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ABSTRACT

Studies of paleocommunities and trophic webs assume that multispecies assemblages con-
sist of species that coexisted in the same habitat over the duration of time averaging. However,
even species with similar durability can differ in age within a single fossil assemblage. Here,
we tested whether skeletal remains of different phyla and trophic guilds, the most abundant
infaunal bivalve shells and nektobenthic fish otoliths, differed in radiocarbon age in surficial
sediments along a depth gradient from 10 to 40 m on the warm-temperate Israeli shelf, and
we modeled their dynamics of taphonomic loss. We found that, in spite of the higher potential
of fishes for out-of-habitat transport after death, differences in age structure within depths
were smaller by almost an order of magnitude than differences between depths. Shell and
otolith assemblages underwent depth-specific burial pathways independent of taxon identity,
generating death assemblages with comparable time averaging, and supporting the assump-
tion of temporal and spatial co-occurrence of mollusks and fishes.

INTRODUCTION

Paleoecological inferences about co-occur-
rence patterns and niche overlap assume that
species present in the same sedimentary layer
are of similar age and therefore potentially in-
teracted with each other (Lyons et al., 2016).
However, fossils preserved together within a
single stratum can represent organisms that lived
at vastly different times due to condensation,
bioturbational mixing, and physical reworking
(Kowalewski, 1996; Kidwell, 2013). Multiple
examples of co-occurring shells of mollusks
and brachiopods have been shown to differ sig-
nificantly in median ages and time averaging
(Kosnik et al., 2009, 2013; Krause et al., 2010;
Tomasovych et al., 2014, 2019). Such differ-
ences can be generated by intrinsic factors like
between-species variation in skeletal durabil-
ity (Kosnik et al., 2007; Kowalewski et al.,
2018), in timing and duration of shell produc-
tion (Tomasovych et al., 2016), or in propen-
sity to out-of-habitat transport. These intrinsic

factors can be modulated or overwhelmed by
gradients in extrinsic factors that influence burial
and disintegration, such as sedimentation rates
(Krause et al., 2010) and pore-water chemistry
(Best et al., 2007).

Although paleoecological analyses are in-
creasingly focused on whole ecosystems (Vil-
1éger et al., 2011; Roopnarine and Angielczyk,
2015), no studies have assessed time averaging
of co-occurring species belonging to phyla with
different ecosystem functions. Here, we quanti-
fied time averaging and modeled disintegration
and burial of suspension-feeding bivalve shells
and predatory nektobenthic fish otoliths along
a 1040 m depth gradient on the Mediterranean
Israeli shelf to test the hypothesis that species
co-occurring in the same death assemblage
but subject to different intrinsic factors did not
temporally co-occur in the original biological
community. The shells and otoliths of our target
species have comparable size and durability, but
undergo different pathways after death. Infaunal

bivalves are more likely to die and be buried
in situ. In contrast, otoliths can be deposited
far from the life location because they either
originate from predated fish through feces (Nolf,
1995), implying that their final location depends
on the predator range, or carcasses are made
buoyant by bacterial decay gases and transported
to the surface where they drift away (Elder and
Smith, 1988), especially at temperatures greater
than 16 °C (year-round in most temperate to
tropical seas). Suspension-feeding bivalves and
predatory fishes can further respond differently
in terms of their population fluctuations to varia-
tion in environmental factors such as nutrient
regimes due, e.g., to top-down controls of the
trophic web. These differences can generate
major variation in the structure of time averag-
ing (determined by median ages and indicators
of age range). In contrast to our expectation,
we found that both taxa possessed very similar
median ages and interquartile age ranges and
that differences in age structure were smaller
within depths than between depths. These results
suggest that mollusks and fishes co-occurred
temporally and spatially, and they point to the
prevalence of depth-specific taphonomic and
burial pathways independent of taxon identity.

MATERIAL AND METHODS
Study Area and Target Species

We collected death assemblages with a
Van Veen grab sampler at 10, 30, and 40 m
depth off Ashgelon (southern Israel), Eastern
Mediterranean, in autumn 2016 (Table DR1
in the GSA Data Repository'; Fig. 1). This is
an open shelf under the sedimentary input of
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Figure 1. Map of the
Levantine Basin, eastern-
most Mediterranean Sea,
with location of three col-
lection sites off Ashqgelon,
southern Israel. Depth
contours in m.
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the Nile River (Inman and Jenkins, 1984) and
with seawater temperature between 17 °C and
30 °C. The fair weather wave base at 15-25 m
(Hyams-Kaphzan et al., 2008) and strong wave-
induced counterclockwise longshore currents
that reach ~35 m depth transport siliciclastic
sands from the Nile Delta northwards (Golik,
1993; Avnaim-Katav et al., 2015) and limit
the deposition of fine-grained sediments. This
bathymetric gradient thus coincides with a de-
cline in the exposure to wave- and current-driv-
en erosion and reworking, leading to a decline
in grain size from sands to muddy sands up to
muds and to a higher net sedimentation rate
(2.4 mm/yr at 40 m, exceeding the rates at 10 m
[0.4 mm/yr] and 30 m [0.2 mm/yr]; Goodman-
Tchernov et al. [2009] and our own unpublished
data based on sediment cores at the two deepest
sites). We dated the bivalve Donax semistria-
tus and the benthic fish Ariosoma balearicum
(conger eel) at 10 m, and the bivalve Corbula
gibba and a multispecies gobiid assemblage at
30 and 40 m (Table DR2). The targeted shells
and otoliths are aragonitic (Degens et al., 1969).
Although Corbula has conchiolin layers, which
retard shell dissolution in waters undersatu-
rated in calcium carbonate and increase shell
strength, its taphonomic pathway does not dif-

34.75° E

fer from bivalves with shell structure similar to
Donax (Gallmetzer et al., 2019). Corbula and
Donax ranged in length from 2.5 to 5.6 mm
(median 3.7 mm) and from 3.0 to 16.0 mm (me-
dian 5.0 mm), respectively. Otoliths ranged in
length from 1.5 to 7.5 mm (median 3.5 mm).
Their taphonomic pathways are poorly known,
but otoliths are regarded as durable remains
(Nolf, 1985).

Shell and Otolith Dating

Shells and otoliths were dated by accelera-
tor mass spectrometry (AMS), using powdered
carbonate targets (Bush et al., 2013). Four shells
were also analyzed using the standard graphite-
target method to assess the accuracy of carbon-
ate targets, but we did not conduct such an as-
sessment for otoliths due to their small size.
Shell carbonate-target ages had a small offset
for the youngest samples (Table DR6). How-
ever, we used the measured carbonate-target
ages for both types of samples because a cor-
rection for the offset did not change our results
(see the Data Repository and Table DR7). Ra-
diocarbon ages were converted to calendar ages
(see the Data Repository). We report all ages
in calendar years before 2016 CE, the year of
sample collection.

Age-Frequency Distributions

We computed measures of central tendency
(median age), dispersion (interquartile range
[IQRY]), and skewness of the age-frequency distri-
butions (AFDs) for each assemblage. The median
ages were compared with the Wilcoxon test, and
the shapes were compared with the Kolmogorov-
Smirnov (K-S) test, obtaining p values with
Monte Carlo simulations due to the small sam-
ple size (R package dgof; Arnold and Emerson,
2011). To determine the dynamics of shell loss
from the sampled surface sediment layer (here
assumed to represent the well-mixed taphonomi-
cally active zone [TAZ]) by disintegration and/
or burial, we used three models: (1) a one-phase
exponential model, defined by a single instan-
taneous per-individual loss rate A, (2) a Weibull
model with a gradual temporal decline in the loss
rate, and (3) a two-phase exponential model that
accounts for an abrupt temporal decline from a
fast loss A, (initial phase of high disintegration
in the TAZ not affected by burial) to a slow loss
A, (a function of slower disintegration in the so-
called sequestration zone [SZ] and the net rate
of shell burial). The SZ can represent patches of
sediment with less corrosive conditions within
the TAZ or layers immediately below the TAZ;
shells from these layers can be still exhumed
back into the TAZ by burrowers or by storms,
and thus be incorporated into AFDs as measured
here. The decline in loss rate from A, to A, occurs
at rate T and can reflect the rate of diagenetic
stabilization in the SZ (Tomasovych et al., 2014,
2016). The otolith AFD at 10 m showed a drop in
skeletal production in the past few centuries and
a minimum age of 322 yr (Fig. 2), and the one-
and two-phase exponential models were thus
adjusted at this site with a parameter setting for
the termination of production at 400 yr. We used
the Akaike information criterion with correction
for small sample sizes (AICc) to identify the best
model. We computed the half-lives in the TAZ
for the three models according to TomaSovych
et al. (2016) and the confidence intervals of AFD
summary statistics and model parameters with a
bootstrapping procedure with 10,000 iterations.
We used Spearman rank correlations to assess
relations between parameters and median ages
and IQRs. All analyses were conducted in the R
statistical environment.

RESULTS

The median ages of shell and otolith AFDs
were similar within each depth, but they changed
strongly and in parallel between depths, with
median age equal to ~600-700 yr at 10 m, in-
creasing to ~1400-1500 yr at 30 m, and de-
clining to 13-200 yr at 40 m (Figs. 2 and 3;
Table 1). At 10 m, both AFDs were right-skewed,
and shape (K-S D =0.5, p=0.08) and median
age (Wilcoxon W = 125, p = 0.62) did not differ
between shells and otoliths. The mode of the oto-
lith AFD was at ~500 yr, followed by a sudden
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Figure 2. Age-frequency distributions (median probability ages in 200 yr bins) based on calibrated radiocarbon ages for mollusk shells (upper
row) and fish otoliths (lower row) across a depth transect off Ashqelon, southern Israel. Dashed lines indicate median ages.

decline in the most recent centuries with a mini-
mum age of 322 yr. This decline in production
in the latest few centuries led to a smaller IQR
in otoliths (156 yr) than in bivalves (962 yr).
At 30 m, the shape (K-S D =0.2, p =0.98), the
median ages (Wilcoxon W=115.5, p =0.66),
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Figure 3. With the exception of interquartile
ranges (IQRs) at 10 m, within-depth differ-
ences in median age and IQR between shells
and otoliths are smaller than between-depth
differences off Ashqgelon, southern Israel.

and IQRs (1344 and 1499 yr) did not differ be-
tween shells and otoliths. At 40 m, the shape
(K-S D=0.5, p=0.103) and the median age
(Wilcoxon W = 33.5, p = 0.093) also did not dif-
fer between the two taxa, although differences
in IQRs (292 and 18 yr for shells and otoliths,
respectively) were slightly larger than at 30 m.
To summarize, the differences in median age and
IQR between depths exceeded several centuries
up to 1000 yr, whereas within-depth differences
were less than a few centuries (Fig. 3).

A one-phase exponential model best ex-
plained the dynamics of loss of four assem-
blages, and a two-phase exponential model best
explained the other two (Table DRS). However,
differences between one- and two-phase models
in these four assemblages in AICc were less than
six to eight units; i.e., model likelihoods were
effectively equal, allowing us to compare assem-
blages on the basis of the two-phase model (Fig.
DR1). Although estimates of A, were variable,
they indicated that both shells and otoliths can

TABLE 1. SUMMARY STATISTICS WITH 95% CONFIDENCE INTERVALS FOR
THE AGE-FREQUENCY DISTRIBUTIONS OF SHELLS AND OTOLITHS

=10 m -30m —40m
Shells Otoliths Shells Otoliths Shells Otoliths
Number of 15 15 15 14 15 8
specimens
Median age (yr)* 671 625 1470 1428 207 13
(54-1269) (533-662) (735-1784)  (709-2298)  (19-298) (7-33)
Age range (yr) 4171 1281 4771 4753 504 167
(1225-4186)  (378-300)  (1816-4983) (2376-4944) (349-504) (16-169)
Interquartile range 962 156 1344 1499 292 18
(IQR) (yr) (334-4118)  (72-1042)  (606—2521)  (676-2913)  (116-446) (2-166)
Skewness 17 15 1.0 0.8 0.3 11
(0.15-2.8) (-0.4t029) (-0.3t02.0) (-0.2t018) (-0t013) (-0.2t02.2)

Note: Differences in median age and IQR between depths exceed several centuries, up to 1000 yr, whereas

within depths, they are less than a few centuries.
*Ages are in years before 2016 CE (collecting year).
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disintegrate rapidly after death, with yearly or
decadal half-lives. The estimates of A, showed
that through time, both otoliths and shells shifted
to half-lives equal to 500-1200 yr at 10 m, to
~1200 yr at 30 m, and to 100-200 yr at 40 m
(Fig. DR1).

DISCUSSION
Effect of Burial on AFDs

The major role in shaping the differences
in time averaging along the depth gradient was
played by the gradients in shell burial rather
than by gradients in initial disintegration for
two reasons. First, the rate of initial disinte-
gration A, did not correlate with median ages
or IQRs (Spearman r for median = —0.37,
p =0.49; r for IQR =0.03, p = 1), although
it was variable due to constraints from small
sample size and temporally variable produc-
tion. Additionally, the rate of loss A, (which
reflects burial and/or later-stage disintegra-
tion) correlated negatively with median ages
(r=-0.94, p =0.006) and IQRs (r =—0.88,
p =0.02). Second, faster burial at the deepest
station was suggested by a sedimentation rate
(2.4 mm/yr) that was one order of magnitude
greater than at 10 m (0.4 mm/yr) and 30 m
(0.2 mm/yr). Medians and IQRs of both shells
and otoliths positively correlated with the in-
verse of sedimentation rates (Spearman r for
median = 0.96, p < 0.002; r for IQR = 0.84,
p =0.037), and A, correlated with sedimenta-
tion rate (r = 0.89, p = 0.02), indicating that
this parameter indeed captured the time scale
of shell burial below the TAZ, being greater
at 10 and 30 m (millennial scale) than at 40 m
(centennial scale). In contrast, A, did not vary
with sedimentation rate (r = 0.24, p = 0.64).
At 40 m, initial loss was also facilitated by
more aggressive pore waters; shells were more
brittle than at shallower stations, and none
was in pristine condition despite their young
age. Accordingly, the two-phase exponential
model showed the largest A, also indicating
that shells disintegrated at a higher rate at this
site. The between-depth differences in sedi-
mentation rates correlated with sediment dis-
tribution: Sands at 10 m pass to muddy sands
and muds at 30 and 40 m (Table DR1) and
thus can reflect stronger bypassing and win-
nowing of fine-grained sediments driven by
wave-induced longshore currents at shallower
depths (Stanley, 1989). Sea-level rise did not
constrain the maximum age of our studied
species along the transect because even the
10 m site was flooded ~8000 yr ago, and the
Holocene sea-level rise was limited to 2 m
in the past 5000 yr (Sivan et al., 2004). This
prevalence of extrinsic factors can be counter-
acted only by major differences in durability,
leading to differences in median ages and IQR
by multiple orders of magnitude (Kowalewski
et al., 2018).

Consequences for Paleocommunity Studies

Quantification of the time resolution of ma-
rine fossil assemblages has been limited so far
to primary consumers, such as foraminifera,
mollusks, and brachiopods (e.g., Kidwell et al.,
2005; Krause et al., 2010; Albano et al., 2016,
2018; Ritter et al., 2017). Fishes are important
components of marine trophic webs, and their
otoliths preserve species-specific morphology
and great abundance in marine and lake sedi-
ments (Nolf, 1985) and offer paleobathymetric,
paleoclimatic, and other paleoenvironmental in-
formation (Agiadi et al., 2018). Comparisons
between shells and otoliths are meaningful
because of their comparable durability due to
similar size, mineralogy, and microstructure.
However, otolith postmortem pathways can lead
to significant out-of-habitat transport, while in-
faunal bivalves are more likely to remain buried
in situ after death. Additionally, the changes in
water and nutrient discharge of the Nile River
over the entire Holocene (Hassan et al., 2012;
Sun et al., 2019) can generate differences in tem-
poral production of groups at different trophic
levels. However, our findings indicate that these
two intrinsic factors were ultimately negligible
and that depth-specific burial pathways indepen-
dent of taxon identity dominantly contributed to
the formation of assemblages with comparable
time averaging. Age distributions were not ho-
mogenized by cross-shelf transport processes
on the high-energy shelf, and these organisms
thus spatially and temporally co-occurred in the
original living assemblage.
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