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Abstract

Spatial reasoning is an important component of human
intelligence. We can imagine the shapes of 3D objects and
reason about their spatial relations by merely looking at
their three-view line drawings in 2D, with different levels of
competence. Can deep networks be trained to perform spa-
tial reasoning tasks? How can we measure their “spatial
intelligence”? To answer these questions, we present the
SPARE3D dataset. Based on cognitive science and psycho-
metrics, SPARE3D contains three types of 2D-3D reasoning
tasks on view consistency, camera pose, and shape genera-
tion, with increasing difficulty. We then design a method to
automatically generate a large number of challenging ques-
tions with ground truth answers for each task. They are
used to provide supervision for training our baseline mod-
els using state-of-the-art architectures like ResNet. Our ex-
periments show that although convolutional networks have
achieved superhuman performance in many visual learning
tasks, their spatial reasoning performance in SPARE3D is
almost equal to random guesses. We hope SPARE3D can
stimulate new problem formulations and network designs
for spatial reasoning to empower intelligent robots to oper-
ate effectively in the 3D world via 2D sensors.

1. Introduction

Spatial reasoning is “the ability to generate, retain, re-
trieve, and transform well-structured visual images” [29]. It
allows an intelligent agent to understand and reason about
the relations among objects in three or two dimensions. As a
part of general intelligence, spatial reasoning allows people
to interpret their surrounding 3D world [30] and affect their
spatial task performances in large-scale environments [20].
Moreover, statistics from many psychological and educa-
tional studies [26, 31, 45] have empirically proved that good
spatial reasoning ability can benefit performance in STEM
(science, technology, engineering, and math) areas.

Therefore, when we are actively developing intelligent
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Figure 1. SPARE3D task overview. The input to each task is
either the whole or a subset of four different orthographic views
of a 3D object as line drawings, i.e., front (F), top (T), right (R),
and isometric (I) views. Based on the input, an intelligent agent
needs to answer three types of questions: 1) select a consistent
view describing the same object, 2) reason about the camera pose
of a view, and 3) generate the object shape as an isometric view or
a 3D model. The green box (left) and circle (middle) indicate the
correct answers in this example. Best viewed in color.

systems such as self-driving cars and smart service robots,
it is natural to ask how good their spatial reasoning abil-
ities are, especially if they are not equipped with expen-
sive 3D sensors. Because deep convolutional networks em-
power most state-of-the-art visual learning achievements
(such as object detection and scene segmentation) in those
systems, and they are typically trained and evaluated on a
large amount of data, it is then important to design a set of
non-trivial tasks and develop a large-scale dataset to facili-
tate the study of spatial reasoning for intelligent agents.

As an important topic in psychometrics, there exist sev-
eral spatial reasoning test datasets, including the Men-
tal Rotation Tests [43], Purdue Spatial Visualization Test
(PSVT) [4], and Revised Purdue Spatial Visualization
Test [50]. However, those human-oriented tests are not di-
rectly suitable for our purpose of developing and testing the
spatial reasoning capability of an intelligent system, or a
deep network. First, the amount of data in these datasets,
typically less than a hundred of questions, is not enough for
most deep learning methods. Second, the manual way to de-
sign and generate questions in these tests are not easily scal-
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able. Third, many of them focus mostly on various forms
of rotation reasoning tests, ignoring other spatial reasoning
aspects that may be deemed either too easy to answer (e.g.,
to reason about the consistency between different views) or
too difficult to evaluate (e.g., imagine and visualize the 3D
shape or views mentally from different pose) for human,
which are non-trivial for a machine. In addition, some tests
use line drawings without hidden lines (not directly visible
due to occlusion), which might cause ambiguity and make
it unnecessarily difficult for our purpose.

In the vision community, some Visual Question Answer-
ing (VQA) datasets that are reviewed in the next section
are the closest efforts involving spatial reasoning. How-
ever, these datasets are heavily coupled with natural lan-
guage processing and understanding, instead of purely fo-
cusing on spatial reasoning itself. Also, these datasets are
mainly designed for visual relationship reasoning instead of
spatial reasoning about geometric shapes and poses.

Therefore, we propose the SPARE3D dataset to promote
the development and facilitate the evaluation of intelligent
systems’ spatial reasoning abilities. We use orthographic
line drawings as the primary input modality for our tasks.
Line drawings are widely used in engineering, representing
3D mechanical parts in computer-aided design or structures
in building information models from several 2D views, with
surface outlines and creases orthogonally projected onto the
image plane as straight or curved lines. Compared with real-
istic images, line drawings are not affected by illumination
and texture in rendering, providing pure, compact, and most
prominent object geometry information. It is even possible
to encode depth cues in a single drawing with hidden lines.

Moreover, line drawing interpretation has been exten-
sively studied in computer vision and graphics for a few
decades, leading to theories such as line labeling and re-
gion identification [32, 42, 33, 44], and for single-view re-
construction [37]. Many of these methods were trying to
convert 2D line drawings to 3D models based on projec-
tive geometry theories and rule-based correspondence dis-
covery, which is arguably different from human’s seemingly
instinctive and natural understanding of those drawings. We
hope SPARE3D can stimulate new studies in this direction
using data-driven approaches.

SPARE3D contains five spatial reasoning tasks in three
categories of increasing difficulty, including view consis-
tency reasoning, camera pose reasoning, and shape gener-
ation reasoning, as illustrated in Figure 1. The first two
categories are discriminative. View consistency reason-
ing requires an intelligent agent to select a compatible line
drawing of the same object observed from a different pose
than the given drawings. The more difficult camera pose
reasoning requires the agent to establish connections be-
tween drawings and their observed poses, which is simi-
lar to the aforementioned Mental Rotation Tests and PSVT.

Dataset 2D 3D pure geometry line drawing reasoning
Visual Reasoning [24, 3,48, 7,22,28,38] | v X X X v

Phyre [2] v X X X

ShapeNet [6] v v X X X
ScanNet [10] v v X X X

Line Drawing [8, 9, 17, 1] v X X v X

ABC [27] v v Vv X X
SPARE3D (ours) v v v v v

Table 1. Summary of related public datasets. 2D, 3D and
line drawing indicate the types of data in a dataset. Pure ge-
ometry means the dataset is only focusing on geometry, without
other modalities (language/semantics/physics). Reasoning means
whether a dataset is designed directly for reasoning.

The shape generation is the most difficult, where we test for
higher-level abilities to directly generate 2D (line drawings
from other views) or 3D (point clouds or meshes) represen-
tations of an object, based on the given line drawings. If
an agent can solve this type of tasks accurately, then the
previous two categories can be solved directly. Note that al-
though there are other types of spatial reasoning tasks in the
psychometrics literature, we focus on these three because
they are some of the most fundamental ones.

In summary, our contributions are the following:

* To the best of our knowledge, SPARE3D is the first
dataset with a series of challenging tasks to evaluate
purely the spatial reasoning capability of an intelli-
gent system, which could stimulate new data-driven
research in this direction.

* We design a scalable method to automatically gener-
ate a large number of non-trivial testing questions and
ground truth answers for training and evaluation.

e We design baseline deep learning methods for each
task and provide a benchmark of their performance on
SPARE3D, in comparison with human beings.

* We find that state-of-the-art convolutional networks
perform almost the same as random guesses on
SPARE3D, which calls for more investigations.

* We release the dataset and source code for data gener-
ation, baseline methods, and benchmarking.

2. Related Works

Spatial reasoning has been studied for decades in cogni-
tive science and psychology. With the advancements of ar-
tificial intelligence (Al), researchers begin to design Al sys-
tems with visual/spatial understanding and reasoning abil-
ities. As mentioned, classical human-centered spatial rea-
soning tests are not designed for Al and not readily trans-
ferable for developing spatial reasoning Al. Thus we only
focus on reviewing datasets and methods related to spatial
reasoning in the broad context of Al, where the main differ-
ences with SPARE3D are summarized in Table 1.

Visual Reasoning Dataset. Recently there has been
substantial growth in the number of visual reasoning
datasets. They facilitate the development and evaluation



of AI's visual and verbal reasoning ability by asking com-
mon sense questions about an image in the form of natural
language [24, 3, 48, 25, 7, 22, 52, 28, 38] (except for [2]
that focuses on physics). SPARE3D has two major differ-
ences. First, it only involves visual/spatial information of
an object; therefore, natural language processing is not re-
quired. The tasks in SPARE3D is already very challeng-
ing, so decoupling them from other input modalities al-
lows researchers to focus on spatial reasoning. Second,
SPARE3D focuses on reasoning about two fundamental ge-
ometric properties: the shape of a 3D object, and the pose it
was observed from, rather than the relative position, size, or
other semantic information comparisons between objects.

3D Object/Scene Dataset. Recent years have also seen
the booming large-scale 3D datasets designed for represen-
tation learning tasks such as classification and segmenta-
tion as a way to 3D scene understanding. For example,
ShapeNet [0] as a 3D object dataset with rich semantic
and part annotations, and ScanNet [10] as an RGB-D video
dataset for 3D reconstruction of indoor scenes. Some of
those datasets are then utilized in the visual navigation stud-
ies [53, 47]. Although visual navigation can be seen as in-
volving spatial reasoning, it focuses more on a scene level
goal-achieving than the object level shape and pose reason-
ing in SPARE3D. In SPARE3D, we take advantage of 3D
solid models from the ABC dataset [27], which is proposed
for digital geometry processing tasks. We then generate
line drawings from these CAD models as our 2D drawing
sources. Note that none of these datasets are specifically
designed for spatial reasoning, as in our context.

Line Drawing Dataset. Interpreting line drawings has
been a long-term research topic, as discussed. With the de-
velopment of deep learning, the recent efforts in this direc-
tion are to understand line drawings by analyzing a large
number of them. Cole et al. [8, 9] studied on how the draw-
ings created by artists correlate with the mathematical prop-
erties of the shapes, and how people interpret hand-drawn or
computer-generated drawings. OpenSketch [17] is designed
to provide a wealth of information for many computer-aided
design tasks. These works, however, mainly focus on 2D
line drawing interpretation and lack 3D information paired
with 2D drawings. Unlike them, SPARE3D contains paired
2D-3D data, thus can facilitate an Al system to reason about
3D object information from 2D drawings, or vice versa.

Other Related Methods. We also briefly discuss some
machine learning methods that we believe might help tackle
spatial reasoning tasks in SPARE3D in the future. Research
about single view depth estimation, e.g., [!5, 46], may be
used to reason about the 3D object from a 2D isometric
drawing (if trained on a large number of such drawings) by
predicting 3D structures to rule out some less likely candi-
dates in the questions. Similarly, spatial reasoning ability
for an intelligent agent could also be connected with neural

scene representation and rendering [13, 19]. For example,
Eslami et al. [13] introduced the Generative Query Network
(GQN) that learns a scene representation as a neural net-
work from a collection of 2D views and their poses. Indeed,
when trying to solve the SPARE3D tasks, people seem to
first “render” the shape of a 3D object in our minds and
then match that with the correct answer. If such analysis-
by-synthesis approaches are how we acquired the spatial
reasoning ability, then those methods could lead to better
performance on SPARE3D.

3. Spatial Reasoning Tasks

SPARE3D contains five tasks in three categories, includ-
ing view consistency reasoning, camera pose reasoning, and
shape generation reasoning. The first two categories contain
three discriminative tasks, where all questions are similar to
single-answer questions in standardized tests with only one
correct and three similar but incorrect answers. The last
category contains two generative tasks, where no candidate
answers are given, but instead, the answer has to be gener-
ated. Next, we discuss first how we design these tasks, and
then how to generate non-trivial question instances.

3.1. Task Design

In a SPARE3D task, an intelligent agent is given sev-
eral views of orthographic line drawings of an object as
the basic input for its reasoning. Without loss of general-
ity and following conventions in engineering and psycho-
metrics, in SPARE3D, we only focus on 11 fixed view-
ing poses surrounding an object: front (F), top (T), right
(R), and eight isometric (I) viewing poses, as illustrated in
Figure 2. Note that drawings from F, T, and R views are
usually termed as three-view drawings. And an isometric
view means the pairwise angles between all three projected
principal axes are equal. Note that there are more than one
possible isometric drawings from the same view point [51],
and without loss of generality, we choose the eight com-
mon ways as in Figure 2. Although geometrically equal,
the F/T/R views and I views have a significant statistical dif-
ference in appearance. Because our 3D objects are mostly
hand-designed by humans, many lines are axis-aligned and
overlap with each other more frequently when projected to
F/T/R views than I views. Therefore, I views can usually
keep more information about the 3D object.

Nonetheless, it is well-known that in general, a 3D shape
cannot be uniquely determined using only two correspond-
ing views of line drawings unless three different views of
line drawings are given with mild assumptions [21]. More-
over, finding the unique solution requires methods to estab-
lish correspondences of lines and junctions across different
views, which itself is non-trivial. Thus, even at least three
views of line drawings are given as input in all SPARE3D
tasks, it is still not straightforward to solve them.



Figure 2. Illustration of the eight isometric views in SPARE3D.
Imagine a 3D object is placed in the center of a cube (grey).
Each vertex of the cube represents the viewpoint of an isometric
drawing, correspondingly labeled from 1 to 8. The front/top/right
(F/T/R) view’s viewpoint is located on the centers of rectangles
1-5-6-2/1-2-3-4/2-6-7-3 respectively. Note that hidden lines are
drawn in red. Best viewed in color.

View Consistency Reasoning. A basic spatial reasoning
ability should be grouping different views of the same 3D
object together. In other words, an intelligent agent with
spatial reasoning ability should be able to tell whether dif-
ferent line drawings could be depicting the same object
from different viewing poses. This is the origin of the view
consistency reasoning task. It is partly linked to some men-
tal rotation tests in psychometrics, where one is asked to
determine whether two views after rotation can be identi-
cal. We factor out the rotation portion to the second task
category, leave only the consistency checking part, result-
ing in the first task below.

3-View to Isometric. Given front, right, and top view
line drawings of a 3D object, an intelligent agent is asked to
select the correct isometric view drawing of the same object
captured from pose 2 defined in Figure 2. We use pose 2
since it is the most common pose in conventional isometric
drawings (see an example in Figure 3).

Camera Pose Reasoning. Mental rotation ability is an
important spatial reasoning ability that an intelligent agent
should have. By thoroughly understanding the shape of a
3D object from several 2D drawings, the agent should be
able to establish correspondences between a 2D drawing of
the object and its viewing pose. This leads to the following
two tasks (see examples in Figure 4 and 5).

Isometric to Pose. Given the front, right, top view and a
specific isometric view line drawings, an intelligent agent is
asked to determine the camera pose of that isometric draw-

Given:

&%F%

Front (F Top (T) Right (R)

Select the Most Consistent Isometric (1) Drawing:
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Figure 3. An example 3-View to Isometric task. The candidate
isometric views in the second row are all from pose 2. The correct
answer is highlighted in green, and hidden lines are drawn in red
in this and the following two figures. Best viewed in color.

Given:
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Select the Corresponding Pose of the Isometric (I) Drawing:

A. Pose 1 ‘ B. Pose 2 ‘ ‘ C. Pose 5 ‘ ‘ D. Pose 6 ‘

Figure 4. An example Isometric to Pose task.

Given:
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Select the Isometric (1) Drawing at the Corresponding Pose:
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Figure 5. An example Pose to Isometric task.

ing. We consider only four poses, 1/2/5/6, for isometric
drawings in this task.

Pose to Isometric. As the “inverse” process of the pre-
vious task, this task asks an intelligent agent to select the
correct isometric drawing from a given viewing pose in ad-
dition to the given three-view drawings. To further increase
the difficulty, we consider all the eight isometric poses.

Shape Generation Reasoning. Generating the 2D or 3D
shape of an object from several 2D drawings is a funda-
mental aspect of spatial reasoning as suggested by its def-
inition. We believe it is such a top level capability that if
possessed can solve most of the spatial reasoning tasks: by
extracting spatial information contained in 2D drawings and
reconstruct 3D shapes, it could enable the agent to answer



view consistency, or camera pose reasoning questions by
searching for possible solutions and eliminate less possible
ones. Therefore we design this category of tasks. Different
from the previous discriminative tasks, where the solution
space is discrete and finite, the following two tasks in this
category do not provide any candidate solutions, thus being
the most challenging among all.

Isometric View Generation. An intelligent agent is pro-
vided with front, right, and top view drawings and asked
to generate the corresponding isometric view drawing from
pose 2 (without loss of generality).

Point Cloud Generation. Given the same input as in the
previous task, the agent is asked to generate a complete 3D
model represented as a point cloud.

3.2. Task Generation

3D Object Repositories. To automatically generate dif-
ferent instances of the above designed tasks, we create
two 3D object repositories: SPARE3D-ABC, where 10,369
3D CAD objects are sampled from the ABC dataset [27],
and SPARE3D-CSG, where 11,149 3D constructive solid
geometry (CSG) objects of simple 3D primitives are ran-
domly generated. Given a 3D model repository, we use
PythonOCC [36], a Python wrapper for the CAD-Kernel
OpenCASCADE, to generate front/top/right/isometric view
drawings from the 11 fixed poses. This directly provides
us datasets for the shape generation reasoning tasks. We
generate all tasks independently on each repository. The
baseline results of all tasks run on both the SPARE3D-ABC
and SPARE3D-CSG models are shown and discussed in the
benchmark result section.

To use 3D objects from the ABC dataset, we remove
all duplicates by choose objects with unique hash values
of their front view image files. We also skip some objects
whose STEP-format file size exceed a certain limit to re-
duce the computing load. Note that there are many objects
in the ABC dataset whose corresponding front, top, or right
view drawings contains only a small point. We exclude all
these objects to ensure 2D drawings in our dataset cover a
reasonably large image area so as to be legible for an intel-
ligent agent even after downsampling.

Avoiding Data Bias. Given a large number of line draw-
ings and corresponding 3D objects, cares must be taken
when generating instances of the above spatial reasoning
tasks. An important consideration is to avoid data bias,
which could be undesirably exploited by deep networks to
“solve” a task from irrelevant statistical patterns rather than
really possessing the corresponding spatial reasoning abil-
ity, leading to trivial solutions. Therefore, we make sure
that all images in the dataset have the same size, resolution,
and scale. We also ensure that our correct and incorrect
answers are uniformly distributed in the solution space, re-
spectively. Besides, we ensure each drawing only appears

once across all tasks, either in questions or in answers, to
avoid memorization possibilities.

The biggest challenge of avoiding data bias is to auto-
matically generate non-trivial incorrect candidate answers
for the view consistency reasoning task. If incorrect an-
swers are just randomly picked from a different object’s
line drawings, according to our experiments, a deep net-
work can easily exploit some local appearance similarities
between views to achieve high testing performance in this
task. Therefore, we further process 3D objects for this task.
We first cut a 3D object by some basic primitive shapes like
sphere, cube, cone and torus for four times to get four cut
objects. Then we randomly choose one of the four objects
to generate F, T, R, and I drawings as question and correct
answer drawings. And the three I drawings from the re-
maining three cut objects are used as the wrong candidate
answers. We record the index of the correct isometric draw-
ing as the ground truth label for supervised learning. We
prepare 5,000 question instances in total for the 3-View fo
Isometric task. We perform an 8 : 1 : 1 train/validation/test
dataset split. We use almost the same settings to generate
camera pose reasoning tasks except that no 3D object cut-
ting is needed.

4. Baseline Methods

We try to establish a reasonable benchmark for
SPARE3D tasks using the most suitable baseline methods
that we could find in the literature. 3-View to Isometric and
Pose to Isometric are formulated as either binary classifi-
cation or metric learning, Isometric to Pose as multi-class
classification, Isometric View Generation as conditional im-
age generation, Point Cloud Generation as multi-view im-
age to point cloud translation. For each task, images are en-
coded by a convolutional neural network (CNN) as fixed di-
mensional feature vectors, and a camera pose is represented
by a one-hot encoding because of the small number of fixed
poses in each task. Note that our dataset offers both vector
(SVG) and raster (PNG) representations of line drawings.
Raster files can be readily consumed by CNN, while vector
files offer more possibilities such as point cloud or graph
neural networks. Currently, we focus only on raster files be-
cause of the relative maturity of CNN. We will benchmark
more networks suitable for vector data in the future.

For the backbone network architectures, we select
ResNet-50 [18] and VGGNet-16 [39] to model the im-
age feature extraction function, due to their proved per-
formance in various visual learning tasks. We also select
BagNet [5], which shows surprisingly high performance on
ImageNet [12] even with a limited receptive field. De-
tailed baseline formulation and network architectures are
explained in the supplementary material.

Human Performance. We design a crowd-sourcing
website to collect human performance for 3-View to Iso-



metric, Pose to Isometric, and Pose to Isometric reasoning
tasks. Two types of human performance are recorded: un-
trained vs. trained. In the untrained type, we distributed
the website on certain NYU engineering classes and social
media platforms and had no control of the participants. We
collected testing results from more than 100 untrained peo-
ple, with each of them answering four randomly selected
questions in each task. We report their average performance
as the first human baseline. The second type comes from
five randomly selected engineering master students. Each
of them is trained by us for about 30 minutes using ques-
tions from the training set, and then answers 100 questions
for each task with limited time. We report their max perfor-
mance as the second human baseline.

5. Benchmark Results

All our baselines were implemented using PyTorch [35],
and run on NVIDIA GeForce GTX 1080 Ti GPU. The re-
sults for the first three tasks are summarized in Figure 6.

3-View to Isometric. In Figure 6 top left, except
for the VGG-16 binary classification, all other results on
SPARE3D-ABC reveal that these networks failed to ob-
tain enough spatial reasoning ability from the supervision
to solve the problems, with their performance on testing
dataset close to random selection. An interesting observa-
tion is that many baseline methods achieved high training

binary classification metric learning

multi-class classification

accuracy, indicating severe over-fittings. An unexpected re-
sult is that VGG-16 binary classification achieves higher ac-
curacy than ResNet-50 on the testing dataset (although still
low), while ResNet has been repeatedly shown to surpass
VGG networks in many visual learning tasks. Compare the
two images in the first column of Figure 6, the baseline per-
formance on SPARE3D-CSG data is better than SPARE3D-
ABC. We believe this is because objects in the SPARE3D-
CSG repository are geometrically simpler in terms of the
basic primitives of objects.

Isometric to Pose. The multi-class classification results
on SPARE3D-ABC are shown in Figure 6 top middle. For
ResNet-50, the testing accuracy is about 36.2%, which is
only slightly higher than the random selection. For Bag-
Net, the testing accuracy is 31.5%, which is lower than
the other two baseline methods. VGG-16 again surpris-
ingly and significantly outperforms ResNet and BagNet,
with 65.8% testing accuracy even beating the average hu-
man performance. As for SPARE3D-CSG, we obtain al-
most similar results, which are shown in Figure 6 bottom
middle.

This is surprising. First, VGG-16 outperforms ResNet
again. We tried to match the configurations of the first/last
pooling and the fully connected layers between VGG-
16 and ResNet, without observing significant performance
changes, which suggests the existence of some unknown
undesirable features in ResNet for SPARE3D tasks. Sec-

trained human max untrained human average

[ train H test [ train I test train test —_— ----
3-View to Isometric Isometric to Pose Pose to Isometric
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Figure 6. SPARE3D benchmark results of baseline methods and human performance on the first three tasks on SPARE3D-ABC (top)
and SPARE3D-CSG (bottom). The average untrained human performance results for 3-View to Isometric, Isometric to Pose, and Pose to
Isometric are 80.5%, 60.2%, and 58.6% respectively. The max trained human performance results for these three tasks are 94.0%, 91.0%,

and 65.0% respectively.
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Figure 7. Isometric View Generation testing examples. The fourth column is the generated I drawing from the first three columns as input,
and the last column is the ground truth. The baseline methods show reasonable results, yet not precise enough for solving the previous
discriminative reasoning tasks. A surprisingly good result is the last one, possibly due to its near-planar structure.

ond, VGG-16 is on par with the average human perfor-
mance, while before experiments, we hypothesized that
none of the baselines could achieve human-level perfor-
mance. This result gives us more confidence in learning-
based methods for addressing these spatial reasoning tasks.

Pose to Isometric. In Figure 6 top row right, all baseline
methods perform poorly, with the highest testing accuracy
30.1% on ResNet-50 for metric learning and average ac-
curacy around 27.5% for other baseline methods. Similar
results are obtained on SPARE3D-CSG.

Moreover, we notice that the accuracy of BagNet is al-
most always lower than that of ResNet-50 and VGG-16 in
all tasks. It could be due to the smaller receptive field in
BagNet than the other two, which constrains BagNet to ex-
ploit only local rather than global information. This indi-
cates the SPARE3D tasks are more challenging and require
higher-level information processing than ImageNet tasks,
which can be solved surprisingly well by BagNet.

Human performance. In Figure 6, the untrained or
trained human performance is better than most baseline
methods for the same task. It reveals that most state-of-the-
art networks are far from achieving the same spatial reason-
ing ability as humans have on SPARE3D.

Isometric View Generation. In Figure 7, the generated
results are still very coarse, although reasonable and better
than our expectation given the poor performance of CNN
in previous tasks. Using the generated isometric drawing to
select the most similar answers (in terms of the pixel-level
L2 distance) in the 3-View to Isometric task leads to a 19.8%
testing accuracy. This reveals that using Pix2Pix [23] in a
naive way can have reasonable generation performance, but
cannot yet generate detailed and correct isometric drawings

for solving the reasoning task. Therefore, new architectures
for this task are still needed in the future.

Point Cloud Generation. In Figure 8, the point cloud

generation results are also reasonable yet unsatisfactory: the
overall shape is generated correctly, while detailed features
are often omitted. One possible reason is that the point
cloud decoding network is not powerful enough, or the en-
coding CNN lacks the ability to extract the spatial informa-
tion from three-view drawings. Therefore the current net-
work baseline cannot be used to reason about complicated
structures by generating them. Also, just concatenating F,
R, T drawings as the input of the network is a simple yet
naive way, and more effective methods are needed to syn-
thesis these 3D objects more reasonably.
Why baseline performance is low? In Figure 6, except
for the binary classification in 3-View fo Isometric task and
multi-class classification inlsometric to Pose task of VGG-
16 achieve 47.2% and 65.8% testing accuracy, all other re-
sults are close to random selection. Three following chal-
lenges in SPARE3D may cause the low performance.

Non-categorical dataset. SPARE3D is different from
many existing datasets that contain objects from a limited
number of semantic classes. Without strong shape similar-
ities among objects in SPARE3D, it becomes significantly
more difficult for networks to “trivially” exploit local vi-
sual patterns for “memorization”, and forces future solu-
tions to tackle the reasoning challenge instead of resorting
to statistical correlation. We believe this unique feature is
ignored by the community but necessary for moving for-
ward towards human-level performance: people can solve
our tasks without category information.

Line drawing images. Unlike many other datasets based
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Figure 8. Point Cloud Generation testing examples. The left columns displays AtlasNet [

] results and the right shows FoldingNet [49]

results. The AtlasNet performs slightly better than FoldingNet in terms of details, but none of them are good enough for analysis-by-

synthesis reasoning in previous discriminative tasks.

on textured images or rough sketches [41, 11], SPARE3D
uses line drawings that are sparse and geometrically con-
cise, making them closer to symbolic representations for
reasoning that is difficult for existing CNN.

Reasoning is not retrieval. In some baselines, we use
metric learning, which is common for image retrieval [14]
that searches for an image in a fixed large database. But it
does not fit for SPARE3D, where each question gives only
four candidate answers that also vary across questions.
Would self-supervised 2D/3D information help? In the
three discriminative tasks, we only use 2D information to
train our baselines. One might be wondering whether us-
ing more 3D information would significantly improve the
performance, as shown in [34, 41, 40]. Although results in
the two generation tasks, which is not worse than voxel re-
construction in [ 1], have indicated that naively generated
coarse shape does not help, it is still valid to ask whether
we can use 2D/3D shape information implicitly via self-
supervision. This leads to the following two experiments.

Pretrained Pix2Pix. As mentioned in Isometric View
Generation, we use the trained Pix2Pix model to generate
the I drawing from the given F/T/R drawings in 3-View fo
Isometric questions. Instead of naively using this gener-
ated I drawing with L2 distance, which leads to a 19.8%
testing accuracy, now we train an additional CNN to select
answers in a learned feature space (instead of pixel space).
This CNN is similar to the binary classification network for
3-View to Isometric but takes as input the concatenation of
the answer and the generated images. The new accuracy
raises to 37.6% yet is still very low.

Pretrained FoldingNet. In Point Cloud Generation, we
trained a CNN encoder via 2D-3D self-supervision. Now

Task 3-View to Isometric  Pose to Isometric
Without FoldingNet | 85.5%/28.8% 66.3%/30.1%
With FoldingNet 81.0%/30.4% 87.5%127.2%

Table 2. Effect of self-supervised 3D information in training.
The first row is the training/testing accuracy by random CNN ini-
tialization. The last row is using CNN initialized from a pretrained
2D-to-3D FoldingNet.

we use this encoder as a warm start to initialize the ResNet-
50 models of metric learning for 3-View to Isometric and
Pose to Isometric tasks. As shown in Table 2, accuracy has
no significant increase and is still close to random selection.
So our naive way of using 3D information does not work
well, and further design is needed.

6. Conclusion

SPARE3D is designed for the development and evalu-
ation of AI’s spatial reasoning abilities. Our baseline re-
sults show that some state-of-the-art deep learning methods
cannot achieve good performance on SPARE3D. We be-
lieve this reveals important research gaps and motivates new
problem formulations, architectures, or learning paradigms
to improve an intelligent agent’s spatial reasoning ability.
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Supplementary

A. SPARE3D-CSG

Why CSG models? CSG models are randomly generated
from simple primitives, like sphere, cube, cone, and torus,
with boolean operations including union, intersection, and
difference. Therefore, it allows us to control the complex-
ity of 3D models. In the SPARE3D-CSG dataset, we gen-
erate three sets of 4000 3D models, i.e., a total of 12000,
from two, three, and four simple random primitives respec-
tively. With more primitives in a model, the complexity
of the model increases, and so does the difficulty level of
SPARE3D-CSG tasks generated from those models.

When generating tasks for view consistency reasoning
and camera pose reasoning, for training and testing dataset,
we select the same number of 2D drawings from two, three,
and four simple primitive model sets. In this way, we ensure
that our baseline methods are trained and tested on tasks
with the same difficulty levels.

CSG model generation. Most of the objects in the real
world look reasonably regular in shape because they are
usually designed and organized in certain rules manually.
The SPARE3D-CSG dataset is generated using the follow-
ing two rules. First, to create a CSG model from simple
primitives, rotation angles for these primitives are randomly
selected from 0°, 90°, 180°, and 270°. Second, these prim-
itives are only rotated about X, Y, or Z axes. Example
models can be seen from Figure 9.

B. Baseline Methods Formulation

We formulate the 3-View fo Isometric and Pose to Iso-
metric tasks as either binary classification or metric learn-
ing. The Pose to Isometric task is formulated as the multi-
class classification. Isometric View Generation is treated
as conditional image generation, Point Cloud Generation is
expressed as 3D point cloud generation from multi-view im-
age. In this section, we use I, I, and Iy to represent line
drawings from the front, top, and right view, respectively,
each of which is a 3-channel RGB image. The backbone
neural networks are represented as feature extraction func-
tion f for each task. The detailed formula of each task is
shown in the following subsections.

B.1. Three-View to Isometric

Binary Classification. Iy, It, Ir, and a query image I,
from the choices are concatenated along the feature dimen-
sion, to form a 12-channel composite image /..

Then a CNN-based binary classifier fy : R12XHxW
[0,1] is trained to map I to p(¢), which is the probability
that I, is the isometric image. 6 represents the parameters
of the neural network. Binary cross-entropy (BCE) loss is

applied to train the neural nework:
L(0) = —plogp(d) — (1 —p)log (1 — p(0)), (1)

where p € Zs is the ground truth label of whether I is the
isometric drawing consistent with the input.

We take four images (three images from the question and
one image from answer) as a group. Therefore, each time,
we have four groups of data to process. We use VGG and
ResNet to encode a group of images to a feature vector in
R! space. Then we concatenate four feature vectors and use
softmax to get a 4 x 1 vector of distribution probability.

Metric Learning. [p, I, and Ip are concatenated to
form a 9-channel composite image /.. Then I. is fed into a
CNN-based encoder fy : RO>*H>*W _ RM A query image
1, from the choices is fed into another CNN-based encoder
gy : R3HXW 5 RM 9 and ¢ represent the parameters
of the two neural networks respectively. We use /5 distance
d(8,¢) = || fo(I:) — ga(Iy)| to measure the correctness of
I,. Smaller d(6, ¢) indicates higher correctness that I, is
the isometric image among the four choices. We apply mar-
gin ranking loss to train the networks:

3
L(0,¢) = > _max (0,d(0,¢) — df,(0,6) +m), (2)
k=1

where d.(0, ¢) is the correctness measurement of the cor-
rect I, and d¥ (6, ¢) is the correctness measurement of the
kth wrong I,. m = 2 is the margin we use during training.
We set M = 128 in this task.

B.2. Isometric to Pose

Multi-class Classification. [, I, Ir and the isometric
image I; are concatenated to form a 12-channel composite
image I.. Then a CNN-based classifier fg : R12*H*xW _
[0,1]* is trained to map I. to a four-vector p(f) =
[p1(0), p2(0), p3(0), pa(9)]T that represents the probabil-
ity of I; is taken at pose 1, 5, 2 and 6 respectively. Cross-
entropy loss is applied to train the neural network.

4
L(6) = = > prlog pr(6), 3)
k=1

where p, = 1 if I; is taken at the kth view point. For this
task, we encode the concatenated four images in the ques-
tion into a R* feature vector using function F. Then we use
softmax to get the probability distribution and compute the
cross-entropy loss between the feature vector and the en-
coding of the answer.
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Figure 9. CSG model examples. In each example chunk, the first three columns are F, T, R drawings, respectively; the fourth column is
the rendered CSG model (seeing from pose 2 as explained in the main paper). The models in the second row, third row, and fourth row are

generated from two, three, and four simple primitives, respectively.

B.3. Pose to Isometric

Binary Classification. Ir, I, Ir and a query image I,
from the choices are concatenated to form a 12-channel
composite image I.. This composite image is fed into
a CNN f : RIZXHxW _, RK_ Then, we concatenate
the output with a 8-dimensional one-hot vector z € Z§,
representing the given camera pose to create a codeword
c € RE x Z§. cis then fed into a fully-connected network
gs : RE x Z§ — [0,1]. We apply BCE loss as equation (1)
to train the neural network. Here we set K = 128.

Metric Learning. Similar to the binary classification for-
mulation, we again obtain ¢ € R¥ x Z§ from Ip, Ir,
Ir and z. c is then fed into a fully-connected network
go : RE x 7§ — RM. For each answer image, we ob-
tain a feature vector in R™ space using another CNN-based
encoder h,, : R3>*HXW _s RM Then we can caculate the
margin ranking loss similar to equation (2). In our experi-
ment, K = 128 and M = 50.

B.4. Isometric View Generation

For this task, we use Pix2Pix [23], a conditional genera-
tive adversarial network, to generate the isometric drawing
for each question. The generator network G(x) needs to
learn a mapping from the three-view drawings to the iso-
metric drawing. The input z is a R?*#>*W tensor gener-
ated by concatenating F, R, T images. When training the
pix2pix model on our dataset, we use label flipping and la-

bel smoothing to improve the stability of the model.

B.5. Point Cloud Generation

We use a FoldingNet [49]-like and AtlasNet [ 16]-like de-
coding architectures to generate a 3D object’s point cloud
with 2025 points from a latent code ¢ € R>!2 which is en-
coded by a ResNet-18 CNN from a 9-channel concatenated
F T, R image tensor.

C. Implementation Details of Baseline Meth-
ods

In SPARE3D-ABC, we use ResNet-50, VGG-16, and
BagNet as our deep network architectures for 3-View to Iso-
metric, Pose to Isometric, and Isometric to Pose tasks, to
extract features from given drawings. The network architec-
ture details are explained below for each baseline method.

All the hyper-parameters in each baseline method for
each task, whose drawings are generated from models in
ABC dataset, are tuned using a validation set of 500 ques-
tions, although we have not searched for the optimal hyper-
parameters extensively using methods like grid search.

C.1. 3-View to Isometric

Binary classification. We slightly modify the ResNet-50
base network to adapt to our tasks. The first convolutional
layer has 12 input channels, 64 output channels, with kernel
size (3, 3), instead of the original (7, 7), stride and padding
(1, 1), instead of the original stride(2, 2) and padding (3, 3).



The last fully-connected layer maps the feature vector from
R2948 _ R!. Other layers are exactly the same as the
original ResNet-50 network. And the above modifications
are applied to all the remaining baseline methods involving
ResNet-50. The learning rate is 0.00005, the batch size is
9, and the network is trained for 50 epochs.

Similarly, for the VGG-16 network, the first convolu-
tional layer is modified in the same way as ResNet-50.
The last fully-connected layer maps the feature vector from
R4096 5 R1 The learning rate is 0.00005, the batch size is
20, and the network is trained for 50 epochs.

For the BagNet-33 base network, the first convolutional
layer has 12 input channels, 64 output channels, with kernel
size 1, stride 1, padding 0. The last fully-connected layer
maps the feature vector from R2%48 — R!. The learning
rate is 0.0001, the batch size is 8, and the network is trained
for 49 epochs.

Metric learning. In this formulation, two functions, f
and g, are implemented using two similar base networks
for extracting features from drawings in questions and in
answers, respectively.

ResNet-50 as the base network: For f, the first con-
volutional layer has 9 input channels, 64 output channels,
with kernel size (3, 3), stride and padding (1,1). The last
fully connected layer maps the feature vector from R?%48 —
R'28, For g, the first convolutional layer has 3 input chan-
nels, 64 output channels, with kernel size (3, 3), stride and
padding (1, 1). The last fully connected layer is the same as
f. The learning rate is 0.0001, the batch size is 4, and the
network is trained for 50 epochs.

VGG-16 as the base network: For f, the first convolu-
tional layer is the same as ResNet-50 f for metric learning
in 3-View to Isometric. The last fully-connected layer maps
the feature vector from R*%%6 — R128, For g, the first con-
volutional layer is the same as ResNet-50 g for metric learn-
ing in 3-View to Isometric. The last fully connected layer is
the same as f in this method. The learning rate is 0.00002,
the batch size is 8, and the network is trained for 50 epochs.

BagNet-33 as the base network: For f, the first con-
volutional layer has 9 input channels, 64 output channels,
with kernel size 1, stride 1 and padding 0. The last fully-
connected layer maps the feature vector from R204¢ —
R'28, For g, the first convolutional layer has 3 input chan-
nels, 64 output channels, with kernel size 1, stride 1 and
padding0. The last fully connected layer is the same as f in
this method. The learning rate is 0.0001, the batch size is 4,
and the network is trained for 50 epochs.

C.2. Isometric to Pose

Multi-class classification. For ResNet-50, the first con-
volutional layer is the same as the ResNet-50 network in
binary classification for 3-View fo Isometric. The last fully-

connected layer maps the feature vector from R?048 — R4,
The learning rate is 0.00002, the batch size is 70, and the
network is trained for 50 epochs.

For VGG-16, the first convolutional layer is the same as
the VGG-16 network in binary classification for 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R4%96 — R*, The learning rate is 0.00002, the
batch size is 80, and the network is trained for 50 epochs.

For BagNet, the first convolutional layer is the same as
the BagNet network in binary classification for 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R2%48 — R*. The learning rate is 0.00002, the
batch size is 30, and the network is trained for 50 epochs.

C.3. Pose to Isometric

Binary classification. For ResNet-50, the first convolu-
tional layer is the same as the ResNet-50 network in binary
classification for 3-View to Isometric. A fully connected
layer maps the feature vector from R204® — RI128  Af
ter concatenating with a one-hot encoder Z3, a fully con-
nected layer maps the concatenated feature vector from
R136 5 R!. The learning rate is 0.00002, the batch size
is 9, and the network is trained for 50 epochs.

For VGG-16, the first convolutional layer is the same as
the VGG-16 network in binary classification for 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R4096 — R'28  The last layer is the same as
the ResNet-50 network in binary classification for Pose to
Isometric. The learning rate is 0.0001, the batch size is 30,
and the network is trained for 50 epochs.

For BagNet, the first convolutional layer is the same as
the BagNet network in binary classification for 3-View to
Isometric. A fully connected layer maps the feature vec-
tor from R2%48 — R128. The last layer is the same as the
ResNet-50 network in binary classification for Pose fo Iso-
metric. The learning rate is 0.00005, the batch size is 8, and
the network is trained for 50 epochs.

Metric learning. Similar to the metric learning formula-
tion for the task “3-View to Isometric”, there are two func-
tions f and g used to extract features from drawings in the
question and the answers respectively.

For ResNet-50, the first convolutional layer of f is the
same as ResNet-50 f for metric learning in 3-View to Iso-
metric. The fully connected layer maps the feature vector
from R?04® — R128  After concatenating with a one-hot
encoder Z$§, a linear layer maps the concatenated feature
vector from R3¢ — R0, For g, the first convolutional
layer is the same as ResNet-50 g for metric learning in 3-
View to Isometric. The last fully-connected layer maps the
feature vector from R2048 — R0, The learning rate is
0.00001, the batch size is 4, and the network is trained for
47 epochs.



For VGG-16, the first convolutional layer of f is the
same as VGG-16 f for metric learning in 3-View to Iso-
metric. The fully connected layer maps the feature vector
from R4096 — R128  For g, the first convolutional layer
is the same as VGG-16 g for metric learning in 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R4096 — R59_ Other architectures are the same
as VGG-16 for metric learning in Pose to Isometric. The
learning rate is 0.000005, the batch size is 10, and the net-
work is trained for 42 epochs.

For BagNet-33, the first convolutional layer of f is the
same as BagNet f for metric learning in 3-View to Isomet-
ric. For g, the first convolutional layer is the same as Bag-
Net g for metric learning in 3-View to Isometric. Other ar-
chitectures are the same as BagNet for metric learning in
Pose to Isometric. The learning rate is 0.0001, the batch
size is 4, and the network is trained for 41 epochs.

C.4. Isometric View Generation

As mentioned in the baseline method part, we use the
Pix2Pix network to generate isometric drawings for each
question. The first layer has 9 input channels.

C.5. Point Cloud Generation

For FoldingNet-like and AtlasNet-like architectures, the
number of output points for a 3D object is 2025. The la-
tent code is ¢ € R52, Other architectures are the same as
in FoldingNet paper and AtlasNet paper, respectively, ex-
cept that the original point cloud encoder is replaced with
a ResNet-18 with 9 input channels. The network is trained
for 1000 epochs.

C.6. Crowd-sourcing Website

Figure 10, 11 and 12 show our crowd-sourcing website
for collecting human performance, with example questions
for each tasks respectively.



T1-0: Given the following orthographic projections of a 3D object:

Front Top Right

o)
S

Please select the only compatible isometric projection of the object from the following images.
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T1-1: Given the following orthographic projections of a 3D object:

Front Top Right

Please select the only compatible isometric projection of the object from the following images.

T1-2: Given the following orthographic projections of a 3D object

Front Top Right

J O

Please select the only compatible isometric projection of the object from the following images.

T1-4: Given the following orthographic projections of a 3D object:

Front Top Right

Please select the only compatible isometric projection of the object from the following images.
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T1-3: Given the following orthographic projections of a 3D object

Front Top Right
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Please select the only compatible isometric projection of the object from the following images.
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T1-5: Given the following orthographic projections of a 3D object

Front Top Right
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Please select the only compatible isometric projection of the object from the following images.
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T1-6: Given the following orthographic projections of a 3D object:

Front Top Right

)

Please select the only compatible isometric projection of the object from the following images.

T1-7: Given the following orthographic projections of a 3D object

Front Top Right

Please select the only compatible isometric projection of the object from the following images.

Figure 10. Examples of the “3-View to Isometric” task shown in our crowd-sourcing website. Correct answers are highlighted by green

rectangles. Best view in color.



T4-1: Given the following orthographic projections, determine the view point for the isometric view.

A Top Left

C Bottom Left

i Y N 1

B TopRight

D Bottom Right

Front Top Right Isometric
o
A Top Left B TopRight
C Bottom Left D Bottom Right
T4-6: Given the following orthographic projections, determine the view point for the isometric view.
Front Top Right Isometric

T4-5: Given the following orthographic projections, determine the view point for the isometric view.

Front Top Right

A Top Left B TopRight

Isometric

C Bottom Left D Bottom Right

T4-10: Given the following orthographic projections, determine the view point for the isometric view.

Front Top Right

A Top Left

C Bottom Left

Isometric

B TopRight

D Bottom Right

Front

A Top Left

Top

T4-13: Given the following orthographic projections, determine the view point for the isometric view.

Right

C Bottom Left

Front

A TopLeft

C Bottom Left

Top

Right

60O

B TopRight

D Bottom Right

T4-21: Given the following orthographic projections, determine the view point for the isometric view.

o

B TopRight

Isometric

Isometric
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A TopLeft

C Bottom Left

Right

T4-18: Given the following orthographic projections, determine the view point for the isometric view.

B TopRight

Isometric

D Bottom Right

Front Top
] @
[yl
A Top Left

D Bottom Right

C Bottom Left

Right

T4-24: Given the following orthographic projections, determine the view point for the isometric view.

B TopRight

D Bottom Right

Isometric

Figure 11. Examples of the “Isometric to Pose” task shown in our crowd-sourcing website. Correct answers are highlighted by green
rectangles. Best view in color.



75-0: Given the following orthographic projections of a 3D object

¥

A:Front-Top-Left  B: Front-Bottom-Left
.

Imagining you are looking at
the object from
A/B/C/D/E/F/G/H, you will
observe the four images
correspondingly.

&

C: Front-B Right

.
Front

Front Top

If you are looking at the object from
Rear-Bottom-Left

what will you see?

5-6: Given the following orthographic projections of a 3D object
Front Top

If you are looking at the object from
Rear-Bottom-Left

what will you see?

c
% .
D: Front-Top-Righ

T5-2: Given the following orthographic projections of a 3D object:

Right

E: Rear-Top-Left
€
)

)

G: Rear-Bottom-Right

Viewpoint position

Viewpoint position

H: Rear-Bottom-Left

Front Top

Right

F: Rear-Top-Right

If you are looking at the object from
Front-Bottom-Right
what will you see?

T5-4: Given the following orthographic projections of a 3D object:
Front Top

Right

o o P m

If you are looking at the object from
Rear-Top-Left

what will you see?

T5-7: Given the following orthographic projections of a 3D object
Front Top

Right

B &

If you are looking at the object from
Rear-Top-Right

what will you see?

Viewpoint position

Viewpoint position

Viewpoint position

T5-9: Given the following orthographic projections of a 3D object

Front Top Right

L

ol of

If you are looking at the object from
Front-Bottom-Right
what will you see?

Viewpoint position

T5-11: Given the following orthographic projections of a 3D object
Front Top Right

h e E

If you are looking at the object from
Front-Bottom-Right
what will you see?

Viewpoint position

Figure 12. Examples of the “Pose to Isometric” task shown in our crowd-sourcing website. Correct answers are highlighted by green
rectangles. The eight poses are explained on the left column of the first row, and also in each question. Best view in color.



