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ABSTRACT Proteins in vivo are immersed in a crowded environment of water, ions, 

metabolites, and macromolecules. In-cell experiments highlight how transient weak protein-

protein interactions promote (via functional “quinary structure”) or hinder (via competitive binding 

or “sticking”) complex formation. Computational models of the cytoplasm are expensive. We 

tackle this challenge with an all-atom model of a small volume of the E. coli cytoplasm to simulate 

protein-protein contacts up to the 5 microsecond timescale on the special-purpose supercomputer 

Anton2. We use three CHARMM-derived force fields: C22*, C36m, and C36mCU (with CUFIX 

corrections). We find that both C36m and C36mCU form smaller contact surfaces than C22*. 

Although CUFIX was developed to reduce protein-protein sticking, larger contacts are observed 

with C36mCU than C36m. We show that the lifespan Dt of protein-protein contacts obeys a power-

law distribution between 0.03-3 µs, with ~90% of all contacts lasting <1 µs (similar to the 

timescale for downhill folding). 
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Proteins in vivo are surrounded by a complex cellular milieu composed of macromolecules and 

small metabolite molecules, in addition to the water and inorganic ions that typically surround 

proteins in experiments in vitro. Of particular importance is the high concentration of 

macromolecules, which can range from 10-40% of the cell by volume.1–3 In such a crowded 

environment, proteins have evolved to form transient functional contacts (quinary structure) and 

to minimize non-functional competitive binding (sticking).4,5 

High-stability functional protein-protein interactions have been studied for decades, including 

as potential drug targets.6,7 More transient interactions are recently receiving more attention.8 A 

number of databases have been created to characterize the total space of the interactome.6 Both 

computational and experimental studies have been conducted to investigate the physical 

mechanisms underlying quinary structure (electrostatics, hydrophobic interactions).4,5,9 

Experiments have indicated that crowding and non-specific interactions between neighboring 

proteins also contribute to the differences in protein dynamics observed in vitro and in vivo.4,10  

Recent experiments have highlighted the dependence of a protein’s stability11 and unfolded 

ensemble12 on its local environment. Further, several results emphasize the importance of the local 

electrostatic environment that cannot be replicated with inert crowders.5,10,13 These results point to 

a bigger picture of  “free for all” of nonspecific protein-protein interactions caused by local charged 

or hydrophobic patches sticking to complementary patches of neighboring proteins. Attempts to 

characterize sticking have largely focused on the experimental observation of anomalous 

translational or rotational diffusion in vivo.4,14,15  

Atomistic computational studies in crowded environments have been limited by the 

computational cost of simulating such large systems. Early attempts to simulate the crowded 

cellular environment have involved modelling proteins as  hard spheres.16,17 More recently, protein 

diffusion in vivo has been simulated using Brownian Dynamics or coarse-graining techniques.18–

22 Others have simulated crowded environments by including multiple copies of small proteins.9,23–

25 A >108 atom model of the Mycoplasma genitalium cytosol simulated by all-atom molecular 

dynamics for 100 ns is the current state-of-the-art.26 To date, no in-cell simulations using all-atom 

MD have reached the µs timescale relevant for sampling sticking processes. 

 

Model design We present a 2.105 all-atom model that mimics a small volume of the E. coli cytosol 

to characterize nonspecific protein-protein interactions on a multi-µs timescale. Proteins and RNA 
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were selected from among the most abundant cytoplasmic components (Fig. 1). We chose smaller 

proteins to maximize the number of interacting surfaces in our model. We included monomers of 

several proteins known to oligomerize (e.g. GAPDH) to see whether in absence of their binding 

partner, their exposed oligomerization interfaces would stick any more than monomeric protein 

surfaces. Our hypothesis is they would not stick more because they evolved to reduce non-specific 

binding, just like monomeric proteins. The bacterial cytoplasm models analyzed in this work 

contained at least sixteen copies of over a dozen different macromolecules, including a cold shock 

protein, an elongation factor, tRNA and several abundant enzymes (Fig. 1). We also included 

unfolded copies of the fast-folding protein WW GTT,27 as a model for sticking of unfolded exposed 

hydrophobic surface area (SI Fig. S1).  

To recreate the cellular environment of E. coli, small molecules were then added in accordance 

with experimentally measured concentrations.28 Due to the finite size of the box, only the most 

abundant metabolite species were sampled. Metabolite numbers for each model were either picked 

from the experimental concentration distribution directly, with a cutoff at <1 molecule/box, or a 

Monte Carlo code was used to sample the number of copies of each metabolite based on the 

experimental metabolite concentrations (see SI Table S1/Fig. S2).  Across all systems, about 45 

species of metabolites were sampled, from the most common (glutamate, 96 mM) to 59th most 

common (methionine, 0.15 mM). After the addition of inorganic ions and explicit solvent, the final 

system contains approximately 200,000 atoms. The macromolecular concentration of the systems 

are ~300 mg/mL with ~220 mM metabolites and ~350 mM inorganic ions.  

For production runs, the systems were simulated on the special-purpose supercomputer 

Anton2,29 using three different versions of the CHARMM force field: CHARMM 22*,30 

CHARMM 36m,31 and CHARMM 36m with CUFIX, which was designed to reduce sticking by 

tuning Lennard-Jones parameters for certain atom pairs.32 We will use the abbreviations C22*, 

C36m and C36mCU for modeled systems from here on. The first 15 µs of trajectory were discarded 

for system equilibration: a drift towards increased contact area occurred initially, before contact 

area in all simulations settled at ~10-15 µs (see SI Fig. S3). Therefore, the final 5.016 µs of the 

three trajectories are analyzed here, and the first and second half of this window yield consistent 

contact area distributions. (Fig. S4) Of course, we cannot exclude that a very long-lived metastable 

cluster formed after ca. 10 µs. We observe that all proteins associate with this dynamic cluster 

throughout the rest of the simulation, although proteins leave and rejoin the cluster frequently.  
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The three models’ composition varies slightly. Details of all three model runs (force field used, 

box size, number of each simulated species) are provided in SI Tables S1-4. The differences (e.g. 

a folded WW GTT in two simulations substituting a disordered peptide in another; slightly 

different metabolite distributions) were included for future analyses not addressed in this work. 

They made a negligible contribution to sticking statistics (see SI Fig. S5-S7), the largest being a 

contact made by WW GTT 1 (F) (thus included in Fig. 2a). 

 
Figure 1. A snapshot of the E. coli cytoplasm model system. Color-coded macromolecules 
comprising the system are listed below along with copy number and the PDB ID. Ions and small 
metabolite molecules are shown in gray. Water molecules are not shown for clarity. 
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For analysis of protein-protein contacts, snapshots were taken once every 24 ns throughout the 

trajectories. Although the Phe-tRNA forms multiple contacts with neighboring macromolecules, 

these contacts are not considered here because we are focusing on protein-protein interactions in 

this work. To calculate the area of the protein-protein contacts, we measured the difference 

between the solvent accessible surface area (SASA) of each protein alone and in a protein-protein 

complex for every potential protein-protein interaction in the system. To account for periodic 

boundary conditions, the contacts included any extension of a contact area into wrapped regions.  

 
Figure 2. (a) Contact size for largest protein-protein contacts during the C36mCU simulation. Heat 
maps of the other two models are provided in SI Fig. S8. (b) Distribution of protein-protein contact 
sizes for CHARMM 22*, 36m, and 36m with CUFIX corrections. (c) Surface area of the 
CSP2/EFTu contact in the C36mCU model across the trajectory with snapshots at 2.3, 2.9, 3.0, and 
4.1 µs.  
 

Protein clustering As has been observed previously even in simulations with less than half the 

protein concentration,9,18,23,25 the cytoplasmic proteins tend to cluster, forming protein-rich and 

water rich regions in the simulation box (see Fig. 1 top). As discussed in reference 20, protein-

protein interactions are probably overestimated relative to protein-water interactions in the current 

generation of force fields, the same effect that is also known to overestimate protein stability in 

simulations.33 To quantify such sticking, we calculated the number of unique neighbors each 
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protein encountered throughout the trajectory. All proteins in all three models formed at least one 

protein-protein contact; all but one protein in all three models contacts at least two proteins 

simultaneously at some point. We find that at any given time, proteins on average are in contact 

with 4.6 unique protein neighbors. These results agree well with previous Brownian Dynamics 

simulations of crowded cellular environments,18 which predict 2-7 unique neighbors for similar-

sized proteins. Our observation of ~35 ± 3 simultaneous pair contacts out of 105 possible at any 

given time is also consistent with about 5 neighbors. 

 
Figure 3. (a), (b) Contact surface areas of the PSAT/CYC A contact in the C36mCU simulation. 
For each contributing protein, hydrophobic, polar, acidic, and basic contributions are shown. (c) 
Relative contributions of hydrophobic, polar, acidic, and basic residues in protein-protein contacts 
across all systems. Error bars are based on standard deviations, which in turn are calculated over 
time. “Exc.” refers to the exclusion of oligomer-oligomer contacts from the dataset. (d) Snapshot of 
the protein-protein contact at 3.6 µs. Residues at the protein-protein interface are colored according 
to residue type.   
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The difference of protein-protein contact size distributions between force fields (Figure 2b) 

indicates that the C36m system is markedly less sticky than C22* and C36mCU. C22* also has 

more very large (>30 nm2) protein-protein contacts. CHARMM 22* was originally designed to 

fold single proteins in water, and thus may over-stabilize contacts between amino acids that are 

not close together in protein sequence, such as tertiary structure within a single protein, or surface 

amino acid contacts between different proteins. 

Previous experimental studies of nonspecific protein-protein interactions in crystal structures 

have indicated that on average, these have a contact area of ~5.7 nm2.34 In our three systems, the 

mean contact area was 9.5 nm2 (C22*), 8.1 nm2 (C36m) and 8.5 nm2 (C36mCU). In addition, a 

plateau in the distribution was observed at ~10 nm2 for all three models. The plateaus cannot be 

wholly attributed to unfolded WW domain model proteins included in the simulation (see below), 

as they persist when these proteins are removed from the average (see SI Fig. S7).   

Unfolded protein contacts The unfolded copies of the GTT model protein (a 33 residue WW 

domain) are more prone to forming large, long-lived contacts than folded protein surfaces in the 

simulation. Of the 10 largest contacts on average, a single unfolded copy of GTT participates in 4 

(Figure 2a) even though it represents only 1 of up to 17 macromolecules in the simulation. We 

attribute this to exposure of hydrophobic core residues, in agreement with previous experimental 

reports15,35,36 and computational modeling of in-cell systems18 that point to hydrophobic 

interactions as an important source of nonspecific protein-protein sticking.   

Additionally, other computational9 and experimental4,5 studies have pointed to electrostatics 

driving protein-protein contacts. Figure 3 shows, for contacts in the >10 nm2 range, what fraction 

of the contact surface is covered by hydrophobic, hydrophilic, and charged amino acid side chains, 

relative to their abundances on the complete set of protein surfaces (averaged for the 3 models) 

simulated here. Hydrophobic and polar residues tend to dominate over the formation of salt bridges 

between charged residues in all three models. 
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Figure 4: Mean squared displacement of proteins in C22* (orange), C36m (dark blue), and C36mCU 
(light blue) models versus elapsed time. The straight dotted lines superimposed on the C36m CU 
simulations illustrate the ‘fast’ and ‘slow’ linear regimes. Cold Shock Protein 1 in the C22* model 
and Cold Shock Proteins 1 & 3 in the C36mCU model were outliers that diffused more quickly than 
other proteins and were omitted from this figure.  

Diffusion is the transport mechanism preceding macromolecular sticking. The effective diffusion 

could be slowed down and made anomalous by sticking, particularly if measured over long times. 

As has been discussed,37 the bacterial cytoplasm has glassy properties at long scales, modulated 

by metabolic activity. Protein clustering that contributes to slow dynamics can be seen in Fig. 1, 

and may be exacerbated by the small volume and periodic boundary condition of our simulation. 

Figure 4 shows the squared displacement of individual proteins versus elapsed time in all three 

models. All models show evidence of anomalous diffusion over long time periods: There is a ‘fast’ 

linear regime from ~30 to 200 ns, a ‘slow’ linear regime from ~200 to 800 ns, and an overall roll-

over at long times. C36m in particular is least well separated into ‘fast’ and ‘slow’ linear regimes, 

with just a gradual roll-over.  

Previous all-atom simulations of proteins in crowded environments9,24,26 have indicated larger 

diffusion coefficients than we find here. Our ‘fast’ linear regime produces diffusion coefficients 

(~1.4-2 nm2/µs, see SI Table S5) slower than experiment38 by about a factor of 3-5 when left 

uncorrected for finite size effects.39  The subsequent ‘slow’ linear regime goes hand-in-hand with 

the protein sticking noted above—as proteins crowd or stick together and form clusters, they 

become less free to diffuse about the box. It is worth noting that previous simulations measure 

diffusion coefficients using much shorter timescales than the work presented here, highlighting the 

potential importance protein sticking for long-time transport dynamics. 
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Figure 5. Distribution of protein-protein contact lifetimes. Only ≈7% of transient contacts last 
longer than 1 µs in all three models; about half of these lasted throughout the simulation window of 
5 µs, so their ultimate potential duration is unknown and not shown. “Exc.” refers to the exclusion 
of oligomer-oligomer contacts from the dataset. A minimum 0.15 nm2 contact area threshold was 
used; larger thresholds produce similar distributions (see SI Fig. S9).  

Protein-protein contact lifetimes Our results for all protein-protein pairs indicate that contacts 

are highly dynamic (Figure 2a.). For example, the contact between the cold shock protein number 

2 (CSP 2) and the elongation factor Tu (EFTu) is broken and reformed repeatedly; in one case, a 

contact forms and reaches >10 nm2 in under 50 ns (Figure 2c). To determine the timescales of the 

contact events, we compare the distribution of protein-protein contact lifespans Dt in all three 

simulations (Figure 5). Despite differences observed in contact area distribution between the three 

force fields, the timescales of protein-protein contacts do not differ appreciably between the three 

force fields simulated: with a 15 Å2 threshold defining a contact, 90% the probability P(Dt) decays 

on the order of ~1 µs. 

Whether interactions between oligomeric proteins are excluded (“exc.”  in Fig. 5) or not has 

little effect on the probability distribution in Fig. 5. This supports our hypothesis that while 

oligomeric proteins are of course prone to interacting with their partners, as monomers they are 

not any more prone to interact with other proteins in the cytoplasmic matrix than are monomeric 

proteins. The average distribution (gray stepped curves in Fig. 5) is essentially the same either 

way. Thus, it appears that binding interfaces of oligomeric proteins, just like surfaces of 

monomeric proteins, have co-evolved with the cytosol to avoid non-specific interactions, as also 

indicated by previous studies of protein-protein interaction networks.40–43 
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P(Dt) was fitted between 50 ns and 4 µs to a stretched exponential and to power laws (see SI 

Fig. S10). The best fit was obtained with a power law probability distribution finite as t approaches 

0,44 which yielded the equation P(Δt)~(1+(Δt/0.0072))-1. As discussed in ref. 45, for ‘birth-death’ 

processes with constant rates (here: sticking-unsticking processes with constant rate coefficients 

for making or breaking protein-protein contact pairs), both stretched exponentials and power laws 

with exponents close to -1 are possible.45 The latter happens when the number of contacts at any 

given time is proportional to the lifespan Dt of contacts and the distribution of contacts is sampled 

rapidly. In terms of the power spectrum P(Dw), where Dw is the contact frequency Fourier-

conjugate to contact lifespan Dt, a 1/Dt probability distribution simply implies a constant power 

spectrum P(Dw).46  

Origins of sticking The decreased diffusion coefficients, observed protein clustering, and larger 

than expected protein-protein contacts indicate that all three force fields are “too sticky”— they 

over-stabilize the frequency of formation and persistence of protein-protein contacts. The large 

contribution of hydrophobic residues to the largest contacts we observe here indicate that the 

source of this stickiness may lie in hydrophobic interactions. The 36m model, which has the 

smallest overall protein-protein contact areas, shows a larger contribution of charged residues 

relative to hydrophobic residues. We hypothesize that the CUFIX corrections, which have focused 

largely on charged and polar interactions,32 destabilize these charge-charge interactions but not 

hydrophobic interactions that drive the protein-protein sticking we observe.  

Hydrophobicity results from a water-water interactions at the expense of water-protein 

interactions.47 Previous simulations have shown that the TIP3P water model we use leads to overly 

compact disordered states of unfolded proteins.48 If water-water interactions are stabilized in 

current CHARMM force fields, excessive protein-protein sticking and lowered macromolecular 

diffusion would result.  This would also explain current force fields’ tendencies to overestimate 

protein melting temperatures,33 as proteins would be more likely to favor protein-protein over 

protein-water interactions and remain folded at higher temperatures. Recent results indicate that 

simulations using the TIP4P-D water model48 can reproduce experimental viscosity measurements 

of crowded protein solutions.24 Other groups have attempted to correct this sticking problem by 

increasing Lennard-Jones protein-water interactions in crowded systems.9,49 

We note that the timescale of protein-protein contacts decays on the order of ~1 µs, with ~7% 

of protein-protein contacts surviving longer than 1 µs without being broken (Fig. 5). This ~1 µs 
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timescales is on the order of the speed limit for downhill protein folding.50–52 In the crowded 

cytoplasm, the speed limits of intra- and inter-molecular protein contacts are not appreciably 

different. Just as tertiary structure is formed by hydrophobically-driven docking of two secondary 

structural elements within a single protein, protein-protein contacts in Fig. 3 are driven by 

hydrophobic and polar interactions in close vicinity.  

We report the first µs-timescale all-atom MD simulation of protein dynamics in a bacterial 

cytoplasm model. We find that three versions of the CHARMM forcefield over-stabilize non-

specific sticking between proteins and their surrounding environment, with C36m the least sticky. 

In the screened high-ion-concentration milieu of our model cytoplasm, protein-protein interaction 

is driven mainly by hydrophobic and polar contacts and leads to translational diffusion 4-8 times 

slower than experimental values. Sticking occurs on the µs timescale or faster, similar to the time 

scale of the intra-molecular tertiary structure formation.  Competition with sticking may have 

driven evolution of fast tertiary contact (re)formation in already-folded proteins that become partly 

unfolded. Our study demonstrates the potential of crowded all-atom models to offer new insight 

into protein dynamics in vivo.  As molecular dynamics to continues to grow as a technique to study 

biomolecules in vivo, care must be taken to develop force fields that accurately replicate sticking 

and non-competitive binding in crowded environments.  
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