≤
∑

Q∗∈F∗
σ(∆∗)

(
−−
"
∆∗

f pdσ

)1/p (
−−
"
∆∗

(
kY0,s0

)q
dσ

)1/q

.

∑

Q∗∈F∗

(
−−
"
∆∗

f pdσ

)1/p

,

where in the last step we have used the fact noted above: that the weak reverse

Hölder estimate (2.11) may be applied to each ∆∗ uniformly. Now by the ADR

property, σ(∆N+3) ≈ σ(∆N+2) ≈N,n,K,κ0
σ(∆∗), and by construction, we may sup-

pose that each ∆∗ is contained in ∆N+3. Consequently, for each ∆∗ we have

−−
"
∆∗

f pdσ .n,K,κ0 −−
"
∆N+3

f pdσ .n,K,κ0
M( f p)(x, t) .

Since card(F∗) ≤ C(N, n, b), with b in turn depending only on κ0 and K, the claimed

bound (4.9) now follows.

Next, we claim that for k ≥ N + 1, with N chosen large enough,

(4.10) uk(Y0, s0) . 2−kα (M(
f p)(x, t)

)1/p
.

from which the desired bound (4.1) follows immediately, since (Y0, s0) is an arbi-

trary point in Υ(x, t).

Recall that Ωk is defined in (4.6). We now fix N, depending only on the implicit

constants in (4.5), such that (Y0, s0) ∈ ΩN−1. Having fixed N, we will allow implicit

and generic constants to depend on N without noting such dependence explicitly.

For k ≥ N + 1, set

Wk :=
{
I ∈ W : I meets Qk−N

}
.
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Note that for N chosen large enough, depending only on the Whitney construc-

tion, we have that

(4.11)
⋃

I∈Wk

I∗ ⊂ Ωk−3 .

Since fk vanishes in ∆k, by Lemma 2.5, we have

(4.12) uk(Y0, s0) . 2−kα(2kr)−n−2

"
Ωk−N

uk . 2−kα(2kr)−n−2
∑

I∈Wk

"
I

uk .

Note that for each I ∈ Wk, by the definition of I∗, we may fix a point (YI , sI) ∈ ∂I∗

such that sI > TI + ν`(I)2. Note also that in particular, (YI , sI) ∈ Ωk−3, by (4.11).

For every (Y, s) ∈ I, by (4.8) we then have that by Harnack’s inequality,

uk(Y, s) =

"
Rk∩{T0<τ}

fk(z, τ) dωY,s(z, τ) .

"
Rk∩{T0<τ}

fk(z, τ) dωYI ,sI (z, τ) .

Recall that since we are treating the case Tmin > −∞, R0 < ∞, we need only

consider k such that

2kr ≤ R0 ≤
√

(T0 − Tmin)/(100κ0) .

We now choose a collection of surface cubes Fk = {∆k
i
= Qk

i
∩ Σ}i, of parabolic

sidelength `(Qk
i
) =
√
κ0 2kr/100, whose union covers Rk ∩ {T0 < τ}. Note that we

may do this in such a way that each ∆k
i
⊂ ∆k+3 \∆k−1, and the cardinality of Fk is at

most C(n, κ0), uniformly in k. Note further that by construction, the reverse Hölder

estimate (2.11) may be applied uniformly in each ∆k
i
∈ Fk, with pole at (YI , sI).

Consequently, for each I ∈ Wk,

(4.13)

"
I

uk . |I|
∑

Fk

"
∆k

i

fk(z, τ) dωYI ,sI (z, τ)

≤ |I|
∑

Fk

σ(∆k
i )

 −−
"
∆k

i

f pdσ


1/p  −−
"
∆k

i

(
kYI ,sI

)q
dσ


1/q

. |I|
∑

Fk

 −−
"
∆k

i

f pdσ


1/p

.κ0
|I| (M( f p)(x, t)

)1/p
,

where in the last step we have used the bound on card(Fk), along with ADR and

the fact that diam(∆k
i
) ≈κ0

diam(∆k+3). Note that (4.11) implies in particular that∑
I∈Wk

|I| . (2kr)n+2. Plugging estimate (4.13) into (4.12), we therefore obtain the

claimed bound (4.10), and hence that (1) implies (2).

(3) implies (1). We again treat only the case Tmin > −∞, R0 < ∞, as the proof in

the case Tmin = −∞ is similar, but simpler. Fix κ0 ∈ (0, 1), and a point (x0, t0) ∈ Σ,

with t0 − Tmin ≥ κ0R2
0
. Let 0 < r <

√
κ0R0/2, and set ∆ = Qr(x0, t0) ∩ Σ. Our goal

is to show that the reverse Hölder estimate (2.11) holds for this ∆, and to this end,

it is actually enough to verify (2.11) uniformly for each ∆′ = Qεr(x1, t1) ∩ Σ ⊂ ∆,

with (x1, t1) ∈ ∆, where ε is a fixed small positive number to be chosen. Indeed, the

reverse Hölder estimate for all such ∆′, with pole (Y, s) ∈ Ω \ Q4r(x0, t0), implies

that for ∆, with constants depending on ε. In turn, by Lemma 2.7 and Lemma 2.9,
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it is enough to show that there are uniform constants θ, β ∈ (0, 1) such that for every

(X, t) ∈ Q2εr(x1, t1) ∩Ω, if E ⊂ ∆X,t is a Borel set,

(4.14) σ(E) ≥ (1 − θ)σ(∆X,t) =⇒ ωX,t(E) ≥ β ,

where as above, ∆X,t := Σ ∩ QX,t := Σ ∩ Q((X, t), 20 M1

a
δ(X, t)).

We fix ∆′ and (X, t) as above. Let (x̂, t̂) ∈ Σ be a touching point for (X, t), i.e.,

δ(X, t) = ‖(X, t) − (x̂, t̂)‖. We now choose ε small enough, depending on M1, a, and

κ0, such that for (X, t) ∈ Q2εr(x1, t1) ∩ Ω, where (x1, t1) ∈ ∆ is the center of ∆′, we

have 200M1δ(X, t)/a <
√
κ0R0/1000, and also

min(t − Tmin, t̂ − Tmin,Tmin(∆′) − Tmin,Tmin(∆X,t) − Tmin) > κ0R2
0/2 .

Set κ1 = κ0/100, and set T0 := Tmin + κ1R2
0
. Let f ∈ Cc(∆X,t) be non-negative,

with ‖ f ‖Lp(Σ) ≤ 1. By assumption, the solution u to the initial-Dirichlet problem in

ΩT0 , with data f , enjoys the estimate

(4.15) ‖N∗u‖Lp(Σ) .κ0
‖ f ‖Lp(Σ) ≈κ0

1 ,

for some p < ∞.

Set r′ := δ(X, t)/10. Let I ∈ W be a Whitney cube containing (X, t), and note

that I ∈ W(z, τ), for every (z, τ) ∈ ∆′′ := Qr′(x̂, t̂) ∩ Σ (see (4.2)) and therefore

u(Y, s) .

(
−−
"
∆′′

(N∗u)p dσ

)1/p

, ∀(Y, s) ∈ I∗

(see (4.3)-(4.4)). Thus, by [M, Theorem 3], we have

u(X, t) .

(
−−
"

I∗

(
u(Y, s)

)p
dYds

)1/p

.

(
−−
"
∆′′

(N∗u)p dσ

)1/p

. δ(X, t)−(n+1)/p ,

where in the last step we have applied the lower ADR estimate to ∆′′, and used

(4.15). In turn, taking a supremum over all non-negative f ∈ Cc(∆X,t) such that

‖ f ‖p ≤ 1, we obtain by Riesz representation that

(4.16)

("
∆X,t

(
kX,t

)q
dσ

)1/q

. δ(X, t)−(n+1)/p ,

with q = p/(p − 1).

We now claim that the latter estimate implies (4.14), for suitable θ, β ∈ (0, 1), in

which case we are done. To prove this claim, note first that by ADR,

(4.17) σ(∆X,t) ≈ δ(X, t)n+1 .

Let E ⊂ ∆X,t satisfy the left hand estimate in (4.14), and set A := ∆X,t \E, for θ > 0

to be chosen, so that

(4.18) σ(A) ≤ θσ(∆X,t) .

Then

ωX,t(A) ≤ σ(A)1/p

("
∆X,t

(
kX,t

)q
dσ

)1/q

. σ(A)1/pδ(X, t)−(n+1)/p
. θ1/p ≈ θ1/pωX,t(∆X,t) ,
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where in the last three steps we have used (4.16)-(4.18), and then Lemma 2.2.

Taking complements, and using Lemma 2.2 once again, for θ small enough we

obtain (4.14). �

5. Two Applications

In this section, we briefly discuss two applications of our main result, Theorem

1.6. The first is an extension of a result proved in [NS]. We refer to [NS] for

definitions of the terms not previously defined in the present paper.

Theorem 5.1. Let Ω ⊂ Rn+1 satisfy a time-synchronized two cubes condition, and

suppose that Σ is parabolic uniformly rectifiable (in particular Σ is globally ADR).

Then caloric measure ω satisfies a local weak-A∞ condition with respect to σ,

equivalently, ω � σ and the Radon-Nikodym derivative dω/dσ verifies the weak

Reverse Hölder condition (1.7).

A few remarks are in order. In [NS], the authors obtain a similar result, but

assuming in addition that Ω satisfies a parabolic Harnack Chain condition. Our

Theorem 1.6 allows us to dispense with the latter connectivity assumption in The-

orem 5.1. The conclusion in [NS] is that ω satisfies an A∞ condition (which entails

doubling) with respect to σ, but in the absence of connectivity the non-doubling

weak-A∞/weak Reverse Hölder conclusion is best possible. We remark that the

aforementioned result of [NS], and our Theorem 5.1, are the parabolic analogues

of results proved in [DJ] and in [BL], respectively.

The hypotheses of the theorem correspond to the case Tmin = −∞, Tmax = ∞.

A sketch of the proof is as follows. One first invokes the deep fact proved in [NS,

Theorem 1.2] that under the hypotheses of Theorem 5.1, one obtains an interior

“big pieces” approximation (see [NS] for the precise definition), analogous to that

proved in the elliptic setting in [DJ], by domains of the sort considered in [LM]. By

the result of [LM], plus a standard maximum principle argument, one obtains the

(θ, β)-local ampleness condition 1.5. In addition, it is not difficult to show that in

the presence of ADR, the time-synchronized two cubes condition of [NS] implies

global time-backwards ADR (in fact, it implies a time-symmetric version of ADR,

in which one has thickness both in ∆−r and in ∆+r ). At this point, the conclusion

follows by Theorem 1.6.

A second application of Theorem 1.6 will appear in our forthcoming joint paper

[GH]. We state the result here, but refer the reader to that paper for details.

Theorem 5.2. Let Ω ⊂ Rn+1, whose quasi-lateral boundary Σ is globally ADR and

time-backwards ADR. Suppose that the Dirichlet problem is “BMO-solvable” in

Ω. Then caloric measure ω satisfies a local weak-A∞ condition with respect to σ,

equivalently, ω � σ and the Radon-Nikodym derivative dω/dσ verifies the weak

Reverse Hölder condition (1.7).

The result is a parabolic version of the main theorem of [HLe], which in turn

entailed removing all connectivity hypotheses (in particular, the Harnack Chain

condition), from earlier elliptic results of [DKP] and [Z]. We refer to [GH] for a

precise formulation of the BMO-solvability statement in the parabolic setting.
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Appendix A. Proof of Bourgain-type Estimate, Lemma 2.2

Proof. Let (x0, t0) ∈ Σ, and let 0 < Mr <
√

t0 − Tmin/(4
√

n), where our goal is now,

equivalently, to show that ωX,t(∆Mr ∩ E(T )
) ≥ η, for all (X, t) ∈ Qar/2(x0, t0) ∩ Ω,

with Σ time-backwards ADR on ∆Mr = QMr(x0, t0) ∩ Σ, and M is a large enough

constant depending only on λ, n and ADR (including time-backwards ADR). Here,

E(T ) is defined as in (2.1), with T = Tmax

(
Qar/2(x0, t0)

)
= t0 + (ar)2/4. We then

obtain the conclusion of Lemma 2.2 with M1 = 2M.

We continue to assume either that L is the heat operator, or that the continuous

Dirichlet problem is solvable in Ω for L.

Claim 1. There exist numbers a ∈ (0, 1/2) and b ∈ (0, 1), depending only on n

and ADR (including the time-backwards ADR constants), such that if Σ is time-

backwards ADR on ∆ = ∆r = Σ ∩ Qr(x0, t0), then

(A.1) σ
(
Q−r

(
x0, t0 − (ar)2) ∩ Σ

)
≥ σ

(
∆−r ∩

{
t < t0 − (ar)2

})
≥ brn+1 .

Proof of Claim 1. Observe that

Q−r
(
x0, t0 − (ar)2) ⊃ Q−r ∩

{
t < t0 − (ar)2

}
.

Thus, the first inequality in (A.1) is trivial, so we need only prove the second. Set

Φar := Q−r (x0, t0) ∩ {t0 − (ar)2 ≤ t ≤ t0} and take a = 2−m, where m > 1 will

be chosen large enough. We then decompose Φar into sub-cubes, with parabolic

length ar, all of equal size, and denote these cubes by Qi
ar. As the n-dimensional

measure of the face of each Qi
ar with t = t0 is (ar)n, and the n-dimensional measure

of the face of Q−r (x0, t0), again with t = t0, is rn, there are a−n such sub-cubes Qi
ar.

Hence,

Φar =

a−n⋃

i=1

Qi
ar.

By upper ADR of Qi
ar ∩ Σ, this yields in turn that

σ (Σ ∩ Φar) ≤ M0

a−n∑

i=1

(ar)n+1 ≤ M0arn+1.

Therefore, if we choose a ≤ (2M0)−1c, where c is the constant in the definition of

time-backwards ADR,

(A.2) σ (Σ ∩ Φar) ≤
1

2
crn+1 ≤ 1

2
σ

(
Σ ∩ Q−r (x0, t0)

)
.

Consequently, since Q−r (x0, t0) \ Φar = Q−r ∩
{
t < t0 − (ar)2

}
,

σ
(
∆−r ∩

{
t < t0 − (ar)2

})
= σ

(
Σ ∩ (

Q−r (x0, t0) \ Φar

))

≥ 1

2
σ

(
Σ ∩ Q−r (x0, t0)

) ≥ 1

2
crn+1,

where we have used time-backwards ADR in the last step. �

To prove the estimate of Bourgain-type we will use (A.1). We follow the proof

in [Bo], adapting it to the parabolic setting. Set

(A.3) ∆̂ := Q−r (x0, t0 − (ar)2) ∩ Σ ,
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and define

(A.4) u(X, t) :=

∫ t

−∞

∫

Σs

Γ(X, t, y, s) χ
∆̂

(y, s) dσs(y)ds ,

where Γ(X, t,Y, s) is the fundamental solution of L. In [QX], the authors prove the

following inequality:

1

(N(t − s))n/2
exp

(
−N|X − y|2

t − s

)
χ{t>s} ≤ Γ(X, t, y, s)

≤ N

(t − s)n/2
exp

(
− |X − y|2

N(t − s)

)
χ{t>s},(A.5)

where N depends on dimension and λ.

Remark A.6. In fact, in [QX], the authors obtain this inequality in the more general

situation that the non-symmetric part of the coefficient matrix A belongs to BMO.

Claim A.7. The function u defined in (A.4) satisfies the following properties: there

exist constants C1 and c2 depending only on ADR, λ, and n, such that

(1) u is continuous in Rn+1, Lu = 0 in Ω, and u ≡ 0 for {t : t ≤ t0 − 5
4
r2}.

(2) 0 ≤ u ≤ C1r in Rn+1.

(3) u(X, t) ≥ c2r, for (X, t) ∈ Qar/2 ∩Ω, where Qar/2 := Qar/2(x0, t0).

(4) u(X, t) ≤ C1M−nr, for (X, t) ∈ Ω \ QMr/2, where QMr/2 := Q
(
(x0, t0), M

2
r
)
.

Property (1) follows by definition of u, and the fact that (ar)2 ≤ r2/4. Let us

now verify the remaining properties.

Proof of property (2). Certainly, u ≥ 0, by definition. To prove the upper bound

for u, we first note that

(A.8) Γ(X, t, y, s) .n,λ ||X − y, t − s||−n ,

as one may readily derive from (A.5) and the definition of the parabolic distance;

we omit the details.

Next, we split u as follows:

u(X, t) =

"
∆̂

Γ(X, t, y, s) dσ(y, s)

=

"
∆̂∩{||X−y,t−s||<r}

Γ dσ +

"
∆̂∩{||X−y,t−s||≥r}

Γ dσ =: I + II.

By (A.8), the integrand in term II is at most Cr−n, hence,

II . r−nσ(∆̂) . r−nrn+1 ≤ Cr,

by upper ADR, where C = C(ADR, n, λ).

In term I, we will dyadically decompose ∆̃ := ∆̂ ∩ {||X − y, t − s|| . r}. Define

Ak := {(y, s) ∈ ∆̃ : 2−k−1r < ||X − y, t − s|| ≤ 2−kr} .
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As Ak ⊂ ∆̂, we can use upper ADR on Ak, along with (A.8), to obtain the following

estimate:

I .

∞∑

k=0

"
Ak

||X − y, t − s||−ndσ(y, s)

≤
∞∑

k=0

(2−k−1r)−n

"
Ak

dσ(y, s)

.

∞∑

k=0

(2−k−1r)−n(2−kr)n+1 ≤ Cr,

where C = C(ADR, n, λ). �

Proof of property (3). As (y, s) ∈ ∆̂ and (X, t) ∈ Q a
2

r ∩Ω, we have that

t0 − (ar)2 − r2 < s < t0 − (ar)2,

t0 −
1

4
(ar)2 < t < t0 +

1

4
(ar)2.

Hence

t − s < t0 +
1

4
(ar)2 − (t0 − (ar)2 − r2) =

5

4
(ar)2 + r2, and

t − s > t0 −
1

4
(ar)2 − (t0 − (ar)2) =

3

4
(ar)2.

Overall, this gives us that t − s ≈ r2, with implicit constants depending on a. Since

|X − x0| . r and |y − x0| . r, by the triangle inequality we have |X − y| . r, hence,

−|X − y|2 & −r2.

Combining the above estimates, as well as using ADR, we obtain that

u(X, t) ≥
"
∆̂

1

(N(t − s))n/2
exp

(
−N |X − y|2

(t − s)

)
χ{t>s}dσ(y, s)

&

"
∆̂

1

rn
exp

(
− r2

Cr2

)
dσ(y, s)

& r−nσ(∆̂) & r−nrn+1 ≥ c2r,

by (A.1) and the definition of ∆̂ (A.3), where c2 = c2(n, ADR, λ) > 0 (recall that by

Claim 1, a depends only on n, ADR and time-backwards ADR). �

Proof of property (4). As (y, s) ∈ ∆̂ and (X, t) ∈ Ω \ QMr/2, we have that

‖(X, t) − (y, s)‖ ≥
∣∣∣‖(X, t) − (x0, t0)‖ − ‖(x0, t0) − (y, s)‖

∣∣∣ ≥ |cMr −Cr| & Mr,

provided that M is chosen sufficiently large. Combining the latter estimate with

(A.8), we have

u(X, t) .n,λ (Mr)−nσ(∆̂) ≤ C1M−nr,

where C1 = C1(n, ADR, λ). �

Claim A.9. Set ũ(X, t) :=
1

r

u(X, t) − sup
Ω\QMr/2

u

 . Then ũ satisfies the following:
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(i) ũ is continuous in Rn+1, Lũ = 0 in Ω, and ũ ≤ 0 in Ω \ QMr/2, and in

{t : t ≤ t0 − 5
4
r2}.

(ii) |ũ(X, t)| ≤ 2C1 in Ω.

(iii) ũ(X, t) ≥ 1
2
c2 for (X, t) ∈ Qar/2 ∩Ω, provided M is large enough.

Indeed, property (i) follows immediately from Claim A.7, property (1), and the

definition of ũ; property (ii) from Claim A.7, property (2), and property (iii) from

Claim A.7, properties (3) and (4). We omit the routine details.

Recall that E(T ) is defined as in (2.1), with T := Tmax(Qar/2) = t0 + (ar)2/4.

Claim 2. ωX,t(∆Mr ∩ E(T )
)
& ũ(X, t), for

(X, t) ∈ Ω̃ := Ω ∩ QMr/2 ∩ {t : t > t0 − 5r2/4} ∩ E(T ) .

Proof of Claim 2. Let 0 < ε � r. Set Ω̃ε := Ω̃∩E(T −ε). Observe that by property

(i) and the definition of Ω̃ε,

PΩ̃ε ⊂ {ũ ≤ 0} ∪
(
QMr/2 ∩ Σ ∩ E(T )

)
⊂ {ũ ≤ 0} ∪ (∆Mr ∩ E(T )) .

The claim then follows with Ω̃ε in place of Ω̃, by property (ii) and the weak maxi-

mum principle. The full claim follows by letting ε→ 0, �

Note that Qar/2 ∩ Ω ⊂ Ω̃, since t0 − (ar)2/4 < t < T in Q a
2

r. By Claim A.9,

property (iii), we have that ũ(X, t) ≥ 1
2
c2 for (X, t) ∈ Qar/2 ∩ Ω. Thus, for such

(X, t), by Claim 2 we obtain

1

2
c2 ≤ ũ(X, t) . ωX,t(∆Mr).

This finishes the proof with η ≈ c2. �

Appendix B. Proof of Hölder Continuity at the Boundary, Lemma 2.5

As above, given a cube Qr centered on Σ, and a fixed time T , we setΩr := Qr∩Ω,

and Ωr(T ) := Ωr ∩ E(T ), where we recall that E(T ) is defined in (2.1). We first

state a version of Bourgain’s lemma for supersolutions.

Lemma B.1 (Parabolic Bourgain-type Estimate for supersolutions). Let (x0, t0) ∈
Σ, and let 0 < r <

√
t0 − Tmin/(4

√
n). Set Qr := Qr(x0, t0), Qar/M1

= Q((x0, t0), a
M1

r),

and define

T = Tmax(Qar/M1
) = t0 + (aM−1

1 r)2 .

Assume that Σ is time-backwards ADR on ∆r := Qr∩Σ. Then there exists M1, η > 0

such that if w is a non-negative supersolution in Ωr(T ), with w ≥ 1 on ∆r ∩ E(T )

in the sense that

lim inf
(X,t)→(y,s)

w(X, t) ≥ 1 , (y, s) ∈ ∆r ∩ E(T ) ,

then

w(X, t) ≥ η , ∀ (X, t) ∈ Ωar/M1
.

The proof is identical to that of Lemma 2.2: replace r by Mr (with 2M = M1),

build the same auxiliary solutions u and ũ, and then apply the weak maximum

principle as before. We omit the details.

We next establish the following Hölder continuity statement for subsolutions.



28 ALYSSA GENSCHAW AND STEVE HOFMANN

Lemma B.2. Suppose that Σ is time-backwards ADR on Q2r := Q2r(x0, t0), with

(x0, t0) ∈ Σ and 0 < r <
√

t0 − Tmin/(8
√

n). Then there exists C = C(n,ADR), α =

α(n,ADR) > 0, such that if v is a non-negative subsolution in Ω2r(T1), which

vanishes continuously on ∆2r ∩ E(T1) := Q2r ∩ Σ ∩ E(T1), then

v(Y, t) ≤ C

(
δ(Y, t)

r

)α
M(v) , ∀ (Y, t) ∈ Ωr ,

where T1 := Tmax(Qr) = t0 + r2, andM(v) := supΩ3r/2(T1) v.

Proof of Lemma B.2. IfM(v) = ∞, there is nothing to prove, so we may assume

thatM(v) < ∞. Normalize v so thatM(v) ≤ 1, and set w := 1− v. Then 0 ≤ w ≤ 1

in Ω3r/2(T1), and w ≡ 1 on ∆2r ∩E(T1). Then by Lemma B.1, there exists M, η > 0

such that w(Y, t) ≥ η, and therefore

v(Y, t) ≤ 1 − η , ∀ (Y, t) ∈ Q a
M

r(x0, t0) ∩Ω .
Iterating, and using the fact that similar estimates hold with Q3r/2(x0, t0) replaced

by Qr/2(x1, t1), for (x1, t1) ∈ ∆r(x0, t0), we obtain the conclusion of the lemma. �

Proof of Lemma 2.5 (Hölder Continuity at the Boundary). Set

T1 := Tmax(Qr(x0, t0) = t0 + r2 ,

SetM(u) := supΩ3r/2(T1) u. The first step is to establish the estimate

(B.3) u(Y, t) ≤ C

(
δ(Y, t)

r

)α
M(u) , ∀(Y, t) ∈ Ωr ,

where u is the parabolic measure solution with non-negative data f ∈ Cc(∂eΩ), with

f ≡ 0 on ∆2r. If L is a divergence form parabolic operator for which the continuous

Dirichlet problem is solvable, then estimate (B.3) is a special case of Lemma B.2,

since a non-negative solution is in particular a non-negative subsolution.

On the other hand, suppose now that L is the heat operator. In this case, we

need not assume a priori solvability of the continuous Dirichlet problem; rather

we shall use Lemma B.2, and the Perron construction (see [W2, Chapter 8]). By

resolutivity of C(∂eΩ), the caloric measure solution is the Perron (more precisely,

PWB) solution, and is given by

u = sup
{
v : v ∈ L f

}
,

where, since f ≥ 0, without loss of generality the lower class L f consists of all

non-negative subcaloric v satisfying

lim sup
(X,t)→(y,s)

v(X, t) ≤ f (y, s) , (y, s) ∈ ∂nΩ ,

and

lim sup
(X,t)→(y,s+)

v(X, t) ≤ f (y, s) , (y, s) ∈ ∂ssΩ .

In particular, since ∆2r ⊂ Σ ⊂ ∂nΩ (recall that ∂ssΩ ∩ ∆2r = ∅, by the time-

backwards ADR assumption; see Remark 1.26), we have

0 ≤ lim sup
(X,t)→(y,s)

v(X, t) ≤ f (y, s) = 0 , (y, s) ∈ ∆2r ,

for all v ∈ L f . Thus, each such v vanishes continuously on ∆2r, and therefore

Lemma B.2 may be applied to any v ∈ L f .
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If M(u) = ∞, then (B.3) is trivial, so after normalizing, we may suppose that

M(u) ≤ 1. By the PWB construction, we then haveM(v) := supΩ3r/2(T1) v ≤ 1, for

all v ∈ L f . Given ε > 0, and a point (Y, t) ∈ Ωr, we may choose v ∈ L f such that

u(Y, t) ≤ v(Y, t) + ε .

Applying Lemma B.2 to v, withM(v) ≤ 1, and letting ε→ 0, we obtain (B.3).

With (B.3) in hand, it remains to replaceM(u) by an integral average. To this

end, we first observe that u vanishes continuously on ∆2r. Indeed, in the case that

the continuous Dirichlet problem is solvable for L, this fact holds by assumption.

On the other hand, in the case that L is the heat operator, or an operator with

C1-Dini coefficients, we may use the time-backwards ADR assumption (and the

Wiener-type criterion of [EG], or of [FGL]) to deduce that every point in ∆2r is

regular (see Remark 1.24). Thus, in either case, u vanishes continuously on ∆2r.

We may then extend u ≡ 0 in Q2r \ Ω, and we call this extension û. Observe that

û ≥ 0 and û is a subsolution in Q2r. Therefore, by local boundedness [M, Theorem

3], recalling that T = Tmax(Qr) = t0 + r2, we obtain

M(u) = sup
Q3r/2∩E(T )

û . −−
"

Q2r∩E(T )

û = Cr−n−2

"
Ω2r(T )

u .(B.4)

We note that Theorem 3 in [M] is stated with an Lp average, p ≥ 2, on the right

hand side of the inequality, but in hindsight, this may be sharpened to an L1 av-

erage, using a well-known self-improving property of weak reverse Hölder esti-

mates. �

Appendix C. Proof of Lemma 1.14

Proof of Lemma 1.14. We prove that the essential boundary ∂eΩ and quasi-lateral

boundary Σ are closed sets. In the case of ∂eΩ, by definition it is equivalent to

show that the singular boundary ∂sΩ is relatively open in ∂Ω. To this end, fix

x0 = (x0, t0) ∈ ∂sΩ, and note that by definition, there is an ε > 0 such that

Q−ε := Q−ε (x0) ⊂ Ω , and Q+ε := Q+ε (x0) ⊂ Rn+1 \Ω .

Since Q+ε is open, we therefore have that

Q+ε ⊂ int(Rn+1 \Ω) =: Ωext ,

where int(A) denotes the interior of A. Consequently, if x = (x, t) ∈ ∂Ω ∩ Qε,

where Qε := Qε(x0), then x lies on the interface between Q−ε and Q+ε , i.e., on the

time-slice (Qε)t0 . It follows that for any such x, there is an ε′ = ε′(x) > 0 such that

Q−ε′(x) ⊂ Ω , and Q+ε′(x) ⊂ Rn+1 \Ω ,

i.e., x ∈ ∂sΩ, by definition, and thus ∂sΩ is relatively open, as desired.

To see that Σ is closed, we first note that (∂sΩ)Tmax
is relatively open in ∂Ω, by

the preceeding argument. Thus, we need only observe in addition that the time

slice (BΩ)Tmin
is also relatively open in ∂Ω (assuming that Tmin > −∞; otherwise

there is nothing to prove). But this follows directly from the fact that under the

change of variable t → −t, which maps Ω into an open set that we denote Ω∗, the

time-slice (BΩ)Tmin
is mapped onto (∂sΩ

∗)Tmax(Ω∗). �



30 ALYSSA GENSCHAW AND STEVE HOFMANN

Acknowledgements. We thank Nicola Garofalo for bringing to our attention the

references [BiM] and [GZ], and Seick Kim for informing us of the results in [BHL],

[CDK], [DK], [QX], and [SSSZ].

References

[BL] B. Bennewitz and J.L. Lewis, On weak reverse Hölder inequalities for nondoubling harmonic
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