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ABSTRACT

We study the formation of large-amplitude standing ion acoustic waves (SIAWs) by nonlinear phase-locking (autoresonance) with a weak,
chirped frequency standing ponderomotive drive. These waves comprise a nonlinear two-phase solution, with each phase locked to one of
the two traveling waves comprising the drive. The autoresonance in the system is guaranteed provided that the driving amplitude exceeds a
threshold. The phenomenon is illustrated via water bag simulations within a nonlinear ion fluid model and analyzed using Whitham’s
averaged variational principle. The local ion and electron densities in the autoresonant SIAWs may significantly exceed the initial unper-
turbed plasma density and are only limited by kinetic wave-breaking.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122300

I. INTRODUCTION

The interaction of multiple overlapped laser beams with plasmas
is relevant to a broad range of problems and applications in optical
and plasma sciences. In these situations, the ponderomotive force
applied by the beat wave of the overlapped lasers can imprint the
refractive structures in the plasma. These structures, whose typical
scale is on the order of the light’s wavelength, can act like volume gra-
tings and impact the propagation of light in the plasma. This is a situa-
tion typically encountered in inertial confinement fusion (ICF), where
the overlap of dozens of lasers in the same volume of plasma can lead
to complex multiwave coupling problems (for a review, see Ref. 1).
Several applications based on light scattering off these optical plasma
structures have also been proposed; these include short pulse amplifi-
cation (long pulse compression) via the resonant excitation of electron
or ion-plasma waves,2–5 transient plasma gratings,6 crossed-beam
energy transfer for symmetry control in ICF,7 or more recently,
plasma-based polarization control.8–11

“Plasma photonics,” whereby plasmas are used in lieu of solid-
state (crystal-based) systems to manipulate the basic properties of
light, makes it possible to control and manipulate lasers at fluences
many orders of magnitude beyond what solids can sustain. While this

research area could be transformative for high-power lasers and all the
applications linked to them, its progress is currently challenged by
typically poor “energy budgets” in the early experiments: For plasma
pulse compression/short pulse amplification, it has been difficult to
convert a large fraction of the long pulse “pump” into the short pulse
“seed” at relevant intensities. For the plasma polarizer and waveplate
concepts, the pump laser used to modify the plasma properties in the
initial proof-of-principle experiments used a lot more energy than the
“probe” beam whose polarization was being manipulated.9,10 One of
the main reasons for the low efficiency of these schemes is the diffi-
culty to control these plasma structures as they are driven into the
nonlinear regime.

In this paper, we explore a new way to drive high amplitude,
standing optical plasma structures created by two overlapped pump
beams while minimizing the intensity of these pumps. The way to
achieve this is by autoresonant excitation of standing ion acoustic
waves (SIAWs). Autoresonance is a technique which consists of driv-
ing a nonlinear system using a chirped driver slowly sweeping through
the linear resonance. Under certain conditions, the nonlinear system
can become phase-locked with the driver and will adjust itself to stay
in resonance (for a review, see Ref. 12). Autoresonance is a proven
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technique for a variety of plasma applications, including the excitation
of diocotron modes,13 nonlinear BGK modes,14 large amplitude elec-
tron plasma waves,15 and mixing antiprotons with positrons for anti-
hydrogen synthesis.16 The organization of this paper is as follows: In
Sec. II, we present our warm plasma water bag model and illustrate
the autoresonant excitation of nonlinear SIAWs in simulations.
Section III describes the Lagrangian formulation of the problem. A
weakly nonlinear limit of the Lagrangian is used in Sec. IV for calculat-
ing the threshold on the driving amplitude for autoresonant excita-
tions using Whitham’s averaged variational principle. In Sec. V, we
return to fully nonlinear simulations and discuss the tailoring of the
driving frequency chirp rate for reaching a quasi-steady state SIAW of
a desired amplitude. Finally, Sec. VI summarizes our findings.

II. AUTORESONANT SIAWs IN SIMULATIONS

We proceed by illustrating the excitation of autoresonant SIAWs
in numerical simulations. Our model is that of a warm (Ti=Te � 1)
ion fluid with Boltzmann electrons and the adiabatic ion pressure scal-
ing pi � n3

nt þ ðnuÞx ¼ 0; (1)

ut þ uux ¼ �ux � 3u2i nnx; (2)

uxx ¼ exp ðuþ udÞ � n; (3)

where n and u are the ion density and fluid velocity, ui is the ion ther-
mal velocity, and ud ¼ 2e cos hd cos ðkxÞ is a small amplitude ponder-
omotive driving potential (a standing wave) having a slowly varying
frequency xdðtÞ ¼ dhd=dt. Such a drive can be formed by beating
two counterpropagating electromagnetic waves having electric fields
E1 ¼ ~E1 cos ðk0x � x0tÞ and E2 ¼ ~E2 cos ð�k0x � x0tÞ, where one
of the amplitudes is modulated ~E2 ¼ �E2 cos hd , with hd being the time
varying modulation phase. All variables and parameters in our system
are dimensionless, such that the time, the position, and the velocities
are normalized with respect to the inverse ion plasma frequency
x�1

pi ¼ ðmi=meÞ1=2 x�1
p , the Debye length kD ¼ ue=xp, and the mod-

ified electron thermal velocity ðme=miÞ1=2ue. The plasma density and
the electric potential are normalized with respect to the unperturbed
plasma density and kBTe=e, respectively.

Instead of solving Eqs. (1)–(3) directly, our numerical scheme
uses an equivalent water bag model, based on a flat top normalized ion
phase space distribution f ðu; x; tÞ ¼ 1=ð2DÞ between two limiting
phase space trajectories u1;2ðx; tÞ and vanishing outside these trajecto-
ries, with 2D being the initial velocity width of the distribution. A simi-
lar approach was used recently in studying autoresonant traveling
IAWs.17 The distribution remains constant between and outside the
limiting trajectories as they are deformed in the driven problem, and
thus, the water bag dynamics is governed by the following momentum
and Poisson equations:

u1t þ u1u1x ¼ �ux; (4)

u2t þ u2u2x ¼ �ux; (5)

uxx ¼ exp ðuþ udÞ �
u1 � u2
2D

: (6)

This system transforms into (1)–(3) via u ¼ ðu1 þ u2Þ=2;
n ¼ ðu1 � u2Þ=ð2DÞ, and D2 ¼ 3u2i . The advantage of using the water
bag model is that it is kinetic and thus yields information on the spread
of the trajectories u1;2 bounding the ion distribution from the fluid

velocity u. This is important in signaling the approach to the kinetic
wave breaking limit (see below). Our numerical simulations use the
code of Ref. 17 based on a standard spectral method,18 yielding results
illustrated in Figs. 1–3. Panel (a) in Fig. 1 presents the results of the sim-
ulations of the water bag system for D¼ 0.05 and linearly chirped driv-

ing frequency xd ¼ xa þ at, where xa ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 1=ð1þ k2Þ

q
is the

linear ion acoustic frequency. We used k ¼ 0:453; a ¼ 10�4, and
e ¼ 0:0044. The solid line in the figure shows the envelopes of the spa-
tial maxima of the ion fluid velocity u vs slow time s ¼

ffiffiffi
a

p
t. The dot-

ted lines in the same figure illustrate the evolution of the envelopes of
the spatial maxima of limiting velocities u1;2, while the dashed line is
the phase velocity xd/k associated with the driving wave. One observes
that, after passing the linear resonance, the ion-fluid velocity increases
significantly with the upper bound u1 of the distribution approaching
xd/k, where one may expect kinetic wave breaking, invalidating our
warm fluid approximation. We stop the simulation in this case at s¼ 4
to avoid this limit. Panel (b) in Fig. 1 compares the driving frequency
xd with the excited wave frequency. The latter is evaluated numerically
via x ¼ 2p=dt, where dt is the time between the successive spatial
maxima of u. One can see the efficient frequency locking x � xd

(autoresonance) in the system as the wave amplitude grows continu-
ously beyond the linear resonance. Additional results from the numeri-
cal simulation for the parameters of Fig. 1 are presented in Fig. 2,
showing the actual spatiotemporal waveform of the electron density
neðx; tÞ � expu during two time intervals of equal duration Ds ¼ 0:4
but starting at different times, s¼ 0 [panel (a)] and 3.5 [panel(b)]. One
observes the formation of a large amplitude standing wave having a
sharply peaked form in panel (b). Finally, Fig. 3 shows the results of the
simulations for the same parameters as in Fig. 1, but e ¼ 0:0029. One
can see in panel (a) that the wave excitation saturates shortly after pass-
ing the linear resonance as the frequency locking discontinues [see
panel (b)]. This effect is associated with the autoresonance threshold
phenomenon, where the sustained resonance is expected only when the
driving amplitude is above a threshold eth. In the case of the parameters

FIG. 1. (a) The ion fluid velocity u vs slow time s ¼ a1=2t. The solid line represents
the envelopes of the maxima of u for e¼ 0.0044 (above the threshold eth¼ 0.0037).
The dotted lines show the envelops of the maxima of velocities u1;2 bounding the
water bag distribution. The dashed line represents the phase velocity xd/k of the
driving wave. (b) The frequencies xd (in red) and x (in blue) of the driving and
driven waves. One can see the frequency locking (autoresonance) xd � x
beyond s > �4.
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used in Fig. 1, the numerically found threshold is eth ¼ 0:0037. We will
discuss this threshold phenomenon in Secs. III and IV with the goal to
derive the analytic form of eth for the chirped frequency excitation of
autoresonant SIAWs.

III. LAGRANGIAN COLD ION FLUID LIMIT

For simplifying the theory, here and below we focus on the cold
ion fluid limit of (1)–(3), i.e.,

nt þ ðnuÞx ¼ 0; (7)

ut þ uux ¼ �ux; (8)

uxx ¼ exp ðuþ udÞ � n: (9)

If one starts in the trivial initial state n¼ 1, u¼ 0, u ¼ 0, Eqs. (7) and
(8) yield, after averaging over one spatial period, the constant-in-time
density and fluid velocity hni ¼ 1, hui ¼ 0. In analyzing driven
SIAWs, we discuss the linear stage of excitation first, i.e., we write
n ¼ 1þ dn and linearize to get

ðdnÞt þ ux ¼ 0; (10)

ut ¼ �ux; (11)

uxx ¼ u� dnþ 2e cos hd cos ðkxÞ: (12)

In the case of a constant driving frequency, this set yields a phase-
locked standing wave solution of frequency x ¼ xd

dn ¼ a cos ðxtÞ cos ðkxÞ; (13)

u ¼ b sin ðxtÞ sin ðkxÞ; (14)

u ¼ c cos ðxtÞ cos ðkxÞ; (15)

where

a ¼ 2ek2

k2 � x2ð1þ k2Þ ; (16)

b ¼ x
k
a; (17)

c ¼ x2

k2
a: (18)

Our next goal is to generalize this solution to the case of slowly varying
driving frequency and include the nonlinearity in the problem. We
have seen in simulations the excitation of a slowly varying continu-
ously phase locked (autoresonant) SIAW. This slowness of the excita-
tion process suggests a theoretical approach based on Whitham’s
averaged variational principle. To this end, we introduce auxiliary
potentials w and r, such that u ¼ wx; n ¼ 1þ rx , thus transforming
Eqs. (7)–(9) into

rxt þ ð1þ rxÞwx

� �
x ¼ 0; (19)

wxt þ wxwxx ¼ �ux; (20)

uxx � ð1þ udÞeu � rx � 1: (21)

This system satisfies a variational principle dð
Ð
LdxdtÞ ¼ 0, where the

Lagrangian density for the three potentials (r;w;u) is

L ¼ 1
2
u2
x þ euþud � 1

2
ðwtrx þ wxrtÞ �

1
2
w2
x þ u

� �
n: (22)

Since typically the autoresonance threshold is a weakly nonlinear phe-
nomenon,19 we focus on the weakly nonlinear limit of the problem in
Sec. IV, i.e., use

L ¼ 1
2
u2
x þ VðuÞ � 1

2
ðwtrx þ wxrtÞ �

1
2
w2
x þ u

� �
nþ udu;

(23)

where we expanded the electron density ne ¼ euþud � 1þ ud þ uud

þ uþ 1
2u

2 þ 1
6u

3 þ 1
24u

4
� �

¼ 1þ ud þ uud þ VðuÞ to the 4th
order in u, neglected 1þ udðtÞ in L as not contributing the dynamic,
and kept the driving contribution uud only, assuming a sufficiently
small drive.

IV. WHITHAM’S AVERAGED VARIATIONAL PRINCIPLE
A. Weakly nonlinear ansatz

In studying weakly nonlinear autoresonant SIAWs, we apply
Whitham’s averaged variational approach.20 Similar to the autoreso-
nant traveling IAWs,17 the recipe is to proceed from an ansatz of the

FIG. 2. The wave form of the electron density of the autoresonant SIAW in two
time windows of equal duration ds¼ 0.4 but starting at different times, s¼ 0 (at the
linear resonance) and s¼ 3.5 (near the wavebreaking limit).

FIG. 3. The ion fluid velocity u vs slow time s¼ a1/2t. The thick solid line represents
the envelope of the maxima of u for e¼ 0.0029 (below the threshold eth¼ 0.0037).
The dotted lines show the envelopes of the maxima of velocities u1;2 bounding the
water bag distribution. The dashed line represents the phase velocity xd/k associ-
ated with the driving wave. (b) The frequencies xd and x of the driving and driven
waves, respectively. One can see the frequency locking (autoresonance) xd � x
beyond s ¼ �4, which discontinues after the passage of the linear resonance.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 092109 (2019); doi: 10.1063/1.5122300 26, 092109-3

Published under license by AIP Publishing

https://scitation.org/journal/php


solution to second order in the wave amplitude, substitute this ansatz
into the Lagrangian density (23), fix the frequency of both the driver
and of the excited wave at some time, and average the Lagrangian den-
sity over one spatial and one temporal period (fast scales) associated
with the driving wave. This will result in a new averaged Lagrangian
density, which depends on slow variables only (i.e., the amplitudes of
various harmonics and the phase mismatch in the problem). However,
what is the proper second order ansatz for the autoresonant SIAWs?
In contrast to the case of traveling waves, where this ansatz is obtained
trivially using the solution of the linear problem,20 finding the nonlin-
ear ansatz for autoresonant SIAWs is more complicated and can be
completed as follows: First, we use the spatial periodicity in the prob-
lem and write a truncated Fourier expansion of the solutions

r ¼ A1 sinðkxÞ þ A2 sin ð2kxÞ;
w ¼ B1 cosðkxÞ þ B2 cos ð2kxÞ;
u ¼ C0 þ C1 cosðkxÞ þ C2 cos ð2kxÞ;

(24)

where amplitudes A1, B1, and C1 are viewed as small (first order), while
A2, B2, and C0;2 are of second order. Note that spatial averages of r
and w vanish, consistent with the initial conditions. The time depen-
dence of the first order amplitudes is assumed to be that of the linear
solutions (13)–(15), i.e., A1 ¼ ða=kÞ cos ðxtÞ; B1 ¼ �ðb=kÞ sin ðxtÞ,
and C1 ¼ c cos ðxtÞ. However, what is the time dependence of the
second order amplitudes? This problem can be solved by substituting
solutions (24) into the Lagrangian density (23) without the driving
term and averaging it over one spatial period 2p=k. This yields (via
Ref. 21) the averaged Lagrangian density �K ¼ �K2 þ �K4 for solving
the time dependent problem, which includes the second and fourth
order terms

�K2 ¼
1
4

C2
1 þ kðA1tB1 � A1B1t � 2A1C1Þ þ k2ðC2

1 � B2
1Þ

� �
; (25)

�K4 ¼
k
2
ðA2tB2 � A2B2tÞ þ

1
2
C2
0 þ

1
64

ðC2
1 þ 4C2Þ2

þ 1
4
C0C

2
1 � kA2C2 þ

k3

4
B1ðA2B1 � 2A1B2Þ

þ k2ðC2
2 � B2

2Þ: (26)

By using �K and taking the variations with respect to A0;A2;B2; and
C2, we obtain the following set of equations:

C0 ¼ � 1
4
C2
1 ; (27)

B2t ¼ �C2 þ
k2

4
B2
1; (28)

A2t ¼ 2kB2 þ
k2

2
A1B1; (29)

C2 ¼
2kA2

1þ 4k2
� C2

1

4ð1þ 4k2Þ : (30)

Equation (27) yields C0 � cos2ðxtÞ in our ansatz (24) for u.
By the substitution of C2 from Eq. (30) into (28) and using C2

1
� cos2ðxtÞ; B2

1 � sin2ðxtÞ, we find

B2t ¼ � 2kA2

1þ 4k2
þ p cos2ðxtÞ þ r; (31)

where p and r are constants, while, similarly, Eq. (29) yields

A2t ¼ 2kB2 þ q sin ð2xtÞ; (32)

where q is constant. The last two equations have the following time
periodic solutions:

B2 ¼ b2 sin ð2xtÞ; (33)

A2 ¼ Aþ a2 cos ð2xtÞ; (34)

where A; a2; b2 are constants. Then, Eq. (30) yields

C2 ¼ C þ c2 cos ð2xtÞ; (35)

with constant C; c2. This completes the derivation of the weakly non-
linear ansatz [see Eq. (24)] for the driven SIAWs to be used in
Whitham’s averaging

r ¼ a1 cos h sin ðkxÞ þ Aþ a2 cos ð2hÞ½ � sin ð2kxÞ;
w ¼ b1 sin h cos ðkxÞ þ b2 sin ð2hÞ cos ð2kxÞ;
u ¼ c0 cos

2hþ c1 cos h cos ðkxÞ þ C þ c2 cos ð2hÞ½ � cos ð2kxÞ;
(36)

where we replaced xt with the wave phase h ¼
Ð
xðtÞdt, assuming a

slowly varying frequency of the driven wave. Here, all the amplitudes
a1;A; a2; b1; b2; c0; c1;C; c2 are viewed as slow functions of time. The
evaluation of these functions and of the wave phase h in our driven-
chirped problem will be discussed in Sec. IVB.

B. Slow evolution system for driven SIAWs

At this stage, we write the driving term in Lagrangian (23) as
ud ¼ 2e cos ðhþ UÞ cos ðkxÞ, where, assuming a continuing phase-
locking (autoresonance) in the system, UðtÞ is a slow phase mismatch
in the problem. Then, following Whitham’s recipe, we fix the slow
time, substitute ansatz (36) into the Lagrangian density, and average it
over one period in space and time. This yields (via Ref. 21) the aver-
aged Lagrangian density K ¼ K2 þ K4 þ Kd , which describes the
dynamics of our driven-chirped, weakly nonlinear SIAW. Here

K2 ¼
1
8

c21 � 2ka1c1 � k2ðb21 � c21Þ � 2kxa1b1
� �

;

K4 ¼
3
16

c20 þ
3
32

c0c
2
1 þ

3
512

c41 þ
1
32

c21c2 þ
1
8
c22

þ 1
16

Cc21 þ
1
4
C2 � kAC � k2

2
ðb22 � c22 � 2C2Þ

� k3

8
b1

1
2
a2b1 � Ab1 þ a1b2

� �
� kxa2b2 �

k
2
a2c2;

Kd ¼
e
2
c1 cosU:

Note that K depends on all slow amplitudes in the problem, as well as
on h via slow frequency x ¼ ht and slow mismatch U ¼ hd � h.
Taking variations with respect to c0; a2; b2; c2; A, and C, respectively,
yields the algebraic system

4c0 þ c21 ¼ 0; (37)

8c2 þ k2b21 þ 16xb2 ¼ 0; (38)

8kb2 þ k2a1b1 þ 8xa2 ¼ 0; (39)
1
8
c21 þ c2 � 2ka2 þ 4k2c2 ¼ 0; (40)
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�4kC þ 1
2
k3b21 ¼ 0; (41)

1
4
c21 þ 2C � 4kAþ 8k2C ¼ 0: (42)

This system can be solved to give

c0 ¼ � 1
4
c21; (43)

a2 ¼ � kc21 � k2ð1þ 4k2Þðkb1 � 2xa1Þb1
16 �k2 þ x2ð1þ 4k2Þ½ � ; (44)

b2 ¼ ��2k3a1b1 � xc21 þ k2xb21ð2þ 4k2Þ
16 �k2 þ x2ð1þ 4k2Þ½ � ; (45)

c2 ¼ ��k4b21 þ 2k3xa1b1 þ x2c21
8 �k2 þ x2ð1þ 4k2Þ½ � ; (46)

A ¼ c21 þ k2b21ð1þ 4k2Þ
16k

; (47)

C ¼ k2b21
8

: (48)

Next, we again useK and take variations with respect to a1; b1 to get

2c1 þ k2b1b2 þ 2xb1 ¼ 0; (49)

kb1ð2þ ka2 � 2AkÞ þ a1ðk2b2 þ 2xÞ ¼ 0; (50)

yielding relations

a1 ¼
2kc1 þ kQ� xR

2x2
; (51)

b1 ¼ � 2c1 þ Q
2x

; (52)

whereQ ¼ k2b1b2 and R ¼ k2½b1ða2 � 2AÞ þ a1b2�.
The final stage of our developments is using the average

Lagrangian density K in taking the variation with respect to c1, result-
ing in

�ka1 þ c1ð1þ k2Þ þ 3
32

c31 þ c1
3
4
c0 þ

1
4
c2 þ

1
2
C

� �
þ 2e cosU ¼ 0;

(53)

while the variation with respect to phase h of the wave yields
ð@K=@xÞt ¼ @K=@h ¼ �@K=@U or to the lowest (second) signifi-
cant order in the wave amplitude

kða1b1Þt ¼ �2ec1 sinU: (54)

In the last equation, we substitute the lowest order results a1 ¼ kc1=
x2 and b1 ¼ �c1=x, obtained by neglecting the third order terms
with P andQ in Eqs. (51) and (52), to get

c1t � �e
x3

k2
sinU: (55)

Similarly, we use Eqs. (43), (46), (48), (51), and (52) to express
all amplitudes in Eq. (53) in terms of c1, resulting after some
algebra in

k2

x2
� ð1þ k2Þ

	 

c1 ¼ �Nc31 þ 2e cosU; (56)

where N¼q=r with q¼4k8þ7k6ð1þ4k2Þx2�4k4ð1þ4k2þ8k4Þx4

�k2ð7þ16k2Þx6þ4ð1þ3k2Þx8 and r¼32x6½x2�k2ð1�4x2Þ�:
To the lowest (linear and undriven) order, Eq. (56) yields the lin-

ear IAW dispersion relation

xa ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ k2Þ
p : (57)

Then, by writing x ¼ xa þ Dx and expanding around xa in Eq.
(56), we find

Dx � � x3

2k2
�Nc21 þ

2e
c1
cosU

� �
: (58)

Finally, since x ¼ xd þ Ut , and the driving frequency xd ¼ xa þ at,
we obtainUt ¼ Dx� at or

Ut � bc21 � at � e
c1

x3

k2
cosU; (59)

where b ¼ x3

2k2 N . By replacingx by xa in b, we find (via Ref. 21)

b ¼ 4þ 30k2 þ 45k4 þ 27k6

192kð1þ k2Þ3=2
: (60)

Equations (55) and (59) comprise a complete set of a standard form
describing the passage through linear resonance in many autoresonant
systems.19 Then, as in all other isomorphic systems, if one starts below
the resonance (tin < 0) with c1 � 0 and the driving amplitude e
exceeds the threshold

eth ¼ 0:41
x3

a

k2
a3=4ffiffiffi
b

p ¼ 5:68
a3=4ð1þ k2Þ9=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kð4þ 30k2 þ 45k4 þ 27k6Þ
p ; (61)

the driven-chirped system enters the autoresonant regime. In this
regime, the phase mismatchU remains bounded, and at larger positive
times, c21 increases as c

2
1 � at=b to stay in a continuing resonance with

the drive.

V. AUTORESONANT CONTROL OF SIAWs

The above theory was based on a quasi-linear formalism.
Nevertheless, all of our simulations show that the autoresonant evolu-
tion continues beyond the quasi-linear approximation, and strongly
peaked SIAWs are excited in the process of chirped-driven evolution.
Furthermore, as in other autoresonant problems, the variation of the
driving frequency need not be linear in time but only sufficiently slow.
This allows one to efficiently control the excited wave by, for example,
slowing the frequency chirp and approaching any target frequency.
Since in autoresonance the amplitude of the excited wave is controlled
by the driving frequency, one can arrive to some target amplitude of
the excited wave. This target wave will remain phase locked and stabi-
lized, as long as the driving wave is turned on. We illustrate this con-
trolled evolution in Fig. 4 using the numerical simulations of Eqs.
(7)–(9). Panel (a) in Fig. 4 shows the envelope of the ion fluid velocity
maxima vs slow time s ¼ a1=2t. In these simulations, we used the driv-
ing frequency xd ¼ xa þ at for t< 0 and xd ¼ xa þ 2Dx

p arctgðt=TÞ
for t � 0, where T ¼ 2Dx

pa , so the final driving frequency wasxa þ Dx.
In addition, for a smoother entrance into the autoresonant regime, we
slowly ramped up the driving amplitude as e ¼ e0½12 þ 1

p arctgðt=TÞ�,
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and we used parameters a ¼ 10�4; k ¼ 0:453; e0 ¼ 0:015, and Dx
¼ 0:025. The dashed line in the figure shows the phase velocity xd/k of
the driving wave, while the dotted lines represent the envelopes of
velocities u1;2 bounding the water bag distribution. One can see in the
figure that the fluid velocity maxima saturate as the driving frequency
approaches a constant but remain below the wave breaking limit
maxðuÞ < xd=k. Panel (b) in Fig. 4 compares the driving frequency
xd with the excited wave frequency. The latter is evaluated numerically
(similar to Figs. 1 and 3) via x ¼ 2p=dt, where dt is the time between
successive spatial maxima of u. One observes a continuing frequency
locking (autoresonance) in the system despite the variation of the driv-
ing frequency and amplitude. Finally, Fig. 5 illustrates the actual wave-
form of the electron density neðx; tÞ of the wave represented in Fig. 4
at the final stage of the excitation (11 < s < 13). We can see that
the excited wave comprises a pattern having a two phase form uðx; tÞ
¼ uðh1; h2Þ; where the phases are h1;2 ¼ 6kx � xt. One can clearly
see in the figure two directions x=t ¼ 6x=k along which one of the

phases remains constant, and the space-time periodicity of the solution
is dictated by the second phase. This result is remarkable since the exis-
tence of two phase solutions in nonlinear wave problems is unusual
and indicates some integrability in the system. The integrability may be
related to the fact that SIAWs having small amplitude and k are
described by the KdV equation, which is integrable and admits multi-
phase solutions.22

VI. CONCLUSIONS

We have shown theoretically and numerically that a large ampli-
tude SIAW can be excited and controlled with a small amplitude
chirped drive. The analysis of the ion dynamics assumed thermal elec-
trons and a warm ion fluid. The warm ion fluid model was, following
the approach in Ref. 17, derived from a water bag Vlasov distribution
so that the standard momentum and density equations were replaced
by the equations for the upper and lower velocities confining the
Vlasov function [Eqs. (4)–(6)].

The theory employed a weakly nonlinear Lagrangian analysis
and Whitham’s averaging technique to find two differential equa-
tions that describe the evolution of the slowly varying amplitude
[Eq. (55)] and the phase [Eq. (59)] of the first harmonic of the
potential. The slowly varying solutions for the fluid velocity u and
density n can be derived from the solution to Eqs. (55) and (59).
These equations are in the standard form for an autoresonant
system and therefore exhibit a well-known threshold, [Eq. (61)],
on the amplitude of the normalized drive potential required for
autoresonance.

Fully nonlinear numerical simulations (using the algorithm in
Ref. 17) confirm these theoretical predictions. Moreover, they demon-
strate that extremely large density perturbations can be created when
operating above threshold. The autoresonant nature of the interaction
ties the amplitude of the density oscillation to the frequency of the
chirped drive. An important result here is that the amplitude of den-
sity perturbation can be controlled by appropriate tailoring of the drive
frequency evolution so that the chirping stops at some desired fre-
quency. This is seen in Figs. 4 and 5. Finally, the standing wave is seen
to correspond to two-phase solutions of the nonlinear system; this
may be related to the small amplitude KdV limit of the SIAW
equations.

This analysis avoided particle trapping by operating in a regime
where the fluid velocity is well below resonance. Further extensions
would include a full kinetic simulation to study the interplay of autore-
sonance and the excitation of BGK-like modes in the ion kinetic distri-
bution. The model assumes that the ponderomotive drive is
prescribed, while actual implementation would likely require two laser
pulses, one of which needs to have a chirped frequency. The evolution
of the coupled three-wave system that describes nonlinear SIAWs
requires further investigation.
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FIG. 4. The autoresonant excitation of a quasi-steady IAW as the driving frequency
approaches a constant and the driving amplitude is slowly switched on. (a) The ion
fluid velocity u vs slow time s ¼ a1=2t. The solid line represents the envelopes of
the maxima of u. The dotted lines represent the envelopes of the maxima of veloci-
ties u1;2 bounding the water bag distribution. The dashed line represents the phase
velocity xd=k associated with the driving wave. (b) The frequencies xd and x of
the driving and driven waves, respectively. One can see the continuing frequency
locking (autoresonance) xd � x beyond s > �4.

FIG. 5. The colormap of the wave form of the electron density of the standing
autoresonant IAW in time window 11 < s < 13 for the example given in Fig. 4.
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