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density of the cascade time (the time elapsed from nucleus creation to state decay) into the probability

Keywords: density of the (scaled) photon energy in the laboratory reference frame. The kernel of this integral
Doppler shift attenuation method transform, which encapsulates information related to the processes of nuclei stopping and photon
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Gamma-ray spectroscopy trial of a candidate 7-value, allowing for fast computation of theoretical lineshapes. Further efficiency is
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approximating continuous random variables by discrete ones.
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1. Introduction contrasting information for theoretical models of the nuclear
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the nuclei slow down in a material (backing). As a result, photons
emitted early on, when the nucleus speed is “high”, present a
higher Doppler shift compared to photons emitted later, when
the nucleus has almost stopped. Consequently, if the lifetime of
the decaying nuclear state is comparable to the characteristic
stopping time scale, the energy spectrum of the transition pho-
tons (lineshape) broadens and takes a shape that depends on the
lifetime.

During DSAM data analysis, a theoretical calculation of the
lineshape is performed. When possible, all of the many parame-
ters affecting the calculation output are fixed at predetermined
values, except for the proposed lifetime of the decaying state,
which is varied while the theoretical lineshape is compared
with the experimental spectrum. The value which produces the
lineshape that bears the most resemblance (according to some
quantitative comparison index) to the experimental spectrum is
declared as the “experimentally measured lifetime”.

Different codes have been written for DSAM. The program
FITS [1,10] uses a one dimensional model of the nuclei slowing-
down that relies on the electronic and nuclear components of the
stopping power and includes the scattering of velocity directions
at low energies by means of the Blaugrund approximation [11].
The codes LILIFIT [2,12], GAMMA [13,14], LINESHAPE [ 15,16], APCAD
[17] and the one used in Ref. [ 18] perform a Monte Carlo simula-
tion of the slowing-down of ions in the target and the backing
that traces the ion’s history of direction and speed. All of the
above programs take into account the finite solid angle of the
detectors and the feeding of the state through both known levels
and sidefeeding states.

The contribution of this work is not a new physical model
of the processes that intertwine in a DSAM experiment. Rather,
we analyze a probabilistic model of the relationship between
these processes, and arrive at a formulation of the computation
of theoretical lineshapes in terms of an integral transform that
converts the state population into the photon energy spectra. The
kernel of this integral transform, containing information related
to the nuclei slowing-down and photon detection, is indepen-
dent of the state gamma decay, and, as a result, needs not be
recomputed for each postulated lifetime value, permitting fast
computation of theoretical lineshapes. Additional efficiency is at-
tained by approximating continuous random variables by discrete
ones.

Section 2 presents the random variables that determine the
theoretical lineshape and introduces the continuous and discrete
methods for lineshape calculation. In Section 3, the lifetime is
related to the photon’s energy Doppler shift. The calculation of
the probability density of the cascade time (the time elapsed from
nucleus creation to state decay) is described in Section 4. Sec-
tion 5 shows the deduction of the integral transform for lineshape
computation. The continuous method is explained in Sections 6
to 9, whereas the discrete method is presented in Section 10.
The codes are described in Section 11 and applied to actual
experimental data in Section 12. Section 13 summarizes this work
and discusses possible improvements.

2. The probabilistic setup

As a result of the reaction used to study the nucleus of interest,
many states are populated that decay by emission of gamma rays.
However, when measuring lifetimes, attention is focused on a
single state transition at a time, which we call the transition of
interest and whose initial state is named the state of interest.

In this work, we take as the test with random outcome (the
analogue of throwing a dice) the creation of a nucleus, which
at some point of its history undergoes the transition of interest
emitting a photon with wave vector direction inside the solid an-
gle spanned by a specific detector. For instance, “One #3Y nucleus

makes a transition from the 25/2% state to the 21/2% state by
emitting a photon which falls into detector ng of the detector
array”. Experimental techniques are used to try to exclude data
originated from any event which does not satisfy these condi-
tions. The outcome of the test will consist of all the quantities
that determine the shape of the transition energy spectrum. As
we will discuss below, the Doppler shift depends on the nucleus
velocity at the instant of emission of the photon, u, and the
photon wave vector direction k. The nucleus speed decreases (on
average) as the time from its creation increases. Therefore, u will
be related to the time ¢ elapsed since the creation of the nucleus
up to the instant of the photon emission. It is through ¢ that the
lifetime relates to the lineshape. To take into account the effect
of the detector’s finite solid angle span, it will be necessary to
distinguish tests in which the photon was detected from those
in which it went undetected. For that purpose, a discrete variable
D is introduced which takes the values D = 0 (undetected)
and D = 1 (detected). Together the random variables u, k, ¢
and D constitute the test outcome. Although these quantities are
conceived of as observables, they are not actually measured in the
experiment. However, they serve to build up a model with which
the lifetime (of the state of interest) is related to the lineshape
(of the transition of interest).

Two approaches were followed to compute the theoretical
lineshapes. A lineshape is the probability density of the measured
photon energy which is a function of other continuous random
variables. The discrete approach consists of approximating any of
the involved continuous random variables by discrete ones. Let
Y be a generic continuous random variable with density fy(y),
where fy(y) # 0 only for y, <y < yp. The interval [yg, y5] can be
partitioned by a grid of Ny evenly spaced points y; = y, + iAy,
Ay = (yp—Ya)/Ny,i =0, 1,..., Ny. Then, the continuous random
variable Y is approximated by a discrete one Y that can take as
values only the midpoints of all subintervals ¥; = (¥; + Yi+1)/2,
i=0,1,..., Ny — 1, with probability P{Y = y;} = fyy_f“ fr(y)dy.
The lineshape is then approximated by performing 'operations
with these random variables as described in Section 10. Although
this approach seems intuitively valid, it is difficult to asses the ac-
curacy with which the real lineshape is being estimated. A better
approximation is provided by the continuous method where the
probability density fy(y) is numerically computed at the discrete
set of points y; and then linearly interpolated to produce a con-
tinuous approximation to the exact probability density. However,
the discrete approach has advantages over the continuous one:
it is more efficient, since it avoids performing integrations, and
more robust as it circumvents the divergence to infinity of some
probability densities in the limit y — 0. Thus, we computed
lineshapes by the continuous method as a way of validating the
results of the discrete one, but provide for the software repository
the code that implements the discrete method. The continuous
method is presented in Sections 6 to 9, whereas the discrete
approach is explained in Section 10.

3. Lifetime and Doppler shift

An excited state is characterized by quantum numbers asso-
ciated to observables of angular momentum and parity among
others. In the present context, it is convenient to label such states
as |y;),i=1,2,..., where a particular value of i corresponds to
a specific combination of quantum numbers. When undergoing
spontaneous decay, a nucleus on an excited state |y) stays in
that state for a time &;, and then it makes a transition to a state
of lower energy, |v,). Similarly, for |v,) excited, the nucleus stays
in |v,) for a period of duration &, which finishes with a transition
to |v3). This process takes place until the ground state is reached.
Fig. 1 shows the evolution in time of the nuclear state over a
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Fig. 1. Characteristic evolution of nuclear state in time. The vertical axis
represents the state energy.

period on which two transitions take place. Observations over en-
sembles of nuclei show that the durations &; are random variables
whose probability density fz(t) are accurately approximated (for
a discussion of the validity of this approximation see Ref. [19],
for instance) by an exponential

fal) = e, ()
Ti

for t > 0 and, since no realization of &; is ever negative, f(t) =0

for t < 0. The parameter t; is known as the mean lifetime of

state |¢;) and is often called simply the lifetime. The transition

from |y;) to |yy) is signaled by the emission of a photon with

energy E, = E; — Ey, where E; is the energy of |¢;).

The lifetime t; provides information about the states |;) and
|Yy) through the relation with the transition matrix element
of the interaction Hamiltonian of the electromagnetic radiation,
Hint [20],

1
= o (Wil Hinel Vi) - (2)

This allows to test the validity of theoretical models of the nuclear
structure.

When 1; is sufficiently small, & cannot be measured directly
— Otherwise, samples of & would allow the estimation of ;
on the basis of (1). Instead, t; is estimated from the probability
density of a measurable quantity affected by &;. For DSAM, the
measurable quantity is the energy of the photon emitted in the
transition |v¢;) — [Vy).

As explained above, nuclei are created with a non-zero veloc-
ity with respect to the laboratory reference frame. As a result, the
energy E of photons emitted by these nuclei displays a Doppler
shift when observed in this frame. The Doppler shift is deter-
mined by the velocity of the nucleus at the instant of emission
u and the photon’s wave vector direction k. To first order in

-k

o = 2’ (3)
c

with c the speed of light, we have [21]

E=E,(1+a) (4)

The nucleus velocity changes in time because it slows down
inside a material. Moreover, the nucleus velocity v(t) measured
from the instant of creation of the nucleus is a stochastic process.
This is the consequence of several facts: the finite width of the
distribution of projectile energies, the random linear momentum
of the evaporated particles, and the random collisions the nucleus
experiences while slowing down. The physics of these processes
is well known, so reliable estimates of the probability density
fu)(r) are available (the model considered here is presented in
Section 6). The time ¢; (cascade time) elapsed since the creation
of the nucleus until the photon emission relates u to v(t) via

u = v(). (5)

¢; is the summation of the times spent in all the states occupied
before |v;), and therefore ¢; = & +- - -+&;, which is also a random
variable. The probability density of E, fz(r), closely related to the
measured energy spectrum, is determined by the distributions
of v(t), Kk, and ¢;. The detector-recorded photon energy E is, in
general, different from E, since a zero-mean random Gaussian
noise § with standard deviation o is added to E during detection,
E = E + 4. Hence, the probability density of E, fz(r), is given by
the convolution of fz(r) with the detector’s impulse response fs(r)
(the distribution of §) [22],

mm=/ folr — s)fy(s)ds. (6)

Recall that the measured energy spectrum is a histogram
constructed from a sample of fz(r). Since the value of t; decides
the distribution of ¢;, f(t), it also molds the measured energy
spectrum. This connection is the key element of DSAM.

In what follows we calculate the distributions of v(t), k and ¢;
and discuss how they give rise to the distribution fz(r). We begin
with ¢;.

4. The distribution of ¢;

In this section we discuss the relation between the probability
density of ¢;, f,(t), and the lifetime. In the ensuing discussion, the
state of interest is labeled by the index n.

The nucleus’ entry state (the state the nucleus appears on
when it is created) can be any of all the states connected to the
state of interest |y,,) through a sequence of physically allowed
decaying transitions. Such set of states together with the particu-
lar tree topology formed by the transitions joining them is known
as the population pattern of the state of interest. For convenience,
the index i labels the states of the population pattern in such a
way that if state |iy) makes a decaying transition to (populates)
|i) theni’ > i”. It follows that the index of the state of interest n
is the maximum index value and it is also the number of states of
the population pattern (when including in it the state of interest
itself). Fig. 3 shows a hypothetical population pattern with the
corresponding state indices. The state of interest in this case is
n=_8.

Note that with this convention the entry state is not al-
ways |vy1). Hence, it becomes more appropriate to denote by
{i1,1,...,n} the states visited by a cascade [For instance,
{i1, iy, n} = {5, 7, 8} for cascade (a) in Fig. 3, whereas {iy, i3, i3, iz,
n} = {1, 2, 4, 6, 8} for cascade (b)], in which case

Cn="6i +&i, + -+ & (7)

Each state in the population pattern has a probability Pl.o of
being the entry state. The probability of transitions between
states is described by the branching ratio by, defined as the
conditional probability that state |y) makes a transition to |y;),
provided |y) has already been reached. When k is not one
of the immediately preceding states of i, by, = 0. Moreover,
ZLI by = 1, for any k. In the language of graph theory, the
matrix B with elements bj, is the generalized adjacency matrix
of the edge-weighted graph associated to the population pattern.
Because of the indexing convention defined above, B is strictly
lower triangular.

When the entry state and the state of interest do not coincide,
Eq. (7) can be written as

&n =§v+$n» (8)

where ¢, is the cascade time of the immediately preceding state
|, ). Due to (8) it is possible to express the probability density of
n, f,(£), in terms of the distributions f;, (t) of all the immediately
preceding states of |i,), each one of which, in turn, can be
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Fig. 2. Velocity of nucleus at the moment of the photon emission, u, and photon
wave vector direction, K, in relation to the projectile beam and the detector
(cylinder). The origin O coincides with the reaction site.
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Fig. 3. Population pattern and two cascades (a) and (b) (wide gray lines).

expressed in terms of the probability densities of the cascade
times of its own immediately preceding states. As proven in
Appendix A, this recursive relationship, which holds for any state
i, is expressed by the differential equation

dfli
dt

i-1

= My 2 Y b, (9)
k=1 gi

where A; = 1/1; and g; is the probability that the cascade of a test

contains state |v;) (particularly, g, = 1), which can be computed

using g; = P® + 3"} biqr. The ODE system (9) is subject to the

initial condition

fa(0) = P /(tig7), (10)

as shown in Appendix A.
The relation (9) is more often found in terms of the state
populations Pi(t), defined as

Pi(t) = qitify(¢), (11)
under the form of the Bateman equations [23]
i-1
= AP+ ) bukPe i=1,2.....n, (12)
k=1
which can be obtained readily by substitution of (11) into (9).

Egs. (9) for all the states can be gathered into a single vector
equation

df
= Af, (13)
dt
where f = [f;,f,,....fr]" (the exponent T denotes matrix
transposition) and A is a matrix with elements a; = —A; and

dp,
dt

aj = Abyqj/qi. Since A is triangular, its eigenvalues are its
diagonal elements —A;. Therefore, if no two A; are equal, the
general solution of (13) is

f(t) = Z cidie it (14)
i=1

where d; is the eigenvector of A with eigenvalue —2;. The coef-
ficients ¢; can be found from the initial condition (10) via the
linear system

Dc=f0, (15)

where D is the lower triangular matrix with columns d;, ¢ =

[c1, €2, ..., cal" and fo = [f;,(0), f,(0), ..., f, (0)]".
Rather than computing D and ¢ each in turn, we follow a more
efficient procedure to get f(t). The solution (14) can be written as

f(t) = Zn(t), (16)
where Z = Dc is a lower triangular matrix and
n(t) = [e ™Mt e, L, e‘A"[]T )

Substitution of (16) into (15) together with use of (10) gives
the following recurrence relationships for the computation of the
elements z; of Z,

i—1

1 .
i Zaikzkp j=12,...,i—-1, (17)
Ai— -j ki
=
i—1
Zij = foi — ZZU (18)
=

which correspond to the faster algorithm.
5. The distribution of E

In this section we derive the probability density of E from
those of ¢,, v(t) and k. In the sequel, we drop the subindex from
the cascade time as we will be dealing with a single nuclear state.

Eq. (4) implies the following relationship between the proba-
bility density f¢(r) and the probability density of «, f,(r),

1 —E
fir) = = fu (r . ) (19)
Y Y

Hence, we will focus on the calculation of f,(r). For that purpose
we need the probability density of u, fu(r). Assuming that v(t) and
¢ are stochastically independent, from (5) it follows that

Juig (xlt) = funy(r), (20)

where fy (r|t) is the conditional probability density of u given
that ¢ = t. Using the law of total probabilities, we have

fulr) = / Fue (1Y (0)dt (21)
0

_ fo FuoEY (e, 22)

The other piece of information required in order to calculate f,(r)
is the probability distribution of k. Only photons with direction
k within the solid angle spanned by the detector (as viewed
from the reaction site) are susceptible of detection (see Fig. 2).
Satisfaction of this condition does not grant detection, however,
given the random nature of the radiation-matter interaction. As a
result, the questions (i) “what is the probability that a photon that
has entered the detector has done it with direction k = #?” (or,
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more strictly speaking, with direction within a differential solid
angle element around ) and (ii) “what is the probability that a
detected photon has entered the detector with direction k = ?”
have different answers. To distinguish the probability densities
defined by the two questions we introduce the random variable
D which takes the values D = 1 when the photon is detected and
D = 0 when it goes undetected through the detector. Question
(ii) defines the conditional probability density of k given D =
1, me(i‘H). Question (i) disregards the value of D, and hence

defines the total probability density of ﬁ, ff((f'). Since only detected

photons contribute to the energy spectrum, we must use fqu(ﬂ 1)

in the computation of f,(r). We defer to Section 7, the calculation

of fqu(f'H) which is based on the detector geometry and ff((f').
Eq. (3), implies

d N
1= g [ Sl ines . (23)

where we have used the stochastic independence of u and k.
Substituting (23) into (22) and changing the order of integration
(justified by Fubini’s theorem) we have

fulr) = /0 Fae(rlOf(6)dt (24)
where
d n
fastr0)= 5 [ Sl (25)
sw/c<r

is the conditional probability density of « given ¢ = t. Eq. (24)
can be seen as an integral transform, with kernel f,.(r|t), that
converts the distribution of cascade times, f(t), into the distri-
bution of (nondimensional) shifts, f,(r). In Eq. (24), the processes
that determine the transition lineshape are factored into two
independent expressions. On the one hand, the kernel f, (r|t)
condenses the information pertaining to the stopping process and
the detector geometry. On the other hand, the information related
to the population pattern, the lifetimes, in particular, is contained
in f (t). The kernel is given in the sense that it is computed
on the basis of well established knowledge about the processes
involved. The lifetimes are the unknown sought to be determined
by the DSAM experiment. So different values of the lifetimes
and different population patterns might be tried in order to fit
the lineshapes while the models of the stopping process and the
detector remain static. This separation into a static and a variable
part of the computation of lineshapes is taken full advantage of in
the formulation presented by (24). The kernel is independent of
the lifetimes, so it is computed only once. The variable part, f;(t)
can be computed efficiently (by the method of Section 4) given
that it is unconnected to the stopping and detection processes.
The code FITS uses an approximation that simplifies the cal-
culation of the distribution of velocities, consisting of neglecting
the velocity component normal to the projectile beam. Hence,

v(t) = vy(t)es, (26)

where the velocity component parallel to the beam, vy(t), is a
scalar stochastic process with probability density f, )(r) and €3
is a unit vector in the direction of the beam. In this case, Eq. (3)
takes the form

o=k, (27)
where 8 = u/c, u = ués, and

is the cosine of the angle between the photon wave vector and
the beam. Consequently, (25) becomes

|
)= [ e (5] e) mtsinias, (29)

5] s
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£ 154
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Fig. 4. Stopping power S for #3Y in '81Ta,
where
fpie(rit) = cfyo(cr) (30)
and
d e 2
fep(r|1) = — fip(sI1)ds. (31)
dr Je,s<r

In the following sections we describe the computation ofva(t)(r)
and fp(r|1).

6. Slowing down of nuclei in a material

As the nucleus penetrates the stopping material, its velocity
v changes direction with respect to the projectile beam €3 by a
scattering angle ®. On average, the component of v normal to
€3 cancels out, whereas for the parallel component, the nucleus
speed v(t) gets multiplied by the mean of the cosine of the
scattering angle cos ®,

v(t) = v(t)cos ®.

Following FiTs, we assume that the random initial speed v(0),
with distribution fy(r), is evolved deterministically into the
speed v(t) according to the differential equation

dv

o = &), (32)

where g(v) > 0 is defined below. We will find out the rule for
computing the distribution of v(t), fy)(r), on the basis of f,y(r).

When a nucleus performs an infinitesimal displacement dx
within the stopping material, it changes its kinetic energy T by an
amount dT = —S(T)dx, where S(T) > 0 is known as the stopping
power [24]. (Fig. 4 shows the stopping power of 83Y traveling
inside '®1Ta, computed with the program SRIM-2008.04 [25].)
Hence, T as a function of the distance x traveled inside the
stopping material obeys the differential equation

ar
dx
Using the Newtonian expression for T,

—S(T). (33)

1
T = 5mU2 (34)

with m the nucleus mass and v = dx/dt, we can turn (33) into
the evolution equation (32) with

gv) = %s (%mvz). (35)

Eq. (32) implies that v(0) is mapped into v(t) by
u(t) = D[v(0)], (36)
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where @, is the time evolution operator of Eq. (32). As a con-
sequence of the theorem on transformation of random variables,

fo)(r) is related to fy)(r) by

Juny(r) = di(pft(r) Juoy [@—e(1)], (37)

where we have used q)[l(r) = @_(r). Separation of variables
applied to (32) gives the following implicit relation for @_.(r),

D_¢(r) du
/ L (38)
r g(u)
Differentiation of (38) with respect to r produces
d g[P—_(r)]
ar —(r)= s(r) (39)

Let 7(r) denote the time necessary for the speed v(t) to decrease
from r to a very small reference value €. According to (38),

ﬂn:/ﬂﬂi. (40)
< &)

From the definitions of &(r) and 7(r), the following property
holds

TIO_(N]=T0)+¢t. (41)
Let us define the function 7(s) by means of
FIT()] = &(rfuoy(r). (42)
Substituting (39) into (37) and using (42) and (41), we obtain
FlT(r)+t
fuor) = 22O+, (43)
g(r)

which provides an efficient method for the calculation of fy)(r).

The distribution f,(o) is derived from the distribution of the
initial kinetic energy T(0), fr()(r), assumed as a normal distribu-
tion with standard deviation or and mean T, truncated to 4307
and renormalized, meaning that fr)(r) = 0 forr < T — 307 or
r > T + 3or. From (34) and the theorem on transformation of
random variables,

1

Juoy(r) = mrfm)(Emrz) . (44)
Hence f,)(r) = O outside the interval vy < r < var with
voi = +/2(T £ 307)/m. As a result, fuwy(r) is non zero only in

v_(t) <r < vy(t), where
vi(t) = Di(vg) (45)
=7 "[T(vy)—t]. (46)
Since scattering is significant only at low kinetic energies, we
assumed ® = 0 for T above a threshold, chosen as 5 MeV

for the reason explained below. For T below the threshold, we
used the formalism developed by Blaugrund [11] (explained in
Appendix B) to obtain cos @ as function of the speed v, cos ® =
C(v). As a result vy(t) = B[v(t)] where

vC(w), T <5 MeV,
v, otherwise.

B(v) =

In a preliminary stage, lineshapes were computed for 83Y stop-
ping in '®1Ta and different values of the threshold of T. It was
found that the threshold value of 5 MeV produced the best fits to
the experimental lineshape. Fig. 5 shows C(v) computed by the
procedure in Appendix B.

The distribution fv‘ t)(r) is calculated from f,)(r) via the rule
for transformation of random variables

1
fvu(t)(r) = mfvm[lfl(r)], (47)

1.01

=C(v)

0.51

cos®

0.01 ' ' '
0 1 2 3
Vv (um/ps)

Fig. 5. Average scattering cosine as function of the speed v, cos ® = c(v) for 83Y
slowing down in '8'Ta. The function is defined up to v &~ 3.41 wm/ps (dashed
line), corresponding to T =5 MeV.

where the derivative of B, B/, is approximated by second order
centered finite differences.

When t — oo, v4(t) — 0. In particular, fy)(r) enters the
interval [0, €] after the time 7(v, ) and is completely inside this
interval after 71 (v0+ ). Issues may arise when v_(t) approaches
zero. For example, fUH(t)(B[v_(t)]) might tend to infinity. On the
other hand, we are not interested in finding the detailed shape
Ofva(r)(T) on the interval 0 < r < B(e), since any variations in
this narrow range will be smeared out by the multiplication of 8
by « [cf. Eq. (27)] and even more so by the convolution with the
detector impulse response. Thus, when t > 7{(v, ), we proceed
as follows. For B(e) < r < Blv4(t)], we compute f, ()(r) using
(47) and (43), while for 0 < r < B(e), we approximate f, ()
by a linear function ensuring continuity offuu(t)(r) at r = B(e)

and distribution normalization, fo [v+(t)]fv" y(r)dr = 1. Moreover,

it is assumed that once va(t)( r) is fully contamed in the interval

[0,B(€)], at t = T(vgr), it becomes time invariant, f,,H(t)(r) =
+

f [T(vg)](r) for t > T(vy).

Ll
As an illustration, the mean kinetic energy T is computed next
for a fusion-evaporation reaction. In this reaction, projectile and
target nuclei fuse and produce a composite nucleus which decays
by emission of nucleons and alpha particles into different residual
nuclei (evaporation), one of which is the nucleus of interest. T is
obtained on the basis of two assumptions: (i) linear momentum is
conserved during the collision leading to fusion; and (ii) initially
the residual nucleus moves with the speed of the composite
nucleus (evaporation produces fluctuations around this speed).
These lead to
T:—jﬂifn,
(mp +m

where m, and T, are the projectile’s mass and Kinetic energy,
respectively, and m, is the target’s mass. For example, for a
collision of 32S (projectile) at T, = 135 MeV with >8Ni (target)
at rest and residual nucleus 23Y, Eq. (48) gives T = 44.267 MeV.

Fig. 6 shows f)(r), computed as previously described, for 83y
stopping in '¥'Ta (cf. Fig. 4) with initial energy distribution fr(g)(r)
given by T = 44.267 MeV, as above, and o7 = 0.1T.

(43)

7. The distribution of wave vector directions

In this section we describe how to calculate f,p(r|1) using
(31).

We begin by computing ka(f'll) A known fact [22] of the
interaction of radiation with matter is that the conditional prob-

ability P {D =1 ‘k = r] that a photon be detected given that its

direction is k = f is related to the length w(k) of the segment



A. Garzén, W. Rodriguez, F. Cristancho et al. / Computer Physics Communications 246 (2020) 106854 7

5
4<
— 31
>
§2<
l /\
0 2 4 8 10 12

6
r (um/ps)

Fig. 6. Distribution vam(T) with r corresponding to possible values of v(t) for

83Y stopping in 'Ta with T = 44.267 MeV and o7 = 0.1T, for the following
times: 0 ps (blue), 0.2 ps (green), 0.45 ps (red), 0.66 ps (magenta), 0.8 ps (black),
0.92 ps (cyan) and 1.03 ps (yellow). From t = 0.45 ps to t = 0.66 ps, the
distribution decreases in height due to the multiplication by the mean scattering
cosine for v < 3.41 wm/ps . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

of the straight line along k contained inside detector crystal (the
detector, for brevity),

P[D: 1 ‘f(:f‘] =1 — exp(—pw(f)), (49)

where u is the crystal’s coefficient of absorption. For small pw,
(49) can be simplified by Taylor series expansion of its right-hand
side, giving

p[p:1‘f<=f] ~ pw(F). (50)

Eq. (50) allows the computation offf(lD(f'll) by means of Bayes’
formula,

Pip:l‘ﬁ:f}ff((f)

i) = —— (51)

where

p{D:]}:fP{Dzl lA(:f'}ff((f‘)dzr, (52)
2

is the marginal probability of a photon being detected.

In order to evaluate (31) using (51), the directions F are
parametrized by the two angles, 6’ and ¢’, of the spherical
coordinates defined with respect to a detector reference frame
(¢, €,,&,}. The detector frame is obtained by rotation of the
laboratory reference frame {€, ,, €3} (origin O at the reaction
site), with e; aligned with the projectile beam (as before), €;
pointing upward, and e, completing the right-handed set (Fig. 2).
In this frame, t is described by the polar and azimuthal angles, 8
and ¢ respectively, through the relation

I = sinf cos¢ e; + sind sin¢ &, + cosb és. (53)

Let 6; and ¢4 denote the angular coordinates of the detector axis
(which points toward the reaction site, cf. Fig. 2) in the laboratory
frame. The laboratory frame is mapped into the detector frame
(with €] being the image of &;) through a rotation around &, by
an angle 6, followed by an independent rotation around €; by
Pa.

The expression for w(t) as function of the detector frame
angles, w(0’, ¢'), is simpler than the equivalent one for the lab-
oratory frame angles, w(6, ¢), hence the former is preferred. For

a cylindrical detector, w(f) has no dependence on the azimuthal
angle ¢’, w(r) = w(@’). Elementary geometry yields

, Hsectd', 0<0 <80,
w(®) = :RCSCO/ —Lsectd', 6, <6 <6, (54)
where H and R are the detector’s height and radius, respectively,
L is the distance from the origin to the nearest detector circular
face, tan6; = R/(L + H), and tan6, = R/L.

The boundary of the integration region in (31), &; - I = const.,
needs to be expressed, like the integrand, in terms of ” and ¢'. Let
us define h(6', ¢') = &3 - = &;-(sin®’ cos ¢’ & +sin @’ sin¢’ &, +
cos 9’ €;.). Since & is the polar axis, h(6', ¢') is independent of
the detector’s azimuthal angle ¢4. So, without loss of generality,
we can choose ¢¢ = 0, in which case &; = —sin6; €/ + cos 6, €,
and, as a result,

h(e', ¢") =

The distribution fi(¥) is the angular radiation pattern of the
state transition, restricted to the solid angle spanned by the
detector. Assuming the detector is narrow enough so that the

radiation pattern does not change significatively within the solid
angle, we approximate f;(F) by an isotropic distribution. Let ¢’

and ¢’ denote the random polar and azimuthal angles of k with
respect to the detector frame. In terms of ¥’ and ¢', fi(F) takes
the form

sin 6’

forp(0',¢') = o

where 2 is the solid angle of the region 0 < 6’ < 6, and
0 < ¢’ < 2m. Similarly, P [D =1 ‘k = r] becomes

—sinf,sinf’ cos ¢’ 4 coshycosb’. (55)

, (56)

PAD=1|(0". ¢") = (6", ¢")} = pw(6"). (57)
Substituting (56) and (57) into (51),

1 dl
r)= ——— 58
fan(r|1) o) dr (58)
where
I(r) :/ w(0) sin®'do’d¢’ (59)
h(6’,¢")<r
and kmax = cos(fy — 6,) is the maximum possible x-value.

I(kmin) = 0, where kmin = cos(6; + 6;) is the minimum possible
k-value. Note that it is unnecessary to know g since it cancels
out from (58). Fig. 7 shows f.p(r|1) obtained from numerical
calculation of (59) with the function dblquad from the scipy
Python module on a grid of evenly spaced points with meshsize
(kmax —Kkmin)/100. The derivative in (58) was approximated by the
second-order centered finite-differences formula. The detector
parameters are 63 = 52.8°,R=3.55cm,H = 8 cm, and L = 25.5
cm.

8. The kernel f,.(r|t)

fuie(r]t) can now be computed evaluating the integral in (29),
repeated here,

Smax
sty = [ Shne (5] ) otoinias, (60)
Smin

where the more precisely defined integration limits Sy, and Smax
are determined by the ranges over which both fg(r/s|t) and
feip(s|1) are different from zero: syin = max{kmin, cr/BvT(t)]},
for all times, and Spax = Min{«max, cr/Bv~(t)]}, when t < T(v; ),
Or Smax = Kmax, Otherwise.

Fig. 8 shows fy¢(r|t) obtained from f, «)(r) and fK|D(r|1) dis-
played in Figs. 6 and 7, respectively [recali thatfm; r|t) is derived
from f, (r)(r) using Eq. (30)]. For a given ¢t < T(vy ), fuiz(r]t) is non
zero only in the interval xyinBlv_(t)] < cr < kmaxBlv4(t)].
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Fig. 7. Distribution fp(r|1) with r corresponding to possible values of «
[defined by Eq. (28)] for a cylindrical detector with parameters 6; = 52.8°,
R =3.55cm, H=8 cm, and L = 25.5 cm. The distribution is exactly zero for
' < Kmin O T 2= Kmax-
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Fig. 8. The kernel f, (r|t) for 83Y slowing down in '®'Ta and the detector
geometry used in Fig. 7. The kernel is plotted as function of the variable r,
which corresponds to possible values of «, for different times: 0 ps (blue), 0.2
ps (green), 0.45 ps (red), 0.66 ps (magenta), 0.8 ps (black), 0.92 ps (cyan) and
1.03 ps (yellow) . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

9. Computation of lineshape and measurement of the lifetime
T

The distribution f,(r) is computed by Eq. (24). Let t%(r) and
t§(r) denote the endpoints of the largest interval on which
faie(r]t) > 0, for given r. With this notation, (24) becomes

()
1= [ et (61

where the lower integration limit is given by
lin(r), 0 < cr < kminB(€)

tE[B_l(Cr/Kmin)], kminB(€) < cr < KminB(Ua)
0, KminB(Ua) <ca =< KmaXB(UJ)

ti(r) =

with lin(r) > 7(v,) denoting the lower limit for the linear
interpolating function and t”(r) defined by v_[t”(r)] = r, hence
t?(r) = T(vy ) — T(r). The upper limit, on the other hand, is

o 0, 0 < cr < kmaxB(€)
) =10 a1 +
t+[B (cr/kmin)l, KmaxB(€) < cr < KmaxB(UQ )

where t¥(r) = T(v0+) — T(r). The case t{(r) = oo results from
faic(r|t) becoming time invariant for t > 7(vy).

For finite t§(r), the integral in (61) was computed by the trape-
zoid method using the function trapz from the scipy.integrate

Python module. For t§ = oo, the integral was split into two terms,

T(UO+) 00
f = [ factronode + o) [ s ©2)

“(r) T(vg)
and the first term was calculated by the trapezoid method,
whereas the integral in the second one was computed analyti-
cally.

To obtain the theoretical lineshape fz(r) using (6), fp(r) is
derived from f,(r) using (19), and the integral in (6), with f5(r)
truncated to the interval [—3.503, 3.505] and renormalized, is
evaluated by the trapezoid method.

The dependence of the theoretical lineshape fz(r) on the sup-
posed value of the lifetime 7 is indicated explicitly by writing it
as fz(r; 7). To find the “real” value of 7, fz(r; ) is compared with
the experimental lineshape, given as a histogram of the number
of photons X; recorded with energy in any one of N intervals
EE < E < Eyq,i =0,1,...,Ng — 1, E; = Ey + iAE, where
AE is the given experimental channel width. The real or measured
lifetime 7* is assumed as the value of t producing the theoretical
lineshape that better fits the experimental one, with goodness of
fit measured by the reduced chi-squared sz(r) [26],

1 i [X; — Cy(z)Yi(T)P2

N o2 ’
i1 i

xF (1)

where Yj(t) is the probability of finding Ein [Ei, Eiy1),

- Eit1
Yi(z)=P{E <E < Ej1} = Sg(r; T)dr, (63)
Ei

Cy(t) is the normalization constant

YL Xi(r)
DY R0

and o; = 4/X;, assuming the counts X; have a Poisson distribution.
More exactly, the measured t* is the r-value at which x?(t)
takes the minimum, x2. , and the endpoints of the measurement
uncertainty interval are 7, and ©, 7, < T* < 713, such that

X2 (ta) = X2 (W) = X2 + 1[27].

Cy(7)

10. Algorithms of the discrete method

This section explains the algorithms used by the discrete
method for theoretical lineshape calculation, which approximates
continuous random variables by discrete ones. In Section 12,
the outcomes of this approach and the continuous method are
compared.

10.1. Calculation of fy (1)

We select a time range [0, tnax] and represent it with a dis-

crete set of times t; = iAt, i = 0,1,..., N, At = tmax/N¢.
Similarly, we choose a velocity range [0, vmax], var < VUmax, and
divide it with a grid v; = iAv, i = 0,1,...,N,, Av =

Umax/Ny, where N, is the number of grid points. The probability
density f, ;)(r), i=0,1,..., N, is approximated by the discrete
distribupion Plyy(t) = v} = pijj = 0,1,...,N, — 1, where
Py~ fvjf“ foye(r)dr is computed as described below.

The energy range [T —3o7, T+307] is represented by a discrete
grid T, = T — 301 + IAT, 1 = 0,1, ..., Nr, AT = 607 /Ny, with
Ny even, so that Ty, = T. The probability density froy(r) is
approximated by the discrete distribution P{T(0) = T;} = plT,
where p] = fro)(T))/Cr with G = S\, frio)(Ty). Using this
distribution, the probabilities pb are computed by Alg. 1.
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Algorithm 1 Calculation of the discrete distribution of vy (t), pj.

1:8j<«0,i=0,1,..,N;, j=0,1,...,N, — 1
2:forl<—01 ., Nr do
3: v, <~ 2T1/

find j such that v € [v}, vjy1)
Sij < Sij + P
10: end for

11: end for

12: pb <~ s, i=0,1,..,

4. U < BuildInterpolant(v))
5: fori <~ 0,1,...,N; do

6: v < o(t;)

7: v < B(v)

8:

9:

Ne, j=0,1,..,N, — 1

In step 4 of Alg. 1, function BuildInterpolant solves Eq. (32)
numerically using Runge-Kutta order four method, for initial con-
dition v,o, up to tf > tmax, and builds a function that interpolates
this solution. This interpolant is then assigned to function 7,
which is called in step 6.

10.2. Calculation of fp(r|1)

We divide the range [—1, 1] with a grid of points x; = —1 +
iAk, i = 0,1,...,N,, Ax = 2/N,, and approximate the
probability density f.p(r|1) by the discrete distribution P{x =
ki} = pf, where k; = («; + «i+1)/2,i = 0,1,...,N. — 1, and
pf &~ fk’:"“ ferp(r]1)dr is computed by the Monte Carlo method
implemented by Alg. 2.

Algorithm 2 Calculation of the discrete distribution of «, pf

1. §; < 0, i= 1, ooy N
2: forl < 1,2, ..., Nghors dO
3: Yo < Uniform([0, 1])

4:  ys < Uniform([0, 1)

5: 0’ < arccos[1 — (1 — cos,)ys]
6: ¢ < 2my,

7: Kk < h(6', ¢")

8:

find i such that « € [«;, kit1)
9:  si<si+w(®)
10: end for

1: G < YN ' si
12: pf < 5i/Cc, i=0,...,Nc— 1

In step 3 of Alg. 2, Uniform([0, 1]) returns a realization of a
random variable uniformly distributed on the interval [0, 1].

10.3. Calculation of fu(r|t)

The probability density fy . (r|t) will be approximated for the
same set of times t;, i = 0,1,...,N; as in Alg. 1. The range
containing all possible a-values, [—vmax/C, Umax/c], is divided
with a grid of 2N, + 2 points o = (j — 1/2)Aca, j = —N,, ...
1,0,1,...,N, + 1, A = 2umax/[c(2N, + 1)]. And the probabll—
ity density f,-(r|t;) is approximated by the discrete distribution
Pl = @j|l¢ = t} = p;f‘{, where @, = (o5 + j1)/2 and
p;@ ~ fa‘jf“fak(rlt,-)dr is calculated by Alg. 3.

10.4. Calculation of f,(r)

The probability density fa(r) is approximated by the discrete
distribution P{a = o} = p]‘" ~ f fa r)dr, where the values pj

Algorithm 3 Calculation of the discrete kernel pg’t

Ne, j=1,2,..,N,

1: 55« 0,i=0,1, ..,
ij

2: fori < 0,1,...,N; do

3: forj < 1,2,..,N, do

4 if pU ;é 0 then

5 forl < 1,...,N. do

6: o <« UJK,

7 find k such that o € [o, 0kr1)
8 Sik <= Sik + PjiPk

9: end for

10: end if

11: end for

12: end for

13: pi¢ <53, i=0,1,...N;, j=—Nq,.... 0, .., Ng

are calculated by the discrete analogue of Eq. (61),

i+()
= > ppf. (64)
i=i_(j)

where i_(j) and i, (j) are respectively the first and last indices i
for which pg’{ # 0 for a given j, and pf are the probabilities of
the discrete approximation of f;(t), P{t = t;} = pf where the set
of t; values is the same used by Alg. 3 and p; = ft:"“f;(t)dt is
computed analytically.

Since lim;_, o, v+(t) = 0, there exists a first value i., such that
for any i > i, pf]“ =0,ifj # 0 and p?ff = 1. This means that

i+(0) = oo and for j = 0, Eq. (64) becomes
ic—1

oy =p5+ Y pypS (65)
i=i_(0)

where p5, = ft fe(t)dt with t, = i At. Eq. (65) is analogous to

(62).
10.5. Calculation of fg(r) and fz(r)

Let E’ denote the photon energy shift, ' = E — E,, whose
probability density fg(r) = fe(r — E ) is approximated by the
discrete distribution P{E' = E’;} = pl with E/; = (Ef + E{,1)/2

£/ E!
and pf ~ fE "1 fe(r)dr, where the grid E/ is described next.

We choose an interval [— E/..x> Emax] large enough as to contain
the shifted interval over which the experimental lineshape is
given, [Eg — E,, En, — E, ]. The interval [—E[ ., E/ ] is divided
by the grid E/ with submterval length AE’ ten times smaller
than the experimental channel width, E; = (i — 1/2)AF’, i =
—Ng,...,—1,0,1,...,Ng + 1, AEl = AE/10. This grid is
“congruent" with the experimental grid E;, meaning that there
exists i* such that E, = E;. The probabilities pf/ are obtained
via Alg. 4

i*+10i

Algorithm 4 Calculation of the discrete distribution of the photon
energy shift, pf’

1: 5«0, i=—Ng,...,—1,0,1, ..., Ng
2: forj < —N,,...,—1,0,1,...,N, do

3: E' < E o

4. find i such that E’ € [E], E{ ;)

5: S <—sl+pj

6: end for

7: pi <« s, i=—Ng,..,—1,0,1, ..., Ngs
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The theoretical lineshape f;(r) is approximated by the distri-
bution P{E = E, +E';} = pF, pf ~ f;m fz(E, +r)dr, for the same

grid E’; used in Alg. 4. To approximate the convolution in (6), we
use the discrete version of the detector impulse response fs(r),
given by P{8 = Ei} = p}, where p} = f; (E;) /C; if [E'i| < 3.505
or p! = 0 otherwise, and C; = Y, fs(E’;). The probabilities pf are
obtained via the discrete analogue of the convolution in (6),

pi =2 pLp
j

with null terms excluded from the summation, for efficiency.
To calculate the reduced chi-squared sz(r), the probability
Yi(t) defined by (63) is computed as

9
Yi(r) = ZPIE‘JHOH]'
j=0

11. Programs

The following are the programs submitted with this work.
They implement the discrete method for the calculation of the
theoretical lineshape and the measurement of the lifetime. Their
operation is described in the programs’ documentation.

prob_cos: Computes the numerical approximation to fp(r|1)
using Alg. 2.

stopping: Calculates the numerical approximation to the ker-
nel f,.(r|t) using algorithms 1 and 3.

AhKin_A: Computes x2(z) for a list of r-values. Points can
be added to this list interactively to refine the location of the
global minimum of x2(t). The theoretical lineshape and x2(t)
are calculated using the algorithms described in Sections 10.4 and
10.5.

AhKin_B: Finds a local minimum of sz(r) using golden section
search [28]. It also determines the endpoints t of the uncertainty
interval by solving the equation x?(t) — (x2;, + 1) = 0 using the
bisection method. An option allows the search range to be set
so that the minimum found corresponds to the global minimum.
Like AhKin_A, this program uses the algorithms in Sections 10.4
and 10.5 to compute the theoretical lineshape and x2(t).

12. A study case

The programs of the previous section were used to measure
level lifetimes and sidefeeding times of the excited states of 83y
populated by the fusion-evaporation reaction *®Ni(32S, a3p)®3Y
at 135 MeV [29], conducted at Lawrence Berkeley National Lab-
oratory. Evaporated particles were identified by the MICROBALL
array [30], whereas gamma-rays were recorded by the GAMMA-
SPHERE array [31], consisting of 110 HPGe detectors organized
in a spherical arrangement composed by 17 rings of detectors
with each ring located at a fixed polar angle 6. To select gamma-
rays originated by 83Y events, coincidence with the detection of
one « particle and three protons was demanded. Experimental
lineshapes were collected from energies recorded at four pairs
of adjacent rings and, for lineshape fitting, each pair was rep-
resented by the weighted average 6 of the polar angle, yielding
angles 6 = 35.0°,52.8°, 127.2°, and 145.5°. More details of the
data analysis and the measured lifetimes can be found in Ref. [29].

For all transitions analyzed, good agreement was found be-
tween the experimental lineshape and the best-fitting theoretical
one. As an illustration, Fig. 9 shows the best fit to the lineshape
of the transition between the I" = 45/2~ and 41/2~ states (rr is
parity and I is spin) of the negative parity and positive signature
band, (—, +), of 83Y [2], with E, = 1594.6 keV, for all four angles.
The sz(r) found by AhKin_A/B and the measured values t* of

the 45/2~ state are displayed by Fig. 10. Fig. 11 depicts the best
fit to the lineshape of a different transition, 29/2% — 25/2% of
the (4, +) band, with E, = 1193.1 keV. For this transition, the
%2(7) found both by AhKin_A/B and by the continuous method
are displayed by Fig. 12. Note that for all angles, AhKin_A/B and
the continuous method produce the same argument minima 7*
of x2(r) and the same uncertainty interval [tq, o], x2(Tap) =
Xmin+ 1, thus giving identical measurements of the lifetime of the
29/27" state. Moreover, at the resolution used in Fig. 11, the best
fitting lineshapes generated by AhKin_A/B and the continuous
method are almost indistinguishable (for this reason the latter
were not plotted). This indicates that the discrete method used
by AhKin_A/B provides an accurate solution of the probabilistic
model for lineshape computation.

13. Concluding remarks

We presented a set of programs for measuring lifetimes of
nuclear states by the Doppler shift attenuation method (DSAM).
The programs compute theoretical lineshapes for proposed life-
time values 7 until the value t* that produces the best fit to the
experimental lineshape is found. Here fitness is measured by the
reduced chi-squared x2(t). The algorithms implemented by the
codes are based on a probabilistic model of the processes occur-
ring during a DSAM experiment. The analysis of this model allows
us to formulate the calculation of the theoretical lineshape as
the application of an integral transform. This transform converts
the probability density of the cascade time (time elapsed since
the nucleus is created until it leaves the state of interest) f;(t; 7)
into the probability density of the (scaled) photon energy in
the laboratory reference frame (the theoretical lineshape before
convolution with the detector impulse response),

fulriT) = / Fure(FIOf (6 7).
0

The kernel of this integral transform f,.(r|t) contains the infor-
mation related to the nucleus stopping process and the detector
geometry and is independent of the cascade time. Thus, the
integral transform separates the calculation of the theoretical
lineshape into a static part, the kernel fy (r|t), that does not
need to be recomputed every time a new lifetime value is tried,
and a variable part, the cascade time distribution, which can
be calculated efficiently since it is independent of the stopping
process. This separation permits fast computation of theoretical
lineshapes and, therefore, swift sampling of the curve of x2(z)
and identification of the minimum X,Z(r*).

The practical calculation of the lineshapes was carried out in
two ways. In the continuous method, the probability densities of
continuous random variables were approximated numerically at
a discrete set of points, which were then linearly interpolated.
In the discrete method, continuous random variables were ap-
proximated by discrete ones. The continuous method provides
a theoretical lineshape which is a reliable approximation to the
exact solution of the probabilistic model, the “true” lineshape,
and was used to validate the discrete method. In several test
cases, we found that the continuous and discrete methods pro-
duce outcomes that for practical purposes are identical. Here, we
present programs implementing the algorithms of the discrete
method since they are much faster than those of the continuous
one.

The following are the codes attached to this work. Program
stopping computes the kernel using a one-dimensional model
of the stopping process that includes a scattering angle at low
kinetic energies. It takes as input the distribution of the projec-
tion of the photon direction onto the projectile beam, calculated
by program prob_cos, which takes into account the detector’s
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Fig. 11. Best fit (smooth solid line) to the experimental lineshape (histogram) of the 29/2* — 25/2% transition of the (+, +) band, with E, = 1193.1 keV, found
by AhKin_B for four different detector polar angles. For each angle, the (rounded) measured lifetime of state 29/2% is displayed.

angular aperture. Program AhKin_A takes the kernel as input
and computes the theoretical lineshape (performing the integral
transform) and x2(t) for a list of t-values that can be easily
refined interactively. It can be used to obtain an estimate of
the global minimum of x2(t). AhKin_B finds automatically the
global minimum of sz(r) (if the search range is suitably set)
and the limits of the uncertainty interval, hence providing the
measurement of t.

This set of programs has been used to measure the lifetimes
of states of #3Y populated by the fusion-evaporation reaction

38Ni(text32S, a3p)®3Y at 135 MeV, conducted at Lawrence Berke-
ley National Laboratory, with evaporated charged particles and
gamma-rays detected by the MICROBALL and GAMMASPHERE ar-
rays, respectively [29]. In most cases, we found good agreement
between the experimental lineshapes and the best-fitting theo-
retical one, which gives us confidence that the physical model
used and the solution implemented in the code are reliable.

As future work, calculation of the kernel using a more ac-
curate model of the interaction of nuclei with matter could be
pursued. The new model might consider the angular dispersion
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of the residual nuclei’s initial velocity, estimated theoretically
or experimentally from the energies of the evaporated particles,
and the finite width of the target film. It might also simulate
three dimensional collisions of the residual nuclei with atoms of
the backing [32]. This new kernel could be used by the current
versions of programs AhKin_A and AhKin_B, i.e. without any
need for source code changes, due to the separation of kernel
and lineshape computation. Hence, this modularity not only con-
tributes to the code’s efficiency but also facilitates updating the
simulation model.
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Appendix A. Recurrence formula for probability densities f,(t)

The index v of the immediately preceding state of |¢,) is a
random variable that takes values in the set U, of all possible
immediately preceding states (for n = 8 in Fig. 3, Ug = {6, 7}).
We extend the definition of v to include the case in which |¢;) is
the entry state, which is assigned the value v = 0. The different
cases can be summarized as

v=0,

_ Jén.
;n_{gv"f'é:nv v € Up,

where U, is the set of all possible immediately preceding states
of |¥,). In calculating the probability density of ¢; we take into
account the contributions of all the possible cases listed by (A.1)
(with n substituted by i). Using the law of total probabilities:

(A1)

Pio Ak
Jalt) = S (t10) + > bic~fern(10)

keU;

(A2)

where f,,(t]k) is the conditional probability density of ¢; given
that v = k. We divided the probabilities P and g by g; in order
to condition on cascades that contain |;). From (A.1) we see that

Jrw(£10) = fe(£) (A.3)
and
Jro(tlk) = frrg (). (A4)

Since the times &, &, ..., & are independent random variables,
so are ¢ and &;. Consequently,

foore,(t) = /Zf;k(s)fgi(s — t)ds. (A5)

Substituting (1) into (A.5), we have

frere () = %e‘[/” /O[fgk(s)e_s/"'ds. (A6)

Substitution of (A.3), (A.4), (1) and (A.6) into (A.2), yields
Ly P a [* s/t

fat) = —e " o > bi,(a fo fo(s)es/ids (A7)

keU;

Eq. (A.7)is the desired recurrence formula. We can formulate this
recurrence formula as a differential equation taking the derivative
on both sides of (A.7) to obtain

dfy  fa 1 q
G gy - Zbilcﬁfzk-
1

dt T; i
keU;

(A8)

Considering that by = 0 if k does not populate i, leads to (9).
The required initial condition for (A.8) can be found by evaluating
(A7) at t = 0, which yields f,(0) = P?/(ziq;).

Appendix B. Computation of the average scattering angle co-
sine, cos ®

We obtain cos ® as function of the kinetic energy T using
the formalism developed by Blaugrund [11], whose equations are
expressed in terms of a nondimensional kinetic energy ¢ defined
by

M T

e =10.2—
A1 mec?

(B.1)
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where m, is the mass of the electron and
1.63 x 10414,

M= 23 23\ /2
Z1zz<z1 +Zz> (A1 + As)

with A; and Z; denoting respectively the mass and atomic num-
bers of the residual nucleus (i = 1) and the stopping material
(i = 2). For #3Y stopping in '®1Ta, A; = 83, Z; = 39, A, = 181,
and Z, = 73.

The mean scattering cosine is computed by

~ 1A
cos ® = C(e) = exp ———ZGI(e) (B.2)
2 A
where
2 2
14+ -r——r°, r<I1
G= 3 15
2 81
-+ ——, r>1
3 15r

with r = A;/A;, and

(" Sn(2)
I(e)= / 250 + S

where gg corresponds to the “initial” kinetic energy T = 5 MeV,
and S,(¢e) and S.(&) are respectively the nondimensional atomic
and electronic stopping power, approximated as

Sn(€) = 0.6111e~Ve/1:919 (1 _ e—ﬁ/o.uoe)
and

Se(€) = ky/e, (B.3)
where
1/6 0.07932,%Z)% (A1 + A,)*/?

1 3/4
(zf/ Sy zY 3) FRONE

Using (B.1), (B.2), and (34), the mean scattering cosine can be
expressed as a function of the speed v, cos ® = C(v).

k=2
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